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Abstract

Most graphs in real life keep changing with time. These changes can be in the form of
insertion or deletion of edges or vertices. Such rapidly changing graphs motivate us to study
dynamic graph algorithms. However, three important graph problems that are perhaps not
sufficiently addressed in the literature include independent sets, maximum matching (exact)
and maximum flows.

Maximal Independent Set (MIS) is one of the most prominently studied problems in the
distributed setting. Recently, the first dynamic MIS algorithm for distributed networks was
given by Censor-Hillel et al. [PODC16], requiring expected O(1) amortized rounds with O(∆)
messages per update, where ∆ is the maximum degree of a vertex in the graph. They suggested
an open problem to maintain MIS in fully dynamic centralized setting more efficiently. Assadi
et al. [STOC18] presented a deterministic centralized fully dynamic MIS algorithm requiring
O(min{∆,m3/4}) amortized time per update. This result is quite complex involving an exhaus-
tive case analysis. We report a surprisingly simple deterministic centralized algorithm which
improves the amortized update time to O(min{∆,m2/3}).

Additionally, we present some other minor results related to dynamic MIS, Maximum Flow,
and Maximum Matching. A common trait of all our results is that despite improving state of
the art upper bounds or matching state of the art lower bounds, they are surprisingly simple
and are analysed using simple amortization arguments. Further, they use no complicated data
structures or black box algorithms for their implementation.

∗This research work was supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 340506.
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1 Introduction

In the last two decades, there has been a flurry of results in the area of dynamic graph algorithms.
The motivation behind studying such problems is that many graphs encountered in the real world
keep changing with time. These changes can be in the form of addition and/or deletion of edges
and/or vertices. The aim of a dynamic graph algorithm is to report the solution of the concerned
graph problem after every such update in a graph. One can trivially use the best static algorithm
to compute the solution from scratch after each such update. Hence, the aim is to update the
solution more efficiently as compared to the best static algorithm. Various graph problems studied
in the dynamic setting include connectivity [27, 28, 31], minimum spanning tree [14, 17, 36], reach-
ability [12, 41, 39], shortest path [43, 5, 11], matching [8, 4, 26], etc. However, three important
graph problems that are perhaps not sufficiently addressed in the literature include independent
sets, maximum matching (exact) and maximum flows.

For a given graph G = (V,E) with n vertices and m edges where maximum degree of a vertex
is ∆, a set of verticesM ⊆ V is called an independent set if no two vertices inM share an edge in
E, i.e. ∀x, y ∈M, (x, y) /∈ E. Computing the maximum cardinality independent set is known to be
NP-Hard [21]. However, a simple greedy algorithm is known to compute the Maximal Independent
Set (MIS) in O(m) time, where MIS is any independent setM such that no proper supersetM ′ of
M, i.e. M ⊂M ′, is an independent set of the graph. Note that MIS is not a good approximation
of maximum cardinality independent set1 unlike other known problems such as matching (which is
a 2-approximation of maximum matching).

Fully Dynamic Maximal Independent Set

In the dynamic setting, one can trivially maintain MIS in O(m) update time, by computing MIS
from scratch after every update. Moreover, the adjustment complexity2 of this algorithm can be
O(n). Until recently no non-trivial algorithm was known to maintain MIS in o(m) time.

The problem of MIS has been extensively studied in the distributed setting [3, 22, 30]. The
first dynamic MIS algorithm was given by Censor-Hillel et al. [9] showing the maintenance of
dynamic MIS in expected O(1) amortized rounds with O(∆) messages per update, where ∆ is the
maximum degree of a vertex in G. This also translates to a centralized algorithm with update time of
amortized Ω(∆) [2]. Recently, Assadi et al. [2] presented a deterministic centralized fully dynamic
MIS algorithm requiring O(min{∆,m3/4}) amortized time and O(1) amortized adjustments per
edge update. Further, the update time for centralized algorithm was recently improved [37] for
low arboricity graphs. In this paper, we present surprisingly simple deterministic algorithms to
improve the results for general arboricity graphs.

Theorem 1.1 (Fully dynamic MIS (centralized)). Given any graph G = (V,E) having n vertices
and m edges, MIS can be maintained in O(min{∆,m2/3}) amortized time and O(1) amortized
adjustments per insertion or deletion of an edge or a vertex, where ∆ is the maximum degree of a
vertex in G.

Remark: A limitation of our result over Assadi et al. [2] is that it cannot be trivially extended to
the distributed setting with efficient round and adjustment complexity. Trivial adaptation of our
algorithm in the distributed CONGEST model requires O(m1/3) amortized rounds and adjustments
per update, whereas that of [2] requires O(1) rounds and adjustments per update. The message
complexity in both cases matches the update time of the centralized setting.

1Consider a star graph where a vertex s has an edge to all other vertices in V . The maximum independent set is
M ∗ = V \ {s}, whereasM ′ = {s} is a valid MIS. Here approximation factor |M ∗|/|M ′| is n− 1.

2The adjustment complexity refers to the number of vertices that enter or leaveM after an update.
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Additionally, we present some other minor results related to dynamic MIS, Maximum Flow,
and Maximum Matching as follows.

1. Hardness of dynamic MIS and Incremental MIS
We first discuss the hardness of different dynamic updates for maintaining MIS and report that
the hardest update for maintaining MIS is that of edge insertions. For the remaining dynamic
settings (fully dynamic vertex updates and decremental edge updates), a simple algorithm [2]
maintains MIS optimally, i.e. total update time is of the order of input size. Hence, in
addition to fully dynamic edge updates, the only interesting dynamic setting is handling edge
insertions, where we again present a very simple algorithm to prove the following.

Theorem 1.2 (Incremental MIS). Given any graph G = (V,E) having n vertices and m
edges, MIS can be maintained in O(min{∆,√m}) amortized time and O(1) amortized adjust-
ments per edge insertion, where ∆ is the maximum degree of a vertex in G.

Remark: Both these algorithms (for incremental MIS and remaining simple updates) triv-
ially extend to the distributed CONGEST model with O(1) amortized rounds per update.

2. Worst case bounds for dynamic MIS
All the previous results for dynamic MIS primarily focus on amortized guarantees. This was
explained by Assadi et al. [2] by proving that the adjustment complexity (and hence update
time) of any dynamic MIS algorithm must be Ω(n) in the worst case. Hence, in order to
achieve better worst case bounds, we are required to consider a relaxed model. Thus, we relax
the requirement to explicitly maintain the MIS after each update. Rather, we allow queries
of the form In-Mis(v), which reports whether a vertex v ∈ V is present in some MIS of the
updated graph, ensuring the following properties. Firstly, the responses to all the queries
after an update are consistent to some MIS of the updated graph. Secondly, the adjustment
complexity of the algorithm is amortized O(1) per update (considering only updates), or
worst case O(1) per update and query. Such a model have been previously studied for several
problems including MIS [40, 1, 35]. In this relaxed model we show that

Theorem 1.3 (Fully dynamic MIS (worst case)). Given any graph G = (V,E) having n
vertices and m edges, MIS can be implicitly maintained under fully dynamic edge updates
requiring O(1) adjustments per update and query, which allows queries of the form In-Mis(v),
where both update and query require worst case O(min{∆,√m}) time.

