
Dynamic Parameterized Problems and
Algorithms∗†

Josh Alman1, Matthias Mnich2, and
Virginia Vassilevska Williams3

1 MIT CSAIL, Cambridge, MA, USA
jalman@mit.edu

2 Universität Bonn, Institut für Informatik, Bonn, Germany; and
Maastricht University, Department of Quantitative Economics, Maastricht,
The Netherlands
mmnich@uni-bonn.de
m.mnich@maastrichtuniversity.nl

3 MIT CSAIL, Cambridge, MA, USA
virgi@mit.edu

Abstract
Fixed-parameter algorithms and kernelization are two powerful methods to solve NP-hard prob-
lems. Yet, so far those algorithms have been largely restricted to static inputs.

In this paper we provide fixed-parameter algorithms and kernelizations for fundamental NP-
hard problems with dynamic inputs. We consider a variety of parameterized graph and hitting
set problems which are known to have f(k)n1+o(1) time algorithms on inputs of size n, and we
consider the question of whether there is a data structure that supports small updates (such
as edge/vertex/set/element insertions and deletions) with an update time of g(k)no(1); such
an update time would be essentially optimal. Update and query times independent of n are
particularly desirable. Among many other results, we show that Feedback Vertex Set and
k-Path admit dynamic algorithms with f(k) logO(1) n update and query times for some function f
depending on the solution size k only.

We complement our positive results by several conditional and unconditional lower bounds.
For example, we show that unlike their undirected counterparts, Directed Feedback Vertex
Set and Directed k-Path do not admit dynamic algorithms with no(1) update and query times
even for constant solution sizes k ≤ 3, assuming popular hardness hypotheses. We also show that
unconditionally, in the cell probe model, Directed Feedback Vertex Set cannot be solved
with update time that is purely a function of k.

1998 ACM Subject Classification F2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Dynamic algorithms, fixed-parameter algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.41

1 Introduction

The area of dynamic algorithms studies data structures that store a dynamically changing
instance of a problem, can answer queries about the current instance and can perform small
changes on it. The major question in this area is, how fast can updates and queries be?

∗ A full version of the paper is available at https://arxiv.org/abs/1707.00362.
† J.A. is supported by NSF Grant DGE-114747. M.M. is supported by ERC Starting Grant 306465
(BeyondWorstCase). V.V.W. is supported by NSF Grants CCF-141-7238, CCF-1528078 and CCF-
1514339, and BSF Grant BSF:2012338. This work was initiated while J.A. and V.V.W. were at Stanford
University.

EA
T

C
S

© Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 41; pp. 41:1–41:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.41
https://arxiv.org/abs/1707.00362
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 Dynamic Parameterized Problems and Algorithms

The most studied dynamic problems are dynamic graph problems such as connectivity
(e.g., [45, 47, 48, 67]), reachability [41], shortest paths (e.g., [7, 26, 42]), and maximum
matching [8, 39, 66]. For a dynamic graph algorithm, the updates are usually edge or vertex
insertions and deletions. Any dynamic graph algorithm that can perform edge insertions
can be used for a static algorithm by starting with an empty graph, and using m insertions
to insert the m-edge input graph. That is, if the update time of the dynamic algorithm is
u(m) then the static problem can be solved in O(m · u(m)) time, plus the time to query
for the output. Hence, if a problem requires Ω(f(m)) time to be solved statically, then any
dynamic algorithm that can insert edges, and can be queried for the problem solution in
o(f(m)) time, must need Ω(f(m)/m) (amortized) time to perform updates. This is not
limited to edge updates; similar statements are true for vertex insertions and other update
types. A fundamental question is which problems can be fully dynamized, i.e., have dynamic
algorithms supporting updates in O(f(m)/m) time where f(m) is the static runtime?

This question is particularly interesting for static problems that can be solved in near-
linear time. For them, we are interested in near-constant time updates—the holy grail of
dynamic algorithms. The field of dynamic algorithms has achieved such full dynamization
for many problems. A prime example of the successes of this vibrant research area is the
dynamic connectivity problem: maintaining the connected components of a graph under edge
updates, to answer queries about whether a pair of vertices is connected. This problem can
be solved with amortized expected update time O(logn log log2 n) [48, 67] and query time
O(logn/ log log logn); polylogarithmic deterministic amortized bounds are also known, the
current best by Wulff-Nielsen [71]. After much intense research on the topic [44, 46, 47], the
first polylogarithmic worst case expected update times were obtained by Kapron et al. [53],
who were the first to break through what seemed like an Ω(

√
n) barrier; the bounds of

Kapron et al. [53] were recently improved by Gibb et al. [37]. Similar Õ(1) update and query
time bounds1 are known for many problems solvable in linear time such as dynamic minimum
spanning tree, biconnectivity and 2-edge connectivity [45, 47], and maximal matching [5, 66].

Barriers for dynamization have also been studied extensively. Many unconditional, cell
probe lower bounds are known. For instance, for connectivity and related problems it is
known [64, 65] that either the query time or the update time needs to be Ω(logn). However,
current cell probe lower bound techniques seem to be limited to proving polylogarithmic lower
bounds. In contrast, conditional lower bounds based on popular hardness hypotheses have
been successful at giving tight bounds for problems such as dynamic reachability, dynamic
strongly connected components and many more [1, 43, 54, 62].

While the field of dynamic algorithms is very developed, practically all the problems
which have been studied are polynomial-time solvable problems. What about NP-hard
problems? Do they have fast dynamic algorithms? By the discussion above, it seems clear
that (unless P = NP), superpolynomial query/update times are necessary, and surely this is
not as interesting as achieving near-constant time updates. If the problem is relaxed, and
instead of exact solutions, approximation algorithms are sufficient, then efficient dynamic
algorithms have been obtained for some polynomial time approximable problems such as
dynamic approximate vertex cover [5, 8, 61]. What if we insist on exact solutions?

