19 research outputs found

    Multiplicative Auction Algorithm for Approximate Maximum Weight Bipartite Matching

    Full text link
    \newcommand{\eps}{\varepsilon} We present an auction algorithm using multiplicative instead of constant weight updates to compute a (1-\eps)-approximate maximum weight matching (MWM) in a bipartite graph with nn vertices and mm edges in time O(m\eps^{-1}\log(\eps^{-1})), matching the running time of the linear-time approximation algorithm of Duan and Pettie [JACM '14]. Our algorithm is very simple and it can be extended to give a dynamic data structure that maintains a (1-\eps)-approximate maximum weight matching under (1) edge deletions in amortized O(\eps^{-1}\log(\eps^{-1})) time and (2) one-sided vertex insertions. If all edges incident to an inserted vertex are given in sorted weight the amortized time is O(\eps^{-1}\log(\eps^{-1})) per inserted edge. If the inserted incident edges are not sorted, the amortized time per inserted edge increases by an additive term of O(logn)O(\log n). The fastest prior dynamic (1-\eps)-approximate algorithm in weighted graphs took time O(\sqrt{m}\eps^{-1}\log (w_{max})) per updated edge, where the edge weights lie in the range [1,wmax][1,w_{max}].Comment: To appear in IPCO 202

    Metatheorems for Dynamic Weighted Matching

    Get PDF
    We consider the maximum weight matching (MWM) problem in dynamic graphs. We provide two reductions. The first reduces the dynamic MWM problem on m-edge, n-node graphs with weights bounded by N to the problem with weights bounded by (n/eps)^2, so that if the MWM problem can be alpha-approximated with update time t(m,n,N), then it can also be (1+eps)alpha-approximated with update time O(t(m,n,(n/eps)^2)log^2 n+log n loglog N)). The second reduction reduces the dynamic MWM problem to the dynamic maximum cardinality matching (MCM) problem in which the graph is unweighted. This reduction shows that if there is an alpha-approximation algorithm for MCM with update time t(m,n) in m-edge n-node graphs, then there is also a (2+eps)alpha-approximation algorithm for MWM with update time O(t(m,n)eps^{-2}log^2 N). We also obtain better bounds in our reductions if the ratio between the largest and the smallest edge weight is small. Combined with recent work on MCM, these two reductions substantially improve upon the state-of-the-art of dynamic MWM algorithms

    Deterministic fully dynamic approximate vertex cover and fractional matching in O(1) update time

    Get PDF
    We consider the problems of maintaining an approximate maximum matching and an approximate minimum vertex cover in a dynamic graph undergoing a sequence of edge insertions/deletions. Starting with the seminal work of Onak and Rubinfeld [STOC 2010], this problem has received significant attention in recent years. Very recently, extending the framework of Baswana, Gupta and Sen [FOCS 2011], Solomon [FOCS 2016] gave a randomized dynamic algorithm for this problem that has an approximation ratio of 2 and an amortized update time of O(1) with high probability. This algorithm requires the assumption of an oblivious adversary, meaning that the future sequence of edge insertions/deletions in the graph cannot depend in any way on the algorithm’s past output. A natural way to remove the assumption on oblivious adversary is to give a deterministic dynamic algorithm for the same problem in O(1) update time. In this paper, we resolve this question. We present a new deterministic fully dynamic algorithm that maintains a O(1)-approximate minimum vertex cover and maximum fractional matching, with an amortized update time of O(1). Previously, the best deterministic algorithm for this problem was due to Bhattacharya, Henzinger and Italiano [SODA 2015]; it had an approximation ratio of (2 + e) and an amortized update time of O(logn=e2 ). Our result can be generalized to give a fully dynamic O( f3 )-approximate algorithm with O( f2 ) amortized update time for the hypergraph vertex cover and fractional hypergraph matching problem, where every hyperedge has at most f vertices

    Fully Dynamic Almost-Maximal Matching: Breaking the Polynomial Worst-Case Time Barrier

    Get PDF
    The state-of-the-art algorithm for maintaining an approximate maximum matching in fully dynamic graphs has a polynomial worst-case update time, even for poor approximation guarantees. Bhattacharya, Henzinger and Nanongkai showed how to maintain a constant approximation to the minimum vertex cover, and thus also a constant-factor estimate of the maximum matching size, with polylogarithmic worst-case update time. Later (in SODA\u2717 Proc.) they improved the approximation to 2+epsilon. Nevertheless, the fundamental problem of maintaining an approximate matching with sub-polynomial worst-case time bounds remained open. We present a randomized algorithm for maintaining an almost-maximal matching in fully dynamic graphs with polylogarithmic worst-case update time. Such a matching provides (2+epsilon)-approximations for both maximum matching and minimum vertex cover, for any epsilon > 0. The worst-case update time of our algorithm, O(poly(log n,epsilon^{-1})), holds deterministically, while the almost-maximality guarantee holds with high probability. Our result was done independently of the (2+epsilon)-approximation result of Bhattacharya et al., thus settling the aforementioned problem on dynamic matchings and providing essentially the best possible approximation guarantee for dynamic vertex cover (assuming the unique games conjecture). To prove this result, we exploit a connection between the standard oblivious adversarial model, which can be viewed as inherently "online", and an "offline" model where some (limited) information on the future can be revealed efficiently upon demand. Our randomized algorithm is derived from a deterministic algorithm in this offline model. This approach gives an elegant way to analyze randomized dynamic algorithms, and is of independent interest

    Dynamic Matching: Reducing Integral Algorithms to Approximately-Maximal Fractional Algorithms

    Get PDF
    We present a simple randomized reduction from fully-dynamic integral matching algorithms to fully-dynamic "approximately-maximal" fractional matching algorithms. Applying this reduction to the recent fractional matching algorithm of Bhattacharya, Henzinger, and Nanongkai (SODA 2017), we obtain a novel result for the integral problem. Specifically, our main result is a randomized fully-dynamic (2+epsilon)-approximate integral matching algorithm with small polylog worst-case update time. For the (2+epsilon)-approximation regime only a fractional fully-dynamic (2+epsilon)-matching algorithm with worst-case polylog update time was previously known, due to Bhattacharya et al. (SODA 2017). Our algorithm is the first algorithm that maintains approximate matchings with worst-case update time better than polynomial, for any constant approximation ratio. As a consequence, we also obtain the first constant-approximate worst-case polylogarithmic update time maximum weight matching algorithm

    Dynamic Parameterized Problems and Algorithms

    Get PDF
    Fixed-parameter algorithms and kernelization are two powerful methods to solve NP-hard problems. Yet, so far those algorithms have been largely restricted to static inputs. In this paper we provide fixed-parameter algorithms and kernelizations for fundamental NP-hard problems with dynamic inputs. We consider a variety of parameterized graph and hitting set problems which are known to have f(k)n^{1+o(1)} time algorithms on inputs of size n, and we consider the question of whether there is a data structure that supports small updates (such as edge/vertex/set/element insertions and deletions) with an update time of g(k)n^{o(1)}; such an update time would be essentially optimal. Update and query times independent of n are particularly desirable. Among many other results, we show that Feedback Vertex Set and k-Path admit dynamic algorithms with f(k)log O(1) n update and query times for some function f depending on the solution size k only. We complement our positive results by several conditional and unconditional lower bounds. For example, we show that unlike their undirected counterparts, Directed Feedback Vertex Set and Directed k-Path do not admit dynamic algorithms with n^{o(1) } update and query times even for constant solution sizes k <= 3, assuming popular hardness hypotheses. We also show that unconditionally, in the cell probe model, Directed Feedback Vertex Set cannot be solved with update time that is purely a function of k

