
Quantum Fully Homomorphic Encryption
with Verification

Gorjan Alagic1,2(B), Yfke Dulek3, Christian Schaffner3, and Florian Speelman4

1 Joint Center for Quantum Information and Computer Science,
University of Maryland, College Park, MD, USA

galagic@gmail.com
2 National Institute of Standards and Technology, Gaithersburg, MD, USA
3 CWI, QuSoft, and University of Amsterdam, Amsterdam, Netherlands

4 QMATH, Department of Mathematical Sciences, University of Copenhagen,

Copenhagen, Denmark

Abstract. Fully-homomorphic encryption (FHE) enables computation
on encrypted data while maintaining secrecy. Recent research has shown
that such schemes exist even for quantum computation. Given the numer-
ous applications of classical FHE (zero-knowledge proofs, secure two-
party computation, obfuscation, etc.) it is reasonable to hope that quan-
tum FHE (or QFHE) will lead to many new results in the quantum
setting. However, a crucial ingredient in almost all applications of FHE
is circuit verification. Classically, verification is performed by checking a
transcript of the homomorphic computation. Quantumly, this strategy is
impossible due to no-cloning. This leads to an important open question:
can quantum computations be delegated and verified in a non-interactive
manner?

In this work, we answer this question in the affirmative, by construct-
ing a scheme for QFHE with verification (vQFHE). Our scheme provides
authenticated encryption, and enables arbitrary polynomial-time quan-
tum computations without the need of interaction between client and
server. Verification is almost entirely classical; for computations that
start and end with classical states, it is completely classical. As a first
application, we show how to construct quantum one-time programs from
classical one-time programs and vQFHE.

1 Introduction

The 2009 discovery of fully-homomorphic encryption (FHE) in classical cryptog-
raphy is widely considered to be one of the major breakthroughs of the field. Unlike
standard encryption, FHE enables non-interactive computation on encrypted data
even by parties that do not hold the decryption key. Crucially, the input, output,
and all intermediate states of the computation remain encrypted, and thus hidden
from the computing party. While FHE has some obvious applications (e.g., cloud
computing), its importance in cryptography stems from its wide-ranging applica-
tions to other cryptographic scenarios. For instance, FHE can be used to construct

c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part I, LNCS 10624, pp. 438–467, 2017.
https://doi.org/10.1007/978-3-319-70694-8_16

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301638079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Quantum Fully Homomorphic Encryption with Verification 439

secure two-party computation, efficient zero-knowledge proofs for NP, and indis-
tinguishability obfuscation [4,14]. In fact, the breadth of its usefulness has led some
to dub FHE “the swiss army knife of cryptography” [4].

Recent progress on constructing quantum computers has led to theoretical
research on “cloud-based” quantum computing. In such a setting, it is natural
to ask whether users can keep their data secret from the server that performs
the quantum computation. A recently-constructed quantum fully-homomorphic
encryption (QFHE) scheme shows that this can be done in a single round of
interaction [12]. This discovery raises an important question: do the numerous
classical applications of FHE have suitable quantum analogues? As it turns out,
most of the classical applications require an additional property which is simple
classically, but non-trivial quantumly. That property is verification: the ability
of the user to check that the final ciphertext produced by the server is indeed
the result of a particular computation, homomorphically applied to the initial
user-generated ciphertext. In the classical case, this is a simple matter: the server
makes a copy of each intermediate computation step, and provides the user with
all these copies. In the quantum case, such a “transcript” would appear to violate
no-cloning. The user simply checks a transcript generated by the server. In the
quantum case, this would violate no-cloning. In fact, one might suspect that the
no-cloning theorem prevents non-interactive quantum verification in principle.

In this work, we show that verification of homomorphic quantum compu-
tations is in fact possible. We construct a new QFHE scheme which allows the
server to generate a “computation log” which can certify to the user that a partic-
ular homomorphic quantum computation was performed on the ciphertext. The
computation log itself is purely classical, and most (in some cases, all) of the veri-
fication can be performed on a classical computer. Unlike in all previous quantum
homomorphic schemes, the underlying encryption is now authenticated.

Verification immediately yields new applications of QFHE, e.g., allowing
users of a “quantum cloud service” to certify the server’s computations. Verified
QFHE (or vQFHE) also leads to a simple construction of quantum one-time pro-
grams (qOTPs) [9]. In this construction, the qOTP for a functionality Φ consists
of an evaluation key and a classical OTP which performs vQFHE verification for
Φ only. Finding other applications of vQFHE (including appropriate analogues
of all classical applications) is the subject of ongoing work.

Related Work. Classical FHE was first constructed by Gentry in 2009 [15]. For
us, the scheme of Brakerski and Vaikuntanathan [5] is of note: it has decryption in
NC1 and is believed to be quantum-secure. Quantumly, partially-homomorphic
(or partially-compact) schemes were proposed by Broadbent and Jeffery [6]. The
first fully-homomorphic (leveled) scheme was constructed by Dulek, Schaffner
and Speelman [12]. Recently, Mahadev proposed a scheme, based on classical
indistinguishability obfuscation, in which the user is completely classical [17]. A
parallel line of work has attempted to produce QFHE with information-theoretic
security [18,19,21,23]. There has also been significant research on delegating
quantum computation interactively (see, e.g., [1,8,11]). Another notable inter-

440 G. Alagic et al.

active approach is quantum computation on authenticated data (QCAD), which
was used to construct quantum one-time programs from classical one-time pro-
grams [9] and zero-knowledge proofs for QMA [10].

Summary of Results. Our results concern a new primitive: verified QFHE.
A standard QFHE scheme consists of four algorithms: KeyGen, Enc, Eval and
Dec [6,12]. We define vQFHE similarly, with two changes: (i) Eval provides an
extra classical “computation log” output; (ii) decryption is now called VerDec,
and accepts a ciphertext, a circuit description C, and a computation log. Infor-
mally, correctness then demands that, for all keys k and circuits C acting on
plaintexts,

VerDecC
k ◦ EvalCevk ◦ Enck = ΦC . (1)

A crucial parameter is the relative difficulty of performing C and VerDecC
k . In

a nontrivial scheme, the latter must be simpler. In our case, C is an arbitrary
poly-size quantum circuit and VerDecC

k is almost entirely classical.

Security of verified QFHE. Informally, security should require that, if a server
deviates significantly from the map EvalCk in (1), then VerDecC

k will reject.

1. Semantic security (SEM-VER). Consider a QPT adversary A which
manipulates a ciphertext (and side info) and declares a circuit, as in Fig. 1
(top). This defines a channel ΦA := VerDec ◦ A ◦ Enc. A simulator S does
not receive or output a ciphertext, but does declare a circuit; this defines a
channel ΦS which first runs S and then runs a circuit on the plaintext based
on the outputs of S. We say that a vQFHE scheme is semantically secure
(SEM-VER) if for all adversaries A there exists a simulator S such that the
channels ΦA and ΦS are computationally indistinguishable.

2. Indistinguishability (IND-VER). Consider the following security game.
Based on a hidden coin flip b, A participates in one of two protocols. For
b = 0, this is normal vQFHE. For b = 1, this is a modified execution, where
we secretly swap out the plaintext ρA to a private register (replacing it with
a fixed state), apply the desired circuit to ρA, and then swap ρA back in; we
then discard this plaintext if VerDec rejects the outputs of A. Upon receiving
the final plaintext of the protocol, A must guess the bit b. A vQFHE scheme
is IND-VER if, for all A, the success probability is at most 1/2 + negl(n).

3. New relations between security definitions. If we restrict SEM-VER to
empty circuit case, we recover (the computational version of) the definition
of quantum authentication [7,13]. SEM-VER (resp., IND-VER) generalizes
computational semantic security SEM (resp., indistinguishability IND) for
quantum encryption [2,6]. We generalize SEM ⇔ IND [2] as follows.

Theorem 1. A vQFHE scheme satisfies SEM-VER iff it satisfies IND-VER.

A scheme for vQFHE for poly-size quantum circuits. Our main result is a
vQFHE scheme which admits verification of arbitrary polynomial-size quantum
circuits. The verification in our scheme is almost entirely classical. In fact, we

Quantum Fully Homomorphic Encryption with Verification 441

can verify classical input/output computations using purely classical verification.
The main technical ingredients are (i) classical FHE with NC1 decryption [5],
(ii) the trap code for computing on authenticated quantum data [7,9,20], and
(iii) the “garden-hose gadgets” from the first QFHE scheme [12]. The scheme is
called TrapTP; a brief sketch is as follows.

1. Key Generation (KeyGen). We generate keys for the classical FHE scheme,
as well as some encrypted auxiliary states (see evaluation below). This proce-
dure requires the generation of single-qubit and two-qubit states from a small
fixed set, performing Bell measurements and Pauli gates, and executing the
encoding procedure of a quantum error-correcting code on which the trap
code is based.

2. Encryption (Enc). We encrypt each qubit of the plaintext using the trap
code, and encrypt the trap code keys using the FHE scheme. This again
requires the ability to perform Paulis, execute an error-correcting encoding,
and the generation of basic single-qubit states.

3. Evaluation (Eval). Paulis and CNOT are evaluated as in the trap code;
keys are updated via FHE evaluation. To measure a qubit, we measure all
ciphertext qubits and place the outcomes in the log. To apply P or H, we use
encrypted magic states (from the eval key) plus the aforementioned gates.
Applying T requires a magic state and an encrypted “garden-hose gadget”
(because the T-gate magic state circuit applies a P-gate conditioned on a
measurement outcome). In addition to all of the measurement outcomes, the
log also contains a transcript of all the classical FHE computations.

4. Verified decryption (VerDec). We check the correctness and consistency
of the classical FHE transcript, the measurement outcomes, and the claimed
circuit. The result of this computation is a set of keys for the trap code, which
are correct provided that Eval was performed honestly. We decrypt using these
keys and output either a plaintext or reject. In terms of quantum capabilities,
decryption requires executing the decoding procedure of the error-correcting
code, computational-basis and Hadamard-basis measurements, and Paulis.

Our scheme is compact : the number of elementary quantum operations per-
formed by VerDec scales only with the size of the plaintext, and not with the
size of the circuit performed via Eval. We do require that VerDec performs a clas-
sical computation which can scale with the size of the circuit; this is reasonable
since VerDec must receive the circuit as input. Like the other currently-known
schemes for QFHE, our scheme is leveled, in the sense that pre-generated aux-
iliary magic states are needed to perform the evaluation procedure.