The efficient dynamization question does make sense for parameterized NP-hard problems.
For such problems, each instance is measured by its size n as well as a parameter k that
measures the optimal solution size, the treewidth or genus of the input graph, or any similar
structural property. If P 6= NP, then the runtime of any algorithm for such a problem needs

1 Throughout this paper, we write Õ(f(n, k)) to hide polylog(n) factors.

J. Alman, M. Mnich, and V. Vassilevska Williams 41:3

to be superpolynomial, but it is desirable that the superpolynomiality is only in terms of k.
That is, one searches for so-called fixed-parameter algorithms with runtime f(k) · nc for
some computable function f and some fixed constant c independent of k and n. The holy
grail here is an algorithm with runtime f(k) · n where f is a modestly growing function.
Such linear-time fixed-parameter algorithms can be very practical for small k. The very
active area of fixed-parameter algorithms has produced a plethora of such algorithms for
many different parameterized problems. Some examples include (1) many branching tree
algorithms such as those for Vertex Cover and d-Hitting Set, (2) many algorithms
based on color-coding [4] such as for k-Path, (3) all algorithms that follow from Courcelle’s
theorem2 [18], and (4) many more [11, 28, 32, 52, 58, 68, 70].

We study whether NP-hard problems with (near-)linear time fixed-parameter algorithms
can be made efficiently dynamic. The main questions we address are:

Which problems solvable in f(k) · n1+o(1) time have dynamic algorithms with update and
query times at most f(k) · no(1)?
Which problems solvable in f(k) ·n time have dynamic algorithms with update and query
times that depend solely on k and not on n?
Can one show that (under plausible conjectures) a problem requires Ω(f(k) · nδ) (for
constant δ > 0) update time to maintain dynamically even though statically it can be
solved in f(k) · n1+o(1) time?

1.1 Prior Work
We are aware of only a handful papers related to the question that we study. Bodlaender [9]
showed how to maintain a tree decomposition of constant treewidth under edge and vertex
insertions and deletions with O(logn) update time, as long as the underlying graph always
has treewidth at most 2. Dvořák et al. [29] obtained a dynamic algorithm maintaining a
tree-depth decomposition of a graph under the promise that the tree-depth never exceeds D;
edge and vertex insertions and deletions are supported in f(D) time for some function f .
Dvořák and Tůma [30] obtained a dynamic data structure that can count the number of
induced copies of a given h-vertex graph, under edge insertions and deletions, and if the
maintained graph has bounded expansion, the update time is bounded by O(logh

2
n).

A more recent paper by Iwata and Oka [51] gives several dynamic algorithms for the
following problems, under the promise that the solution size never grows above k: (1) an
algorithm that maintains a Vertex Cover in a graph under O(k2) time edge insertions
and deletions and f(k) time queries3, (2) an algorithm for Cluster Vertex Deletion
under O(k8 + k4 logn) time edge updates and f(k) time queries4, and (3) an algorithm
for Feedback Vertex Set in graphs with maximum degree ∆ where edge insertions
and deletions are supported in amortized time 2O(k)∆3 logn. Notably, when discussing
Feedback Vertex Set, the paper concludes: “It seems an interesting open question
whether it is possible to construct an efficient dynamic graph without the degree restriction.”

The final related papers are by Abu-Khzam et al. [2, 3]. Although these papers talk
about parameterized problems and dynamic problems, the setting is very different. Their

2 Courcelle’s theorem states that every problem definable in monadic second-order logic of graphs can be
decided in linear time on graphs of bounded treewidth.

3 Here f(k) denotes the runtime of the fastest fixed-parameter algorithm for Vertex Cover when run
on k-vertex graphs.

4 Here f(k) denotes the runtime of the fastest fixed-parameter algorithm for Cluster Vertex Deletion
when run on k5-vertex graphs.

ICALP 2017

41:4 Dynamic Parameterized Problems and Algorithms

problem is, given two instances I1 and I2 of a problem that only differ in k “edits”, and a
solution S1 of I1, to find a feasible solution S2 of I2 that is at Hamming distance at most d
from S1. The question of study is whether such problems admit fixed-parameter algorithms
for parameters k and `. That question though is not about data structures but about a
single update. Moreover, their algorithm is given S1 as input, which—unlike a dynamic
data structure—cannot force the initial solution to have any useful properties. Thus, the
hardness results in their setting do not translate to our data structure setting. Furthermore,
the runtimes in their setting, unlike ours, must have at least a linear dependence on the size
of the input, as one has to at least read the entire input.

Besides the work on parameterized dynamic algorithms, there has been some work on
parameterized streaming algorithms by Chitnis et al. [17]. This work focused on Maximal
Matching and Vertex Cover. The difference between streaming and dynamic algorithms
is that (a) the space usage of the algorithm is the most important aspect for streaming, and
(b) in streaming, a solution is only required at the end of the stream, whereas a dynamic
algorithm can be queried at any point and needs to be efficient throughout, but can use a
lot of space. For Vertex Cover instances whose solution size never exceeds k, Chitnis et
al. [17] give a one-pass randomized streaming algorithm that uses O(k2) space and answers
the final query in 2O(k) time; when the vertex cover size can exceed k at any point, there is
a one-pass randomized streaming algorithm using O(min{m,nk}) space and answering the
query in O(min{m,nk}) + 2O(k) time.

The relevant prior work on (static) fixed-parameter algorithms [4, 6, 10, 12, 13, 14, 15,
16, 19, 20, 22, 23, 24, 27, 31, 34, 38, 40, 49, 50, 56, 57, 59, 68] is described in the appendix.

1.2 Our Contributions

Algorithmic Results. We first define the notion of a fixed parameter dynamic problem as
a parameterized problem with parameter k that has a data structure supporting updates
and queries to an instance of size n in time f(k)no(1). The class FPD contains all such
parameterized problems. By a formalization of our earlier discussion, FPD is contained in
the class of parameterized problems admitting algorithms running in time f(k)n1+o(1). After
this, we introduce two techniques for making fixed-parameter algorithms dynamic, and then
use them to develop dynamic fixed-parameter algorithms for a multitude of fundamental
optimization problems. Our algorithmic contributions are stated in Theorem 1 below. In
the runtimes, DC(n) refers to the time per update to a dynamic connectivity data structure
on n vertices, which from prior work can be:

expected amortized update time O(logn(log logn)2), or
expected worst case time O(log4 n), or
deterministic amortized time O(log2 n/ log logn).

Which of these bounds we pick determines the type of guarantees (expected vs. deterministic,
worst case vs. amortized) that the algorithm gives.