Remark: It trivially extends to CONGEST model with O(1) rounds per update and query.

3. Dynamic Maximum Flow and Maximum Matching
The maximum flow and maximum matching problems are some of the most studied com-
binatorial optimization problem having a lot of practical applications. Recently, Dahlgaard
[10] proved conditional lower bounds for partially dynamic problems including maximum flow
and maximum matching. Assuming the correctness of OMv conjecture, he proved that main-
taining incremental Maximum Flow or Maximum Matching for unweighted graphs requires
Ω(n) update time (even amortized). We report trivial extensions of two classical algorithms
based on augmenting paths, namely incremental reachability algorithm [29] and blossoms
algorithm [13, 19], which match these lower bounds.

For the sake of completeness, we also report the folklore algorithms to update the maximum
flow of an unweighted (unit-capacity) graph and maximum cardinality matching, in O(m)
time using simple reachability queries. To the best of our knowledge, it is widely known but
so far it has not been a part of any literature.
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2 Overview

Let the given graph be G = (V,E) with n vertices and m edges, where the maximum degree of
a vertex is ∆. The degree of a vertex v ∈ V shall be denoted by deg(v). We shall represent
the currently maintained MIS by M. We shall now give a brief overview of our results and the
difference of our approach from the current state of the art.

A trivial static algorithm can compute an MIS of a graph in O(m) time. It visits each vertex
v and checks whether any of its neighbours is in M. If no such neighbour exists, it adds v to M,
clearly taking O(1) time for each edge while visiting its endpoints.

Assadi et al. [2] described a simple dynamic algorithm (henceforth referred as As) requiring
O(∆) amortized time per update, where essentially each vertex maintains a count of the number of
its neighbours inM. They also described an improved algorithm requiring O(min{∆,m3/4}) time,
which is based on a complicated case analysis. The algorithm essentially divides the vertices into
four sets based on their degrees, where the count of all the vertices except the low degree vertices
Vlow is maintained exactly. For vertices in Vlow, instead some partial estimate of count is maintained
ignoring the high degree vertices in M. The key difference of this improved algorithm from As is
the following: Instead of adding a vertex toM only when none of its neighbours is inM (i.e. when
the true value of count is zero), in some cases the algorithm adds a low degree vertex to M even
when merely the partial estimate of count is zero. As a result, the algorithm may need to remove
some vertices from M to ensure correctness of the algorithm.

Now, the simple As algorithm can be used to maintain MIS under all possible graph updates.
We firstly provide a mildly tighter analysis of As to demonstrate what kind of dynamic settings
are harder for the MIS problem. We show that As solves the problem optimally for all kinds of
updates except edge insertions. Hence, the two dynamic settings in which the MIS problem is
interesting are the fully dynamic and the incremental settings under edge updates. We improve the
state-of-the-art for dynamic MIS in both these settings using very simple algorithms, which are
essentially based on the simple As algorithm as follows.

Our fully dynamic algorithm processes the low degree vertices Vlow (say having degree ≤ ∆c)
totally independent of the high degree vertices. Note that this simplifies the approach of [2] since
the key difference of their algorithm from As is the partial independence of processing Vlow with
respect to higher degree vertices. Hence, we maintain the MIS M of the subgraph induced by the
vertices in Vlow irrespective of its high degree neighbours inM. Using As the MIS of this subgraph
can be maintained in O(∆c) amortized update time. After each update, the MIS of high degree
vertices not adjacent to any low vertex inM (i.e. M∩ Vlow) can be recomputed from scratch using
the trivial static algorithm. This gives a trade off since the size of the subgraph induced by the high
degree vertices (and hence the time taken by the static algorithm) decreases as ∆c is increased.
Hence, choosing an appropriate ∆c results in amortized O(min{∆,m2/3}) update time. Note that
recomputing the MIS for high degree vertices from scratch may lead to a larger adjustment and
round complexity in the distributed setting.

In the incremental setting, we show that As indeed takes Θ(∆) amortized time per update (see
Appendix A). Moreover, we improve As using a simple modification which prioritizes the removal of
low degree vertices fromM instead of an arbitrary choice by As. This simple modification improves
the amortized update time to O(min{∆,√m}), which is also shown to be tight (see Appendix A).

For worst case complexity of a fully dynamic MIS algorithm Assadi et al. [2] showed strong
lower bounds, where a single update may lead to Θ(n) vertices to enter or leave M. Hence, for
achieving better worst case bounds our relaxed model essentially maintains merely an independent
set explicitly rather than MIS. Thus, the MIS is completely built over several queries allowing
better worst case complexity. We present a simple algorithm for maintaining fully dynamic MIS in
this model requiring O(min{∆,√m}) worst case time for update and query.
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3 Dynamic MIS

Assadi et al. [2] demonstrated a simple algorithm As for maintaining fully dynamic MIS using O(∆)
amortized time per update. We first briefly describe the algorithm and its analysis, which shall be
followed by a tighter analysis that can be used to argue the kind of dynamic updates for which it
is harder to maintain MIS.

3.1 Simple dynamic algorithm As [2]

The following algorithm is the most natural approach to study the dynamic MIS problem. It
essentially maintains the count of the number of neighbours of a vertex in the MIS. It is easy to see
that the count for each vertex can be initialized in O(m) time using the simple greedy algorithm
for computing the MIS of the initial graph.

Now, under dynamic updates the count of each vertex needs to be maintained explicitly. Hence,
whenever a vertex v enters or leaves M, the count of its neighbours is updated in O(deg(v)) time.
On insertion of a vertex v, the count of v is computed in O(deg(v)) time. In case this count is zero,
v is added to M. In case of deletion of a vertex v, an update is only required when v ∈M, where
v is simply removed from M. In case count of any neighbour of v reduces to zero, it is added to
M. In case of deletion of an edge (u, v), update is required only when one of them (say u) is inM.
If count of v reduces to zero, it is added to M. Finally, on insertion of an edge (u, v), update is
required only in case both are inM, where either one of them (say v) is removed fromM. Again,
if count of any neighbour of v reduces to zero, it is added to M.

Notice that in case of each update at most one vertex may be removed from M and several
vertices may be added to M, where both addition or deletion of a vertex v takes O(deg(v)) time.
Hence, whenever a vertex is removed from M, O(1) adjustments and O(∆) work is charged for
both this removal as well as the next insertion (if any) to M. The initial charge required is the
sum of degrees of all the vertices in M, which is O(m). As a result, fully dynamic MIS can be
maintained in O(1) amortized adjustments and O(∆) amortized time per update.

Theorem 3.1 (Fully dynamic MIS [2]). Given any graph G = (V,E) having n vertices and m edges,
MIS can be maintained in O(1) amortized adjustments and O(∆) amortized time per insertion or
deletion of edge or vertex, where ∆ is the maximum degree of a vertex in G.