Theorem 2 (Main result, informal). Let TrapTP be the scheme outlined
above, and let VerDec≡ be VerDec for the case of verifying the empty circuit.

1. The vQFHE scheme TrapTP satisfies IND-VER security.
2. The scheme (KeyGen,Enc,VerDec≡) is authenticating [13] and IND-CPA [6].

442 G. Alagic et al.

Application: quantum one-time programs. A one-time program (or OTP) is a
device which implements a circuit, but self-destructs after the first use. OTPs
are impossible without hardware assumptions, even with quantum states; OTPs
that implement quantum circuits (qOTP) can be built from classical OTPs
(cOTP) [9]. As a first application of vQFHE, we give another simple construc-
tion of qOTPs. Our construction is weaker, since it requires a computational
assumption. On the other hand, it is conceptually very simple and serves to
demonstrates the power of verification. In our construction, the qOTP for a
quantum circuit C is simply a (vQFHE) encryption of C together with a cOTP
for verifying the universal circuit. To use the resulting qOTP, the user attaches
their desired input, homomorphically evaluates the universal circuit, and then
plugs their computation log into the cOTP to retrieve the final decryption keys.

Preliminaries. Our exposition assumes a working knowledge of basic quan-
tum information and the associated notation. As for the particular notation
of quantum gates, the gates (H,P,CNOT) generate the so-called Clifford group
(which can also be defined as the normalizer of the Pauli group); it includes
the Pauli gates X and Z. In order to implement arbitrary unitary operators, it
is sufficient to add the T gate (also known as the π/8 gate). Finally, we can
reach universal quantum computation by adding single-qubit measurements in
the computational basis.

We will frequently make use of several standard cryptographic ingredients,
as follows. The quantum one-time pad (QOTP) will be used for information-
theoretically secret one-time encryption. In its encryption phase, two bits a, b ∈
{0, 1} are selected at random, and the map XaZb is applied to the input, project-
ing it to the maximally-mixed state. We will also need the computational security
notions for quantum secrecy, including indistinguishability (IND, IND-CPA) [6]
and semantic security (SEM) [2]. For quantum authentication, we will refer to
the security definition of Dupuis, Nielsen and Salvail [13]. We will also make fre-
quent use of the trap code for quantum authentication, described below in Sect. 3.
For a security proof and methods for interactive computation on this code,
see [9]. Finally, we will also use classical fully-homomorphic encryption (FHE). In
brief, an FHE scheme consists of classical algorithms (KeyGen,Enc,Eval,Dec) for
(respectively) generating keys, encrypting plaintexts, homomorphically evaluat-
ing circuits on ciphertexts, and decrypting ciphertexts. We will use FHE schemes
which are quantum-secure and whose Dec circuits are in NC1 (see, e.g., [5]).

2 A New Primitive: Verifiable QFHE

We now define verified quantum fully-homomorphic encryption (or vQFHE), in
the symmetric-key setting. The public-key case is a straightforward modification.

BasicDefinition. The definition has two parameters: the class C of circuits which
the user can verify, and the class V of circuits which the user needs to perform in
order to verify. We are interested in cases where C is stronger than V.

Quantum Fully Homomorphic Encryption with Verification 443

Definition 1 (vQFHE). Let C and V be (possibly infinite) collections of quan-
tum circuits. A (C,V)-vQFHE scheme is a set of four QPT algorithms:

– KeyGen : {1}κ → K × D(HE) (security parameter → private key, eval key);
– Enc : K × D(HX) → D(HC) (key, ptext → ctext);
– Eval : C × D(HCE) → L × D(HC) (circuit, eval key, ctext → log, ctext);
– VerDec : K × C × L × D(HC) → D(HX) × {acc, rej}
such that (i) the circuits of VerDec belong to the class V, and (ii) for all
(sk, ρevk) ← KeyGen, all circuits c ∈ C, and all ρ ∈ D(HXR),

∥
∥VerDecsk(c,Eval(c,Enck(ρ), ρevk)) − Φc(ρ) ⊗ |acc〉〈acc|)∥∥

1
≤ negl(κ),

where R is a reference and the maps implicitly act on appropriate spaces.

We will refer to condition (ii) as correctness. It is implicit in the definition
that the classical registers K,L and the quantum registers E,X,C are really
infinite families of registers, each consisting of poly(κ)-many (qu)bits. In some
later definitions, it will be convenient to use a version of VerDec which also
outputs a copy of the (classical) description of the circuit c.

Compactness. We note that there are trivial vQFHE schemes for some choices
of (C,V) (e.g., if C ⊂ V, then the user can simply authenticate the ciphertext
and then perform the computation during decryption). Earlier work on quantum
and classical homomorphic encryption required compactness, meaning that the
size of the decrypt circuit should not scale with the size of the homomorphic
circuit.

Definition 2 (Compactness of QFHE). A QFHE scheme S is compact
if there exists a polynomial p(κ) such that for any circuit C with nout output
qubits, and for any input ρX , the complexity of applying S.Dec to S.EvalC

(S.Encsk(ρX), ρevk) is at most p(nout, κ).

When considering QFHE with verification, however, some tension arises. On
one hand, trivial schemes like the above still need to be excluded. On the other
hand, verifying that a circuit C has been applied requires reading a description
of C, which violates Definition 2. We thus require a more careful consideration
of the relationship between the desired circuit C ∈ C and the verification circuit
V ∈ V. In our work, we will allow the number of classical gates in V to scale
with the size of C. We propose a new definition of compactness in this context.

Definition 3 (Compactness of vQFHE (informal)). A vQFHE scheme S
is compact if S.VerDec is divisible into a classical verification procedure S.Ver
(outputting only an accept/reject flag), followed by a quantum decryption proce-
dure S.Dec. The running time of S.Ver is allowed to depend on the circuit size,
but the running time of S.Dec is not.

444 G. Alagic et al.

The procedure S.Dec is not allowed to receive and use any other information
from S.Ver than whether or not it accepts or rejects. This prevents the classical
procedure S.Ver from de facto performing part of the decryption work (e.g., by
computing classical decryption keys). In Sect. 3, we will see a scheme that does
not fulfill compactness for this reason.

Definition 4 (Compactness of vQFHE (formal)). A vQFHE scheme S
is compact if there exists a polynomial p such that S.VerDec can be written
as S.Dec ◦ S.Ver, and the output ciphertext space D(HC) can be written as a
classical-quantum state space A × D(HB), where (i.) S.Ver : K × C × L × A →
{acc, rej} is a classical polynomial-time algorithm, and (ii.) S.Dec : {acc, rej} ×
K × D(HC) → D(HX) × {acc, rej} is a quantum algorithm such that for any
circuit C with nout output qubits and for any input ρX , S.Dec runs in time
p(nout, κ) on the output of S.EvalC(S.Enc(ρX), ρevk).

Note that in the above definition, the classical registers K and A are copied and
fed to both S.Dec and S.Ver.

For privacy, we say that a vQFHE scheme is private if its ciphertexts are
indistinguishable under chosen plaintext attack (IND-CPA) [6,12].

Secure Verifiability. In this section, we formalize the concept of verifiability.
Informally, one would like the scheme to be such that whenever VerDec accepts,
the output can be trusted to be close to the desired output. We will consider
two formalizations of this idea: a semantic one, and an indistinguishability-based
one.

Our semantic definition will state that every adversary with access to the
ciphertext can be simulated by a simulator that only has access to an ideal
functionality that simply applies the claimed circuit. It is inspired by quantum
authentication [7,13] and semantic secrecy [2].

The real-world scenario (Fig. 1, top) begins with a state ρXR1R2 prepared
by a QPT (“message generator”) M. The register X (plaintext) is subsequently
encrypted and sent to the adversary A. The registers R1 and R2 contain side
information. The adversary acts on the ciphertext and R1, producing some out-
put ciphertext CX′ , a circuit description c, and a computation log log. These
outputs are then sent to the verified decryption function. The output, along with
R2, is sent to a distinguisher D, who produces a bit 0 or 1.

In the ideal-world scenario (Fig. 1, bottom), the plaintext X is not encrypted
or sent to the simulator S. The simulator outputs a circuit c and chooses whether
to accept or reject. The channel Φc implemented by c is applied to the input
register X directly. If reject is chosen, the output register X ′ is traced out and
replaced by the fixed state Ω; this controlled-channel is denoted ctrl-�.

Definition 5 (κ-SEM-VER). A vQFHE scheme (KeyGen,Enc,Eval,VerDec)
is semantically κ-verifiable if for any QPT adversary A, there exists a QPT S
such that for all QPTs M and D,
∣
∣
∣
∣
Pr

[

D
(

RealAsk(M(ρevk))
)

= 1
]

− Pr
[

D
(

IdealSsk(M(ρevk))
)

= 1
]
∣
∣
∣
∣
≤ negl(κ),

Quantum Fully Homomorphic Encryption with Verification 445

Fig. 1. The real-world (top) and ideal-world (bottom) for SEM-VER.

where RealAsk = VerDecsk ◦ A ◦ Encsk and IdealSsk = ctrl- � ◦Φc ◦ Ssk, and the
probability is taken over (ρevk, sk) ← KeyGen(1κ) and all QPTs above.

Note that the simulator (in the ideal world) gets the secret key sk. We believe
that this is necessary, because the actions of an adversary may depend on super-
ficial properties of the ciphertext. In order to successfully simulate this, the
simulator needs to be able to generate (authenticated) ciphertexts. He cannot
do so with a fresh secret key, because the input plaintext may depend on the
correlated evaluation key ρevk. Fortunately, the simulator does not become too
powerful when in possession of the secret key, because he does not receive any
relevant plaintexts or ciphertexts to encrypt or decrypt: the input register X is
untouchable for the simulator.

Next, we present an alternative definition of verifiability, based on a security
game motivated by indistinguishability.

Game 1. For an adversary A = (A1,A2,A3), a scheme S, and a security para-
meter κ, the VerGameA,S(κ) game proceeds as depicted in Fig. 2.

The game is played in several rounds. Based on the evaluation key, the adversary
first chooses an input (and some side information in R). Based on a random bit
b this input is either encrypted and sent to A2 (if b = 0), or swapped out and
replaced by a dummy input |0n〉〈0n| (if b = 1). If b = 1, the ideal channel Φc

is applied by the challenger, and the result is swapped back in right before the
adversary (in the form of A3) has to decide on its output bit b′. If A2 causes a
reject, the real result is also erased by the channel �. We say that the adversary
wins (expressed as VerGameA,S(κ) = 1) whenever b′ = b.

