

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/92674

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/96894696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/92674
mailto:wrap@warwick.ac.uk

Deterministic Fully Dynamic Approximate Vertex Cover and
Fractional Matching in O(1) Update Time

Sayan Bhattacharya∗ Deeparnab Chakrabarty† Monika Henzinger‡

Abstract

We consider the problems of maintaining an approximate maximum matching and an approximate
minimum vertex cover in a dynamic graph undergoing a sequence of edge insertions/deletions. Starting
with the seminal work of Onak and Rubinfeld [STOC 2010], this problem has received significant atten-
tion in recent years. Very recently, extending the framework of Baswana, Gupta and Sen [FOCS 2011],
Solomon [FOCS 2016] gave a randomized dynamic algorithm for this problem that has an approxima-
tion ratio of 2 and an amortized update time of O(1) with high probability. This algorithm requires the
assumption of an oblivious adversary, meaning that the future sequence of edge insertions/deletions in
the graph cannot depend in any way on the algorithm’s past output. A natural way to remove the as-
sumption on oblivious adversary is to give a deterministic dynamic algorithm for the same problem in
O(1) update time. In this paper, we resolve this question.

We present a new deterministic fully dynamic algorithm that maintains a O(1)-approximate mini-
mum vertex cover and maximum fractional matching, with an amortized update time of O(1). Previ-
ously, the best deterministic algorithm for this problem was due to Bhattacharya, Henzinger and Italiano
[SODA 2015]; it had an approximation ratio of (2+ ε) and an amortized update time of O(logn/ε2).
Our result can be generalized to give a fully dynamic O(f 3)-approximate algorithm with O(f 2) amor-
tized update time for the hypergraph vertex cover and fractional hypergraph matching problem, where
every hyperedge has at most f vertices.

∗University of Warwick, UK. Email: s.bhattacharya@warwick.ac.uk
†Department of Computer Science, Dartmouth College, 6211 Sudikoff Lab, Hanover, NH 03755, USA. Email:

deeparnab.chakrabarty@dartmouth.edu. Work done while the author was at Microsoft Research, India.
‡University of Vienna, Austria. Email: monika.henzinger@univie.ac.at.The research leading to these results has

received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-
2013) / ERC Grant Agreement no. 340506.

i

1 Introduction
Computing a maximum cardinality matching is a fundamental problem in computer science with applica-
tions, for example, in operations research, computer science, and computational chemistry. In many of these
applications the underlying graph can change. Thus, it is natural to ask how quickly a maximum matching
can be maintained after a change in the graph. As nodes usually change less frequently than edges, dynamic
matching algorithms usually study the problem where edges are inserted and deleted, which is called the
(fully) dynamic matching problem1. The goal of a dynamic matching algorithm is to maintain either an
actual matching (called the matching version) or the value of the matching (called the value version) as
efficiently as possible.

Unfortunately, the problem of maintaining even just the value of the maximum cardinality matching is
hard: There is a conditional lower bound that shows that no (deterministic or randomized) algorithm can
achieve at the same time an amortized update time of O(m1/2−ε) and a query (for the size of the matching)
time of O(m1−ε) for any small ε > 0 [10] (see [1] for conditional lower bounds using different assumptions).
The best upper bound is Sankowski’s randomized algorithm [16] that solves the value problem in time
O(n1.495) per update and O(1) per query. Thus, it is natural to study the dynamic approximate maximum
matching problem, and there has been a large body [2, 5, 6, 9, 12, 13, 17] of work on it and its dual, the
approximate vertex cover problem, in the last few years.

Dynamic algorithms can be further classified into two types: Algorithms that require an oblivious (aka
non-adaptive) adversary, i.e., an adversary that does not base future updates and queries on the answers to
past queries, and algorithms that work even for an adaptive adversary. Obviously, the earlier kind of algo-
rithms are less general than the later. Unfortunately, the known randomized dynamic approximate matching
and vertex cover algorithms do not work with an adaptive adversary [2, 13, 17]. Solomon [17] gives the best
such randomized algorithm: It achieves O(1) amortized update time (with high probability) and O(1) query
time for maintaining a 2-approximate maximum matching and a 2-approximate minimum vertex cover. He
also extends this result to the dynamic distributed setting (à la Parter, Peleg, and Solomon [14]) with the
same approximation ratio and update cost.

In this paper we present the first deterministic algorithm that maintains an O(1)-approximation to the
size of the maximum matching in O(1) amortized update time and O(1) query time. We also maintain an
O(1)-approximate vertex cover in the same update time. Note that this is the first deterministic dynamic
algorithm with constant update time for any non-trivial dynamic graph problem. This is significant as for
other dynamic problems such as the dynamic connectivity problem or the dynamic planarity testing problem
there are non-constant lower bounds in the cell probe model on the time per operation [11, 15]. Thus, our
result shows that no such lower bound can exist for the dynamic approximate matching problem.

There has been prior work on deterministic algorithms for dynamic approximate matching, but they
all have Ω(poly(logn)) update time. One line of work concentrated on reducing the approximation ratio
as much as possible, or at least below 2: Neiman and Solomon [12] achieved an update time O(

√
m) for

maintaining a 3/2-approximate maximum matching and 2-approximate minimum vertex cover. This result
was improved by Gupta and Peng [9] who gave an algorithm with update time O(

√
m/ε2) for maintain-

ing a (1+ ε)-approximate maximum matching. Recently, Bernstein and Stein [3] gave an algorithm with
O(m1/4/ε2) amortized update time for maintaining a (3/2+ ε)-approximate maximum matching. Another
line of work, and this paper fits in this line, concentrated on getting a constant approximation while reducing
the update time to polylogarithmic: Bhattacharya, Henzinger and Italiano [5] achieved an O(logn/ε2) up-
date time for maintaining a (2+ ε)-approximate maximum fractional matching and a (2+ ε)-approximate
minimum vertex cover. Note that any fractional matching algorithm solves the value version of the dynamic
matching problem while degrading the approximation ratio by a factor of 3/2. Thus, the algorithm in [5]

1Node updates are usually handled through the insertion and deletion of isolated nodes, but there has been also some work on
the node insertions-only or node deletions-only problem [7].

1

maintains a (3+ ε)-approximation of the value of the maximum matching. The fractional matching in this
algorithm was later “deterministically rounded” by Bhattacharya, Henzinger and Nanongkai [6] to achieve
a O(poly(logn,1/ε)) update time for maintaining a (2+ ε)-approximate maximum matching.

Our method also generalizes to the hypergraph vertex (set) cover and hypergraph fractional matching
problem which was considered by [4]. In this problem the hyperedges of a hypergraph are inserted and
deleted over time. f indicates the maximum cardinality of any hyperedge. The objective is to maintain a
hypergraph vertex cover, that is, a set of vertices that hit every hyperedge. Similarly a fractional matching in
the hypergraph is a fractional assignment (weights) to the hyperedges so that the total weight faced by any
vertex is at most 1. We give an O(f 3)-approximate algorithm with amortized O(f 2) update time.

1.1 Our Techniques

Our algorithm builds and simplifies the framework of hierarchical partitioning of vertices proposed by Onak
and Rubinfeld [13], which was later enhanced by Bhattacharya, Henzinger and Italiano [5] to give a deter-
ministic fully-dynamic (2+δ)-approximate vertex cover and maximum matching in O(logn/δ 2)-amortized
update time. The hierarchical partition divides the vertices into O(logn)-many levels and maintains a frac-
tional matching and vertex cover. To prove that the approximation factor is good, Bhattacharya et. al.[5] also
maintain approximate complementary slackness conditions. An edge insertion or deletion can disrupt these
conditions (and indeed at times the feasibility of the fractional matching), and a fixing procedure maintains
various invariants. To argue that the update time is bounded, [5] give a rather involved potential function
argument which proves that the update time bounded by O(L), the number of levels, and is thus O(logn). It
seems unclear whether the update time can be argued to be a constant or not.

Our algorithm is similar to that in Bhattacharya et. al. [5], except that we are a bit stricter when we fix
nodes. As in [5], whenever an edge insertion or deletion or a previous update violates an invariant condition,
we move nodes across the partitioning (incurring update costs), but after a node is fixed we often ensure it
satisfies a stronger condition than what the invariant requires. For example, suppose a node v violates the
upper bound of a fractional matching, that is, the total fractional weight it faces becomes larger than 1, then
the fixing subroutine will at the end ensure that the final weight the node faces is significantly less than 1.
Intuitively, this slack allows us to make a charging argument of the following form – if this node violates
the upper bound again, then a lot of “other things” must have occurred to increase its weight (for instance,
maybe edge insertions have occurred). Such a charging argument, essentially, allows us to bypass the
O(logn)-update time to an O(1)-update time. The flip side of the slack is that our complementary slackness
conditions become weak, and therefore instead of a 2 + ε-approximation we can only ensure an O(1)-
approximation. The same technique easily generalizes to the hypergraph setting. It would be interesting
to see other scenarios where approximation ratios can be slightly traded in for huge improvements in the
update time.

Remark. Very recently, and independently of our work, Gupta et al. [8] obtained a O(f 3)-approximation
algorithm for maximum fractional matching and minimum vertex cover in a hypergraph in O(f 2) amortized
update time. Here, the symbol f denotes the maximum number of nodes that can be incident on a hyperedge.

2 Notations and Preliminaries
Since the hypergraph result implies the graph result, henceforth we consider the former problem. The
input hypergraph G = (V,E) has |V | = n nodes. Initially, the set of hyperedges is empty, i.e., E = /0.
Subsequently, an adversary inserts or deletes hyperedges in the hypergraph G = (V,E). The node-set V
remains unchanged with time. Each hyperedge contains at most f nodes. We say that f is the maximum
frequency of a hyperedge. If a hyperedge e has a node v as one of its endpoints, then we write v ∈ e. For
every node v∈V , we let Ev = {e∈ E : v∈ e} denote the set of hyperedges that are incident on v. In this fully
dynamic setting, our goal is to maintain an approximate maximum fractional matching and an approximate
minimum vertex cover in G . The main result of this paper is summarized in the theorem below.

2

Theorem 2.1. We can maintain an O(f 3) approximate maximum fractional matching and an O(f 3) approx-
imate minimum vertex cover in the input hypergraph G = (V,E) in O(f 2) amortized update time.

Throughout the rest of this paper, we fix two parameters α and β as follows.

β = 17, and α = 1+36 f 2
β

2. (1)

We will maintain a hierarchical partition of the node-set V into L + 1 levels {0, . . . ,L}, where L =⌈
f · logβ n

⌉
+1. We let `(v)∈ {0, . . . ,L} denote the level of a node v∈V . We define the level of a hyperedge

e ∈ E to be the maximum level among its endpoints, i.e., `(e) = maxv∈e `(v). The levels of nodes (and
therefore hyperedges) induce the following weights on hyperedges: w(e) := β−`(e) for every hyperedge e ∈
E. For all nodes v ∈V , let Wv := ∑e∈Ev w(e) be the total weight received by v from its incident hyperedges.
We will satisfy the following invariant after processing a hyperedge insertion or deletion.

Invariant 2.2. Every node v ∈V at level `(v)> 0 has weight 1/(αβ 2)<Wv < 1. Every node v ∈V at level
`(v) = 0 has weight 0≤Wv ≤ 1/β 2.

Corollary 2.3. Under Invariant 2.2, the nodes in levels {1, . . . ,L} form a vertex cover in G .

Proof. Suppose that there is a hyperedge e ∈ E with `(v) = 0 for all v ∈ e. Then we also have `(e) = 0 and
w(e) = 1/β `(e) = 1/β 0 = 1. So for every node v∈ e, we get: Wv ≥w(e) = 1. This violates Invariant 2.2.

Invariant 2.2 ensures that w(e)’s form a fractional matching satisfying approximate complementary slack-
ness conditions with the vertex cover defined in Corollary 2.3. This gives the following theorem.

Theorem 2.4. In our algorithm, the hyperedge weights {w(e)} form a f αβ 2-approximate maximum frac-
tional matching, and the nodes in levels {1, . . . ,L} form a f αβ 2-approximate minimum vertex cover.

Proof. (Sketch) Say that a fractional matching, which assigns a weight w(e) to every hyperedge e ∈ E, is
maximal iff for every hyperedge e ∈ E there is some node v ∈ e such that Wv = 1. Let T = {v ∈V : Wv = 1}
be the set of all tight nodes in this fractional matching. Clearly, the set of nodes T form a vertex cover in G .
It is well known that the sizes of such a fractional matching {w(e)} and the corresponding vertex cover T
are within a factor f of each other. The key observation is that under Invariant 2.2, the fractional matching
{w(e)} is approximately maximal, meaning that for every hyperedge e ∈ E there is some node v ∈ e such
that Wv > 1/(αβ 2). Further, the set of nodes in levels {1, . . . ,L} are approximately tight, since each of them
has weight at least 1/(αβ 2).

We introduce some more notations. For any vertex v, let W+
v := ∑e∈Ev:`(e)>`(v) w(e) be the total up-

weight received by v, that is, weight from those incident hyperedges whose levels are strictly greater than
`(v). For all levels i ∈ {0,1, . . . ,L}, we let Wv→i and W+

v→i respectively denote the values of Wv and W+
v

if the node v were to go to level i and the levels of all the other nodes were to remain unchanged. More
precisely, for every hyperedge e ∈ E and node v ∈ e, we define `v(e) = maxu∈e:u6=v `(u) to be the maximum
level among the endpoints of e that are distinct from v. Then we have: Wv→i := ∑e∈Ev β−max(`v(e),i) and
W+

v→i := ∑e∈Ev:`v(e)>i β−`v(e). Our algorithm maintains a notion of time such that in each time step the
algorithm performs one elementary operation. We let Wv(t) denote the weight (resp, up-weight) faced by v
right before the operation at time t. Similarly define Wv→i(t),W+

v (t), and W+
v→i(t).

3

Different states of a node. Before the insertion/deletion of a hyperedge in G , all nodes satisfy Invari-
ant 2.2. When a hyperedge is inserted (resp. deleted), it increases (resp. decreases) the weights faced by
its endpoints. Accordingly, one or more endpoints can violate Invariant 2.2 after the insertion/deletion of a
hyperedge. Our algorithm fixes these nodes by changing their levels, which may lead to new violations, and
so on and so forth. To describe the algorithm, we need to define certain states of the nodes.

Definition 2.5. A node v ∈V is DOWN-DIRTY iff `(v)> 0 and Wv ≤ 1/(αβ 2). A node v ∈V is UP-DIRTY

iff either {`(v) = 0,Wv > 1/β 2} or {`(v) > 0,Wv ≥ 1}. A node is DIRTY if it is either DOWN-DIRTY or
UP-DIRTY.

Invariant 2.2 is satisfied if and only if no node is DIRTY. We need another definition of SUPER-CLEAN

nodes which will be crucial.

Definition 2.6. A node v∈V is SUPER-CLEAN iff one of the following conditions hold: (1) We have `(v) = 0
and Wv ≤ 1/β 2, or (2) We have `(v)> 0, 1/β 2 <Wv ≤ 1/β , and W+

v ≤ 1/β 2.

Note that a SUPER-CLEAN node v with `(v) > 0 has a stronger upper bound on the weight Wv it faces and
also an even stronger upper bound on the up-weight W+

v it faces. At a high level, one of our subroutines
will lead to SUPER-CLEAN nodes, and the slack in the parameters is what precisely allows us to perform an
amortized analysis in the update time.

Data Structures. For all nodes v ∈V and levels i ∈ {0,1, . . . ,L}, let Ev,i := {e ∈ Ev : `(e) = i} denote the
set of hyperedges incident on v that are at level i. Note that Ev,i = /0 for all i < `(v). We will maintain the
following data structures. (1) For every level i ∈ {0,1, . . . ,L} and node v ∈V , we store the set of hyperedges
Ev,i as a doubly linked list, and also maintain a counter that stores the number of hyperedges in Ev,i. (2)
For every node v ∈ V , we store the weights Wv and W+

v , its level `(v) and an indicator variable for each of
the states DOWN-DIRTY, UP-DIRTY, DIRTY and SUPER-CLEAN. (3) For each hyperedge e ∈ E, we store
the values of its level `(e) and therefore its weight w(e). Finally, using appropriate pointers, we ensure that
a hyperedge can be inserted into or deleted from any given linked list in constant time. We now state two
lemmas that will be useful in analysing the update time of our algorithm.

Lemma 2.7. Suppose that a node v is currently at level `(v) = i ∈ [0,L−1] and we want to move it to some
level j ∈ [i+1,L]. Then it takes O(f · |{e ∈ Ev : `v(e)< j}|) time to update the relevant data structures.

Proof. If a hyperedge e is not incident on the node v, then the data structures associated with e are not
affected as v moves up from level i to level j. Further, among the hyperedges e ∈ Ev, only the ones with
`v(e)< j get affected (i.e., the data structures associated with them need to be changed) as v moves up from
level i to level j. Finally, for every hyperedge that gets affected, we need to spend O(f) time to update the
data structures for its f endpoints.

Lemma 2.8. Suppose that a node v is currently at level `(v) = i ∈ [1,L] and we want to move it down to
some level j ∈ [0, i−1]. Then it takes O(f · |{e∈ Ev : `v(e)≤ i}|) time to update the relevant data structures.

Proof. If a hyperedge e is not adjacent to the node v, then the data structures associated with e are not
affected as v moves down from level i to level j. Further, among the hyperedges e ∈ Ev, only the ones with
`v(e) ≤ i get affected (i.e., the data structures associated with them need to be changed) as v moves down
from level i to level j. Finally, for every hyperedge that gets affected, we need to spend O(f) time to update
the data structures for its f endpoints.

4

3 The algorithm: Handling the insertion/deletion of a hyperedge in the input graph
Initially, the graph G is empty, every node is at level 0, and Invariant 2.2 holds. By induction, we will ensure
that the following property is satisfied just before the insertion/deletion of a hyperedge.

Property 3.1. No node v ∈V is DIRTY.

Insertion of a hyperedge e. When a hyperedge e is inserted into the input graph, it is assigned a level
`(e) = maxv∈e `(v) and a weight w(e) = β−`(e). The hyperedge gets inserted into the linked lists Ev,`(e) for
all nodes v ∈ e. Furthermore, for every node v ∈ e, the weights Wv increases by w(e). For every endpoint
v ∈ e, if `(v) < `(e), then the weight W+

v increases by w(e). As a result of these operations, one or more
endpoints of e can now become UP-DIRTY and Property 3.1 might no longer be satisfied. Hence, in order
to restore Property 3.1 we call the subroutine described in Figure 1.
Deletion of a hyperedge e. When a hyperedge e is deleted from the input graph, we erase all the data
structures associated with it. We remove the hyperedge from the linked lists Ev,`(e) for all v ∈ e, and erase
the values w(e) and `(e). For every node v∈ e, the weight Wv decreases by w(e). Further, for every endpoint
v ∈ e, if `(v)< `(e), then we decrease the weight W+

v by w(e). As a result of these operations, one or more
endpoints of e can now become DOWN-DIRTY, and Property 3.1 might get violated. Hence, in order to
restore Property 3.1 we call the subroutine described in Figure 1.

01. WHILE the set of DIRTY nodes is nonempty
02. IF there exists some UP-DIRTY node v:
03. FIX-UP-DIRTY(v).
04. ELSE IF there exists some DOWN-DIRTY node v:
05. FIX-DOWN-DIRTY(v).

Figure 1: FIX-DIRTY(·)

The algorithm is simple – as long as some DIRTY node remains, it runs either FIX-UP-DIRTY or FIX-
DOWN-DIRTY to take care of UP-DIRTY and DOWN-DIRTY nodes respectively. One crucial aspect is that
we prioritize UP-DIRTY nodes over DOWN-DIRTY ones.
FIX-DOWN-DIRTY(v): Suppose that `(v) = i when the subroutine is called at time t. By definition, we
have i > 0 and Wv(t)≤ 1/(αβ 2). We need to increase the value of Wv if we want to ensure that v no longer
remains DIRTY. This means that we should decrease the level of v, so that some of the hyperedges incident
on v can increase their weights. Accordingly, we find the largest possible level j ∈ {1, . . . ,(i− 1)} such
that Wv→ j(t) > 1/β 2, and move the node v down to this level j. If no such level exists, that is, if even
Wv→1(t) ≤ 1/β 2, then we move the node v down to level 0. Note that in this case there is no hyperedge
e ∈ Ev with `v(e) = 0 for such a hyperedge would have w(e) = β−1 > 1/β 2 when v is moved to level 1. In
particular, we get Wv→0(t) =Wv→1(t).

Claim 3.2. FIX-DOWN-DIRTY(v) makes the node v SUPER-CLEAN .

Proof. Suppose node v was at level i when FIX-DOWN-DIRTY(v) was called at time t and it ended up in
level j < i. If j = 0, then Wv→0(t)≤ 1/β 2, and so v becomes SUPER-CLEAN after time t. Henceforth assume
j > 0. Since j ∈ {1, . . . , i−1} is the maximum level where Wv→ j(t)> 1/β 2, we have Wv→(j+1)(t)≤ 1/β 2.
Now note that Wv→ j(t) ≤ β ·Wv→(j+1)(t) since weights of hyperedges can increase by at most a factor β

when one end point drops exactly one level. This implies Wv→ j(t)≤ 1/β . Together we get that after time t
when v is fixed to level j, we have 1/β 2 <Wv ≤ 1/β .

Now we argue about the up-weights. Note that every hyperedge e that contributes to W+
v→ j(t) must have

`v(e) ≥ (j + 1). The weight of such a hyperedge remains unchanged as v moves from level (j + 1) to j.

5

We infer that W+
v→ j(t) ≤Wv→(j+1)(t) ≤ 1/β 2. Therefore after time t when v is fixed at level j, we have

W+
v ≤ 1/β 2. In sum, v becomes SUPER-CLEAN after time t.

FIX-UP-DIRTY(v): Suppose that `(v) = i when the subroutine is called at time t. At this stage, we have
either {i = 0,Wv(t) > 1/β 2} or {i > 1,Wv(t) ≥ 1}. We need to increase the level of v so as to reduce the
weight faced by it. Accordingly, we find the smallest possible level j ∈ {i+1, . . . ,L} where Wv→ j(t)≤ 1/β

and move v up to level j. Such a level j always exists because Wv→L(t)≤ n f ·β−L ≤ 1/β .

Claim 3.3. After a call to the subroutine FIX-UP-DIRTY(v) at time t, we have 1/β 2 <Wv ≤ 1/β .

Proof. Suppose that the node v moves up from level i to level j > i. We now consider four possible cases.
• Case 1. We have i > 0.

Since j∈{i+1, . . . ,L} is the minimum possible level where Wv→ j(t)≤ 1/β , and since Wv→i(t)> 1/β ,
we infer that Wv→(j−1)(t) > 1/β . As the node v moves up from level (j− 1) to level j, the weight
it faces can drop by at most a factor of β . Hence, we get: Wv→ j(t) ≥ (1/β) ·Wv→(j−1)(t) > 1/β 2.
Therefore after time t when the node v moves to level j, we have 1/β 2 <Wv ≤ 1/β .
• Case 2. We have i = 0, and there is an edge e ∈ Ev with `v(e) = 0 at time t. In this case we have

Wv→i(t)≥ 1 in the beginning of time-step t, since the edge e ∈ Ev with `v(e) = 0 has weight w(e) = 1.
The rest of the proof is exactly similar to Case 1.
• Case 3. We have i = 0, there is no edge e ∈ Ev with `v(e) = 0 at time t, and j = 1.

The value of Wv does not change as v moves up from level i = 0 to level j = 1. Thus, we get:
Wv→ j(t) =Wv→0(t)> 1/β 2, for the node v is UP-DIRTY at level i = 0 at time t. Since the node does
not move further up than level j, we get: Wv→ j(t)≤ 1/β .
• Case 4. We have i = 0, there is no edge e ∈ Ev with `v(e) = 0 at time t, and j > 1.

Since the node v does not stop at level 1, we get: Wv→1(t)> 1/β . Hence, we infer that j ∈ {2, . . . ,L}
is the minimum possible level where Wv→ j(t) ≤ 1/β . As the node v moves up from level (j− 1)
to level j, the weight it faces can drop by at most a factor of β . Hence, we get: Wv→ j(t) ≥ (1/β) ·
Wv→(j−1)(t)> 1/β 2. Therefore, we have 1/β 2 <Wv→ j(t)≤ 1/β .

It is clear that if and when FIX-DIRTY() terminates, we are in a state which satisfies Invariant 2.2. In
the next section we show that after T hyperedge insertions and deletions, the total update time is indeed
O(f 2 ·T) and so our algorithm has O(f 2)-amortized update time.

4 Analysis of the algorithm
Starting from an empty graph G = (V,E), fix any sequence of T updates. The term “update” refers to the
insertion or deletion of a hyperedge in G . We show that the total time taken by our algorithm to handle this
sequence of updates is O(f 2 ·T). We also show that our algorithm has an approximation ratio of O(f 3).

Relevant counters. We define three counters Cup,Cdown and Idown. The first two counters account for the
time taken to update the data structures while the third accounts for the time taken to find the index j in
both FIX-DOWN-DIRTY(v) and FIX-UP-DIRTY(v). Initially, when the input graph is empty, all the three
counters are set to zero. Subsequently, we increment these counters as follows.

1. Suppose node v moves from level i to level j > i upon a call of FIX-UP-DIRTY(v). Then for every
hyperedge e ∈ Ev with `v(e)≤ j−1, we increment Cup by one.

2. Suppose node v moves from level i to level j < i upon a call of FIX-DOWN-DIRTY(v). Then for
every hyperedge e ∈ Ev with `v(e) ≤ i, we increment the value of Cdown by one. Furthermore, we
increment the value of Idown by β i−2/α .

The next lemma upper bounds the total time taken by our algorithm in terms of the values of these counters.
The proof of Lemma 4.1 appears in Section 4.5.

6

Lemma 4.1. Our algorithm takes Θ(f ·(Cup+Cdown+T)+ f 2Idown) time to handle a sequence of T updates.

We will show that Cup = Θ(f) ·T and Cdown + Idown = O(1) ·T , which will imply an amortized update
time of O(f 2) for our algorithm. Towards this end, we now prove three lemmas that relate the values of
these three counters.

Lemma 4.2. We have: Cdown ≤ Idown.

Lemma 4.3. We have: Idown ≤ f
α−1 · (T +Cup).

Lemma 4.4. We have: Cup ≤ 9 f β 2 · (T +Cdown).

The proofs of Lemmas 4.2, 4.3 and 4.4 appear in Sections 4.2, 4.3 and 4.4 respectively. All these three
proofs use the concepts of epochs, jumps and phases as defined in Section 4.1. The main result of our paper
(see Theorem 2.1) now follows from Theorem 2.4, Lemma 4.1 and Lemma 4.5.

Lemma 4.5 (Corollary to Lemma 4.2,4.3, and 4.4.). We have: Cup = Θ(f) ·T and Cdown+ Idown = Θ(1) ·T .

Proof. Replacing Cdown in the RHS of Lemma 4.4 by the upper bounds from Lemmas 4.2 and 4.3, we get:

Cup ≤ (9 f β
2) ·T +(9 f β

2) ·Cdown

≤ (9 f β
2) ·T +(9 f β

2) · Idown

≤ (9 f β
2) ·T +

(9 f β 2) f
(α−1)

· (T +Cup)

≤ (9 f β
2) ·T +(1/4) ·T +(1/4) ·Cup (see equation (1))

Rearranging the terms in the above inequality, we get: (3/4) ·Cup ≤ (9 f β 2+1/4) ·T = (36 f β 2+1) ·(T/4).
Multiplying both sides by (4/3), we get: Cup ≤ (12 f β 2 +1/3) ·T ≤ (13 f β 2)T . Since β = 17, we get:

Cup ≤Θ(f) ·T (2)

Since α = Θ(f 2), Lemmas 4.2 and 4.3 and equation (2) imply that:

Cdown ≤ Idown ≤Θ(1) ·T (3)

4.1 Epochs, jumps and phases

Fix any node v ∈ V . An epoch of this node is a maximal time-interval during which the node stays at the
same level. An epoch ends when either (a) the node v moves up to a higher level due to a call to FIX-UP-
DIRTY, or (b) the node v moves down to a lower level due to a call to the subroutine FIX-DOWN-DIRTY.
These events are called jumps. Accordingly, there are UP-JUMPS and DOWN-JUMPs. Next, we define a
phase of a node to be a maximal sequence of consecutive epochs where the levels of the node keep on
increasing. The phase of a node v is denoted by Φv. Suppose that a phase Φv consists of k consecutive
epochs of v at levels i1, . . . , ik ∈ {0,1, . . . ,L}. Then we have: i1 < i2 < · · · < ik. By definition, the epoch
immediately before Φv must have level larger than i1 implying FIX-DOWN-DIRTY(v) landed v at level i1.
Similarly, the epoch subsequent to ik is smaller than ik implying FIX-DOWN-DIRTY(v) is called again.

7

4.2 Proof of Lemma 4.2

Suppose that a node v moves down from (say) level j to level i < j at time (say) t due to a call to the
subroutine FIX-DOWN-DIRTY(v). Let ∆down and ∆down

I respective denote the increase in the counters
Cdown and Idown due to this event. We will show that ∆down ≤ ∆down

I , which will conclude the proof of the
lemma. By definition, we have:

∆
down
I = β

i−2/α (4)

Let X = {e∈Ev : `v(e)≤ i} denote the set of hyperedges incident on v that contribute to the increase in Cdown

due to the DOWN-JUMP of v at time t. Specifically, we have: |X | = ∆down. Each edge e ∈ X contributes
a weight β−i towards the node-weight Wv→i(t). Thus, we get: |X | · β−i ≤Wv→i(t) ≤ 1/(αβ 2). The last
inequality holds since v is DOWN-DIRTY in the beginning of time-step t. Rearranging the terms, we get:
∆down = |X | ≤ β i−2/α . The lemma now follows from equation (4).

4.3 Proof of Lemma 4.3

Suppose we call FIX-DOWN-DIRTY(v) at some time t2. Let `(v) = i just before the call, and let [t1, t2] be
the epoch with level of v being i. Let X := {e ∈ Ev : `v(e)≤ i} at time t2. By definition, Idown increases by
β i−2/α during the execution of FIX-DOWN-DIRTY(v); let us call this increase ∆down

I . Thus, we have:

∆
down
I = β

i−2/α (5)

Consider the time between [t1, t2] and let us address how Wv can decrease in this time while v’s level is fixed
at i. Either some hyperedge incident on v is deleted, or some hyperedge e ∈ Ev incident on it decreases its
weight. In the latter case, the level `(e) of such an hyperedge e must increase above i. Let ∆T denote the
number of hyperedge deletions incident on v during the time-interval [t1, t2]. Let ∆up denote the increase in
the value of Cup during the time-interval [t1, t2] due to the hyperedges incident on v. Specifically, at time t1,
we have ∆T = ∆up = 0. Subsequently, during the time-interval [t1, t2], we increase the value of ∆up by one
each time we observe that a hyperedge e ∈ Ev increases its level `(e) to something larger than i. Note that
`(v) = i throughout the time-interval [t1, t2]. Hence, each time we observe an unit increase in ∆T +∆up, this
decreases the value of Wv by at most β−i. Just before time t1, the node v made either an UP-JUMP, or a
DOWN-JUMP. Hence, Claims 3.3 and 3.2 imply that Wv→i(t1)> 1/β 2. As Wv(t2)≤ 1/(αβ 2) at time t2, we
infer that Wv has dropped by at least (1−1/α) ·β−2 during the time-interval [t1, t2]. In order to account for
this drop in Wv, the value of ∆T +∆up must have increased by at least (1−1/α) ·β−2/β−i = (1−1/α) ·β i−2.
Since ∆T = ∆up = 0 at time t1, at time t2 we get: ∆T +∆up ≥ (1−1/α) ·β i−2. Hence, (5) gives us:

∆
down
I ≤ (α−1)−1 · (∆T +∆

up) (6)

Each time the value of Idown increases due to FIX-DOWN-DIRTY on some node, inequality (6) applies.
If we sum all these inequalities, then the left hand side (LHS) will be exactly equal to the final value
of Idown, and the right hand side (RHS) will be at most (α − 1)−1 · (f · T + (f − 1) ·Cup). The factor f
appears in front of T because each hyperedge deletion can contribute f times to the sum ∑∆T , once for
each of its endpoints. Similarly, the factor (f − 1) appears in front of Cup because whenever the level of
an hyperedge e moves up due to the increase in the level `(v) of some endpoint v ∈ e, this contributes at
most (f −1) times to the sum ∑∆up, once for every other endpoint u ∈ e,u 6= v. Since LHS ≤ RHS, we get:
Idown ≤ (α−1)−1 · (f ·T +(f −1) ·Cup)≤ (f/(α−1)) · (T +Cup). This concludes the proof of the lemma.

4.4 Proof of Lemma 4.4

Fix a node v and consider a phase Φv where v goes through levels i1 < i2 < · · ·< ik. Thus, the node v enters
the level i1 at time t1 (say) due to a call to FIX-DOWN-DIRTY(v). For r ