12,796 research outputs found
Experimental Demonstration of Quantum Fully Homomorphic Encryption with Application in a Two-Party Secure Protocol
A fully homomorphic encryption system hides data from unauthorized parties while still allowing them to perform computations on the encrypted data. Aside from the straightforward benefit of allowing users to delegate computations to a more powerful server without revealing their inputs, a fully homomorphic cryptosystem can be used as a building block in the construction of a number of cryptographic functionalities. Designing such a scheme remained an open problem until 2009, decades after the idea was first conceived, and the past few years have seen the generalization of this functionality to the world of quantum machines. Quantum schemes prior to the one implemented here were able to replicate some features in particular use cases often associated with homomorphic encryption but lacked other crucial properties, for example, relying on continual interaction to perform a computation or leaking information about the encrypted data. We present the first experimental realization of a quantum fully homomorphic encryption scheme. To demonstrate the versatility of a a quantum fully homomorphic encryption scheme, we further present a toy two-party secure computation task enabled by our scheme
General Impossibility of Group Homomorphic Encryption in the Quantum World
Group homomorphic encryption represents one of the most important building
blocks in modern cryptography. It forms the basis of widely-used, more
sophisticated primitives, such as CCA2-secure encryption or secure multiparty
computation. Unfortunately, recent advances in quantum computation show that
many of the existing schemes completely break down once quantum computers reach
maturity (mainly due to Shor's algorithm). This leads to the challenge of
constructing quantum-resistant group homomorphic cryptosystems.
In this work, we prove the general impossibility of (abelian) group
homomorphic encryption in the presence of quantum adversaries, when assuming
the IND-CPA security notion as the minimal security requirement. To this end,
we prove a new result on the probability of sampling generating sets of finite
(sub-)groups if sampling is done with respect to an arbitrary, unknown
distribution. Finally, we provide a sufficient condition on homomorphic
encryption schemes for our quantum attack to work and discuss its
satisfiability in non-group homomorphic cases. The impact of our results on
recent fully homomorphic encryption schemes poses itself as an open question.Comment: 20 pages, 2 figures, conferenc
Quantum Fully Homomorphic Encryption With Verification
Fully-homomorphic encryption (FHE) enables computation on encrypted data
while maintaining secrecy. Recent research has shown that such schemes exist
even for quantum computation. Given the numerous applications of classical FHE
(zero-knowledge proofs, secure two-party computation, obfuscation, etc.) it is
reasonable to hope that quantum FHE (or QFHE) will lead to many new results in
the quantum setting. However, a crucial ingredient in almost all applications
of FHE is circuit verification. Classically, verification is performed by
checking a transcript of the homomorphic computation. Quantumly, this strategy
is impossible due to no-cloning. This leads to an important open question: can
quantum computations be delegated and verified in a non-interactive manner? In
this work, we answer this question in the affirmative, by constructing a scheme
for QFHE with verification (vQFHE). Our scheme provides authenticated
encryption, and enables arbitrary polynomial-time quantum computations without
the need of interaction between client and server. Verification is almost
entirely classical; for computations that start and end with classical states,
it is completely classical. As a first application, we show how to construct
quantum one-time programs from classical one-time programs and vQFHE.Comment: 30 page
Limitations on information-theoretically-secure quantum homomorphic encryption
Homomorphic encryption is a form of encryption which allows computation to be carried out on the encrypted data without the need for decryption. The success of quantum approaches to related tasks in a delegated computation setting has raised the question of whether quantum mechanics may be used to achieve information-theoretically-secure fully homomorphic encryption. Here we show, via an information localization argument, that deterministic fully homomorphic encryption necessarily incurs exponential overhead if perfect security is required
- …