I Theorem 1. The following problems admit dynamic fixed-parameter algorithms:
Vertex Cover parameterized by solution size under edge insertions and deletions, with
O(1) amortized or O(k) worst case update time and O(1.2738k) query time,
Connected Vertex Cover parameterized by solution size under edge insertions and
deletions, with O(k2k) update time and O(4k) query time,
d-Hitting Set for all values of d parameterized by solution size under set insertions
and deletions, either with O(kdk) expected update time and O(k) query time, or with

J. Alman, M. Mnich, and V. Vassilevska Williams 41:5

O(f(k, d)) (worst-case, deterministic) update time and O(dkd!(k + 1)d) query time, for
some function f loosely bounded by (d!)dkO(d2).
Edge Dominating Set parameterized by solution size under edge insertions and dele-
tions, with O(1) update time and O(2.2351k) query time,
Feedback Vertex Set parameterized by solution size under edge insertions and dele-
tions, with 2O(k log k) logO(1) n amortized update time and O(k) query time,
Max Leaf Spanning Tree parameterized by solution size under edge insertions and
deletions, with O(3.72k + k5 logn+DC(n)) amortized update time, and maintains the
current max leaf spanning tree explicitly in memory,
Dense Subgraph in Graphs with Degree Bounded by ∆ parameterized by the
number of vertices in the subgraph under edge insertions and deletions, with 2O(k∆) ·DC(n)
update time and 2O(k∆) logn query time.
Undirected k-Path parameterized by the number of vertices on the path, with k!2O(k) ·
DC(n) update time and k!2O(k) logn query time.
Edge Clique Cover parameterized by the number of cliques and under the promise that
the solution never grows bigger than g(k), with O(4g(k)) update time and 22O(k) +O(24g(k))
query time.
Point Line Cover and Line Point Cover parameterized by the size of the solution
and under point and line insertions and deletions, respectively, with O(g(k)3) update time
and O(g(k)2g(k)+2) query time, under the promise that the solution never grows to more
than g(k).

Discussion of the Algorithmic Results. Our dynamic algorithm for Vertex Cover and
that of Iwata and Oka [51] both have query time O(1.2738k), by using the best known fixed
parameter algorithm for Vertex Cover on the maintained kernel. However, our algorithm
improves upon theirs in two ways. First, our update time is amortized constant or O(k)
worst case, whereas the Iwata-Oka algorithm has update time O(k2). Second, their update
time bound of O(k2) only holds if the vertex cover is guaranteed to never grow larger than k
throughout the sequence of updates. Namely, their update time depends on the size of their
maintained kernel, which may become unbounded in terms of k. Our algorithm does not
need any such promise—it will always have fast (amortized O(1) or O(k) worst case) update
time and return a vertex cover of size k if it exists, or determine that one does not. This is a
much stronger guarantee.

Our dynamic algorithm and Chitnis et al.’s streaming algorithm for Vertex Cover are
both based on Buss’ kernel, but our algorithm is markedly different from theirs. In particular,
we actually work with a modified kernel that allows us to achieve constant amortized update
time. Because our algorithm is completely deterministic, it necessarily needs Ω(m) space,
and our algorithm does indeed take linear space.

We give two algorithms for d-Hitting Set. The first is based on a randomized branching
tree method, while the second is deterministic and maintains a small kernel for the problem.
For every constant d, any d-Hitting Set instance on m sets and n elements has a kernel
constructible in time O(dn+2dm) that has O(dd+1d!(k+1)d) sets, due to van Bevern [68], and
a kernel constructible in time O(m) that has O((k+1)d) sets, due to Fafianie and Kratsch [33].
Unfortunately, it seems difficult to efficiently dynamize these kernel constructions. Because of
this, we present a novel kernel for the problem. Our kernel can be constructed in O(dn+3dm)
time and has size O((d− 1)!(k + 1)d). It also has nice properties that make it possible to
maintain it dynamically with update time that is a function of only k and d. In fact, for any
fixed d, the update time is polynomial in k.

ICALP 2017

41:6 Dynamic Parameterized Problems and Algorithms

Our algorithm for Feedback Vertex Set is a nice combination of kernelization and a
branching tree. Aside from our dynamic kernel for d-Hitting Set, this is probably the most
involved of our algorithms. Iwata and Oka [51] had also presented a dynamic fixed-parameter
algorithm for Feedback Vertex Set. However, their update time depends linearly on the
maximum degree of the graph, and is hence efficient only for bounded degree graphs. Their
paper asks whether one can remove this costly dependence on the degree. Our algorithm
answers their question in the affirmative—it has fast updates regardless of the graph density.

All of our algorithms, except for the last two in the theorem, meet their update and
query time guarantees regardless of whether the currently stored instance has a solution of
size k or not. The two exceptions, Edge Clique Cover and Point Line Cover, only
work under the promise that the solution never grows bigger than a function of k. In this
sense they are similar to most of the algorithms from prior work [29, 51]. There does seem
to be an inherent difficulty to removing the promise requirement, however. In fact, in the
parameterized complexity literature, these two problems are also exceptional, in the sense
that their fastest fixed parameter algorithms run by computing a kernel and then running a
brute force algorithm on it [23, 55], rather than anything more clever.

Hardness Results. In addition to the above algorithms, we also prove conditional lower
bounds for several parameterized problems, showing that they are likely not in FPD. To our
knowledge, ours are the first lower bounds for any dynamic parameterized problems.

The hardness hypothesis we assume concerns Reachability Oracles (ROs) for DAGs: an
RO is a data structure that stores a directed acyclic graph and for any queried pair of vertices
s, t, can efficiently answer whether s can reach t. (An RO does not perform updates.) Our
main hypothesis is as follows:

I Hypothesis 2 (RO Hypothesis). On a word-RAM with O(logm) bit words, any Reachability
Oracle for directed acyclic graphs on m edges must either use m1+ε preprocessing time for
some ε > 0, or must use Ω(mδ) time to answer reachability queries for some constant δ > 0.

The only known ROs either work by computing the transitive closure of the DAG during
preprocessing, thus spending Θ(min{mn, nω}) time (where n is the number of vertices and
2 ≤ ω < 2.373 [36, 69]), or by running a BFS/DFS procedure after each query, thus spending
O(m) time. Both of these runtimes are much larger than our assumed hardness; hence the
RO Hypothesis is very conservative.

We also use a slightly weaker version of the RO Hypothesis, asserting that its statement
holds true even restricted to DAGs that consist of ` layers of vertices (for some fixed
constant `), so that the edges go only between adjacent layers in a fixed direction, from
layer i to layer i+ 1. While this new LRO Hypothesis is certainly weaker, we show that it
is implied by either of two popular hardness hypotheses: the 3SUM Conjecture and the
Triangle Conjecture. The former asserts that when given n integers within {−nc, . . . , nc}
for some constant c, deciding whether three of them sum to 0 requires n2−o(1) time on a
word-RAM with O(logn) bit words. The latter asserts that detecting a triangle in an m-edge
graph requires Ω(m1+ε) time for some ε > 0. These two conjectures have been used for many
conditional lower bounds [1, 35, 54].