Definition 6. (κ-IND-VER). A vQFHE scheme S has κ-indistinguishable
verification if for any QPT adversary A, Pr[VerGameA,S(κ) = 1] ≤ 1

2 + negl(κ).

446 G. Alagic et al.

Fig. 2. The indistinguishability game VerGameA,S(κ), as used in the definition of
κ-IND-VER.

Theorem 3. A vQFHE scheme is κ-IND-VER iff it is κ-SEM-VER.

Proof (sketch). The forward direction is shown by contraposition. Given an
adversary A, define a simulator S that encrypts a dummy 0-state, then runs
A, and then VerDec. For this simulator, there exist M and D such that the
difference in acceptance probability between the real and the ideal scenario is
nonnegligible. The triple (M,A,D) forms an adversary for the VER indistin-
guishability game.

For the reverse direction, we use the following approach. From an arbitrary
adversary A for the IND-VER indistinguishability game, we define a semantic
adversary, message generator, and distinguisher, that together simulate the game
for A. The fact that S is κ-SEM-VER allows us to limit the advantage of the seman-
tic adversary over any simulator, and thereby the winning probability of A.

For a detailed proof, see the full version [3]. �

3 TC: A partially-homomorphic scheme with verification

We now present a partially-homomorphic scheme with verification, which will
serve as a building block for the fully-homomorphic scheme in Sect. 4. It is called
TC (for “trap code”), and is homomorphic only for CNOT, (classically controlled)
Paulis, and measurement in the computational and Hadamard basis. It does not
satisfy compactness: as such, it performs worse than the trivial scheme where the
client performs the circuit at decryption time. However, TC lays the groundwork
for the vQFHE scheme we present in Sect. 4, and as such is important to under-
stand in detail. It is a variant of the trap-code scheme presented in [9] (which
requires classical interaction for T gates), adapted to our vQFHE framework. A
variation also appears in [10], and implicitly in [20].

Setup and Encryption. Let CSS be a (public) self-dual [[m, 1, d]] CSS code, so
that H and CNOT are transversal. CSS can correct dc errors, where d = 2dc + 1.

Quantum Fully Homomorphic Encryption with Verification 447

We choose m = poly(d) and large enough that dc = κ where κ is the security
parameter. The concatenated Steane code satisfies all these requirements.

We generate the keys as follows. Choose a random permutation π ∈R S3m

of 3m letters. Let n be the number of qubits that will be encrypted. For each
i ∈ {1, . . . , n}, pick bit strings x[i] ∈R {0, 1}3m and z[i] ∈R {0, 1}3m. The secret
key sk is the tuple (π, x[1], z[1], . . . , x[n], z[n]), and ρevk is left empty.

Encryption is per qubit: (i) the state σ is encoded using CSS, (ii) m compu-
tational and m Hadamard ‘traps’ (|0〉 and |+〉 states, see [9]) are added, (iii) the
resulting 3m qubits are permuted by π, and (iv) the overall state is encrypted
with a quantum one-time pad (QOTP) as dictated by x = x[i] and z = z[i] for
the ith qubit. We denote the ciphertext by σ̃.

Evaluation. First, consider Pauli gates. By the properties of CSS, applying
a logical Pauli is done by applying the same Pauli to all physical qubits. The
application of Pauli gates (X and/or Z) to a state encrypted with a quantum one-
time pad can be achieved without touching the actual state, by updating the keys
to QOTP in the appropriate way. This is a classical task, so we can postpone
the application of the Pauli to VerDec (recall it gets the circuit description)
without giving up compactness for TC. So, formally, the evaluation procedure
for Pauli gates is the identity map. Paulis conditioned on a classical bit b which
will be known to VerDec at execution time (e.g., a measurement outcome) can
be applied in the same manner.

Next, we consider CNOT. To apply a CNOT to encrypted qubits σi and σj ,
we apply CNOT transversally between the 3m qubits of σ̃i and the 3m qubits
of σ̃j . Ignoring the QOTP for the moment, the effect is a transversal applica-
tion of CNOT on the pysical data qubits (which, by CSS properties, amounts
to logical CNOT on σi ⊗ σj), and an application of CNOT between the 2m
pairs of trap qubits. Since CNOT|00〉 = |00〉 and CNOT|++〉 = |++〉, the
traps are unchanged. Note that CNOT commutes with the Paulis that form the
QOTP. In particular, for all a, b, c, d ∈ {0, 1}, CNOT(Xa

1Z
b
1 ⊗Xc

2Z
d
2) = (Xa

1Z
b⊕d
1 ⊗

Xa⊕c
2 Zd

2)CNOT. Thus, updating the secret-key bits (a, b, c, d) to (a, b⊕d, a⊕c, d)
finishes the job. The required key update happens in TC.VerDec (see below).

Next, consider computational-basis measurements. For CSS, logical measure-
ment is performed by measurement of all physical qubits, followed by a classi-
cal decoding procedure [9]. In TC.Eval, we measure all 3m ciphertext qubits.
During TC.VerDec, the contents of the measured qubits (now a classical string
a ∈ {0, 1}3m) will be interpreted into a logical measurement outcome.

Finally, we handle Hadamard-basis measurements. A transversal application
of H to all 3m relevant physical qubits precedes the evaluation procedure for the
computational basis measurement. Since CSS is self-dual, this applies a logical
H. Since H|0〉 = |+〉 and H|+〉 = |0〉, all computational traps are swapped with
the Hadamard traps. This is reflected in the way TC.VerDec checks the traps
(see the full version [3] for details). Note that this is a classical procedure (and
thus its accept/reject output flag is classical).

448 G. Alagic et al.

Verification and Decryption. If a qubit is unmeasured after evaluation (as
stated in the circuit), TC.VerDecQubit is applied. This removes the QOTP,
undoes the permutation, checks all traps, and decodes the qubit. See the full
version [3] for a specification of this algorithm.

If a qubit is measured during evaluation, TC.VerDec receives a list w̃ of 3m
physical measurement outcomes for that qubit. These outcomes are classically
processed (removing the QOTP by flipping bits, undoing π, and decoding CSS)
to produce the plaintext measurement outcome. Note that we only check the |0〉
traps in this case. Intuitively, this should not affect security, since any attack that
affects only |+〉 but not |0〉 will be canceled by computational basis measurement.

The complete procedure TC.VerDec updates the QOTP keys according to the
gates in the circuit description, and then decrypts all qubits and measurement
results as described above (see the full version [3] for details).

Correctness, Compactness, and Privacy. For honest evaluation, TC.VerDec
accepts with probability 1. Correctness is straightforward to check by following
the description in Sect. 3. For privacy, note that the final step in the encryption
procedure is the application of a (information-theoretically secure) QOTP with
fresh, independent keys. If IND-CPA security is desired, one could easily extend
TC by using a pseudorandom function for the QOTP, as in [2].

TC is not compact in the sense of Definition 4, however. In order to compute
the final decryption keys, the whole gate-by-gate key update procedure needs to
be executed, aided by the computation log and information about the circuit.
Thus, we cannot break TC.VerDec up into two separate functionalities, Ver and
Dec, where Dec can successfully retrieve the keys and decrypt the state, based
on only the output ciphertext and the secret key.

Security of Verification. The trap code is proven secure in its application
to one-time programs [9]. Broadbent and Wainewright proved authentication
security (with an explicit, efficient simulator) [7]. One can use similar strategies
to prove κ-IND-VER for TC. In fact, TC satisfies a stronger notion of verifiability,
where the adversary is allowed to submit plaintexts in multiple rounds (letting
the choice of the next plaintext depend on the previous ciphertext), which are
either all encrypted or all swapped out. Two rounds (κ-IND-VER-2) are sufficient
for us; the definitions and proof (see the full version [3]) extend straightforwardly
to the general case κ-IND-VER-i for i ∈ N+.

Theorem 4. TC is κ-IND-VER-2 for the above circuit class.

4 TrapTP: Quantum FHE With Verification

In this section, we introduce our candidate scheme for verifiable quantum fully
homomorphic encryption (vQFHE). In this section, we will define the scheme
prove correctness, compactness, and privacy. We will show verifiability in Sect. 5.

Quantum Fully Homomorphic Encryption with Verification 449

Let κ ∈ N be a security parameter, and let t, p, h ∈ N be an upper bound on
the number of T, P, and H gates (respectively) that will be in the circuit which
is to be homomorphically evaluated. As in Sect. 3, we fix a self-dual [[m, 1, d]]
CSS code CSS which has m = poly(d) and can correct dc := κ errors (e.g., the
concatenated Steane code). We also fix a classical fully homomorphic public-key
encryption scheme HE with decryption in LOGSPACE (see, e.g., [5]). Finally, fix
a message authentication code MAC = (Tag,Ver) that is existentially unforge-
able under adaptive chosen message attacks (EUF-CMA [16]) from a quantum
adversary; for example, one may take the standard pseudorandom-function con-
struction with a post-quantum PRF. This defines an authentication procedure
MAC.Signk : m �→ (m,MAC.Tagk(m)).

Key Generation and Encryption. The evaluation key will require a number
of auxiliary states, which makes the key generation algorithm TrapTP.KeyGen
somewhat involved (see Algorithms 1 and 2). Note that non-evaluation keys are
generated first, and then used to encrypt auxiliary states which are included in
the evaluation key (see TrapTP.Enc below). Most states are encrypted using the
same ‘global’ permutation π, but all qubits in the error-correction gadget (except
first and last) are encrypted using independent permutations πi (see line 15).
The T-gate gadgets are prepared by Algorithm 2, making use of garden-hose
gadgets from [12].