    Faster Submodular Maximization for Several Classes of Matroids

    Get PDF
    The maximization of submodular functions have found widespread application in areas such as machine learning, combinatorial optimization, and economics, where practitioners often wish to enforce various constraints; the matroid constraint has been investigated extensively due to its algorithmic properties and expressive power. Though tight approximation algorithms for general matroid constraints exist in theory, the running times of such algorithms typically scale quadratically, and are not practical for truly large scale settings. Recent progress has focused on fast algorithms for important classes of matroids given in explicit form. Currently, nearly-linear time algorithms only exist for graphic and partition matroids [Alina Ene and Huy L. Nguyen, 2019]. In this work, we develop algorithms for monotone submodular maximization constrained by graphic, transversal matroids, or laminar matroids in time near-linear in the size of their representation. Our algorithms achieve an optimal approximation of 1-1/e-ε and both generalize and accelerate the results of Ene and Nguyen [Alina Ene and Huy L. Nguyen, 2019]. In fact, the running time of our algorithm cannot be improved within the fast continuous greedy framework of Badanidiyuru and Vondrák [Ashwinkumar Badanidiyuru and Jan Vondrák, 2014]. To achieve near-linear running time, we make use of dynamic data structures that maintain bases with approximate maximum cardinality and weight under certain element updates. These data structures need to support a weight decrease operation and a novel Freeze operation that allows the algorithm to freeze elements (i.e. force to be contained) in its basis regardless of future data structure operations. For the laminar matroid, we present a new dynamic data structure using the top tree interface of Alstrup, Holm, de Lichtenberg, and Thorup [Stephen Alstrup et al., 2005] that maintains the maximum weight basis under insertions and deletions of elements in O(log n) time. This data structure needs to support certain subtree query and path update operations that are performed every insertion and deletion that are non-trivial to handle in conjunction. For the transversal matroid the Freeze operation corresponds to requiring the data structure to keep a certain set S of vertices matched, a property that we call S-stability. While there is a large body of work on dynamic matching algorithms, none are S-stable and maintain an approximate maximum weight matching under vertex updates. We give the first such algorithm for bipartite graphs with total running time linear (up to log factors) in the number of edges

    Simple dynamic algorithms for Maximal Independent Set, Maximum Flow and Maximum Matching

    Get PDF
    Peer reviewe

    A Generalized Matching Reconfiguration Problem

    Get PDF
    The goal in reconfiguration problems is to compute a gradual transformation between two feasible solutions of a problem such that all intermediate solutions are also feasible. In the Matching Reconfiguration Problem (MRP), proposed in a pioneering work by Ito et al. from 2008, we are given a graph G and two matchings M and M\u27, and we are asked whether there is a sequence of matchings in G starting with M and ending at M\u27, each resulting from the previous one by either adding or deleting a single edge in G, without ever going through a matching of size < min{|M|,|M\u27|}-1. Ito et al. gave a polynomial time algorithm for the problem, which uses the Edmonds-Gallai decomposition. In this paper we introduce a natural generalization of the MRP that depends on an integer parameter ? ? 1: here we are allowed to make ? changes to the current solution rather than 1 at each step of the {transformation procedure}. There is always a valid sequence of matchings transforming M to M\u27 if ? is sufficiently large, and naturally we would like to minimize ?. We first devise an optimal transformation procedure for unweighted matching with ? = 3, and then extend it to weighted matchings to achieve asymptotically optimal guarantees. The running time of these procedures is linear. We further demonstrate the applicability of this generalized problem to dynamic graph matchings. In this area, the number of changes to the maintained matching per update step (the recourse bound) is an important quality measure. Nevertheless, the worst-case recourse bounds of almost all known dynamic matching algorithms are prohibitively large, much larger than the corresponding update times. We fill in this gap via a surprisingly simple black-box reduction: Any dynamic algorithm for maintaining a ?-approximate maximum cardinality matching with update time T, for any ? ? 1, T and ? > 0, can be transformed into an algorithm for maintaining a (?(1 +?))-approximate maximum cardinality matching with update time T + O(1/?) and worst-case recourse bound O(1/?). This result generalizes for approximate maximum weight matching, where the update time and worst-case recourse bound grow from T + O(1/?) and O(1/?) to T + O(?/?) and O(?/?), respectively; ? is the graph aspect-ratio. We complement this positive result by showing that, for ? = 1+?, the worst-case recourse bound of any algorithm produced by our reduction is optimal. As a corollary, several key dynamic approximate matching algorithms - with poor worst-case recourse bounds - are strengthened to achieve near-optimal worst-case recourse bounds with no loss in update time
    corecore