3.1.1 Tighter analysis

We shall now show a mildly tighter analysis of the algorithm which is again very simple and
apparent from the algorithm itself. Instead of generalizing the update time to O(∆), we show that
the update time of the algorithm is O(deg(v)), where v is the vertex that is removed from M or
inserted in the graph (for vertex insertions), otherwise the charged update time is O(1).

This analysis is again fairly straight forward using the similar arguments as in the previous
section, which stated that a vertex can be charged twice O(∆) when it is removed from M to pay
for the future cost of its insertion to M. The only difference in our analysis is as follows: Since
we are not charging the update with the maximum degree ∆, rather the exact degree deg(v) of a
vertex v, this deg(v) may change between the time it was charged and when it is used. Particularly,
consider a vertex v which was charged deg(v) when removed fromM or inserted in the graph. Now,
on being inserted back in M, its new deg(v) can be much higher than its old deg(v). Hence, we
need to explicitly associate this increase of degree to the update which led to this increase. To this
end, we analyze the algorithm using the following potential function: Φ =

∑
v/∈M deg(v). Thus, the

amortized cost (time) of an update is the sum of the actual work done and the change in potential.
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The insertion of a vertex v requires amortized O(deg(v)) time for the actual deg(v) work to
add the edges, and the increase in potential Φ. The potential Φ can be increased by O(deg(v))
because of v (if v /∈M), and its neighbours not in M (change in their degrees). For the remaining
updates, note that the work done for the addition of a vertex v in M is always balanced by the
corresponding decrease in potential by deg(v). We thus only focus on the work done for removing
a vertex from M and the change in potential due to change in the degree of vertices. The deletion
of a vertex v requires amortized O(1) time, as the time required to remove edges of v is deg(v),
and the potential Φ decreases by at least deg(v) (if v /∈ M then Φ reduces due to v, else it reduces
due to neighbours of v). The insertion of an edge (u, v) requires amortized O(1) time if both u
and v are not simultaneously inM, for the O(1) work done to add the edge in the graph and O(1)
increase in Φ because of degrees of its endpoints. In case both u, v ∈M, the algorithm removes
one vertex (say v) from M, which requires amortized O(deg(v)) time for actual deg(v) time taken
to update all the neighbours of v and increase in potential Φ by O(deg(v)), because of v and its
neighbours. The deletion of an edge (u, v) again takes amortized O(1) time for O(1) work done to
remove the edge and decrease in Φ. Finally, since at most one vertex (if any) is removed from M
during an update, the adjustment complexity is amortized O(1) as the removal also accounts for
the future insertion of the vertex in M. Thus, we have the following theorem.

Theorem 3.2. Given any graph G = (V,E) having n vertices and m edges, MIS can be maintained
using O(1) amortized adjustments per update, where the amortized update time is O(deg(v)) if v is
the only vertex (if any) that is removed from M or the vertex inserted into G (vertex insertion),
otherwise the amortized update time is O(1).

Remark: This does not imply tighter amortized bound to the fully dynamic algorithm, but is
merely described to aid in the analysis of future algorithms. Further, since adjustment complexity
is amortized O(1), the algorithm can be trivially adapted to the distributed CONGEST model [2]
requiring amortized O(1) rounds per update.

3.1.2 Hardness of Dynamic MIS

Using Theorem 3.2 we can understand the hardest form of update in case of dynamic MIS. Ad-
ditionally, we use the fact that a vertex v is removed from M only in case of edge insertion or
when v is deleted. Consider the case of fully dynamic MIS under only vertex updates. Here each
vertex v can enter into M only once, either on being inserted or when all its neighbours in M are
deleted. Thus, it requires total O(deg(v)) time throughout its lifetime, requiring overall O(m) time.
Similarly, consider the case of decremental MIS under edge updates. Here again, each vertex v can
enter M exactly once, and never leave M. Hence, using Theorem 3.2, it incurs amortized cost
of O(1), requiring total O(m) time. Thus, the algorithm As works optimally under fully dynamic
vertex updates or decremental MIS under edge updates.

As a result, the only update for which the simple algorithm does not solve the problem optimally
is that of edge insertions, leaving the two problems of incremental MIS and fully dynamic MIS under
edge updates. Under the current analysis both these algorithm takes total Ω(m) time which may
not be optimal. Thus, we shall now focus on solving the two problems better than the improved
fully dynamic MIS algorithm by Assadi et al. [2] requiring amortized O(min{∆,m3/4}) time.

4 Improved algorithm for Fully Dynamic MIS

In addition to the simple O(∆) amortized time algorithm As, Assadi et al. [2] presented a sub-
stantially complex fully dynamic algorithm requiring amortized O(min{∆,m3/4}) time per update.
We show a very simple extension to As that achieves amortized O(min{∆,m2/3}) time per update.

5



The core idea used by the improved algorithm of Assadi et al. [2] gives partial preference to low
degree vertices when being inserted to M. More precisely, in some cases they allow a low degree
vertex v to be inserted to M despite having high degree neighbours in M. This is followed by
removal of these high degree neighbours fromM to maintain MIS property. We essentially use the
same idea by using a stronger preference order. The low degree vertices are always inserted to M
despite having high degree neighbours in M.

The main idea is as follows. We divide the vertices of the graph into heavy vertices VH having
degree ≥ ∆c, and light vertices VL having degree < ∆c, for some fixed constant ∆c. Let the
subgraph induced by the vertices in VH and VL be GH = (VH , EH) and GL = (VL, EL) respectively.
We use simple algorithm As to maintain the MIS of GL in amortized O(∆c) time. After every such
update, we can afford to rebuild the MIS for GH from scratch, using the trivial static algorithm.
Since the total number of heavy vertices can be O(m/∆c), the time taken to build the MIS for the
heavy vertices is O(|EH |) = O((m/∆c)

2) time. Choosing ∆c = m2/3 we get an amortized O(m2/3)
update time algorithm. However, if ∆ ≤ m2/3 the entire graph is present in GL and we have an
empty GH . Hence, our algorithm merely performs As on the whole graph, resulting in amortized
O(min{∆,m2/3}) update time of our algorithm. Note that the main reason for faster update of
this algorithm (compared to As) is as follows: When a heavy vertex enters or leaves M, it does
not inform its light neighbours.

Implementation Details

We shall now describe a few low level details regarding the implementation of the algorithm. Each
vertex of both VH and VL will store a count of their light neighbours in M, i.e. neighbours in
VL ∩ M. This count can be maintained easily by each vertex as whenever a light vertex enters
of leaves M, it informs all its ∆c neighbours (both heavy and light).

As we have mentioned before, we use algorithm As to maintain a maximal independent set for
all the light vertices. Thus, at each step we may have to rebuild the MIS for the heavy vertices
from scratch. While rebuilding MIS for GH we have to only consider those heavy vertices whose
count = 0, i.e., which do not have any light neighbour in M. We can rebuild the MIS of GH
from scratch in O(|EH |) time using the trivial static algorithm. We have already argued that
|EH | = O((m/∆c)

2). Thus, the update time of our algorithm for light vertices is amortized O(∆c)
(by algorithm As) and the update time of our algorithm for heavy vertices is O((m/∆c)

2). Choosing
∆c = m2/3, the update time of our algorithm becomes O(m2/3).