Pǎtraşcu studied the RO Hypothesis, and while he was not able to prove it, the following
strong cell probe lower bound follows from his work [63]: there are directed acyclic graphs
on m edges for which any RO that uses m1+o(1) preprocessing time (and hence space) in
the word-RAM with O(logn) bit words, must have ω(1) query time. Using this statement,
unconditional, albeit weaker lower bounds can be proven as well. This is what we prove:

J. Alman, M. Mnich, and V. Vassilevska Williams 41:7

I Theorem 3. Fix the word-RAM model of computation with w-bit words for w = O(logn)
for inputs of size n. Assuming the LRO Hypothesis, there is some δ > 0 for which the
following dynamic parameterized graph problems on m-edge graphs require either Ω(m1+δ)
preprocessing or Ω(mδ) update or query time:

Directed k-Path under edge insertions and deletions,
Steiner Tree under terminal activation and deactivation, and
Vertex Cover Above LP under edge insertions and deletions.

Under the RO Hypothesis (and hence also under the LRO Hypothesis), there is a δ > 0 so
that Directed Feedback Vertex Set under edge insertions and deletions requires Ω(mδ)
update time or query time.

Unconditionally, there is no computable function f for which a dynamic data structure
for Directed Feedback Vertex Set performs updates and answers queries in O(f(k))
time.

Our lower bounds show that, although k-Path and Feedback Vertex Set have fixed
parameter dynamic algorithms for undirected graphs, they probably do not for directed
graphs. Interestingly, the fixed-parameter algorithms for k-Path in the static setting work
similarly on both undirected and directed graphs, so there only seems to be a gap in the
dynamic setting.

All problems for which we prove lower bounds have f(k)n1+o(1) time static algorithms,
except for Vertex Cover above LP. However, it seems that the reason why the current
algorithms are slower is largely due to the fact that near-linear time algorithms for maximum
matching are not known. Recent impressive progress on the matching problem [60] gives
hope that an f(k)n1+o(1) time algorithm for Vertex Cover above LP might be possible.

A common feature of most of the problems above is that they are either not known
to have a polynomial kernel (like Directed Feedback Vertex Set), or do not have
one unless NP ⊆ coNP/poly (like k-Path [10] and Steiner Tree parameterized by the
number of terminal pairs [27]). One might therefore conjecture that problems which cannot
be made fixed parameter dynamic do not have polynomial kernels, or vice versa. Tempting
as it is, this intuition turns out to be false. Vertex Cover Above LP does not have a
dynamic fixed-parameter algorithm, yet it is known to admit a polynomial kernel [56]. On
the other hand, the k-Path problem on undirected graphs also does not admit a polynomial
kernel unless NP ⊆ coNP/poly [10], yet we give a dynamic fixed-parameter algorithm for it.
Hence, the existence of a polynomial kernel for a parameterized problem is not related to the
existence of a dynamic fixed-parameter algorithm for it.

Preliminaries. We assume familiarity with basic combinatorial algorithms, especially graph
algorithms and hitting set algorithms. When referring to a graph G, we will write V (G) to
denote its vertex set and E(G) to denote its edge set. Unless otherwise specified, n and m
will refer to the number of nodes and edges in G, respectively. We use the terms nodes and
vertices interchangeably. By Õ(f(n)) we denote f(n) logO(1) n. We also assume familiarity
with dynamic problems and parameterized problems.

2 Overview of the Algorithmic Techniques

Promise model and Full model. There are two different models of dynamic parameterized
problems in which we design algorithms: the promise model and the full model. When
solving a problem with parameter k in the promise model, there is a computable function
g : N→ N such that one is promised that throughout the sequence of updates, there always

ICALP 2017

41:8 Dynamic Parameterized Problems and Algorithms

exists a solution with parameter at most g(k). Hence, one only needs to maintain a solution
under updates with good guarantees on both query and update times as long as the promise
continues to hold. If at any point during the execution no solution to the parameterized
problem with parameter g(k) exists, then the algorithm is not required to provide any
guarantees.

In the full model, there is no such promise. One needs to efficiently maintain a solution
with parameter at most k, or the fact that no such solution exists, under any sequence of
updates. When possible, it is desirable to have an algorithm with guarantees in the full
model instead of only the promise model, and all but two of our algorithms (Point Line
Cover and Edge Clique Cover) do work in the full model.

2.1 Techniques for designing dynamic fixed-parameter algorithms
We present two main techniques for obtaining dynamic fixed-parameter algorithms: dynamic
kernels and dynamic branching trees.

Dynamization via kernelization. Using the notation of Cygan et al. [21], a kernelization
algorithm for a parameterized problem Π is an algorithm A that, given an instance (I, k)
of Π, runs in polynomial time and returns an instance (I ′, k′) of Π such that the size of the
new instance is bounded by a computable function of k and so that (I ′, k′) is a ‘yes’ instance
of Π if and only if (I, k) is. Frequently, when the problem asks us to output more than just
a Boolean answer, then an answer for (I ′, k′) must be valid for (I, k) as well. We will refer
to the output of A as a kernel. For example, a kernelization algorithm for Vertex Cover
might take as input a graph G, and return a subgraph G′ such that any vertex cover of G′ is
also a vertex cover of G.

In the first approach, we compute a kernel for the problem, and maintain that this is a
valid kernel as we receive updates. In other words, as we receive updates, we will maintain
what the output of a kernelization algorithm A would be, without actually rerunning A each
time. Similar to kernelizations for static fixed-parameter algorithms, if we can prove that
the size of our kernel is only a function of k whenever a solution with parameter k exists,
then we can answer queries in time independent of n by running the fastest known static
algorithms on the kernel.

The difficult part, then, is to efficiently dynamically maintain the kernel. The details of
how efficiently we can handle updates to the kernel also determines which model of dynamic
fixed-parameter algorithm our algorithm works for. If the kernel is defined by sufficiently
simple or local rules such that updates can take place in time independent of the current
kernel size, then the algorithm should work in the full model. If updates might take time
linear in the kernel size, then the algorithm only works in the promise model.