Algorithm 1. TrapTP.KeyGen(1κ, 1t, 1p, 1h)

1: k ← MAC.KeyGen(1κ)
2: π ←R S3m � S3m is the permutation group on 3m elements
3: for i = 0, ..., t do
4: (ski, pki, evki) ← HE.KeyGen(1κ)

5: sk ← (π, k, sk0, ..., skt, pk0)
6: for i = 1, ..., p do � Magic-state generation for P
7: μP

i ← TrapTP.Enc(sk,P|+〉) � See Algorithm 3 for TrapTP.Enc

8: for i = 1, ..., t do � Magic-state generation for T
9: μT

i ← TrapTP.Enc(sk,T|+〉)
10: for i = 1, ..., h do � Magic-state generation for H
11: μH

i ← TrapTP.Enc(sk, 1√
2
(H ⊗ I)(|00〉 + |11〉))

12: for i = 1, ..., t do � Gadget generation for T
13: πi ←R S3m

14: (gi, γ
in
i , γmid

i , γout
i) ← TrapTP.GadgetGen(ski−1) � See Algorithm 2

15: Γi ← MAC.Sign(HE.Encpki(gi, πi))⊗TrapTP.Enc((πi, k, sk0, ..., skt, pki), γ
mid
i)⊗

TrapTP.Enc(sk, γ in
i , γout

i)

16: keys ← MAC.Sign(evk0, ..., evkt, pk0, ..., pkt,HE.Encpk0(π))
17: ρevk ← (keys, μP

0 , ..., μP
p, μT

0 , ..., μT
t , μH

0 , ..., μH
h, Γ1, ..., Γt)

18: return (sk, ρevk)

450 G. Alagic et al.

Algorithm 2. TrapTP.GadgetGen(ski)

1: gi ← g(ski) � classical description of the garden-hose gadget, see [12], p. 13
2: (γ in, γmid, γout) ← generate |Φ+〉 states and arrange them as described by gi. Call

the first qubit γ in
i and the last qubit γout

i . The rest forms the state γmid
i .

3: return (gi, γ
in
i , γmid

i , γout
i)

The encryption of a quantum state is similar to TC.Enc, only the keys to
the QOTP are now chosen during encryption (rather than during key genera-
tion) and appended in encrypted and authenticated form to the ciphertext (see
Algorithm 3). Note that the classical secret keys sk0 through skt are not used.

Algorithm 3. TrapTP.Enc((π, k, sk0, ..., skt, pk), σ)

1: σ̃ ←
∑

x,z∈{0,1}3m

(

TC.Enc((π, x, z), σ) ⊗ MAC.Signk(HE.Encpk(x, z))
)

�

Algorithm 13
2: return σ̃

Evaluation. Evaluation of gates is analogous to the interactive evaluation
scheme using the trap code [9], except the interactions are replaced by clas-
sical homomorphic evaluation. Evaluation of a circuit c is done gate-by-gate, as
follows.

In general, we will use the notation ·̃ to denote encryptions of classical and
quantum states. For example, in the algorithms below, σ̃ is the encrypted input
qubit for a gate and x̃ and z̃ are classical encryptions of the associated QOTP
keys. We will assume throughout that HE.Enc and HE.Eval produce, apart from
their actual output, a complete computation log describing all randomness used,
all computation steps, and all intermediate results.

Measurements. Computational basis measurement is described in Algorithm 4.
Recall that TC.VerDecMeasurement is a completely classical procedure that
decodes the list of 3m measurement outcomes into the logical outcome and
checks the relevant traps. Hadamard-basis measurement is performed similarly,
except the qubits of σ̃ are measured in the Hadamard basis and HE.Encpk(×) is
given as the last argument for the evaluation of TC.VerDecMeasurement.

Algorithm 4. TrapTP.EvalMeasure(σ̃, x̃, z̃, π̃, pk, evk)

1: a = (a1, ..., a3m) ← measure qubits of σ̃ in the computational basis
2: (ã, log1) ← HE.Encpk(a)

3: (˜b,˜flag , log2) ← HE.EvalTC.VerDecMeasurement
evk ((π̃, x̃, z̃), ã,HE.Encpk(+))

4: return (˜b,˜flag , log1, log2) � b ∈ {0, 1} represents the output of the measurement

Quantum Fully Homomorphic Encryption with Verification 451

Pauli gates. A logical Pauli-X is performed by (homomorphically) flipping the
X-key bits of the QOTP (see Algorithm 5). Since this is a classical operation,
the functionality extends straightforwardly to a classically controlled Pauli-X (by
specifying an additional bit b encrypted into b̃ that indicates whether or not X
should be applied; see Algorithm 6). The (classically controlled) evaluation of a
Pauli-Z works the same way, only the relevant bits in z̃ are flipped.

Algorithm 5. TrapTP.EvalX(σ̃, x̃, π̃, pk, evk)

1: (x̃, log1) ← HE.Evalunpermute
evk (π̃, x̃)

2: (x̃, log2) ← HE.Eval⊕evk(x̃,HE.Encpk(1m02m)) � this flips the first m bits
3: (x̃, log3) ← HE.Evalpermute

evk (π̃, x̃)
4: return (σ̃, x̃, log1, log2, log3)

Algorithm 6. TrapTP.EvalCondX(˜b, σ̃, x̃, z̃, π̃, pk, evk)

1: (x̃, log1) ← HE.Evalunpermute
evk (π̃, x̃)

2: s̃ ← HE.Evaly �→ym02m

evk (˜b)
3: (x̃, log2) ← HE.Eval⊕evk(x̃, s̃) � this conditionally flips the first m bits
4: (x̃, log3) ← HE.Evalpermute

evk (π̃, x̃)
5: return (σ̃, x̃, z̃, log1, log2, log3)

CNOT gates. The evaluation of CNOT in TrapTP is analogous to TC, only the key
updates are performed homomorphically during evaluation (see Algorithm 7).

Algorithm 7. TrapTP.EvalCNOT(σ̃1, σ̃2, x̃1, x̃2, z̃1, z̃2, π̃, pk, evk)

1: (σ̃1, σ̃2) ← apply CNOT on all physical qubit pairs of σ̃1, σ̃2

2: (x̃1, x̃2, z̃1, z̃2, log1) ← HE.EvalCNOT−key−update
evk (x̃1, x̃2, z̃1, z̃2) � for commutation

rules, see Sect. 3
3: return (σ̃1, σ̃2, x̃1, x̃2, z̃1, z̃2, log1, log2)

Phase gates. Performing a P gate requires homomorphic evaluation of all the
above gates: (classically controlled) Paulis, CNOTs, and measurements. We also
consume the state μP

i (an encryption of the state P|+〉) for the ith phase gate
in the circuit. The circuit below applies P to the data qubit (see, e.g., [9]).

ρ

P|+〉〈+|P† • XZ PρP†

We define TrapTP.EvalP to be the concatenation of the corresponding gate eval-
uations. The overall computation log is just a concatenation of the logs.

452 G. Alagic et al.

Hadamard gate. The Hadamard gate can be performed using the same ingredi-
ents as the phase gate [9]. The ith gate consumes μH

i , an encryption of (H⊗I)|Φ+〉.

ρ

(H ⊗ I)|Φ+〉〈Φ+|(H ⊗ I)†
{

•

H

ZX HρH†

The T gate. A magic-state computation of T uses a similar circuit to that for P,
using μT

i (an encryption of T|+〉) as a resource for the ith T gate:

ρ

T|+〉〈+|T† • PX TρT†

The evaluation of this circuit is much more complicated, since it requires the
application of a classically-controlled phase correction P. We will accomplish
this using the error-correction gadget Γi.

First, we remark on some subtleties regarding the encrypted classical infor-
mation surrounding the gadget. Since the structure of Γi depends on the classical
secret key ski−1, the classical information about Γi is encrypted under the (inde-
pendent) public key pki (see Algorithm 1). This observation will play a crucial
role in our proof that TrapTP satisfies IND-VER, in Sect. 5.

The usage of two different key sets also means that, at some point during the
evaluation of a T gate, all classically encrypted information needs to be recrypted
from the (i−1)st into the ith key set. This can be done because s̃ki−1 is included
in the classical information gi in Γi. The recryption is performed right before
the classically-controlled phase gate is applied (see Algorithm 8).

Algorithm 8. TrapTP.EvalT(σ̃, x̃, z̃, π̃, μT
i , Γi, pki−1, evki−1, pki, evki)

1: (σ̃1, σ̃2, x̃1, z̃1, x̃2, z̃2, log1) ← TrapTP.EvalCNOT(μT
i , σ̃, x̃, z̃, π̃, pki−1, evki−1)

2: (˜b, log2) ← TrapTP.EvalMeasure(σ̃2, x̃2, z̃2, π̃, pki−1, evki−1)

3: log3 ← recrypt all classically encrypted information (except ˜b) from key set i − 1
into key set i.

4: (σ̃, log4) ← TrapTP.EvalCondP(˜b, σ̃1, x̃1, z̃1, Γi, π̃, pki, evki)
5: return (σ̃, log1, log2, log3, log4)

Algorithm 9 shows how to use Γi to apply logical P on an encrypted quantum
state σ̃, conditioned on a classical bit b for which only the encryption b̃ is avail-
able. When TrapTP.EvalCondP is called, b is encrypted under the (i−1)st classical
HE-key, while all other classical information (QOTP keys x and z, permuta-
tions π and πi, classical gadget description gi) is encrypted under the ith key.
Note that we can evaluate Bell measurements using only evaluation of CNOT,

Quantum Fully Homomorphic Encryption with Verification 453

computational-basis measurements, and H-basis measurements. In particular, no
magic states are needed to perform a Bell measurement. After this procedure,
the data is in qubit γ̃out

i . The outcomes a1, a2, a of the Bell measurements deter-
mine how the keys to the QOTP must be updated.

Algorithm 9. TrapTP.EvalCondP(˜b, σ̃, x̃, z̃, Γi = (g̃i, π̃i,˜γ in
i ,˜γmid

i ,˜γout
i), π̃, pki, evki)

1: (ã1, ã2, log1) ← evaluate Bell measurement between σ̃ and ˜γ in
i � a1, a2 ∈ {0, 1}

2: (ã, log2) ← evaluate Bell measurements in ˜γmid
i as dictated by the ciphertext ˜b and

the garden-hose protocol for HE.Dec
3: (x̃, z̃, log3) ← HE.EvalT−key−update

evki
(x̃, z̃, ã1, ã2, ã, g̃i)

4: return (˜γout
i , x̃, z̃, log1, log2, log3)

Verified Decryption. The decryption procedure (Algorithm 10) consists of two
parts. First, we perform several classical checks. This includes MAC-verification
of all classically authenticated messages, and checking that the gates listed
in the log match the circuit description. We also check the portions of the
log which specify the (purely classical, FHE) steps taken during HE.Enc and
HE.Eval; this is the standard transcript-checking procedure for FHE, which we
call TrapTP.CheckLog. Secondly, we check all unmeasured traps and decode the
remaining qubits. We reject if TrapTP.CheckLog rejects, or if the traps have been
triggered.

Algorithm 10. TrapTP.VerDec(sk, σ̃, (˜x[i])i, (˜z[i])i, log, c)

1: Verify classically authenticated messages (in log) using k (contained in sk). If one
of these verifications rejects, reject.

2: Check whether all claimed gates in log match the structure of c. If not, return
(Ω, |rej〉). � Recall that Ω is a dummy state.

