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Abstract
We present a simple randomized reduction from fully-dynamic integral matching algorithms to
fully-dynamic “approximately-maximal” fractional matching algorithms. Applying this reduc-
tion to the recent fractional matching algorithm of Bhattacharya, Henzinger, and Nanongkai
(SODA 2017), we obtain a novel result for the integral problem. Specifically, our main res-
ult is a randomized fully-dynamic (2 + ε)-approximate integral matching algorithm with small
polylog worst-case update time. For the (2 + ε)-approximation regime only a fractional fully-
dynamic (2 + ε)-matching algorithm with worst-case polylog update time was previously known,
due to Bhattacharya et al. (SODA 2017). Our algorithm is the first algorithm that maintains
approximate matchings with worst-case update time better than polynomial, for any constant
approximation ratio. As a consequence, we also obtain the first constant-approximate worst-case
polylogarithmic update time maximum weight matching algorithm.
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7:2 Dynamic Matching

1 Introduction

The maximum matching problem is one of the most widely-studied problems in computer
science and operations research, with a long history and theory [5, 38]. On n-vertex and
m-edge graphs, the state-of-the art maximum matching algorithms require O(m

√
n) and

O(nω) time [40, 41] (here ω < 2.37 is the matrix multiplication exponent [54]). For bipartite
graphs, simpler algorithms with the same asymptotic running times are known [34, 41],
as well as a faster, O(m10/7 · poly(logn))-time algorithm, due to the recent breakthrough
of Mądry[39] for the maximum flow problem. For approximate matchings, it is long- and
well-known that a matching admitting no augmenting paths of length O(1/ε) forms a (1 + ε)-
approximate maximum matching (see [34]). The linear-time “blocking flow” subroutines of
[34, 40] therefore result in an O(m/ε)-time (1 + ε)-approximate maximum matching.

The maximum weight matching (MWM) problem has also garnered much interest over
the years. For general weights, the seminal work of Edmonds [22] shows how to reduce the
problem on bipartite graphs to the solution of n non-negative single-source shortest path
instances. Relying on Fibonacci Heaps of Fredman and Tarjan [23], this approach yields
the current fastest strongly-polynomial running time for the problem, O(n(m + n logn)).
Gabow [24] later showed how to obtain the same running time for general graphs. For integer
weights w : E → {0, 1, 2, . . . , N}, algorithms nearly matching the state-of-of-the-art for the
unweighted problem, with either logarithmic or linear dependence on N , are known.3 These
include an O(m

√
n log(nN))-time algorithm [25], an O(Nnω)-time algorithm [48] and a recent

O(m10/7 · poly(logn) · logN)-time algorithm for bipartite graphs [17]. For approximation
algorithms, an algorithm nearly matching the unweighted problem’s guarantees is known,
yielding a (1 + ε)-approximate maximum weight matching in O((m/ε) log(1/ε)) time, [21].

All of the above results pertain to the static problem; i.e., where the input is given and
we only need to compute a maximum matching on this given input. However, in many
applications the graphs considered are inherently dynamic, with edges removed or added over
time. One could of course address such changes by recomputing a solution from scratch, but
this could be wasteful and time-consuming, and such applications may require immediately
updating the solution given, as having users wait on a solution to be recomputed may likely
be unsatisfactory. Consider for example point to point shortest path computation, a problem
routinely solved by navigation systems: for such an application, the temporary closure of
some road due to construction should not result in unresponsive GPS applications, busy
re-computing the relevant data structures (see e.g.,[7, 36, 33, 19, 20, 51, 52, 10, 26, 28, 2, 31,
29, 30, 32, 3, 4]). Therefore, for such applications we want to update our solution quickly for
every update, using fast worst-case (rather than amortized) update time.

Returning to the maximum matching problem, we note that a maximum matching can
be trivially updated in O(m) time. Sankowski [47] showed how to maintain the value of the
maximum matching in O(n1.495) update time.4 On the other hand, Abboud and Vassilevska
Williams [1] and Kopelowitz et al. [37] presented lower bounds based on long-standing
conjectures, showing that even maintaining the maximum matching value likely requires
Ω(mc) update time for some constant c ≥ 1

3 .
Given these hardness results for exact solutions, one is naturally inclined to consider

fast approximate solutions. Trivially updating a maximal matching (and therefore a 2-

3 Indeed, a black-box reduction of Pettie [46] from maximum weight matching to the maximum matching
problem shows that a linear dependence in N is the largest possible gap between these two problems.

4 We emphasize that this algorithm does not maintain an actual matching, but only the optimal value,
and it seems unlikely to obtain such update times for maintaining a matching of this value.
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approximate maximum matching) can be done using O(n) worst-case update time. The goal
is to obtain sublinear update times – ideally polylogarithmic (or even constant) – with as
low an approximation ratio as possible.

The first non-trivial result for fully-dynamic maximum matching is due to Ivkovic and
Lloyd [35], who presented a maximal matching algorithm with O((m+ n)1/

√
2) amortized

update time. Note that this bound is sublinear only for sufficiently sparse graphs. The problem
of approximate maximum matchings remained largely overlooked until 2010, when Onak
and Rubinfeld [44] presented a fully-dynamic constant-approximate O(log2 n) (amortized)
update time algorithm. Additional results followed in quick succession.