Finally, note that the value of ∆c have to be changed during the fully dynamic procedure,
because of the change is the value of m. This can be achieved using the standard technique of

periodic rebuilding, which can be described using phases as follows. We choose ∆c = m
2/3
c , where

mc denotes the number of edges in the graph at the start of a phase. Hence at the start of the
algorithm, mc = m. Whenever m decreases to mc/2 or m increases to 2mc, we end our current
phase and start a new phase. Also, we re-initialize count and rebuild M but using the new value
of mc, and hence new VL. Note that the cost O(m) for this rebuilding at the start of each phase is
accounted to the ≥ m/2 edge updates during the phase. Thus, we have the following theorem.

Theorem 1.1 (Fully dynamic MIS). Given any graph G = (V,E) having n vertices and m edges,
MIS can be maintained in O(min{∆,m2/3}) amortized time per insertion or deletion, where ∆ is
the maximum degree of a vertex in G.
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5 Improved Algorithm for Incremental MIS

We shall now consider the incremental MIS problem and show that if we restrict the updates to
edge insertion only, we can achieve a faster amortized update time of O(min{∆,√m}). In this
algorithm, we again give preference for a vertex being in MIS, based on its degrees. However,
instead of dividing the vertices into sets of VL and VH explicitly, we simply consider the exact
degree of the vertex.

Recall that in case of insertion of an edge, the simple algorithm As updatesM, only when both
the end vertices belong toM. This leads to one of the vertices (say v) being removed fromM, and
the count of its neighbours being updated. Several of these neighbours can now have count = 0
and hence enter M. However, using Theorem 3.2 we know that the amortized time required by
the update is only O(deg(v)), the degree of the vertex removed from M.

Our main idea is to modify As to ensure that when an edge is inserted between two vertices
in M, the end vertex with lower degree is removed from M. Note that in the original As, the
end vertex to be removed from MIS is chosen arbitrarily. We show that this key difference of
choosing the lower degree (instead of arbitrary) end vertex to be removed from M, proves crucial
in improving the amortized update time. We further prove our argument by showing worst case
examples demonstrating the tightness of the upper bounds of the two algorithms (see Appendix A).

5.0.1 Analysis

We shall now analyze our incremental MIS algorithm. Consider the insertion of ith edge (ui, vi),
where without loss of generality ui is the lower degree vertex amongst ui and vi. Using Theorem 3.2,
we know that the amortized update time of the algorithm is O(deg(ui)) in case both ui, vi ∈M,
else O(1). Hence, the total update time taken by the algorithm is

∑m
i=1O(deg(ui)).

We shall analyze the time taken by a vertex, during two phases, when it is light (deg(ui) ≤
√
m),

and when it becomes heavy (deg(ui) >
√
m). If ui is light, then we simply remove ui from M in

O(
√
m) amortized time (as deg(ui) ≤

√
m). If ui is heavy, then vi must also be heavy. However,

there are only O(
√
m) heavy vertices in the graph. Hence, a heavy vertex ui can be removed

O(
√
m) times from M due to its heavy neighbours. Further, the time taken for such a vertex is

O(degf (ui)), where degf (ui)(≥ deg(ui)) is the final degree of ui after the end of updates. Thus,
the total update time is calculated as follows.

m∑
i=1

O(deg(ui)) =
∑

ui is light

O(deg(ui)) +
∑

uiis heavy

O(deg(ui))

≤
m∑
i=1

O(
√
m) +

∑
u∈V |{(u, v) ∈ E|v is heavy}| ×O(deg(u))

≤
m∑
i=1

O(
√
m) +

∑
u∈V
√
m×O(degf (u))

≤ O(m
√
m) + O(m

√
m)

Hence, the total update time of our incremental algorithm is O(m
√
m). Also, since it is simply a

special case of the simple MIS algorithm [2], we also have adjustment complexity of amortized O(1),
and an upper bound of O(m∆) total time, making the amortized update time O(min{∆,√m}).

Theorem 1.2 (Incremental MIS). Given any graph G = (V,E) having n vertices and m edges,
MIS can be maintained in O(min{∆,√m}) amortized time and O(1) amortized adjustments per
edge insertion, where ∆ is the maximum degree of a vertex in G.

7



Note: This technique cannot be trivially extended to the fully dynamic setting. This is because
here the crucial fact exploited is that the high degree vertices would be removed less number of
times from MIS, which cannot be ensured in a fully dynamic environment. Also, as As it can be
trivially adapted to CONGEST model with amortized O(1) rounds and adjustments per update.

We have seen that the key difference of choosing the lower degree (instead of arbitrary) end
vertex to be removed fromM proves crucial in reducing the amortized update time. This argument
can be proved by the following worst case examples demonstrating the tightness of the upper bounds
of the two algorithms (see Appendix A). Note that this example for As in incremental setting also
shows tightness of the fully dynamic case, as the incremental setting is merely a special case of the
fully dynamic setting.

6 MIS with worst case guarantees

Assadi et al. [2] demonstrated using a worst case example that the adjustment complexity (number
of vertices which enter or leave M during an update) can be Ω(n) in the worst case. This justifies
why the entire work on dynamic MIS is focused primarily on amortized bounds. However, in case
we still want to achieve better worst case bounds, we are required to consider a relaxed model,
where we settle at not maintaining the MIS explicitly. Rather we allow queries to answer whether
a vertex is present in MIS after an update, such that the results of all the queries are consistent to
some MIS of the graph.

Implicit Maintenance of MIS

We now formally define this model for the dynamic maintenance of MIS. The model supports
updates in the graph, such that the MIS is not explicitly maintained after each update. Additionally,
the model allows queries of the form In-Mis(v), which reports whether a vertex v ∈ V is present in
the MIS of the updated graph. Such a model essentially allows us to compute M partially, along
with maintaining some information which makes sure that the results of the queries are consistent
with each other. Thus, this model allows us to achieve o(n) time worst case bounds for both queries
and updates, for the dynamic maintenance of MIS.

The underlying idea is as follows. Recall that in every update of As exactly one vertex is
removed from M and several vertices may be added to M (see Theorem 3.2). Thus, it is easier
to maintain an independent set rather than a maximal independent set, by always processing the
removal of a vertex fromM but not the insertion of vertices inM. Hence, we only make sure that
after each update, no two vertices in M share an edge which leads to removing exactly one vertex
fromM. Now, whenever a vertex is queried we verify whether it is already inM or can be moved
to M, and respond accordingly. In order to resolve these queries efficiently, we again maintain the
partial count of neighbours of a vertex in M, which is described as follows.

We consider the vertices with high degree (>
√
m) as heavy and the rest as light, resulting in

total O(
√
m) heavy vertices. Our algorithm maintains the count for only heavy vertices and not

for light vertices. Thus, whenever a vertex enters or leavesM it only informs its heavy neighbours.
We shall now describe the update and query algorithms.