3: flag ← TrapTP.CheckLog(log) If flag = rej, return (Ω, |rej〉).
4: Check whether the claimed final QOTP keys in the log match x̃ and z̃. If not,

return (Ω, |rej〉).
5: for all gates G of c do
6: if G is a measurement then
7: ˜x′, ˜z′ ← encrypted QOTP keys right before measurement (listed in log)
8: w̃ ← encrypted measurement outcomes (listed in log)
9: x′, z′, w ← HE.Decskt(˜x

′, ˜z′, w̃)
10: Execute TC.VerDecMeasurement((π, x′, z′), w, basis), where basis is the

appropriate basis for the measurement, and store the (classical) outcome.
11: if a trap is triggered then
12: return (Ω, |rej〉).
13: for all unmeasured qubits σ̃i in σ̃ do

14: x[i], z[i] ← HE.Decskt(
˜x[i], ˜z[i])

15: σi ← TC.VerDec(π,x[i],z[i])(σ̃i). If TC.VerDec rejects, return (Ω, |rej〉).
16: σ ← the list of decrypted qubits (and measurement outcomes) that are part of the

output of c
17: return (σ, |acc〉)

454 G. Alagic et al.

4.1 Correctness, Compactness, and Privacy

If all classical computation was unencrypted, checking correctness of TrapTP can
be done by inspecting the evaluation procedure for the different types of gates,
and comparing them to the trap code construction in [9]. This suffices, since HE
and the MAC authentication both satisfy correctness.

Compactness as defined in Definition 4 is also satisfied: verifying the compu-
tation log and checking all intermediate measurements (up until line 12 in Algo-
rithm 10) is a completely classical procedure and runs in polynomial time in its
input. The rest of TrapTP.VerDec (starting from line 13) only uses the secret key
and the ciphertext (σ̃, x̃, z̃) as input, not the log or the circuit description. Thus,
we can separate TrapTP.VerDec into two algorithms Ver and Dec as described in
Definition 4, by letting the second part (Dec, lines 13 to 17) reject whenever the
first part (Ver, lines 1 to 12) does. It is worth noting that, because the key-update
steps are performed homomorphically during the evaluation phase, skipping the
classical verification step yields a QFHE scheme without verification that satis-
fies Definition 2 (and is authenticating). This is not the case for the scheme TC,
where the classical computation is necessary for the correct decryption of the
output state.

In terms of privacy, TrapTP satisfies IND-CPA (see Sect. 2). This is shown
by reduction to IND-CPA of HE. This is non-trivial since the structure of the
error-correction gadgets depends on the classical secret key. The reduction is
done in steps, where first the security of the encryptions under pkt is applied
(no gadget depends on skt), after which the quantum part of the gadget Γt

(which depends on skt−1) looks completely mixed from the point of view of the
adversary. We then apply indistinguishability of the classical encryptions under
pkt−1, and repeat the process. After all classical encryptions of the quantum
one-time pad keys are removed, the encryption of a state appears fully mixed.
Full details of this proof can be found in Lemma 1 of [12], where IND-CPA
security of an encryption function very similar to TrapTP.Enc is proven.

5 Proof of Verifiability for TrapTP

In this section, we will prove that TrapTP is κ-IND-VER. By Theorem 3, it
then follows that TrapTP is also verifiable in the semantic sense. We will define a
slight variation on the VER indistinguishability game, followed by several hybrid
schemes (variations of the TrapTP scheme) that fit into this new game. We will
argue that for any adversary, changing the game or scheme does not significantly
affect the winning probability. After polynomially-many such steps, we will have
reduced the adversary to an adversary for the somewhat homomorphic scheme
TC, which we already know to be IND-VER. This will complete the argument
that TrapTP is IND-VER. The IND-VER game is adjusted as follows.

Definition 7 (Hybrid game HybA,S(κ)). For an adversary A = (A1,A2,A3),
a scheme S, and security parameter κ, HybA,S(κ) is the game in Fig. 3.

Quantum Fully Homomorphic Encryption with Verification 455

Fig. 3. The hybrid indistinguishability game HybA,S(κ), which is a slight variation on
VerGameA,S(κ) from Fig. 2.

Comparing to Definition 1, we see that three new wires are added: a classical
wire from S.Enc to S.VerDec, and a classical and quantum wire from S.KeyGen to
S.VerDec. We will later adjust TrapTP to use these wires to bypass the adversary;
TrapTP as defined in the previous section does not use them. Therefore, for any
adversary, Pr[VerGameA,TrapTP(κ) = 1] = Pr[HybA,TrapTP(κ) = 1].

Hybrid 1: Removing Classical MAC. In TrapTP, the initial keys to the
QOTP can only become known to VerDec through the adversary. We thus use
MAC to make sure these keys cannot be altered. Without this authentication,
the adversary could, e.g., homomorphically use π̃ to flip only those bits in x̃
that correspond to non-trap qubits, thus applying X to the plaintext. In fact, all
classical information in the evaluation key must be authenticated.

In the first hybrid, we argue that the winning probability of a QPT A
in HybA,TrapTP(κ) is at most negligibly higher than in HybA,TrapTP′(κ), where
TrapTP′ is a modified version of TrapTP where the initial keys are sent directly
from KeyGen and Enc to VerDec (via the extra wires above). More pre-
cisely, in TrapTP′.KeyGen and TrapTP′.Enc, whenever MAC.Sign(HE.Enc(x)) or
MAC.Sign(x) is called, the message x is also sent directly to TrapTP′.VerDec.
Moreover, instead of decrypting the classically authenticated messages sent by
the adversary, TrapTP′.VerDec uses the information it received directly from
TrapTP′.KeyGen and TrapTP′.Enc. It still check whether the computation log
provided by the adversary contains these values at the appropriate locations
and whether the MAC signature is correct. The following fact is then a straight-
forward consequence of the EUF-CMA property of MAC.

456 G. Alagic et al.

Recall that all adversaries are QPTs, i.e., quantum polynomial-time uniform
algorithms. Given two hybrid games H1,H2, and a QPT adversary A, define

AdvHybH2
H1

(A, κ) :=
∣
∣Pr[HybA,H1

(κ) = 1] − Pr[HybA,H2
(κ) = 1]

∣
∣.

Lemma 1. For any QPT A, AdvHybTrapTP
′

TrapTP (A, κ) ≤ negl(κ).

Hybrid 2: Removing Computation Log. In TrapTP and TrapTP′, the adver-
sary (homomorphically) keeps track of the keys to the QOTP and stores encryp-
tions of all intermediate values in the computation log. Whenever VerDec needs
to know the value of a key (for example to check a trap or to decrypt the final
output state), the relevant entry in the computation log is decrypted.

In TrapTP′, however, the plaintext initial values to the computation log are
available to VerDec, as they are sent through the classical side channels. This
means that whenever VerDec needs to know the value of a key, instead of decrypt-
ing an entry to the computation log, it can be computed by “shadowing” the
computation log in the clear.

For example, suppose the log contains the encryptions b̃1, b̃2 of two initial
bits, and specifies the homomorphic evaluation of XOR, resulting in b̃ where
b = b1 ⊕ b2. If one knows the plaintext values b1 and b2, then one can compute
b1 ⊕ b2 directly, instead of decrypting the entry b̃ from the computation log.

We now define a second hybrid, TrapTP′′, which differs from TrapTP′ exactly
like this: VerDec still verifies the authenticated parts of the log, checks whether
the computation log matches the structure of c, and checks whether it is syntac-
tically correct. However, instead of decrypting values from the log (as it does in
TrapTP.VerDec, Algorithm 10, on lines 9 and 14), it computes those values from
the plaintext initial values, by following the computation steps that are claimed
in the log. By correctness of classical FHE, we then have the following.

Lemma 2. For any QPT A, AdvHybTrapTP
′′

TrapTP′ (A, κ) ≤ negl(κ).

Proof. Let s be the (plaintext) classical information that forms the input to the
classical computations performed by the adversary: initial QOTP keys, secret
keys and permutations, measurement results, etc. Let f be the function that
the adversary computes on it in order to arrive at the final keys and logical
measurement results. By correctness of HE, we have that

Pr[HE.Decskt
(HE.Evalfevk0,...,evkt

(HE.Encpk0(s))) �= f(s)] ≤ negl(κ).

In the above expression, we slightly abuse notation and write HE.Evalevk0,...,evkt

to include the t recryption steps that are performed during TrapTP.Eval. As long
as the number of T gates, and thus the number of recryptions, is polynomial in
κ, the expression holds.

Thus, the probability that TrapTP′.VerDec and TrapTP′′.VerDec use different
classical values (decrypting from the log vs. computing from the initial values) is
negligible. Since this is the only place where the two schemes differ, the output

Quantum Fully Homomorphic Encryption with Verification 457

of the two VerDec functions will be identical, except with negligible probability.
Thus A will either win in both HybA,TrapTP′(κ) and HybA,TrapTP′′(κ), or lose in
both, again except with negligible probability. �

More Hybrids: Removing Gadgets. We continue by defining a sequence of
hybrid schemes based on TrapTP′′. In 4t steps, we will move all error-correction
functionality from the gadgets to VerDec. This will imply that the adversary has
no information about the classical secret keys (which are involved in constructing
these gadgets). This will allow us to eventually reduce the security of TrapTP to
that of TC.

We remove the gadgets back-to-front, starting with the final gadget. Every
gadget is removed in four steps. For all 1 ≤
 ≤ t, define the hybrids TrapTP

(�)
1 ,

TrapTP
(�)
2 , TrapTP(�)

3 , and TrapTP
(�)
4 (with TrapTP

(t+1)
4 := TrapTP′′) as follows:

1. TrapTP
(�)
1 is the same as TrapTP

(�+1)
4 (or, in the case that
 = t, the

same as TrapTP′′), except for the generation of the state Γ� (see Algorithm 1,
line 15). In TrapTP

(�)
1 , all classical information encrypted under pk� is replaced

with encryptions of zeros. In particular, for i ≥
, line 15 is adapted to

Γi ←MAC.Sign(HE.Encpki
(00 · · · 0))

⊗ TrapTP′′.Enc′(sk′, γmid
i) ⊗ TrapTP.Enc(sk, γ in

i ⊗ γout
i)

where TrapTP′′.Enc′ also appends a signed encryption of zeros, effectively replac-
ing line 1 in Algorithm 3 with

σ̃ ←
∑

x,z∈{0,1}3m

(

TC.Enc((π, x, z), σ) ⊗ MAC.Signk(HE.Encpk(00 · · · 0))
)

It is important to note that in both KeyGen and Enc′, the information that is sent
to VerDec through the classical side channel is not replaced with zeros. Hence, the
structural and encryption information about Γ� is kept from the adversary, and
instead is directly sent (only) to the verification procedure. Whenever VerDec
needs this information, it is taken directly from this trusted source, and the
all-zero string sent by the adversary will be ignored.