Baswana et al. [8] showed how to maintain a maximal matching in O(logn) expected
update time, and O(log2 n) update time w.h.p. This was recently improved by Solomon
[49] who presented a maximal matching algorithm using O(1) update time w.h.p. For
deterministic algorithms, Neiman and Solomon [42] showed how to maintain 3/2-approximate
matchings deterministically in O(

√
m) update time, a result later improved by Gupta and

Peng [27] to obtain (1 + ε)-approximate matchings in O(
√
m/ε2). This result was in turn

refined by Peleg and Solomon [45], who obtained the same approximation ratio and update
time as [27] with

√
m replaced by the maximum arboricity of the graph α (which is always at

most α = O(
√
m)). Bernstein and Stein [11, 12] and Bhattacharya et al. [13] presented faster

polynomial update time algorithms (with higher approximation ratios), and Bhattacharya et
al. [14] presented a (2 + ε)-approximate algorithm with poly(logn, ε−1) update time. See
Table 1 for an in-depth tabular exposition of previous work and our results.5 In §5 we discuss
our results for MWM, also widely studied in the dynamic setting (see, e.g. [8, 27, 49, 50]).

Note that in the previous paragraph we did not state whether the update times of
the discussed algorithms were worst case or amortized. We now address this point. As
evidenced by Table 1, previous fully-dynamic matching algorithms can be broadly divided
into two classes according to their update times: polynomial update time algorithms and
polylogarithmic amortized update time algorithms. The only related polylogarithmic worst-
case update time algorithms known to date were fractional matching algorithms, due to
Bhattacharya et al. [15]. We bridge this gap by presenting the first fully-dynamic integral
matching (and weighted matching) algorithm with polylogarithmic worst-case update times
and constant approximation ratio. In particular, our approach yields a (2 + ε)-approximate
algorithm, within the Oε(log3 n) time bound of [15], but for integral matching.6

1.1 Our Contribution
Our main technical result requires the following natural definition of (c, d)-approximately-
maximal fractional matchings.

I Definition 1.1 (Approximately-Maximal Fractional Matching). We say that a fractional
matching w : E → R+ is (c, d)-approximately-maximal if every edge e ∈ E either has
fractional value we ≥ 1/d or has one endpoint v with sum of incident edges’ weights at least
Wv ,

∑
e3v we ≥ 1/c and moreover all edges e′ incident on this v have we′ ≤ 1/d.

5 For the sake of simplicity we only list bounds here given in terms of n and m. In particular, we do not
state the results for arboricity-bounded graphs, which in the worst case (when the arboricity of a graph
is α = Θ(

√
m)) are all outperformed by algorithms in this table, with the aforementioned algorithm of

Peleg and Solomon [45] being the lone exception to this rule.
6 Independently of our work, and using a different approach, Charikar and Solomon [16] obtained a

(2 + ε)-approximate dynamic matching algorithm with Oε(log7 n) worst-case update time. For fixed ε
their algorithm is slower than ours, and is arguably more complicated than our approach.

ICALP 2018



7:4 Dynamic Matching

Table 1 Our Results and Previous Results for Fully-Dynamic Matching.
(All references are to the latest publication, with the first publication venue in parentheses.)

Approx. Update Time det. w.c. notes reference

O(1) O(log2 n) 7 7 Onak and Rubinfeld (STOC ’10) [44]

4 + ε O(m1/3/ε2) 3 3 Bhattacharya et al. (SODA ’15) [13]

3 + ε O(
√
n/ε) 3 7 Bhattacharya et al. (SODA ’15) [13]

2 + ε poly(logn, 1/ε) 3 7 Bhattacharya et al. (STOC ’16) [14]
2 + ε poly(logn, 1/ε) 7 3 w.h.p This work6

2 O((m+ n)1/
√

2) 3 7 Ivković and Lloyd (WG ’93) [35]

2 O(logn) 7 7 O(log2 n) w.h.p Baswana et al. (FOCS ’11) [9]

2 O(1) 7 7 w.h.p Solomon (FOCS ’16) [49]

3/2 + ε O( 4√m/ε2.5) 3 3 bipartite only Bernstein and Stein (ICALP ’15) [11]

3/2 + ε O( 4√m/ε2.5) 3 7 Bernstein and Stein (SODA ’16) [12]

3/2 O(
√
m) 3 3 Neiman and Solomon (STOC ’13) [43]

1 + ε O(
√
m/ε2) 3 3 Gupta and Peng (FOCS ’13) [27]

Note that this definition generalizes maximal fractional matchings (for which c = d = 1).
The second condition required of v above (i.e., having no incident edges e′ with we′ > 1/d)
may seem a little puzzling, but will prove important later; it can be safely ignored until §2.1
and §3.

Our main qualitative result, underlying our quantitative result, is the following black-box
reduction from integral matching algorithms to approximately-maximal fractional matching
algorithms, as stated in the following theorem.