The update algorithm merely updates the count of heavy end vertex (if any) in case of edge
deletion, or edge insertion when both end vertices are not inM. For edge insertion having both end
vertices in M, it removes one of the vertices from M and updates the count of its O(

√
m) heavy

neighbours. Note that the update algorithm does not ensure that M is an MIS, but necessarily
ensures thatM is an independent set since it always removes a vertex fromM if any of its neighbours
is in M.
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A vertex v may be added to M only if it is queried in In-Mis(v) as follows. If v ∈ M, then
we simply report it. Else, there are two cases depending on whether v is light or heavy. If v is
heavy and its count is zero, it implies that v has no neighbour in M. Hence, we simply add v into
M and update the count of its heavy neighbours. However, if v is light we do not have the count
of its neighbours in M. Hence, we check if there is any neighbour of v in M in O(

√
m) time. If

none of the neighbours of v are in M, then we add v to M and update the count of its heavy
neighbours. This completes the query algorithm. It is easy to see that both update and query
algorithms require O(

√
m) worst case time to add or remove at most one vertex from M and visit

its O(
√
m) neighbours. Further, in case ∆ <

√
m, this update and query time reduces to O(∆), as

each vertex can have O(∆) neighbours.
Now, in the fully dynamic setting the value ofmmay change significantly after sufficient updates.

So we instead define the heavy status of a vertex using a constant mc which is initialized as mc = m,
and we ensure that mc/2 < m < 2mc. In case the value of m increases beyond 2mc, we simply
need to make some heavy vertices light by removing their corresponding value of count. This can be
performed in a single step in O(

√
m) time as there are only O(

√
m) heavy vertices, and we update

mc = 2mc. However, in case the value of m decreases below mc, we need to compute the value of
count for the light vertices in each update, which will become heavy if mc is reduced to half. Since
total degree of all vertices is O(m), there can be only O(

√
m) such vertices. Hence, in the next

O(
√
m) updates we can compute the count for one such vertex in each update requiring O(

√
m)

time. Since we have O(m) updates before the value of m = mc/2 and we update mc = mc/2, all
the new heavy vertices will have computed its value of count. Also, if an edge update changes the
heavy status of its end points, their corresponding count can be updated in O(

√
m) time.

In order to prove the correctness of our algorithm, we are required to prove that (1)M remains
an independent set throughout the algorithm, and (2) All the neighbours of a vertex v are verified
before answering a query In-Mis(v). The former clearly follows from the update algorithm, and to
prove the latter we look at the heavy and light vertices separately. Since every vertex entering or
leaving M necessarily informs its heavy neighbours, the second condition is clearly true for heavy
vertices. For light vertices, the correctness of the second condition follows from the query algorithm.
Finally, since at most one vertex (if any) leaves MIS in an update or enters MIS in a query, the
adjustment complexity is O(1). However, if we consider adjustment complexity considering updates
only, it is still amortized O(1) (similar to As). Thus we have the following theorem.

Theorem 6.1 (Fully dynamic MIS (worst case)). Given any graph G = (V,E) having n vertices
and m edges, MIS can be implicitly maintained under fully dynamic edge updates requiring O(1)
adjustments per update and query, allowing queries of the form In-Mis(v), where both update and
query requires worst case O(min{∆,√m}) time.

Note: The above described algorithm can be trivially adapted to distributed CONGEST model
requiring O(min{∆,√m}) messages, and O(1) rounds and adjustments per update or query in the
worst case.

Remark: The algorithm can also support vertex deletion similar to edge insertion in the same
time. However, vertex insertion with an arbitrary number of incident edges would not be allowed
as processing input itself may require O(∆) time. Thus, allowing fully dynamic vertex updates
requires O(∆) worst case update time. However, in case the vertices are inserted without any
incident edges the same complexity of O(min{∆,√m}) is also applicable for fully dynamic vertex
updates.
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7 Maximum Flow and Maximum Matching

A standard approach to both these problems uses the concept of augmenting paths, where finding
an augmenting path allows us to increase the value of the solution by a single unit. Computing an
augmenting path takes O(m) time for both the problems and in the unweighted case the maximum
value of the solution can be O(n). This simply gives an O(mn) time algorithm to compute the
solution for both the problems in the static setting.

However, maintaining them in the dynamic setting have not been explicitly examined. We
report that both these bounds can be exactly matched by trivial extensions of the augmenting
path algorithms in the incremental setting. Concretely, the incremental reachability algorithm [29]
can be used to incrementally compute an augmenting path for maximum flow in total O(m) time.
Similarly, the blossoms algorithm [19] (which is inherently incremental) can be used to incrementally
compute an augmenting path for maximum matching in O(m) time. Once the augmenting path is
found, the solution is updated and its value is increased by 1 unit. Then we restart the computation
of augmenting path in the updated graph. This process can be repeated O(n) times, which is the
maximum value of the solution. Hence, both the problems can be solved in total O(mn) time,
matching the lower bound by Dahlgaard [10]. Furthermore, the fully dynamic algorithms for both
these problems requiring O(m) time per update are known as folklore, though not explicitly stated
in the literature. Both these algorithms are also based on the augmenting path approach. We also
state those algorithms for the sake of completeness. Refer to Appendix B and Appendix C for
details.

8 Conclusion

We have presented several surprisingly simple algorithms for fundamental graph problems in the
dynamic setting. These algorithms either improve the known upper bounds of the problem or
match the known lower bounds. Additionally, we considered some relaxed settings under which
such problems can be solved better. A common trait among all these algorithms is that they are
extremely simple and use no complicated data structures, making it suitable for even classroom
teaching of fundamental concepts as amortization and introducing dynamic graph algorithms.

In the dynamic MIS problem, we also discuss the hardness of the problem in the dynamic
setting. Most graph problems (as connectivity, reachability, maximum flow, maximum matching,
MST, DFS, BFS etc.) are found to be harder to handle vertex updates instead of edge updates and
handle deletions instead of insertions. This is surprisingly the opposite case with dynamic MIS,
where except for edge insertions (which is the easiest update for most other problems), a trivial
algorithm solves the problem optimally. Notably, this is also the case a few other fundamental
problems as topological ordering, cycle detection, planarity testing, etc. We conjecture the reason
for such a behaviour to be the following fundamental property: If the solution of the problem is still
valid (though sub-optimal) after an update, it shall be easier to handle the update. This supports
the behaviour of the problems mentioned above, both for which edge insertions are easiest, and for
which they are hardest.

Finally, in the light of the above discussion, we propose some future directions of research in
these problems. It seems that the fully dynamic MIS under edge updates, shouldn’t be much harder
than the incremental setting. Hence, it would be interesting to see an algorithm to maintain fully
dynamic MIS in O(min{∆,√m}) amortized update time, which can preferably also be extended
to the distributed CONGEST model with amortized O(1) round and adjustment complexity. On
the other hand, we believe decremental unit capacity maximum flow and maximum cardinality
matching would be harder than the incremental setting. Hence, stronger lower bounds for these
problems in the decremental setting would be interesting.
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A Tightness of Incremental Algorithms

We now present worst case examples demonstrating the tightness of the analysis of As and our
incremental MIS algorithm. These essentially highlight the difference between arbitrary removal
and degree biased removal of an end vertex on insertion of an edge between two vertices of the MIS.