2. TrapTP(�)
2 is the same as TrapTP

(�)
1 , except that for the
th gadget, the

procedure TrapTP.PostGadgetGen is called instead of TrapTP.GadgetGen:

Algorithm 11. TrapTP.PostGadgetGen(ski)

1: gi ← 0|g(ski)|

2: (γ in, γmid, γout) ← halves of EPR pairs (send other halves to VerDec)
3: return (gi, γ

in
i , γmid

i , γout
i)

This algorithm produces a ‘gadget’ in which all qubits are replaced with
halves of EPR pairs. These still get encrypted in line 15 of Algorithm 1. All
other halves of these EPR pairs are sent to VerDec through the provided quan-
tum channel. TrapTP(�)

2 .VerDec has access to the structural information g� (as

458 G. Alagic et al.

this is sent via the classical side information channel from KeyGen to VerDec) and
performs the necessary Bell measurements to recreate γ in

� , γmid
� and γout

� after the
adversary has interacted with the EPR pair halves. Effectively, this postpones
the generation of the gadget structure to decryption time. Of course, the mea-
surement outcomes are taken into account by VerDec when calculating updates
to the quantum one-time pad. As can be seen from the description of TrapTP(�)

4 ,
all corrections that follow the
th one are unaffected by the fact that the server
cannot hold the correct information about these postponed measurements, not
even in encrypted form.

3.TrapTP(�)
3 is the same as TrapTP

(�)
2 , except that gadget genera-

tion for the
th gadget is handled by TrapTP.FakeGadgetGen instead of
TrapTP.PostGadgetGen.

Algorithm 12. TrapTP.FakeGadgetGen(ski)

1: gi ← 0|g(ski)|

2: (γ in, γmid, γout) ← halves of EPR pairs (send other halves to VerDec)
3: Send γmid to VerDec as well
4: return (gi, γ

in
i , |00 · · · 0〉, γout

i)

This algorithm prepares, instead of halves of EPR pairs, |0〉-states of the
appropriate dimension for γmid

� . (Note that this dimension does not depend on
sk�−1). For γ in

� and γout
� , halves of EPR pairs are still generated, as in TrapTP

(�)
2 .

Via the side channel, the full EPR pairs for γmid
� are sent to VerDec. As in the

previous hybrids, the returned gadget is encrypted in TrapTP.KeyGen.
TrapTP

(�)
3 .VerDec verifies that the adversary performed the correct Bell mea-

surements on the fake
th gadget by calling TC.VerDec. If this procedure accepts,
TrapTP

(�)
3 .VerDec performs the verified Bell measurements on the halves of the

EPR pairs received from TrapTP
(�)
3 .KeyGen (and subsequently performs the Bell

measurements that depend on g� on the other halves, as in TrapTP
(�)
2). Effec-

tively, TrapTP(�)
3 .VerDec thereby performs a protocol for HE.Dec, removing the

phase error in the process.
4. TrapTP(�)

4 is the same as TrapTP
(�)
3 , except that VerDec (instead of per-

forming the Bell measurements of the gadget protocol) uses its knowledge of
the initial QOTP keys and all intermediate measurement outcomes to com-
pute whether or not a phase correction is necessary after the
th T gate.
TrapTP

(�)
4 .VerDec then performs this phase correction on the EPR half entangled

with γ in
� , followed by a Bell measurement with the EPR half entangled with γout

� .
The first
 − 1 gadgets in TrapTP

(�)
1 through TrapTP

(�)
4 are always functional

gadgets, as in TrapTP. The last t −
 gadgets are all completely replaced by
dummy states, and their functionality is completely outsourced to VerDec. In
four steps described above, the functionality of the
th gadget is also transferred
to VerDec. It is important to replace only one gadget at a time, because replac-
ing a real gadget with a fake one breaks the functionality of the gadgets that

Quantum Fully Homomorphic Encryption with Verification 459

occur later in the evaluation: the encrypted classical information held by the
server does not correspond to the question of whether or not a phase correction
is needed. By completely outsourcing the phase correction to VerDec, as is done
for all gadgets after the
th one in all TrapTP(�)

i schemes, we ensure that this
incorrect classical information does not influence the outcome of the computa-
tion. Hence, correctness is maintained throughout the hybrid transformations.
We now show that these transformations of the scheme do not significantly affect
the adversary’s winning probability in the hybrid indistinguishability game.

Lemma 3. For any QPT A, there exists a negligible function negl such that for

all 1 ≤
 ≤ t, AdvHybTrapTP
(�+1)
4

TrapTP
(�)
1

(A, κ) ≤ negl(κ).

Proof (sketch). In TrapTP
(�+1)
4 , no information about sk(�) is sent to the adver-

sary. In the original TrapTP scheme, the structure of the quantum state Γ�+1

depended on it, but this structure has been replaced with dummy states in sev-
eral steps in TrapTP�+1

2 through TrapTP�+1
4 .

This is fortunate, since if absolutely no secret-key information is present,
we are able to bound the difference in winning probability between
HybA,TrapTP

(�+1)
4

(κ) and HybA,TrapTP�
1
(κ) by reducing it to the IND-CPA secu-

rity against quantum adversaries [6] of the classical homomorphic encryption
scheme HE.

The proof is closely analogous to the proof of Lemma 1 in [12], and on a high
level it works as follows. Let A = (A1,A2,A3) be a QPT adversary for the game
HybA,TrapTP

(�)
1

(κ) or HybA,TrapTP
(�+1)
4

(κ) (we do not need to specify for which one,
since they both require the same input/output interface). A new quantum adver-
sary A′ for the classical IND-CPA indistinguishability game is defined by having
the adversary taking the role of challenger in either the game HybA,TrapTP

(�)
1

(κ)
or the game HybA,TrapTP

(�+1)
4

(κ). Which game is simulated depends on the coin
flip of the challenger for the IND-CPA indistinguishability game, and is unknown
to A′. This situation is achieved by having A′ send any classical plaintext that
should be encrypted under pk� to the challenger, so that either that plaintext is
encrypted or a string of zeros is.

Based on the guess of the simulated A, which A′ can verify to be correct
or incorrect in his role of challenger, A′ will guess which of the two games was
just simulated. By IND-CPA security of the classical scheme against quantum
adversaries, A′ cannot succeed in this guessing game with nonnegligible advan-
tage over random guessing. This means that the winning probability of A in
both games cannot differ by a lot. For details, we refer the reader the proof of
Lemma 5, in which a very similar approach is taken.

Technically, the success probability of A′, and thus the function negl, may
depend on
. A standard randomizing argument, as found in e.g. the discussion
of hybrid arguments in [16], allows us to get rid of this dependence by defining
another adversary A′′ that selects a random value of j, and then bounding the
advantage of A′′ by a negligible function that is independent of j. �

460 G. Alagic et al.

Lemma 4. For 1 ≤
 ≤ t and any QPT A, AdvHybTrapTP
(�)
2

TrapTP
(�)
1

(A, κ) = 0.

Proof. In TrapTP
(�)
1 , the
th error-correction gadget consists of a number of EPR

pairs arranged in a certain order, as described by the garden-hose protocol for
HE.Dec. For example, this protocol may dictate that the ith and jth qubit of the
gadget must form an EPR pair |Φ+〉 together. This can alternatively be achieved
by creating two EPR pairs, placing half of each pair in the ith and jth position
of the gadget state, and performing a Bell measurement on the other two halves.
This creates a Bell pair XaZb|Φ+〉 in positions i and j, where a, b ∈ {0, 1} describe
the outcome of the Bell measurement.

From the point of view of the adversary, it does not matter whether these
Bell measurements are performed during KeyGen, or whether the halves of EPR
pairs are sent to VerDec for measurement – because the key to the quantum
one-time pad of the
th gadget is not sent to the adversary at all, the same
state is created with a completely random Pauli in either case. Of course, the
teleportation correction Paulis of the form XaZb need to be taken into account
when updating the keys to the quantum one-time pad on the data qubits after
the gadget is used. VerDec has all the necessary information to do this, because
it observes the measurement outcomes, and computes the key updates itself
(instead of decrypting the final keys from the computation log).

Thus, with the extra key update steps in TrapTP
(�)
2 .VerDec, the inputs to the

adversary are exactly the same in the games of TrapTP(�)
1 and TrapTP

(�)
2 . �

Lemma 5. For any QPT A, there exists a negligible function negl such that for

all 1 ≤
 ≤ t, AdvHybTrapTP
(�)
3

TrapTP
(�)
2

(A, κ) ≤ negl(κ).

Proof. We show this by reducing the difference in winning probabilities in the
statement of the lemma to the IND-VER security of the somewhat homomor-
phic scheme TC. Intuitively, because TC is IND-VER, if TrapTP(�)

2 accepts the
adversary’s claimed circuit of Bell measurements on the EPR pair halves, the
effective map on those EPR pairs is the claimed circuit. Therefore, we might just
as well ask VerDec to apply this map, as we do in TrapTP

(�)
3 , to get the same

output state. If TrapTP(�)
2 rejects the adversary’s claimed circuit on those EPR

pair halves, then TrapTP
(�)
3 should reject too. This is why we let the adversary

act on an encrypted dummy state of |0〉s.
Let A = (A1,A2,A3) be a set of QPT algorithms on the appropriate regis-

ters, so that we can consider it as an adversary for the hybrid indistinguishability
game for either TrapTP(�)

2 or TrapTP(�)
3 (see Definition 7). Note the input/output

wires to the adversary in both these games are identical, so we can evaluate
Pr[HybA,TrapTP

(�)
2

(κ) = 1] and Pr[HybA,TrapTP
(�)
3

(κ) = 1] for the same A.
Now define an adversary A′ = (A′

1,A′
2,A′

3) for the IND-VER game against
TC, VerGameA′,TC(κ), as follows:

1. A′
1: Run TrapTP

(�)
2 .KeyGen until the start of line 15 in the
th iteration of

that loop. Up to this point, TrapTP(�)
2 .KeyGen is identical to TrapTP

(�)
3 .KeyGen.