I Theorem 1.2. Let A be a fully-dynamic (c, d)-approximately-maximal fractional matching
algorithm whose update time T (n,m) and which changes at most C(n,m) edge weights per
update, for some c ≥ 1, d ≥ 6c·ln(max{n,1/ε})

ε2 , with ε ≤ 1
2 . Then, there exists a randomized

fully-dynamic integral 2c(1 + O(ε))-approximate matching algorithm A′ (with this bound
holding both w.h.p and in expectation) with update time T (n,m)+O(C(n,m)·d/ε2). Moreover,
if T (n,m) and C(n,m) are worst-case bounds, so is the update time of Algorithm A′.

Now, one may wonder whether fully-dynamic (c, d)-approximately-maximal fractional
matching algorithms with low worst-case update time and few edge weight changes exist for
any non-trivial values of c and d. Indeed, the recent algorithm of Bhattacharya et al. [15] is
such an algorithm, as the following lemma asserts.

I Lemma 1.3 ([15]). For all ε ≤ 1
2 , there is a fully-dynamic (1+2ε,max{54 logn/ε3, (3/ε)21})-

approximately-maximal fractional matching algorithm with T (n,m) = O(log3 n/ε7) worst-case
update time, using at most C(n,m) = O(logn/ε2) edge weight changes per update in the
worst case.

We highlight the general approach of the algorithm of Bhattacharya et al. [15] in §2.1 to
substantiate the bounds given in Lemma 1.3. Plugging the values of c, T (n,m) and C(n,m)
of Lemma 1.3 into Theorem 1.2 immediately yields our result, given in the following theorem.
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I Theorem 1.4. For all ε ≤ 1
2 , there exists a randomized fully-dynamic (2 + O(ε))-

approximate integral matching algorithm (w.h.p and in expectation) with worst-case update
time O(log3 n/ε7 + log(max{n, 1/ε})/ε2 ·max{logn/ε3, (3/ε)21}) = Oε(log3 n).

We recall that until now (barring the aforementioned independent result of Charikar
and Solomon [16]), for worst-case polylog update times only fractional dynamic algorithms –
algorithms which only approximate the value of the maximum matching – were known for
this problem.

Finally, combined with the recent black-box reduction of Stubbs and Vassilevska Williams
[50] from the weighted to the unweighted matching problem, our algorithm also yields
the first fully-dynamic constant-approximate maximum weight matching algorithm with
polylogarithmic worst-case update time.

I Theorem 1.5. For all ε ≤ 1
2 , there exists a randomized fully-dynamic (4+O(ε))-approximate

maximum weight matching algorithm with poly(logn, 1/ε) worst-case update time. The
approximation guarantee holds with high probability and in expectation.

1.2 Our Techniques

Our framework yielding our main result combines three ingredients: approximately-maximal
fractional matchings, kernels and fast (1 + ε) matching algorithms for bounded-degree graphs.
We give a short exposition of these ingredients and conclude with how we combine all three.

Approximately-Maximal Fractional Matchings. The first ingredient we rely on is (c, d)-
approximately-maximal fractional matchings, introduced in the previous section. Recalling
that for such solutions, each edge has value at least 1/d or one of its endpoints has sum
of incident edge values at least 1/c. This approximate maximality condition implies this
fractional matching has high value compared to the maximum matching size; specifically, this
fractional matching’s size is at least a 1/2 max{c, d} fraction of this value (easily verifiable
using LP duality). As we shall show, approximate maximality also allows one to use these
fractional values to sample a subgraph in the support of this fractional matching which
contains a large integral matching compared to G, with high probability. We discuss the
dynamic fractional matching algorithm of Bhattacharya et al. [15] and show that it maintains
an approximately-maximal fractional matching in §2.1.

Kernels. The second ingredient we rely on is the notion of kernels, introduced by [13].
Roughly speaking, a kernel is a low-degree subgraph H of G such that each edge of G not
taken into H has at least one endpoint whose degree in H is at least 1/c times the maximum
degree in H. Relying on Vizing’s Theorem [53], we show in §2.2 that such a graph has
maximum matching size µ(H) at least 1/(2c + ε) of the matching size of G, previously
only known for kernels of bipartite graphs, where this is easily verifiable via LP duality.7
Efficiently maintaining a large matching can therefore be reduced to maintaining a low-degree
kernel, given the last ingredient of our approach.

7 As a byproduct of our proof, we show how the algorithms of Bhattacharya et al. [13] can be made
(2 + ε)-approximate within the same time bounds. As this is tangential to our main result, we do not
elaborate on this.

ICALP 2018



7:6 Dynamic Matching

Bounded-Degree (1 + ε)-matching. The final ingredient we rely on for our framework is
(1 + ε) matching algorithms with worst-case update time bounded by the graph’s maximum
degree, such as the algorithms of Gupta and Peng [27] and Peleg and Solomon [45].