As we will see, there are many problems for which we can efficiently maintain a kernel. In
some instances we will be able to maintain the classical kernels known for the corresponding
static problem, while in others, we will design new kernels which are easier to maintain.

Dynamization via branching tree. In the second approach, we consider so-called set selec-
tion problems. In these problems, the instance consists of a set of objects U (e.g., vertices of
a graph), the parameter is k, and one needs to select a subset S ⊆ U of size k (at least k/at
most k) so that a certain predicate P (S) is satisfied. Many parameterized problems are of
this nature, such as k-Path, Vertex Cover, and (Directed) Feedback Vertex Set.

Consider a (static) set selection problem which admits a branching solution. By this we
mean, for every instance U of the problem, there is an ‘easy to find’ subset T ⊆ U of size

J. Alman, M. Mnich, and V. Vassilevska Williams 41:9

|T | ≤ f(k) (for some function f) so that any solution S of size at most k must intersect T .
Furthermore, for any choice of t ∈ T to be placed in the solution, one can efficiently obtain a
reduced instance of the problem with parameter k − 1, which corresponds to picking t to be
in the solution. For instance, for Vertex Cover, every edge {u, v} can be viewed as such a
subset T since at least one of u and v is in any vertex cover, and if we pick u, then we can
remove it and all its incident edges from the graph to get a reduced instance.

For such problems, there is a simple fixed-parameter algorithm called the branching tree
algorithm: The algorithm can be represented as a tree T rooted at a node r. Each node v of
the tree corresponds to a reduced instance of the original one, and in this instance, v has a
subset T of size f(k), and a child vi for every i ∈ T , where vi corresponds to selecting i to be
placed in the solution, and vi carries the reduced instance where i is selected. The height of
the tree X is bounded by k since at most k elements need to be selected, and the branching
factor is f(k). Each leaf ` of the tree T is either a “yes”-leaf (when the predicate is satisfied
on the set of elements selected on the path from r to `) or a “no”-leaf (when the predicate
is not satisfied). The runtime of the algorithm bounded by f(k)k · t(N), where t(N) is the
time to find a subset T that must contain an element of the solution in instances of size N ,
together with the time to find a reduced instance, once an element is selected.

What we have described so far is a static algorithmic technique, but we investigate when
this algorithmic technique can be made dynamic. In other words, given an update, we would
like to quickly update T so that it becomes a valid branching tree for the updated instance.
Since the number of nodes in the branching tree is only a function of k, one can afford to
look at every tree node. Ideally, one would like the time spent per node to only depend
on k. However, for most problems that we consider, the branching tree needs to be rebuilt
every so often, since the subset T to branch on may become invalid after an update, and the
time to rebuild can have a dependence on the instance size. We use two methods to avoid
this. The first is to randomize the decisions made in the branching tree (e.g., which set T to
pick) so that, assuming an oblivious adversary that must provide the update sequence in
advance, it is relatively unlikely that we need to rebuild the tree T (or its subtrees) after
each update, and in particular, so that the expected cost of an update is only a function of k.
The second is to make ‘robust’ choices of T , so that many updates are requires before the
choice of T becomes incalid, and then amortize the cost of rebuilding the tree over all the
updates required to force such a rebuilding.

2.2 Algorithm Examples
We give overviews of the techniques used in some of our algorithms, to demonstrate the
dynamic kernel and dynamic branching tree approaches, and different ways in which they
can be used. We emphasize that these descriptions are substantial simplifications which hide
many non-trivial details and ideas.

Vertex Cover. We give both a dynamic kernel algorithm and a dynamic branching tree
algorithm for Vertex Cover.

Our first algorithm maintains a kernel obtained as follows: Every node of degree ≥ k + 1
‘selects’ k + 1 incident edges arbitrarily and adds them to the edge set E′ of the kernel,
independently of other nodes. Next, every edge incident to two nodes of degree ≤ k is also
added to E′. Finally, the node set of the kernel consists of all nodes that are not isolated
in E′. This is a valid kernel, since any vertex cover of size at most k needs to include every
vertex of degree strictly greater than k. Every edge in E′ either has both its end points of
degree ≤ k, or is selected by one of its end points of degree at least k + 1. Any node of a

ICALP 2017

41:10 Dynamic Parameterized Problems and Algorithms

vertex cover of the kernel either has degree ≤ k or selects k + 1 edges. Thus the kernel must
have size O(k2) when a k-vertex cover exists. To insert an edge we simply add the edge to
the kernel unless one of its incident vertices has degree greater than k. If one of the end
points x used to be of degree ≤ k and is now of degree k+ 1, we have x select all its incident
edges and add them to the kernel. To delete an edge, we simply remove it from the kernel.
If it was incident to a vertex v of degree higher than k + 2, then we need to find another
edge incident to v which is in the graph but not selected by v to put into the kernel. If one
of the end points now has degree k, we need to go through the incident edges and remove
them from the kernel if their other end point has high degree and did not select them. All
these operations can be performed by storing appropriate pointers so that the updates run
in O(k) time. With a little bit more work one can make them run in O(1) amortized time.
To answer queries, we answer “no” in constant time if the kernel has more than 2k(k + 1)
edges, and otherwise we run the fastest static k-Vertex Cover fixed-parameter algorithm
on the kernel of size O(k2). This results in a O(1.2738k) update time.

Our second algorithm maintains a branching tree of depth at most k, which corresponds
to using following randomized branching strategy: pick a uniformly random edge, and branch
on adding each of its endpoints into the vertex cover. For a static branching algorithm, there
is no need to pick a uniformly random edge to branch on, since at least one endpoint of every
single edge must be in the vertex cover. However, a deterministic branching strategy like this
in a dynamic algorithm would be susceptible to an adversarial edge update sequence, in which
the adversary frequently removes edges which have been chosen to branch on. By ensuring
that each edge we branch on is a uniformly random edge, we make the probability that
we need to recompute any subtree of the branching tree T low. We compute the expected
update time to be only O(k2k). Queries can be answered in only O(k) time by following a
path in the branching tree to an accepting leaf, if one exists.