Quantum Fully Homomorphic Encryption with Verification 461

It has generated real gadgets Γ1 through Γ�−1, and halves of EPR pairs for γ in
� ,

γmid
� and γout

� . Note furthermore that the permutation π� is used nowhere. Now
send γmid

� to the challenger via the register X, and everything else (including sk)
to A′

2 via the side register R.
2. A′

2: Continue TrapTP
(�)
2 .KeyGen using the response from the challenger

instead of TrapTP.Enc′(sk′, γmid
�) on line 15 in the
th iteration. Call the result

ρevk. Again, this part of the key generation procedure is identical for TrapTP
(�)
2

and TrapTP
(�)
3 . Start playing the hybrid indistinguishability game with A:

– Flip a bit r ∈ {0, 1}.
– Send ρevk to A1. If r = 0, encrypt the response of A1 using the secret key sk

generated by A′
1. Note that for this, the permutation π� is also not needed.

If r = 1, encrypt a |0〉 state of appropriate dimension instead.
– Send the resulting encryption, along with the side info from A1, to A2.
– On the output of A2, start running TrapTP

(�)
2 .VerDec until the actions on

the
th gadget need to be verified. Since the permutation on the state γmid
� is

unknown to A′
2 (it was sent to the challenger for encryption), it cannot verify

this part of the computation.
– Instead, send the relevant part of the computation log to the challenger for

verification, along with the relevant part of the claimed circuit (the Bell mea-
surements on the gadget state), and the relevant qubits, all received from A2,
to the challenger for verification and decryption.

– In the meantime, send the rest of the working memory to A′
3 via register R′.

3. A′
3: Continue the simulation of the hybrid game with A:

– If the challenger rejects, reject and replace the entire quantum state by the
fixed dummy state Ω.

– If the challenger accepts, then we know that the challenger applies the claimed
subcircuit to the quantum state it did not encrypt (either |0〉 or γmid

�), depend-
ing on the bit the challenger flipped), and possibly swaps this state back in
(again depending on which bit it flipped). Continue the TrapTP

(�)
2 .VerDec

computation for the rest of the computation log.
– Send the result (the output quantum state, the claimed circuit, and the

accept/reject flag) to A3, and call its output bit r′.

Output 0 if r = r′, and 1 otherwise. (i.e., output NEQ(r, r′))
Recall from Definition 7 that the challenger flips a coin (let us call the out-

come s ∈ {0, 1}) to decide whether to encrypt the quantum state provided by
A′, or to swap in an all-zero dummy state before encrypting. Keeping this in
mind while inspecting the definition of A′, one can see that whenever s = 0, A′

takes the role of challenger in the game HybA,TrapTP
(�)
2

(κ) with A, and whenever
s = 1, they play HybA,TrapTP

(�)
3

(κ). Now let us consider when the newly defined
adversary A′ wins the VER indistinguishability game for TC. If s = 0, A′ needs
to output a bit s′ = 0 to win. This happens, by definition of A′, if and only if
A wins the game HybA,TrapTP

(�)
2

(κ) (i.e. r = r′). On the other hand, if s = 1, A′

462 G. Alagic et al.

needs to output a bit s′ = 1 to win. This happens, by definition of A′, if and only
if A loses the game HybA,TrapTP

(�)
3

(κ) (i.e. r �= r′). Thus the winning probability
of A′ is:

Pr[VerGameA′,TC(κ) = 1]
= Pr[s = 0] · Pr[HybA,TrapTP

(�)
2

(κ) = 1] + Pr[s = 1] · Pr[HybA,TrapTP
(�)
3

(κ) = 0]

=
1
2

Pr[HybA,TrapTP
(�)
2

(κ) = 1] +
1
2

(

1 − Pr[HybA,TrapTP
(�)
3

(κ) = 1]
)

=
1
2

+
1
2

(

Pr[HybA,TrapTP
(�)
2

(κ) = 1] − Pr[HybA,TrapTP
(�)
3

(κ) = 1]
)

From the IND-VER property of TC (see Theorem 4) we know that the above is at
most 1

2 +negl(κ). From this (and a randomizing argument similar to Lemma 3),
the statement of the lemma follows directly. �
Lemma 6. For any QPT A, there exists a negligible function negl such that for

all 1 ≤
 ≤ t, AdvHybTrapTP
(�)
4

TrapTP
(�)
3

(A, κ) ≤ negl(κ).

Proof. Let f(s) be the bit that, after the
th T gate, determines whether or not a
phase correction is necessary. Here, s is all the relevant starting information (such
as quantum one-time pad keys, gadget structure, permutations, and applied
circuit), and f is some function that determines the X key on the relevant qubit
right before application of the T gate.

In TrapTP
(�)
3 , a phase correction after the
th T gate is applied conditioned

on the outcome of

HE.Decsk�−1(HE.Evalfevk0,...,evk�−1
(HE.Encpk0(s))),

because the garden-hose computation in the gadget computes the classical
decryption. In the above expression, we again slightly abuse notation, as in the
proof of Lemma 2, and include recryption steps in HE.Evalevk0,...,evk�−1 . As long
as t is polynomial in κ, we have, by correctness of HE,

Pr[HE.Decsk�−1(HE.Evalfevk0,...,evk�−1
(HE.Encpk0(s))) �= f(s)] ≤ negl(κ).

In TrapTP
(�)
4 , the only difference from TrapTP

(�)
3 is that, instead of performing the

garden-hose computation on the result of the classical homomorphic evaluation
procedure, the phase correction is applied directly by VerDec, conditioned on
f(s). The probability that in TrapTP

(�)
4 , a phase is applied (or not) when in

TrapTP
(�)
3 it is not (or is), is negligible. The claim follows directly. �

Final Hybrid: Removing All Classical FHE. In TrapTP
(1)
4 , all of the error-

correction gadgets have been removed from the evaluation key, and the error-
correction functionality has been redirected to VerDec completely. Effectively,
TrapTP

(1)
4 .KeyGen samples a permutation π, generates a lot of magic states (for

Quantum Fully Homomorphic Encryption with Verification 463

P, H and T) and encrypts them using TC.Encπ, after which the keys to the
quantum one-time pad used in that encryption are homomorphically encrypted
under pk0. The adversary is allowed to act on those encryptions, but while its
homomorphic computations are syntactically checked in the log, VerDec does
not decrypt and use the resulting values. This allows us to link TrapTP

(1)
4 to

a final hybrid, TrapTPf , where all classical information is replaced with zeros
before encrypting.

The proof of the following lemma is analogous to that of Lemma 3, and
reduces to the IND-CPA security of the classical scheme HE:

Lemma 7. For any QPT A, AdvHybTrapTP
f

TrapTP
(1)
4

(A, κ) ≤ negl(κ).

Proof of Main Theorem. Considering TrapTPf in more detail, we can see that
it is actually very similar to TC. This allows us to prove the following lemma,
which is the last ingredient for the proof of verifiability of TrapTP.

Lemma 8. For any QPT A, Pr[HybA,TrapTPf (κ) = 1] ≤ 1
2 + negl(κ).

Proof. To see the similarity with TC, consider the four algorithms of TrapTPf .
In TrapTPf .KeyGen, a permutation π is sampled, and magic states for P, H

and T are generated, along with some EPR pair halves (to replace ini and outi).
For all generated quantum states, random keys for QOTPs are sampled, and the
states are encrypted using TC.Enc with these keys as secret keys. No classical
FHE is present anymore. Thus, TrapTPf .KeyGen can be viewed as TC.KeyGen,
followed by TC.Enc on the magic states and EPR pair halves.

TrapTPf .Enc is identical to TC.Enc, only the keys to the quantum one-time
pad are sampled on the fly and sent to TrapTPf .VerDec via a classical side-
channel, whereas TC.VerDec receives them as part of the secret key. Since the
keys are used exactly once and not used anywhere else besides in Enc and VerDec,
this difference does not affect the outcome of the game.

TrapTPf .Eval only requires CNOT, classically controlled Paulis, and compu-
tational/Hadamar basis measurements. For the execution of any other gate, it
suffices to apply a circuit of those gates to the encrypted data, encrypted magic
states and/or encrypted EPR halves.

TrapTPf .VerDec does two things: (i) it syntactically checks the provided com-
putation log, and (ii) it runs TC.VerDec to verify that the evaluation procedure
correctly applied the circuit of CNOTs and measurements.

An execution of HybA,TrapTPf (κ) for any A corresponds to the two-round
VER indistinguishability game for TC as follows. Let A = (A1,A2,A3) be a
polynomial-time adversary for the game HybA,TrapTPf (κ). Define an additional
QPT A0 that produces magic states and EPR pair halves to the register X1.
The other halves of the EPR pairs are sent through R, and untouches by A1 and
A2. The above analysis shows that the adversary A′ = (A0,A1,A2,A3) can be
viewed as an adversary for the VER-2 indistinguishability game VerGame2A′,TC(κ)
and wins whenever HybA,TrapTPf (κ) = 1. The other direction does not hold: A

464 G. Alagic et al.

loses the hybrid indistinguishability game if TrapTPf .VerDec rejects check (i),
but accepts check (ii) (see above). In this case, A′ would still win the VER-2
indistinguishability game. Hence,

Pr[HybA,TrapTPf (κ) = 1] ≤ Pr[VerGame2A′,TC(κ) = 1].

Theorem 4 yields Pr[VerGame2A′,TC(κ) = 1] ≤ 1
2 + negl(κ), and the result

follows. �
Theorem 5. The vQFHE scheme TrapTP satisfies κ-SEM-VER.

Proof. From Lemmas 1, 2, 3, 4, 5, 6, and 7, we may conclude that if t (the
number of T gates in the circuit) is polynomial in κ (the security parameter),
then for any polynomial-time adversary A,

Pr[VerGameA,TrapTP(κ) = 1] − Pr[HybA,TrapTPf (κ) = 1] ≤ negl(κ),

since the sum poly-many negligible terms is negligible (it is important to note
that there is only a constant number of different negligible terms involved).
By Lemma 8, which reduces verifiability of TrapTPf to verifiability of TC,
Pr[HybA,TrapTPf (κ) = 1] ≤ 1/2+negl(κ). It follows that Pr[VerGameA,TrapTP(κ) =
1] ≤ 1/2 + negl(κ), i.e., that TrapTP is κ-IND-VER. By Theorem 3, TrapTP is
also κ-SEM-VER. �

6 Application to Quantum One-Time Programs

One-Time Programs. We now briefly sketch an application of the vQFHE
scheme to one-time programs. A classical one-time program (or cOTP) is an
idealized object which can be used to execute a function once, but then self-
destructs. In the case of a quantum OTP (or qOTP), the program executes a
quantum channel Φ. In the usual formalization, Φ has two inputs and is public.
One party (the sender) creates the qOTP by fixing one input, and the qOTP
is executed by a receiver who selects the other input. To recover the intuitive
notion of OTP, choose Φ to be a universal circuit. We will work in the universally-
composable (UC) framework, following the approach of [9]. We thus first define
the ideal functionality of a qOTP.