Our approach in a nutshell

Given the above ingredients, our framework is a simple and natural one. Throughout our
algorithm’s run, we run a fully-dynamic (c, d)-approximately-maximal fractional matching
algorithm with efficient worst-case update. Sampling edges independently according to this
fractional value (times some logarithmic term in n, to guarantee concentration) allows us
to sample a kernel of logarithmic maximum degree, with each non-sampled edge having
at least one endpoint with degree at least 1/c times the maximum subgraph degree, with
high probability. As the obtained subgraph H therefore has a maximum matching of size at
least ≈ 1/2c times the maximum matching in G, a (1 + ε)-matching algorithm in H yields a
≈ 2c + O(ε) matching in G. We then maintain a (1 + ε)-matching in H (which by virtue
of H’s bounded degree we can do in logarithmic worst-case time) following each update to
H incurred by a change of some edge’s fractional value by the dynamic fractional matching
algorithm. The obtained integral algorithm’s update time is dominated by two terms: the
running time of the fractional algorithm, and the number of edge weight changes per update,
times O(logn). This concludes the high-level analysis of the obtained approximation ratio
and update time of our approach, as given in Theorem 1.2.

Wider applicability

We stress that our framework is general, and can use any approximately-maximal fractional
matching algorithm. Consequently, any improvement on the running time and number of
edge value changes for maintaining approximately-maximal fractional matchings would yield
a faster worst-case update time.

2 Preliminaries

In this section we introduce some previous results which we will rely on in our algorithm
and its analysis. We start by reviewing the approach of Bhattacharya et al. [15] to obtain
efficient fractional algorithms in §2.1. We then discuss the bounded-degree subgraphs we will
consider, also known as kernels, in §2.2. Finally, we briefly outline the (1 + ε)-approximate
O(∆/ε2) worst case update time algorithms we will rely on for our algorithm, in §2.3.

2.1 Hierarchical Partitions
In this section we review the approximately-maximal fractional matchings maintained by
Bhattacharya et al. [15]. At a high level, this algorithm relies on the notion hierarchical
partitions, in which vertices are assigned some level (the partition here is given by the level
sets), and edges are assigned a fractional value based on their endpoints’ levels. Specifically,
an edge is assigned a value exponentially small in its vertices’ maximum level. The levels
(and therefore the edge weights) are updated in a way as to guarantee feasibility, as well as
guaranteeing that a vertex v of high level has high sum of incident edge weights, Wv. These
conditions are sufficient to guarantee approximate maximality, as we shall soon show.
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The hierarchical partitions considered by Bhattacharya et al. [15], termed simply nice
partitions, is described as follows. In the definition constants β,K,L and a function f(β) =
1− 3/β are used, satisfying the following.

β ≥ 5, K = 20, f(β) = 1− 3/β, L = dlogβ ne. (1)

In our case, for some ε ≤ 1
2 , we will let β = 3

ε (≥ 5). As we will be shooting for O(1)-
approximation algorithms with polylogarithmic update time and our reduction’s update
time has polynomial dependence on ε−1, we will assume without loss of generality that
ε = Ω( 3

20√n ), and so for n large enough, we have K ≤ L.

I Definition 2.1 (A nice partition [15]). In a nice partition of a graph G = (V,E), each
vertex v is assigned an integral level `(v) in the set {K,K + 1, . . . , L}. In addition, for each
vertex v ∈ V and edge e 3 v the shadow-level of v with respect to e, denoted by `v(e), is a
(positive) integer satisfying `(v)− 1 ≤ `v(e) ≤ `(v) + 1. Moreover, for each vertex v, we have

max
e3v

`v(e)−min
e3v

`v(e) ≤ 1. (2)

The level of an edge e = (u, v) is taken to be the maximum shadow-level of an endpoint of e
with respect to e; i.e., `(u, v) = max{`u(e), `v(e)}. Let Wv =

∑
e∈v we be the sum of weights

of edges incident on a vertex v. Then,
1. For every edge e ∈ E, it holds that we = β−`(e).
2. For every node v ∈ V , it holds that Wv < 1.
3. For every node v ∈ V with level `(v) > K, it holds that Wv ≥ f(β).
The intuition behind this definition in Bhattacharya et al. [15] is to mimic the hierarchical par-
tition of Bhattacharya et al. [13], termed (α, β)-decompositions there. (α, β)-decompositions
are the special case of nice partitions where the shadow-level of a vertex v with respect to
each edge e 3 v is precisely equal to the vertex’s level; i.e, `v(e) = `(v) (with α denoting
f(β)/β). The advantage of this more relaxed notion of shadow-level is to allow a vertex to
move between levels “slowly”, only notifying part of its incident edges of its level change
between updates, and therefore only updating some of its edges’ weights. This allows for
maintaining this partition with fast worst-case update time, as shown in Bhattacharya et
al. [15] (more on this below).

This above intuition concerning nice partitions will not prove important for our analysis.
The crucial property we will rely on is given by the following lemma, which asserts that the
fractional matching associated with a nice partition is approximately-maximal.

I Lemma 2.2. Let ε ≤ 1
2 . Consider a nice partition with parameter β = 3/ε ≥ 6 ≥ 5,

and so f(β) = 1 − ε. Then, the fractional matching associated with this nice partition is
(1 + 2ε,max{54 logn/ε3, (3/ε)21})-approximately-maximal.