A.1 Arbitrary removal

We start with an empty graph where all the vertices are in MIS. Let the vertices be divided into
two sets A = {a1, ..., ak} and B = b1, ..., bt (refer to Figure 1), where A has k = m/∆ vertices and
B has the remaining t = n−m/∆ = O(n) vertices.
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Figure 1: Worst case example for arbitrary removal

We shall divide the insertion of edges into t phases, where in the jth phase we add an edge from
each vertex of A to bj . And we always chose the vertex of A to be removed from MIS M. At the
end of the phase, all vertices of A are out ofM and are connected to bj ∈M. The phase ends with
the addition of an edge between bj and bj+1, which removes bj from M and hence all vertices of
A are moved back to M. Since each vertex is allowed only ∆ neighbours, and each phase adds a
neighbour to each vertex in A, we stop after t∗ = ∆ phases.

Hence, after t∗ phases we have added all the edges between A and the first t∗ vertices in B, and
among the first t∗ adjacent vertices of B. Overall we add O(|A| × t∗ + t∗) edges, which equals to
O(kt∗) = O(m∆ ∗∆) = O(m) edges.

Using Theorem 3.2, the total edges processed during the jth phase, is the sum of the degrees
of vertices that were removed from M, i.e., all the vertices in A and bj . Now, in the jth phase the
degree of each vertex in A is j − 1, being connected to b1, ..., bj−1 and the degree of bj is k. Hence,
the total work in jth phase is |A|× (j− 1) + k = k× j. Thus, the total work done over all phases is

t∗∑
j=1

Ω(k × j) = Ω(k × t∗2) = Ω(
m

∆
×∆2) = Ω(m∆)

Thus, we have the following bound for As in incremental (and hence fully dynamic) setting.

Theorem A.1. For each value of n ≤ m ≤
(
n
2

)
and 1 ≤ ∆ ≤ n, there exists a sequence of m edge

insertions where the degree of each vertex is bounded by ∆ for which As requires total Θ(m∆) time
to maintain the MIS.

A.2 Degree biased removal

In this example, we consider our incremental MIS algorithm, which chooses the end vertex with
the lower degree to be removed from M when an edge is inserted between two vertices in M.
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We essentially modify the previous example to make sure the vertices of A necessarily fall when
connected to the vertices in B.

Let the vertices to be divided into two sets A = {a1, ..., ak} and B = {b1, ..., bt} as before, and
an additional set C of residual vertices to ensure that degrees of vertices in B are sufficiently high
(refer to Figure 2), where k = t =

√
m/4. We connect each vertex bi with some

√
m+ 1 vertices in

C. Additionally, we have a vertex b0, connected to all the O(n) vertices in C. We initialize the MIS
with all vertices of A, B and b0 in M.
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Figure 2: Tightness Example for degree biased removal

Again, we divide the insertion of edges into t phases, where in the jth phase we add an edge
from each vertex of A to bj . Since the maximum degree of a vertex in A is |B|, and degree of each
bj is

√
m+ 1, we always have the vertex of A to be removed from MISM. At the end of the phase,

all vertices of A are out of M and are connected to bj ∈M. The phase ends with the addition of
(bj , b0), which removes bj from M and hence all vertices of A are moved back to M.

Hence, after t phases we have added all the edges between A and B, between each vertex of B
and b0. The initial graph already had each vertex of B connected to some

√
m+ 1 neighbours in C

and b0 connected to all neighbours of C. Overall we add O(|A| × |B| + |B| × (
√
m + 1) + |B| + n)

edges, which equals to O(kt+ t
√
m+ n) = O(m+ n) edges.

Again, using Theorem 3.2, the total edges processed during the jth phase, is the sum of the
degrees of vertices that were removed from M, i.e., all the vertices in A and bj . Now, in the jth

phase the degree of each vertex in A is j − 1, being connected to b1, ..., bj−1 and the degree of bj is
Ω(
√
m). Hence, the total work done in jth phase is Ω(|A| × j +

√
m) = Ω(k × j +

√
m). Thus, the

total work done over all phases is

t∑
j=1

Ω(k × (j − 1) +
√
m) = Ω(k × t2 + k

√
m) = Ω(

√
m×√m2

+m) = Ω(m
√
m)

Thus, we have the following bound for our incremental MIS algorithm.

Theorem A.2. For each value of n ≤ m ≤
(
n
2

)
, there exists a sequence of m edge insertions for

which our incremental algorithm requires total Θ(m
√
m) time to maintain the MIS.

Remark: This example is similar to the previous example with an exception that in this case,
the degree of vertices in B should remain higher than the degree of a vertex in A, i.e., |B| at the
end of all the phases. Hence, |B| ≤ √m else the total edges in G would be Ω(m). Thus, the number
of neighbours of A in B cannot be increased despite choosing any large value of ∆. As evident
from the previous example in absence of such a restriction, the amortized time can be raised to ∆
implying the significance of the degree biased removal in the incremental algorithm.
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B Unit capacity Maximum Flow

The maximum flow problem is one of the most studied combinatorial optimization problem having
a lot of practical applications (see [25] for a survey). Given a graph G = (V,E) having n vertices
and m edges where each edge has a capacity (positive real weight) c : E → R+ associated to it.
A flow from a source s to a sink t is an assignment of flow f : E → R+ to each edge such that
it satisfies the following two constraints. Firstly, the capacity constraints imply that the flow on
each edge is limited by its capacity, i.e. ∀e ∈ E, f(e) ≤ c(e). Secondly, the conservation constraints
imply that for each non-terminal vertex (v ∈ V \ {s, t}), the flow passing through v is conserved,
i.e.

∑
(u,v)∈E f(u, v) =

∑
(v,w)∈E f(v, w). The amount of flow leaving s or entering t is referred as

the flow F of the network, i.e., F =
∑

(s,u)∈E f(s, u) =
∑

(v,t)∈E f(v, t). Clearly, in a unit capacity
simple graph F = O(n), corresponding to each edge leaving s (or entering t). The maximum flow
problem evaluates the flow f from s to t which maximizes the value of F .

Orlin [38] presented an algorithm to find the maximum flow in O(mn) time. For integral arc
capacities (bounded by U), it can be evaluated O(m ·min(n2/3,m1/2) log(n2/m) logU)) time [24],
which further reduces to O(m · min(n2/3,m1/2)) time for unweighted (unit capacity) graphs [15].
In the dynamic setting, a few algorithms are known for maintaining maximum flow. Kumar and
Gupta [34] showed that partially dynamic maximum flow can be maintained in O(∆n2m) update
time, where ∆n is the number of vertices whose flow is affected. Other algorithms are by Goldberg
et al. [23] and Kohli and Torr [33], which work very well in practice on computer vision problems
but do not have strong asymptotic guarantees.