Definition 8 (Functionality 3 in [9]). The ideal functionality FOTP
Φ for a

channel ΦXY →Z is the following:

1. Create: given register X from sender, store X and send create to receiver.
2. Execute: given register Y from receiver, send Φ applied to XY to receiver.

Delete any trace of this instance.

A qOTP is then a real functionality which “UC-emulates” the ideal function-
ality [22]. As in [9], we only allow corrupting receivers; unlike [9], we consider
computational (rather than statistical) UC security. The achieved result is there-
fore slightly weaker. The construction within our vQFHE framework is however
much simpler, and shows the relative ease with which applications of vQFHE
can be constructed.

Quantum Fully Homomorphic Encryption with Verification 465

The Construction. Choose a vQFHE scheme Π = (KeyGen,Enc,Eval,VerDec)
satisfying SEM-VER. For simplicity, we first describe the classical input/output
case, i.e., the circuit begins and ends with full measurement of all qubits. Let C
be such a circuit, for the map ΦXY →Z . On Create, the sender generates keys
(k, ρevk) ← KeyGen and encrypts their input register X using k. The sender also
generates a classical OTP for the public, classical function VerDec, choosing the
circuit and key inputs to be C and k; the computation log is left open for the
receiver to select. The qOTP is then the triple

ΞX
C := (ρevk,Enck(ρX),OTPVerDec(C, k)) .

On Execute, the receiver computes as follows. The receiver’s (classical) input Y
together with the (public) circuit C defines a homomorphic computation on the
ciphertext Enck(ρX), which the receiver can perform using Eval and ρevk. Since
C has only classical outputs, the receiver measures the final state completely. At
the end of that computation, the receiver holds the (completely classical) output
of the computation log from Eval. The receiver plugs the log into OTPVerDec(C, k),
which produces the decrypted output.

We handle the case of arbitrary circuits C (with quantum input and output)
as follows. Following the ideas of [9], we augment the above quantum OTP
with two auxiliary quantum states: an “encrypt-through-teleport” gadget σin

and a “decrypt-through-teleport” gadget σout. These are maximally entangled
states with the appropriate map (encrypt or decrypt) applied to one half. The
receiver uses teleportation on σin

Y1W1
to encrypt their input register Y before

evaluating, and places the teleportation measurements into the computation log.
After evalution, the receiver uses σout

W2Y2
to teleport the plaintext out, combining

the teleportation measurements with the output of OTPVerDec(C, k) to compute
the final QOTP decryption keys.

Security Proof Sketch. Starting with a QPT adversary A which attacks the
real functionality, we construct a QPT simulator S which attacks the ideal func-
tionality (with similar success probability). We split A into A1 (receive input,
output the OTP query and side information) and A2 (receive result of OTP
query and side information, produce final output). The simulator S will gener-
ate its own keys, provide fake gadgets that will trick A into teleporting its input
to S, who will then use that input on the ideal functionality. Details follow.

The simulator first generates (k, ρevk) ← KeyGen and encrypts the input X
via Enck. Instead of the encrypt gadget σin

Y1W1
, S provides half of a maximally

entangled state in register Y and likewise in register W . The other halves Y ′
1

and W ′
1 of these entangled states are kept by S. The same is done in place of the

decrypt gadget σout
W2Y2

, with S keeping Y ′
2 and W ′

2. Then S runs A1 with input
ρevk,Enck(ρX) and registers Y and W . It then executes VerDeck on the output
(i.e., the query) of A1 to see if A1 correctly followed the Eval protocol. If it did
not, then S aborts; otherwise, S plugs register Y ′

1 into the ideal functionality, and
then teleports the output into register W ′

2. Before responding to A2, it corrects
the one-time pad keys appropriately using its teleportation measurements.

466 G. Alagic et al.

7 Conclusion

In this work, we devised a new quantum-cryptographic primitive: quantum fully-
homomorphic encryption with verification (vQFHE). Using the trap code for
quantum authentication [9] and the garden-hose gadgets of [12], we constructed
a vQFHE scheme TrapTP which satisfies (i) correctness, (ii) compactness, (iii)
security of verification, (iv) IND-CPA secrecy, and (v) authentication. We also
outlined a first application of vQFHE, to quantum one-time programs.

We leave open several interesting directions for future research. Foremost is
finding more applications of vQFHE. Another interesting question is whether
vQFHE schemes exist where verification can be done publicly (i.e., without the
decryption key), as is possible classically. Finally, it is unknown whether vQFHE
(or even QFHE) schemes exist with evaluation key that does not scale with the
size of the circuit at all.

Acknowledgements. This work was completed while GA was a member of the
QMATH center at the Department of Mathematical Sciences at the University of
Copenhagen. GA and FS acknowledge financial support from the European Research
Council (ERC Grant Agreement no 337603), the Danish Council for Independent
Research (Sapere Aude), Qubiz - Quantum Innovation Center, and VILLUM FONDEN
via the QMATH Centre of Excellence (Grant No. 10059). CS is supported by an NWO
VIDI grant.

References

1. Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum computations.
arXiv preprint arXiv:0810.5375 (2008)

2. Alagic, G., Broadbent, A., Fefferman, B., Gagliardoni, T., Schaffner, C., St. Jules,
M.: Computational security of quantum encryption. In: Nascimento, A.C.A., Bar-
reto, P. (eds.) ICITS 2016. LNCS, vol. 10015, pp. 47–71. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49175-2 3

3. Alagic, G., Dulek, Y., Schaffner, C., Speelman, F.: Quantum fully homomorphic
encryption with verification. arXiv preprint arXiv:1708.09156 (2017)

4. Barak, B., Brakerski, Z.: Windows on theory: the swiss army knife
of cryptography (2012). URL https://windowsontheory.org/2012/05/01/
the-swiss-army-knife-of-cryptography/

5. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: 52nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 97–106 (2011). https://doi.org/10.1109/FOCS.2011.12

6. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low
T-gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9216, pp. 609–629. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 30

7. Broadbent, A., Wainewright, E.: Efficient simulation for quantum message authen-
tication. arXiv preprint arXiv:1607.03075 (2016)

8. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation.
In: 50th Annual Symposium on Foundations of Computer Science (FOCS), pp.
517–526. IEEE (2009)

http://arxiv.org/abs/0810.5375
https://doi.org/10.1007/978-3-319-49175-2_3
http://arxiv.org/abs/1708.09156
https://windowsontheory.org/2012/05/01/the-swiss-army-knife-of-cryptography/
https://windowsontheory.org/2012/05/01/the-swiss-army-knife-of-cryptography/
https://doi.org/10.1109/FOCS.2011.12
https://doi.org/10.1007/978-3-662-48000-7_30
https://doi.org/10.1007/978-3-662-48000-7_30
http://arxiv.org/abs/1607.03075

Quantum Fully Homomorphic Encryption with Verification 467

9. Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 344–360. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 20

10. Broadbent, A., Ji, Z., Song, F., Watrous, J.: Zero-knowledge proof systems for
QMA. In: 57th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 31–40, October 2016. https://doi.org/10.1109/FOCS.2016.13

11. Coladangelo, A., Grilo, A., Jeffery, S., Vidick, T.: Verifier-on-a-leash: new schemes
for verifiable delegated quantum computation, with quasilinear resources. arXiv
preprint arXiv:1708.02130 (2017)

12. Dulek, Y., Schaffner, C., Speelman, F.: Quantum homomorphic encryption for
polynomial-sized circuits. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9816, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53015-3 1

13. Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evaluation of
any quantum operation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 794–811. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32009-5 46

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 40–49, Octo-
ber (2013). https://doi.org/10.1109/FOCS.2013.13

15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st Annual
ACM Symposium on Theory of Computing (STOC), pp. 169–178 (2009). https://
doi.org/10.1145/1536414.1536440

16. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2014)

17. Mahadev, U.: Classical homomorphic encryption for quantum circuits. arXiv
preprint arXiv:1708.02130 (2017)

18. Newman, M., Shi, Y.: Limitations on transversal computation through quantum
homomorphic encryption. arXiv e-prints, April 2017

19. Ouyang, Y., Tan, S.-H., Fitzsimons, J.: Quantum homomorphic encryption from
quantum codes. arXiv preprint arXiv:1508.00938 (2015)

20. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key dis-
tribution protocol. Phys. Rev. Lett. 85, 441–444 (2000). https://doi.org/10.1103/
PhysRevLett.85.441

21. Tan, S.-H., Kettlewell, J.A., Ouyang, Y., Chen, L., Fitzsimons, J.: A quantum
approach to homomorphic encryption. Sci. Rep. 6, 33467 (2016). https://doi.org/
10.1038/srep33467

22. Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert,
H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5 25

23. Li, Y., Pérez-Delgado, C.A., Fitzsimons, J.F.: Limitations on information-
theoretically-secure quantum homomorphic encryption. Phys. Rev. A 90, 050303
(2014). https://doi.org/10.1103/PhysRevA.90.050303

https://doi.org/10.1007/978-3-642-40084-1_20
https://doi.org/10.1109/FOCS.2016.13
http://arxiv.org/abs/1708.02130
https://doi.org/10.1007/978-3-662-53015-3_1
https://doi.org/10.1007/978-3-662-53015-3_1
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1109/FOCS.2013.13
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
http://arxiv.org/abs/1708.02130
http://arxiv.org/abs/1508.00938
https://doi.org/10.1103/PhysRevLett.85.441
https://doi.org/10.1103/PhysRevLett.85.441
https://doi.org/10.1038/srep33467
https://doi.org/10.1038/srep33467
https://doi.org/10.1007/978-3-642-13190-5_25
https://doi.org/10.1103/PhysRevA.90.050303

	Quantum Fully Homomorphic Encryption with Verification
	1 Introduction
	2 A New Primitive: Verifiable QFHE
	3 TC: A partially-homomorphic scheme with verification
	4 TrapTP: Quantum FHE With Verification
	4.1 Correctness, Compactness, and Privacy

	5 Proof of Verifiability for TrapTP
	6 Application to Quantum One-Time Programs
	7 Conclusion
	References