Proof. Let K ′ = max{dlogβ(18c logn/ε2)e,K+ 1} and d = βK
′ ≤ max{54 logn/ε3, (3/ε)21}.

For any edge e, if `(e) = maxv∈e{`v(e)} ≤ K ′, then by definition we = β−`(e) ≥ β−K′ = 1
d .

Alternatively, if we < 1
d then `(e) > K ′ and therefore by integrality of `(e), we have

`(e) ≥ K ′ + 1. Now, let v be arg maxv∈e{`v(e)} ≥ K ′ + 1. Then, by definition of shadow-
levels and K ′ > K, we have `(v) ≥ `v(e) − 1 ≥ K ′ > K and so by Property 3 of a nice
partition we have Wv > f(β) = 1 − ε ≥ 1

1+2ε (as ε ≤ 1
2 ). But on the other hand, by

Equation (2), we also know that for every edge e′ 3 v,

`v(e′) ≥ min
e′3v

`v(e′) ≥ max
e′3v

`v(e′)− 1 ≥ `v(e)− 1 ≥ K ′ > K.

Therefore, by definition of the edge weights, each edge e′ 3 v satisfies we′ ≤ β−K′ ≤ 1
d . J

ICALP 2018



7:8 Dynamic Matching

The recent result of Bhattacharya et al. [15] for maintaining nice partitions in polylogar-
ithmic worst-case update time together with Lemma 2.2 immediately implies Lemma 1.3,
restated below. We substantiate these bounds with the dependence on ε stated explicitly
in the full version of this paper [6], as Bhattacharya et al. [15] had ε = O(1) and so their
results do not state these dependencies explicitly.

I Lemma 1.3 ([15]). For all ε ≤ 1
2 , there is a fully-dynamic (1+2ε,max{54 logn/ε3, (3/ε)21})-

approximately-maximal fractional matching algorithm with T (n,m) = O(log3 n/ε7) worst-case
update time, using at most C(n,m) = O(logn/ε2) edge weight changes per update in the
worst case.

As we shall show, approximately-maximal fractional matchings allow us to sample a
bounded-degree subgraph H of G containing a large matching compared to the maximum
matching size in G, µ(G). For this we will require the notion of kernels, defined in §2.2.

2.2 Kernels
In this section we review the concept of kernels, first introduced by Bhattacharya et al. [13].

I Definition 2.3 (Kernels [13]). A (c, d)-kernel of a graph G is a subgraph H of G satisfying:
1. For each vertex v ∈ V , the degree of v in H is at most dH(v) ≤ d.
2. For each edge (u, v) ∈ E \H, it holds that max{dH(u), dH(v)} ≥ d/c.

The interest in finding a bounded-degree subgraph H of G may seem natural, as one may
expect to be able to compute a matching quickly in H due to its sparsity (we elaborate more
on this point in §2.3). The interest in satisfying the second property, on the other hand, may
seem a little cryptic. However, combining both properties implies that the matching number
of H, µ(H), is large in comparison with the matching number of G, µ(G).

I Lemma 2.4. Let H be a (c, d)-kernel of G for some c ≥ 1. Then µ(H) ≥ 1
2c(1+1/d) · µ(G).

Proof. LetM∗ be some maximum matching in G (i.e., |M∗| = µ(G)). Consider the following
fractional matching solution:

fu,v =
{

1
d (u, v) ∈ H \M∗

max{1− dh(u)+dH (v)−2
d , 0} (u, v) ∈ H ∩M∗.

This is a feasible fractional matching due to the degree bound of H and the fractional
values assigned to edges of a vertex v incident on an edge e ∈ H ∩ M∗ being at most
dH (v)−1

d + d−dH (v)+1
d = 1. To show that this fractional matching has high value, consider the

variables yv =
∑
u fu,v. On the one hand, by the handshake lemma,

∑
u,v fu,v = 1

2
∑
v yv.

On the other hand, each edge (u, v) of M∗ ∩ H has yu + yv ≥ 1 ≥ 1
c by construction

and each edge of M∗ \H has at least one endpoint v of degree dH(v) ≥ d
c , implying that

yu + yv ≥ d
c ·

1
d = 1

c for each (u, v) ∈M∗ \H. As each vertex v neighbors at most one edge
of the (optimal) matching M∗, we obtain∑

e

fe = 1
2 ·
∑
v

yv ≥
1
2c · |M

∗| = 1
2c · µ(G).