These algorithms demonstrate some subtleties of the two techniques. In the branching
tree algorithm, we use a randomized branching rule to deal with adversarial updates. In
some of our other branching tree algorithms, like for Feedback Vertex Set, we are able
to find a deterministic branching rule to yield a deterministic algorithm instead. In the
kernelization algorithm, we manage to find a kernel which can be updated quickly even when
the answer becomes larger than k and the kernel size becomes large. In other problems, it
will be harder to do this, and we may need to restrict ourselves to the promise model where
we are guaranteed that the kernel will not grow too big in order to have efficient update times.
Dynamic kernelization techniques typically lead to faster update times and query times, like
in this case, because we can apply the fastest known static algorithm for the problem to the
kernel to answer queries. In a branching tree algorithm, we may be using a branching rule
which does not lead to the fastest algorithm because it is easier to dynamically maintain.

Interestingly, we are able to generalize both of these algorithms to the d-Hitting Set
problem. The d-Hitting Set branching tree algorithm is similar to that of Vertex Cover,
but the d-Hitting Set dynamic kernelization algorithm is much more complicated, and
involves a tricky recursive rule for determining which sets to put in the kernel. We include
an overview of the static kernel construction in Sect. 3.

Max Leaf Spanning Tree. Our algorithm for Max Leaf Spanning Tree uses the dynamic
kernel approach. The kernel we maintain is simply the given graph, where we contract
vertices of degree two whose neighbors both also have degree two. We can maintain this
kernel by storing paths of contracted vertices in lists corresponding to edges they have been
contracted into. As long as this kernel has Ω(k2) nodes, it must always have a spanning tree
with at least k leaves.

J. Alman, M. Mnich, and V. Vassilevska Williams 41:11

Unlike in other dynamic kernel algorithms, where we maintain that the kernel does not
get too large, this kernel may grow to have Ω(n2) edges. We can nonetheless find a tree with
at least k leaves in time independent of n, by breadth-first searching from an arbitrary node
in the kernel until we have Ω(k2) kernel vertices, and just finding a tree within those vertices.

This method finds a subtree TS with at least k leaves, but we need to find a tree which
spans the whole graph. In the static problem, this could be accomplished by a linear-time
breadth-first search away from TS , but in the dynamic problem, this is too slow. To overcome
this, we also maintain a spanning tree T of the entire graph, which does not necessarily
have k leaves, using a known dynamic tree data structure. When queried for a spanning tree,
we find TS , and then perform a ‘merge’ operation to combine T and TS into a spanning tree
with at least k leaves. This merge operation makes only O(k4) changes to T , so we are able
to maintain a desired spanning tree in time independent of n.

We are able to maintain a linear size answer in only logarithmic time per update because
the output is not very ‘sensitive’ to updates: we can always output an answer very close
to T , which itself only changes in one edge per update. In other problems where the output
can be more sensitive to updates, like Edge Clique Cover, we need to maintain a small
intermediate representation of the answer instead of the answer itself.

Feedback Vertex Set in undirected graphs. Our algorithm for Feedback Vertex Set
combines the dynamic kernel approach with the dynamic branching tree approach. We will
maintain a branching tree, where we branch off of which node to include in our feedback
vertex set. Then, at each node in the branching tree, we will maintain a kernel to help decide
what nodes to branch on. Similar to the situation with Max Leaf Spanning Tree, our
kernel can possibly have Ω(n2) edges. Here we will deal with this by branching off of only
O(k) nodes in the kernel to add to our feedback vertex set, so that we can answer queries in
sublinear time in the kernel size.

The kernel we maintain at each node of the branching tree is the given graph, in which
vertices of degree one are deleted, and vertices of degree two are contracted. This involves
many details for maintaining contracted trees, and dealing with resulting self-loops. Since the
resulting graph has average degree at least three, whereas forests have much lower average
degree, we show that a feedback vertex set of size at most k must contain a vertex of high
degree, whose degree is at least 1/(3k) of the total number of edges in the kernel. Since there
are at most 6k such vertices, we can branch on which to include in our feedback vertex set.

This branching strategy works well for the static problem, but it is hard to maintain
dynamically. Each edge update might change the set of vertices with high enough degree to
branch on, and changing which vertex we branch on, and recomputing an entire subtree of
the branching tree, can be expensive. We alleviate this issue using amortization. Instead
of branching only on the 6k highest degree vertices, we instead branch on the 12k highest
degree vertices. If our kernel has m edges, then we prove that Ω(m) edge updates need to
happen before there might be a small feedback vertex set containing none of the vertices
we branched on. After these updates we need to recompute the branching tree, but this is
inexpensive when amortized over the required Ω(m) updates.

3 A dynamic kernel for d-Hitting Set

In this section we present our dynamic kernel for the d-Hitting Set problem; we describe
how to efficiently compute and maintain it in the full version of the paper. The d-Hitting
Set problem asks to find a set X ⊆ U of at most k elements of a given a universe U which

ICALP 2017

41:12 Dynamic Parameterized Problems and Algorithms

intersects all sets from a family F of subsets of U , each of cardinality exactly d. Here we
present a kernel for d-Hitting Set, with (d− 1)!k(k+ 1)d−1 sets and d!k(k+ 1)d−1 elements.
It is known [25] that a kernel of size O(kd−ε) for any constant ε > 0 would imply that
NP ⊆ coNP/poly; thus, the kd dependence on the number of sets in the kernel is optimal.

Let us describe the kernel. We will recursively define the notion of a good set.

I Definition 4 (good set). Let r ∈ N and νr = r!(k + 1)r. Let d ∈ N and let (U,F) be an
instance of d-Hitting Set. We define the notion of an “(`, r)-good” set inductively, in
decreasing order of ` from d to 1, and for fixed `, for increasing r from 1 to d− `.

Any set S ∈ F is (d, r)-good for all r.
A set S ⊆ U is `-good if S is (`, r)-good for some r.
A set S ⊆ U is (`′, r)-strong if S is `′-good and does not contain any (`′ − j, j)-good
subsets for any j ∈ {1, . . . , r − 1}.
A set S ⊆ U is (`, r)-good if |S| = ` and S is a subset of at least νr (`+ r, r)-strong sets.
A set S ⊆ U is good if S is `-good for ` = |S|.

Notice that if a set is (`′, r)-strong, then it is also (`′, r′)-strong for all r′ < r. Also, any
`-good set is (`, 1)-strong. Further, note that since the notion of (`+r, r)-strong only depends
on (`+ a, r − a)-good sets for a ≥ 1, the definition of (`, r)-good is sound.

Let F ′ consist of those S ⊆ U that are good and none of their subsets are good. Let U ′
consist of all u ∈ U that are contained in some set of F ′. Let K = (U ′,F ′). In the full version
we prove the following lemma that shows that (K, k) is a kernel for the instance (U,F).