Recently, Dahlgaard [10] proved conditional lower bounds for partially dynamic problems in-
cluding maximum flow under OMv conjecture. For directed and weighted sparse graphs, no algo-
rithm can maintain partially dynamic max flow in O(m1−ε) amortized update time. For directed
unweighted (unit capacity) graphs and undirected weighted graphs, no algorithm can maintain
partially dynamic maximum flow in O(n1−ε) amortized update time. We report a trivial extension
of the incremental reachability alogrithm [29] to solve the incremental unit capacity (unweighted)
maximum flow problem matching its corresponding lower bound.

We shall now describe some simple dynamic algorithms for maintaining maximum flow in unit
capacity graphs. The main idea behind such algorithms is based on the classical augmenting
path approach of the standard Ford Fulkerson [16] algorithm. In the interest of completeness,
before describing our incremental algorithm for maintaining maximum flow in O(F ) (where F =
O(n)) amortized time per update, we present the folklore algorithm supporting fully dynamic edges
updates in O(m) time. To describe these algorithms succinctly, we briefly describe the augmenting
path approach and the concept of residual graphs.

Residual Graphs and Augmenting paths

Given an unweighted (unit capacity) directed graph G = (V,E), having flow function defined on
each edge f : E → {0, 1}. The residual graph is computed by changing the direction of every edge
e, if f(e) = 1. Note that this may create two edges in a graph between the same endpoints. This
residual graph allows a simple characterization of whether the current flow F is indeed a maximum
flow because of the following property: If there exists an s − t path in the residual graph, referred
as augmenting path, the value of the flow can be increased by pushing flow along the augmenting
path in the residual graph [16]. This results in reversing the direction of each edge on this path in
the updated residual path. The flow reaches the maximum value when there does not exist any
augmenting path, i.e. s− t path, in the residual graph.
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B.1 Fully Dynamic Maximum Flow

We now describe the folklore algorithm for maintaining Maximum Flow of a unit capacity graph
under fully dynamic edge updates. The flow is updated by the computation of a single augmenting
path in the residual graph after the corresponding edge update as follows.

• Insertion of an edge: An edge insertion can either increase the maximum flow by one unit
or leave it unchanged. Recall that when f is a maximum flow, the sink t is not reachable
from the source s in the residual graph. Hence if the inserted edge creates an s− t path in the
residual graph, the maximum flow increases by exactly one unit. Thus, the algorithm finds
an s− t path in the residual graph and pushes a flow of one unit along the path. If no such
path is found, the maximum flow has not increased and the solution remains unchanged.

• Deletion of an edge: If the deleted edge doesn’t carry any flow, the flow remains unchanged.
Otherwise, the edge deletion can either decrease the maximum flow or simply make the current
flow invalid requiring us to reroute the flow without changing its value. Hence, on deletion
of an edge (x, y) the algorithm first attempts to restore the flow by finding an alternate path
from x to y in the residual graph. If such a path is found the algorithm pushes a flow of unit
capacity along the path, restoring the maximum flow in the graph. Otherwise, we have to
send back one unit of flow each, from x to s and from t to y, to reduce the maximum flow by
one unit. For this an edge (s, t) is added and a path from x to y is found, which necessarily
exists containing the edge (s, t). Again, the algorithm pushes a flow of unit capacity along
the path, restoring the maximum flow in the graph. After updating the residual graph, we
remove the extra added edge (s, t) from the graph.

Thus, each update can be performed in O(m) time, as it performs O(1) reachability queries
(using BFS/DFS traversals) and updates the residual graph. Hence, we have the following theorem.

Theorem B.1 (Fully dynamic Unit Capacity Maximum Flow (folklore)). Given an unweighted
(unit-capacity) graph G = (V,E) having n vertices and m edges, fully dynamic maximum flow
under edge updates can be maintained in O(m) worst case time per update.

B.2 Incremental Maximum Flow

In the incremental setting, the unit-capacity maximum flow can be maintained using amortized
O(F ) update time. Recall that in the fully dynamic algorithm, on insertion of an edge the flow is
increased only if the t becomes reachable from s in the residual graph as a result of the update.
Trivially, verifying whether t is reachable after each update requires O(m) time per update, even
when the flow is not increased. However, this can be computed more efficiently using the single
source incremental reachability algorithm [29] requiring total O(m) time for every increase in the
value of flow. In the interest of completeness, let us briefly describe the incremental reachability
algorithm [29] as follows.

Single source incremental reachability [29]

This algorithm essentially maintains a reachability tree T from the source vertex s. This tree T is
initialized with a single node s and grown to include all the vertices reachable from s. On insertion
of an edge (u, v), an update is required only when u ∈ T and v /∈ T . In such a case, the edge (u, v)
is added making v a child of u. Further, the update algorithm processes every outgoing edge (v, w)
of v, i.e., to find vertices w /∈ T , which are added to T recursively using the same procedure. Thus,
this process continues until all the vertices reachable from s are added to T . Clearly, the process
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takes total O(m) time as each edge (u, v) is processed O(1) times, when it is inserted in the graph
and when u is added to T .

Algorithm

The algorithm prominently uses the fact that the value of maximum flow F in a unit capacity simple
graph is O(n) since the number of outgoing edges from s (or the incoming edges to t) is O(n). Our
algorithm is divided into F stages where at the end of each stage the value of maximum flow
increases by a single unit. Each stage starts by building an incremental single source reachability
structure [29], i.e. the reachability tree T , from s on the residual graph. On insertion of an edge, the
reachability tree T is updated using the incremental reachability algorithm. The stage continues
until t becomes reachable from s and added to T . This gives the s−t augmenting path and we push
a unit of flow along the path and update the residual graph. Thus, each stage requires total O(m)
time for maintaining incremental reachability structure [29], taking overall O(mF ) time (where
F = O(n)), giving us the following result.

Theorem B.2 (Incremental Unit Capacity Maximum Flow). Given an unweighted (unit-capacity)
graph G = (V,E) having n vertices and m edges, incremental maximum flow can be maintained in
amortized O(F ) update time, where F = O(n) is the value of the maximum flow of the final graph.

Remark: At the end of a stage, it is necessary to rebuild the incremental reachability structure [29]
from scratch as it does not support edge deletions or reversals. This is required because when the
flow is pushed along the s− t path the residual graph is updated by reversing the direction of each
edge on the s− t path.

C Maximum Cardinality Matching

Maximum Matching is one of the most prominently studied combinatorial graph problems having
a lot of practical applications. For a given graph G = (V,E) with n vertices and m edges, a set
of edges EM ⊆ E is called a matching, if no two edges in EM share an end vertex in V . In the
Maximum Matching problem, the aim is to compute the matching EM of the maximum weight.
In case the graph is unweighted, the problem is called Maximum Cardinality Matching. Micali
and Vazirani presented an algorithm to compute maximum cardinality matching in O(m

√
n) time.

For the weighted case, the fastest algorithm is by Galil et. al [20] requiring O(mn log n) time
which improves the O(n3) time algorithm [19] for sparse graphs. In the dynamic setting, only the
problem of computing α-approximate matching (having cardinality ≥ EM/α) has been extensively
studied [42, 7, 6].

Recently, Dahlgaard [10] proved conditional lower bounds for partially dynamic problems includ-
ing maximum matching under OMv conjecture. For bipartite graphs (and hence general graphs),
no algorithm can maintain partially dynamic maximum cardinality matching in O(n1−ε) amortized
update time. We report a trivial extension of the classical blossom’s algorithm [13, 19], to solve
this problem for general unweighted graphs matching its corresponding lower bound.

We first like to point out that maximum bipartite matching can be easily solved by a maximum
flow algorithm using the standard reduction [32]. Hence an incremental algorithm for maintaining
unit capacity maximum flow, also solves the problem of maintaining incremental maximum match-
ing in bipartite graphs in the same bounds, i.e., amortized O(n) update time. This matches the
lower bound of Ω(n) given by Dahlgard [10] for bipartite matching. In this section, we show that
the same upper bound can also be maintained for general graphs by using a trivial extension of
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the Blossoms algorithm [13, 19] for finding an augmenting path, which is defined differently for
maximum matching as follows.

Augmenting paths

Given any graph G = (V,E), a matching EM ⊆ E is a set of edges such that no two edges in EM
share an endpoint. The vertices on which some edge from EM (also called matched edge) is incident
is called a matched vertex. The remaining unmatched vertices are called free vertices. A given
matching EM is called the maximum matching if there does not exist an augmenting path, which is
defined as follows: A simple path which starts and ends at a free vertex such that every odd edge
on the path is a matched edge, and hence all the intermediate vertices are matched vertices. In case
such a path p exists, it can be used to increase the cardinality of the matching EM , by removing
all the matched edges on p from EM and adding all the unmatched edges on p to EM .

C.1 Fully Dynamic Maximum Cardinality Matching

Computing the augmenting path starting from a free vertex v requires a single BFS traversal from v
requiring O(m) time, where on even layers the algorithm only explores matched edges. This results
in trivial folklore fully dynamic maximum matching algorithm requiring O(m) worst case update
time as follows.

The algorithm essentially selects the end vertex v based on the update. In case of vertex
insertion, the inserted vertex is chosen as v. In case of deletion of a vertex x, EM is not updated in
case x was a free vertex. Else if x was matched to y, we start the computation of augmenting path
from y (as v). In case of insertion of an edge (x, y), EM is not updated if both x and y are matched.
Else, if both are free we simply add (x, y) to EM . Else the augmenting path is computed starting
from the free vertex amongst x and y (as v). Finally, in case of deletion of an edge (x, y), EM is not
updated if (x, y) was not a matched edge. Else, the augmenting path is computed twice starting
from x and y (as v) in the two computations. Thus, each update can be performed in O(m) time
resulting in the following theorem.

Theorem C.1 (Fully dynamic Maximum Cardinality Matching (folklore)). Given a graph G =
(V,E) having n vertices and m edges, fully dynamic maximum cardinality matching under edge or
vertex updates can be maintained in O(m) worst case time per update.

C.2 Incremental Maximum Cardinality Matching

In the incremental setting Maximum Cardinality Matching can be maintained in O(|EM |) amortized
time per update, where |EM | = O(n). Note that it does not directly follow from the fully dynamic
case, as we don’t know the corresponding starting vertex of the augmenting path. However, for
computing augmenting paths from any starting vertex in O(m) time, we can use the standard
Blossom’s algorithm [13, 19]. It turns out that the Blossom’s algorithm trivially extends to the
incremental setting, such that it requires O(m) time per increase in the cardinality of maximum
matching. In the interest of completeness, we briefly describe the Blossom’s algorithm as follows.

Blossom’s Augmenting Path algorithm [13, 19]

The algorithm essentially maintains a tree from each free vertex, where each node is either a single
vertex or a set of vertices which occur in form of a blossom. Further, it ensures that each vertex
of the graph occurs in only one such tree. The vertices are called as odd or even if they occur
respectively on the odd level or the even level (including free vertices in level zero) of any tree,
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and unvisited otherwise. The children of even vertices are connected to them through unmatched
edges, whereas those of odd vertices are connected through matched edges. Thus, all the paths
from roots to leaves in such trees have alternating unmatched and matched edges, as required by
an augmenting path.

The algorithm starts with all free vertices as even vertices on singleton trees, and the remaining
vertices as unvisited. Then each edge (u, v) is considered one by one (and hence naturally extends
to incremental setting) updating the trees accordingly as follows: If no end point is even, ignore
the edge. Else, without loss of generality let u be an even vertex. If v is an unvisited vertex, simply
add v as a child of u. Else, if v is an odd vertex, simply ignore it. However, if v is an even vertex,
the action depends on the trees to which u and v belong. In case they belong to the same tree
we get a blossom, which is processed as follows. Find the lowest common ancestor w of u and v,
and shrink all the vertices on tree paths connecting w with u and v to a single blossom vertex
w′, to be placed in place of w. The children of the even vertices in this blossom, which are not a
part of this blossom, become the children of w′. Also, now each odd vertex in this blossom, have
become even so all its edges that were previously ignored are explored recursively using the same
procedure. Note that the compressed blossoms need to be maintained using modified Disjoint Set
Union algorithm [18] (taking overall O(m) time), allowing a vertex v to quickly identify the blossom
(and hence node w′ in the tree) they belong to. Thus, an insertion of (u, v) is first evaluated to find
nodes (vertices or blossoms) of the final tree u′ and v′ representing u and v, and the edge (u′, v′) is
processed accordingly.

Finally, in case both u and v are even and they belong to different trees, and we have found
an augmenting path from the root of the first tree to u, through (u, v), followed by the tree path
from v to its root. However, some vertices on this path may be the shrinked blossoms and hence
to report the augmenting path they are needed to be un-shrinked. An alternate simpler way is to
simply start the augmenting path computation using the simple algorithm from the root of the tree
containing v, as it is necessarily one end vertex of the augmenting path. Thus, both the blossom’s
algorithm and augmenting path reporting can be performed in total O(m) time.

Algorithm

The algorithm prominently uses the fact that the maximum cardinality of a matching |EM | is
O(n), since the each vertex can have at most one matched edge incident to it. The algorithm is
again divided into |EM | stages, where at the end of each stage the Blossom’s algorithm detects an
augmenting path and hence increases the cardinality of EM by a single unit. Each stage starts by
initiating the Blossom’s algorithm [13, 19] from scratch in the updated matching, and continues
inserting edges until the algorithm detects the augmenting path. Thus, each stage requires total
O(m) time for computing the augmenting path and updating EM , taking overall O(m|EM |) time
where |EM | = O(n) is the value of the maximum cardinality matching of the graph, giving us the
following result.

Theorem C.2 (Incremental Maximum Cardinality Matching). Given a graph G = (V,E) having n
vertices and m edges, incremental maximum cardinality matching can be maintained in amortized
O(|EM |) update time, where |EM | = O(n) is the size of the maximum matching of the final graph.

Remark: The algorithm also works for the case of incremental vertex updates. Also, Blossom’s
algorithm can also be used for fully dynamic updates having O(m) update time. However, the
algorithm described in Section C.1 is simpler and more intuitive.
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