Now, to show that H contains a large integral matching, we rely on Vizing’s Theorem [53],
which asserts that every multigraph of maximum degree ∆ and maximum edge multiplicity µ
has a proper ∆+µ edge-coloring; i.e., a partition of the edge multiset into ∆+µ edge-disjoint
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matchings. To use this theorem, we construct a multigraph on the same vertex set V with
each edge e replaced by fe · d parallel copies (note that fe · d is integral). By construction,
the number of edges in this multigraph is

∑
e fe · d. By feasibility of f , we have that this

multigraph has maximum degree d. By Vizing’s Theorem, the simple subgraph obtained by
ignoring parallel edges corresponding to edges in H∩M∗ can be edge colored using d+1 colors.
But for each edge e = (u, v) ∈ H ∩M∗, such a coloring uses at most dH(u)− 1 + dH(v)− 1
distinct colors on edges other than (u, v) incident on u or v. To extend this d+1 edge coloring
to a proper coloring of the multigraph, we color the max{d− (dH(u)− 1 + dH(v)− 1), 0}
multiple edges (u, v) in this multigraph using some max{d − (dH(u) − 1 + dH(v) − 1), 0}
colors of the palette of size d + 1 not used on the other edges incident on u and v. We
conclude that this multigraph, which is contained in H and has

∑
e fe · d edges, is d+ 1 edge

colorable and therefore H contains an integral matching of size at least

1
d+ 1 ·

∑
e

fe · d = 1
1 + 1/d ·

∑
e

fe ≥
1

2c(1 + 1/d) · µ(G). J

Lemma 2.4 and the algorithm of §2.3 immediately imply that the algorithms of Bhat-
tacharya et al. [13] can be made (2 + ε)-approximate within the same time bounds (up to
poly(1/ε) terms). As this was previously also observed in Bhattacharya et al. [14], we do not
elaborate on this point here.

2.3 Nearly-Maximum Matchings in Degree-Bounded Graphs
In this short subsection we highlight one final component we will rely on for our reduction: fast
nearly-optimal matching algorithms with worst-case update time bounded by G’s maximum
degree. Such algorithms were given by Peng and Gupta [27] and Peleg and Solomon [45].
More precisely, we have the following lemma.

I Lemma 2.5 ([27, 45]). There exists a dynamic (1 + ε)-approximate matching algorithm
with worst-case O(∆/ε2) update time in dynamic graphs of maximum degree at most ∆.

The bound for the algorithm of [45] follows as α ≤ ∆ always, while the bound for the
algorithm of [27] is immediate by inspecting this algorithm, as observed in [45].

3 Sampling Using Approximately-Maximal Matchings

In what follows we will show that sampling edges independently with probability roughly
proportional to their assigned value according to an approximately-maximal fractional
matching yields a kernel of logarithmic maximum degree with high probability.

I Lemma 3.1. Let ε ≤ 1
2 . Let w : E → R+ be a (c, d)-approximately-maximal fractional

matching with c ≥ 1 and d ≥ 6c·ln(max{n,1/ε})
ε2 . Then, a subgraph H obtained by sampling

each edge e independently with probability

min{1, we · d} (3)

is a (c(1 +O(ε)), (1 + ε)d)-kernel of G with probability at least 1− 2
max{n,1/ε} .

Proof. For any vertex v ∈ V , denote by Dv the random variable which corresponds to v’s
degree in H. As before, denote by Wv =

∑
e3v we ≤ 1 the sum of edge weights of edges

incident on v.
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First, we prove the degree upper bound; i.e., Property 1 of a kernel. As w is a fractional
matching, we know that Wv ≤ 1. Therefore, by Equation (3), we have that E[Dv] ≤ d. By
standard Chernoff bounds, as d ≥ 6c·ln(max{n,1/ε})

ε2 and c ≥ 1, we find that

Pr[Dv ≥ (1 + ε) · d] ≤ exp
(
−ε2 · d

3

)
≤ 1

max{n, 1/ε}2c ≤
1

max{n, 1/ε}2 .

Next, we prove that any edge not sampled into H will, with high probability, be incident
on some high-degree vertex in H; i.e., we show that H satisfies Property 2 of a kernel.
First, note that an edge e with we ≥ 1/d will be sampled with probability one, given our
sampling probability given in Equation (3), therefore trivially satisfying Property 2 of a
kernel. Conversely, an edge e with we < 1/d has some endpoint v with Wv ≥ 1/c and all
edges e′ incident on v have we′ ≤ 1/d, since w is (c, d)-approximately maximal. Therefore,
by Equation (3) each edge e′ incident on v is sampled with probability precisely we′ · d.
Consequently, we have that µv = E[Dv] = Wv · d ≥ d/c. By standard Chernoff bounds, as
µv ≥ d/c ≥ 6 ln(max{n,1/ε})

ε2 , we find that

Pr[Dv ≤ (1− ε) · d/c] ≤ Pr[Dv ≤ (1− ε) · µv] ≤ exp
(
−ε2 · µv

2

)
≤ 1

max{n, 1/ε}3 .

Taking a union bound over the O(n2) possible bad events corresponding to violating a property
of a (c(1 + ε)/(1− ε)), d(1 + ε))-kernel, we find that probability at least 1− 2

max{n,1/ε} :
1. For each vertex v ∈ V , it holds that dH(v) ≤ (1 + ε) · d.
2. For each edge (u, v) ∈ E \H, it holds that max{dH(u), dH(v)} ≥ (1− ε) · d/c.
In other words, H is a (c(1 + ε)/(1− ε), d(1 + ε))-kernel of G with high probability. J

4 Our Reduction

Given the previous sections, we are now ready to describe our reduction from fully-dynamic in-
tegral matching to approximately-maximal fractional matching and analyzing its performance,
given by Theorem 1.2, restated here.