I Lemma 5. Let (U,F) be an instance of d-Hitting Set. If (U,F) admits a hitting set X
of size at most k, then any good set S ⊆ U intersects X non-trivially.

The lemma implies that (K, k) is a kernel: first, if X ′ is a hitting set of K, it is a hitting set
for F as well since for every F ∈ F , either F ∈ F ′ or some subset of F is in F ′. Now let X
be a hitting set of F with size at most k. By the lemma, if some S is in F ′, then it intersects
X non-trivially and so X is a hitting set of F ′ as well. Now we argue about the size of K.

I Lemma 6. If (U,F) (and hence also (U ′,F ′)) admits a hitting set of size at most k, then
|U ′| ≤ d|F ′| and |F ′| ≤

(
1 + 2

(k+1)(d−1)

)
· d!(k + 1)d.

Proof. If {u} ∈ F ′, then no other set containing u can be in F ′. Otherwise, consider some
u such that {u} /∈ F ′. Consider all sets of size r + 1 in F ′ that contain u, for any choice of
r ∈ {1, . . . , d− 1}.

Since {u} /∈ F ′, we know that u cannot be (1, r)-good, and thus u is contained in
fewer than νr (r + 1)-good sets that do not contain any (j + 1, r − j)-good subsets for any
j ∈ {2, . . . , r− 1}. Now since for every F ∈ F ′ we have that it contains no good subsets, this
means that u is contained in fewer than νr sets in F ′ of size r + 1.

Thus, the number of sets of F ′ containing u is at most

d−1∑
r=1

νr =
d−1∑
r=1

r!(k + 1)r ≤
(

1 + 2
(k + 1)(d− 1)

)
(d− 1)!(k + 1)d−1,

where the last inequality can be proven inductively. Thus, if there is a hitting set of size at
most k for F ′, then the size of F ′ is at most (1 + 2

(k+1)(d−1))d!(k + 1)d. J

In the full version we additionally show that the kernel can be computed in O(3dn+m)
time and can be dynamically maintained with very fast updates.

J. Alman, M. Mnich, and V. Vassilevska Williams 41:13

Acknowledgments. The authors would like to thank Nicole Wein, Daniel Stubbs, Hubert
Teo, and Ryan Williams for fruitful conversations.

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In Proc. FOCS 2014, pages 434–443, 2014.
2 Faisal N. Abu-Khzam, Judith Egan, Michael R. Fellows, Frances A. Rosamond, and Peter

Shaw. On the parameterized complexity of dynamic problems with connectivity constraints.
In Proc. COCOA 2014, volume 8881 of Lecture Notes Comput. Sci., pages 625–636, 2014.

3 Faisal N. Abu-Khzam, Judith Egan, Michael R. Fellows, Frances A. Rosamond, and Peter
Shaw. On the parameterized complexity of dynamic problems. Theor. Comput. Sci.,
607:426–434, 2015.

4 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4), 1995.
5 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in

O(logn) update time. SIAM J. Comput., 44(1):88–113, 2015.
6 Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized algorithms for the loop

cutset problem. J. Artif. Intelligence Res., 12:219–234, 2000.
7 Aaron Bernstein and Liam Roditty. Improved dynamic algorithms for maintaining approx-

imate shortest paths under deletions. In Proc. SODA 2011, pages 1355–1365, 2011.
8 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully

dynamic data structures for vertex cover and matching. In Proc. SODA 2015, pages 785–
804, 2015.

9 Hans L. Bodlaender. Dynamic algorithms for graphs with treewidth 2. In Proc. WG 1993,
volume 790 of Lecture Notes Comput. Sci., pages 112–124, 1993.

10 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.

11 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J.
Comput., 45(2):317–378, 2016.

12 S. Buss. private communication.
13 Leizhen Cai, Siu Man Chan, and Siu On Chan. Random separation: A new method

for solving fixed-cardinality optimization problems. In Proc. IPEC 2006, volume 4169 of
Lecture Notes Comput. Sci., pages 239–250, 2006.

14 Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes of
parameterized tractability. Ann. Pure Applied Logic, 84(1):119–138, 1997.

15 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoret.
Comput. Sci., 411(40):3736–3756, 2010.

16 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5), 2008.

17 Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza
Monemizadeh. Parameterized streaming: Maximal matching and vertex cover. In Proc.
SODA 2015, pages 1234–1251, 2015.

18 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

19 Marek Cygan. Deterministic parameterized connected vertex cover. In Proc. SWAT 2012,
volume 7357 of Lecture Notes Comput. Sci., pages 95–106, 2012.

20 Marek Cygan, Fedor Fomin, Bart M.P. Jansen, Łukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Open problems for FPT
school 2014. http://fptschool.mimuw.edu.pl/opl.pdf.

ICALP 2017

http://fptschool.mimuw.edu.pl/opl.pdf

41:14 Dynamic Parameterized Problems and Algorithms

21 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer,
Cham, 2015.

22 Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Magnus Wahlström.
Clique cover and graph separation: New incompressibility results. ACM Trans. Comput.
Theory, 6(2):6:1–6:19, 2014.

23 Marek Cygan, Marcin Pilipczuk, and Michał Pilipczuk. Known algorithms for edge clique
cover are probably optimal. SIAM J. Comput., 45(1):67–83, 2016.

24 Jean Daligault, Gregory Gutin, Eun Jung Kim, and Anders Yeo. FPT algorithms and
kernels for the directed k-leaf problem. J. Comput. Syst. Sci., 76(2):144–152, 2010.

25 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014.

26 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004.

27 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through colors and
IDs. In Proc. ICALP 2009, volume 5555 of Lecture Notes Comput. Sci., pages 378–389,
2009.

28 Frederic Dorn. Planar subgraph isomorphism revisited. In Proc. STACS 2010, volume 5 of
Leibniz Int. Proc. Informatics, pages 263–274, 2010.

29 Zdeněk Dvořák, Martin Kupec, and Vojtěch Tůma. A dynamic data structure for MSO
properties in graphs with bounded tree-depth. In Proc. ESA 2014, volume 8737 of Lecture
Notes Comput. Sci., pages 334–345, 2014.

30 Zdeněk Dvořák and Vojtěch Tůma. A dynamic data structure for counting subgraphs in
sparse graphs. In Proc. WADS 2013, volume 8037 of Lecture Notes Comput. Sci., pages
304–315, 2013.

31 Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, and Frances A. Rosam-
ond. FPT is P-time extremal structure I. In Proc. ACiD 2005, pages 1–41, 2005.

32 Michael Etscheid and Matthias Mnich. Linear kernels and linear time algorithms for finding
large cuts. In Proc. ISAAC 2016, volume 64 of Leibniz Int. Proc. Informatics, pages 31:1–
31:13, 2016.

33 Stefan Fafianie and Stefan Kratsch. A shortcut to (sun)flowers: Kernels in logarithmic
space or linear time. In Proc. MFCS 2015, volume 9235 of Lecture Notes Comput. Sci.,
pages 299–310, 2015.

34 Henning Fernau. Edge dominating set: Efficient enumeration-based exact algorithms. In
Proc. IPEC 2006, volume 4169 of Lecture Notes Comput. Sci., pages 142–153, 2006.

35 Anka Gajentaan and Mark H. Overmars. On a class of problems in computational geometry.
Comput. Geom., 45(4):140–152, 2012.

36 François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. ISSAC 2014,
pages 296–303, 2014.

37 David Gibb, Bruce Kapron, Valerie King, and Nolan Thorn. Dynamic graph connectivity
with improved worst case update time and sublinear space, 2015. URL: https://arxiv.
org/abs/1509.06464.

38 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Data reduction and exact
algorithms for clique cover. J. Exp. Algorithmics, 13:2:2.2–2:2.15, 2009.

39 Manoj Gupta and Richard Peng. Fully dynamic (1 + ε)-approximate matchings. In Proc.
FOCS 2013, pages 548–557, 2013.

40 Andras Gyárfás. A simple lower bound on edge coverings by cliques. Discrete Math.,
85(1):103–104, 1990.

https://arxiv.org/abs/1509.06464
https://arxiv.org/abs/1509.06464

J. Alman, M. Mnich, and V. Vassilevska Williams 41:15

41 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Improved algorithms
for decremental single-source reachability on directed graphs. In Proc. ICALP 2015, volume
9134 of Lecture Notes Comput. Sci., pages 725–736, 2015.

42 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Dynamic approxim-
ate all-pairs shortest paths: Breaking the O(mn) barrier and derandomization. SIAM J.
Comput., 45(3):947–1006, 2016.

43 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proc. FOCS 2015, pages 21–30, 2015.

44 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms
with polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999.

45 Monika Rauch Henzinger and Valerie King. Maintaining minimum spanning forests in
dynamic graphs. SIAM J. Comput., 31(2):364–374, 2001.

46 Monika Rauch Henzinger and Mikkel Thorup. Sampling to provide or to bound: With
applications to fully dynamic graph algorithms. Random Struct. Algorithms, 11(4):369–
379, 1997.

47 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectiv-
ity. J. ACM, 48(4):723–760, 2001.

48 Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic con-
nectivity in O(logn(log logn)2) amortized expected time, 2016. URL: http://arxiv.org/
abs/1609.05867.

49 Ken Iwaide and Hiroshi Nagamochi. An improved algorithm for parameterized edge dom-
inating set problem. J. Graph Algorithms Appl., 20(1):23–58, 2016.

50 Yoichi Iwata. A linear time kernelization for feedback vertex set, 2016. URL: https:
//arxiv.org/abs/1608.01463.

51 Yoichi Iwata and Keigo Oka. Fast dynamic graph algorithms for parameterized problems.
In Proc. SWAT 2014, volume 8503 of Lecture Notes Comput. Sci., pages 241–252, 2014.

52 Yoichi Iwata, Keigo Oka, and Yuichi Yoshida. Linear-time FPT algorithms via network
flow. In Proc. SODA 2014, pages 1749–1761, 2014.

53 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in poly-
logarithmic worst case time. In Proc. SODA 2013, pages 1131–1142, 2013.

54 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjec-
ture. In Proc. SODA 2016, pages 1272–1287, 2016.

55 Stefan Kratsch, Geevarghese Philip, and Saurabh Ray. Point line cover: The easy kernel
is essentially tight. ACM Trans. Algorithms, 12(3):40:1–40:16, 2016.

56 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New
tools for kernelization. In Proc. FOCS 2012, pages 450–459, 2012.

57 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Al-
gorithms, 11(2):15:1–15:31, 2014.

58 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. Linear time parameterized
algorithms for subset feedback vertex set. In Proc. ICALP 2015, volume 9134 of Lecture
Notes Comput. Sci., pages 935–946, 2015.

59 Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. A linear time parameterized
algorithm for directed feedback vertex set, 2016. URL: https://arxiv.org/abs/1609.
04347.

60 Aleksander Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In Proc.FOCS 2013, pages 253–262, 2013.

ICALP 2017

http://arxiv.org/abs/1609.05867
http://arxiv.org/abs/1609.05867
https://arxiv.org/abs/1608.01463
https://arxiv.org/abs/1608.01463
https://arxiv.org/abs/1609.04347
https://arxiv.org/abs/1609.04347

41:16 Dynamic Parameterized Problems and Algorithms

61 Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex
cover. In Proc. STOC 2010, pages 457–464, 2010.

62 Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Proc. STOC
2010, pages 603–610, 2010.

63 Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. SIAM J. Comput.,
40(3):827–847, 2011.

64 Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput., 35(4):932–963, 2006.

65 Mihai Pǎtraşcu and Mikkel Thorup. Don’t rush into a union: take time to find your roots.
In Proc. STOC 2011, pages 559–568, 2011.

66 Shay Solomon. Fully dynamic maximal matching in constant update time. In Proc. FOCS
2016, pages 325–334, 2016.

67 Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proc. STOC 2000,
pages 343–350, 2000.

68 René van Bevern. Towards optimal and expressive kernelization for d-hitting set. Algorith-
mica, 70(1):129–147, 2014.

69 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd.
In Proc. STOC 2012, pages 887–898, 2012.

70 Magnus Wahlström. Half-integrality, LP-branching and FPT algorithms. In Proc. SODA
2014, pages 1762–1781, 2014.

71 Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Proc.
SODA 2013, pages 1757–1769, 2013.

	Introduction
	Prior Work
	Our Contributions

	Overview of the Algorithmic Techniques
	Techniques for designing dynamic fixed-parameter algorithms
	Algorithm Examples

	A dynamic kernel for d-Hitting Set