I Theorem 1.2. Let A be a fully-dynamic (c, d)-approximately-maximal fractional matching
algorithm whose update time T (n,m) and which changes at most C(n,m) edge weights per
update, for some c ≥ 1, d ≥ 6c·ln(max{n,1/ε})

ε2 , with ε ≤ 1
2 . Then, there exists a randomized

fully-dynamic integral 2c(1 + O(ε))-approximate matching algorithm A′ (with this bound
holding both w.h.p and in expectation) with update time T (n,m)+O(C(n,m)·d/ε2). Moreover,
if T (n,m) and C(n,m) are worst-case bounds, so is the update time of Algorithm A′.

Proof. Our reduction works as follows. Whenever an edge e is added/removed from G, we
update the (c, d)-approximately-maximal fractional matching, using algorithm A, in time
T (n,m). We then sample each of the at most C(n,m) edges e whose value is changed,
independently, with probability given by Equation (3). To control the maximum degree in
the sampled subgraph H ′, every vertex v maintains a list of at most (1 + ε) · d sampled
edges “allowable” for use in H. (This list can be maintained dynamically in O(1) time per
update in H ′ in a straightforward manner.) We let H be the graph induced by the sampled
edges “allowed” by both their endpoints. Finally, we use a (1 + ε)-matching algorithm as in
Lemma 2.5 to maintain a matching in the sampled subgraph H.

By Lemma 3.1 the subgraph H is a (c(1+O(ε)), (1+ε)d)-kernel of G with high probability
(note that by the same lemma, all sampled edges of H ′ will appear in our H). By Lemma 2.4,
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this means that with high probability this kernel H has matching number at least

µ(H) ≥ 1
2c(1 +O(ε))(1 + 1/d)) · µ(G) ≥ 1

2c(1 +O(ε)) · µ(G),

where the second inequality follows from d ≥ 6c·ln(max{n,1/ε})
ε2 ≥ 1

ε . As the above lower bound
on µ(H) holds with probability at least 1− 2ε by Lemma 3.1 and Lemma 2.4, we have that
E[µ(H)] ≥ (1− 2ε) · 1

2c(1+O(ε)) · µ(G) ≥ 1
2c(1+O(ε)) · µ(G). Therefore, a (1 + ε)-approximate

matching in H is itself a 2c(1 +O(ε))-approximate matching in G w.h.p and in expectation.
Now, each of the C(n,m) changes to edge weights of the fractional matching incurs at most
three updates to the kernel H: for every edge e whose weight changes, this edge can be
added/removed to/from H if it is sampled in/out; in the latter case both of e’s endpoints
can have a new edge added to their “allowable” edge list in place of e, and therefore possibly
added to H, in case the endpoints had less than (1 + ε)d sampled edges. In either case, the
number of edges added to H is at most a constant per edge weight update. But on the
other hand, the (1 + ε)-approximate matching algorithm implied by Lemma 2.5 requires
O(d/ε2) worst-case time per update in H, by H’s worst-case degree bound. Consequently, our
algorithm maintains a 2c(1 +O(ε))-approximate integral matching (w.h.p and in expectation)
in T (n,m) +O(C(n,m) · d/ε2) update time; moreover, this update time is worst case if the
bounds on T (n,m) and C(n,m) are themselves worst case. J

5 Applications to Maximum Weight Matching

In this section we highlight the consequences of our results for fully-dynamic maximum
weight matching. First, we discuss a new reduction of Stubbs and Vassilevska Williams [50].

I Lemma 5.1 ([50]). Let A be an fully-dynamic α-approximate maximum cardinality match-
ing algorithm with update time T (n,m). Then, there exists a fully-dynamic 2α(1 + ε)-
approximate maximum cardinality matching algorithm with update time O(T (n,m) · log(n/ε)

ε ).
Furthermore, if Algorithm A is deterministic, so is the new one, and if Algorithm A’s update
time is worst case, so is the new algorithm’s update time.

This reduction (which we elaborate on shortly), together with the state of the art dynamic
maximum matching algorithms, implies most of the best currently best bounds for dynamic
maximum weight matching, in Table 2.

A somewhat more involved and worse update time bound than that given in Lemma 5.1
was presented in [50], as that paper’s authors sought to obtain a persistent matching, in a
sense that this matching should not change completely after a single step (i.e., no more than
O(T (n,m)) changes to the matching per edge update, if T (n,m) is the algorithm’s update
time). However, a simpler and more efficient reduction yielding a non-persistent matching
algorithm with the performance guarantees of Lemma 5.1 is implied immediately from the
driving observation of Stubbs and Vassilevska Williams [50] (and indeed, is discussed in
[50]). This observation, previously made by Crouch and Stubbs [18] in the streaming setting,
is as follows: denote by Ei the edges of weights in the range ((1 + ε)i, (1 + ε)i+1], and let
Mi be an α-approximate matching in G[Ei]. Then, greedily constructing a matching by
adding edges from each Mi in decreasing order of i yields a 2α(1 + ε)-approximate maximum
weight matching. Adding to this observation the observation that if we are content with a
(1 + ε)-approximate (or worse) maximum weight matching we may safely ignore all edges of
weight less than ε/n of the maximum edge weight (a trivial lower bound on the maximum
weight matching’s weight), we find that we can focus on the ranges ((n/ε)i, (n/ε)i+2], for
some i ∈ Z, noting that each edge belongs to at most two such ranges.
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Table 2 Our Results and Previous State-of-the-Art for Fully-Dynamic MWM.
Approx. Update Time det. w.c. reference

4 + ε O(log(n/ε)/ε) 7 7 5.1 + Solomon (FOCS ’16) [49]
4 + ε poly(logn, 1/ε) 3 7 5.1 + Bhattacharya et al. (STOC ’16) [14]
4 + ε O(m1/3 log(n/ε)/ε3) 3 3 5.1 + Bhattacharya et al. (SODA ’15) [13]

4 + ε poly(logn, 1/ε) 7 3 5.1 + This work

≈ 3.009 + ε O(
√
m logCε−3) 3 3 Gupta and Peng (FOCS ’13) [27]

3 + ε O( 4√m log(n/ε)ε−3) 3 7 5.1 + Bernstein and Stein (SODA ’16) [12]

2 + ε O(
√
m · log2(n/ε)

ε4 ) 3 3 5.1 + Gupta and Peng (FOCS ’13) [27]

1 + ε O(
√
mCε−3) 3 3 Gupta and Peng (FOCS ’13) [27]

1 + ε O(
√
m logCε−O(1/ε)) 3 3 Gupta and Peng (FOCS ’13) [27]

In each such range ((n/ε)i, (n/ε)i+2], the argument of [18, 50] implies that maintaining
α-approximate matchings in the sub-ranges ((1 + ε)j , (1 + ε)j+1] for integral ranges and
combining these greedily result in a 2α(1 + ε)-approximate maximum weight matching in
the range ((n/ε)i, (n/ε)i+2]. Therefore, in the range containing a (1 + ε)-approximate MWM
(such a range exists, by the above), this approach maintains a 2α(1 + O(ε))-approximate
MWM. The only possible difficulty is combining these matchings greedily dynamically.
This is relatively straightforward to do in O(log(n/ε)/ε) worst-case time per change of the
α-approximate matching algorithm, however, implying the bound of Lemma 5.1.

As seen in Table 2, this reduction of Stubbs and Vassilevska Williams [50] implies a slew
of improved bounds for fully-dynamic approximate maximum weight matching. Plugging
in our bounds of Theorem 1.4 for fully-dynamic maximum matching into the reduction of
Lemma 5.1 similarly yields the first constant-approximate maximum weight matching with
polylogarithmic worst-case update time, given in Theorem 1.5 below.

I Theorem 1.5. For all ε ≤ 1
2 , there exists a randomized fully-dynamic (4+O(ε))-approximate

maximum weight matching algorithm with poly(logn, 1/ε) worst-case update time. The
approximation guarantee holds with high probability and in expectation.

6 Conclusion and Future Work

In this work we presented a simple randomized reduction from (2c+ ε)-approximate fully-
dynamic matching to fully-dynamic (c, d)-approximately-maximal fractional matching with
a slowdown of d. Using the recent algorithm of Bhattacharya et al. [15], our work yields
the first fully-dynamic matching algorithms with faster-than-polynomial worst-case update
time for any constant approximation ratio; specifically, it yields a (2 +O(ε))-approximate
matching with polylog worst case update time. Our work raises several natural questions
and future research directions to explore.

Faster Fractional Algorithms. Given our reduction, in order to obtain faster (2 + ε)-
approximate matching algorithms, it would suffice to improve the update time for fully-
dynamic (1 + ε, Oε(logn))-approximately-maximal fractional matching algorithm compared
to the algorithm of Bhattacharya et al. [15]. Large enough improvements in the update
time, number of edge weight changes and parameter d of (1 + ε, d)-approximately-maximal
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fractional matching algorithms used would result in even better bounds. We note however
that our current approach does not seem to allow for sub-logarithmic update bounds, due to
its update time’s dependence on d ≥ logn, so obtaining worst-case sub-logarithmic bounds
may require different ideas.

More Efficient/Deterministic Reduction. Given the above, one may ask whether the
dependence on d may be removed in a black-box reduction such as ours, yielding randomized
integral matching algorithms with the same running time as their fractional counterparts.
One may further wonder whether or not one can obtain a deterministic counterpart to our
black-box reduction from integral matching to approximately-maximal fractional matching.
Such a reduction with polylogarithmic overhead would yield for example a deterministic
(2 + ε)-approximate algorithm with worst-case polylogarithmic update time.

Maximal Matching. Finally, a natural question from our work and prior work is whether
or not a maximal matching can be maintained in worst-case polylogarithmic time (also
implying a 2-approximate minimum vertex cover within the same time bounds). We leave
this as a tantalizing open question.
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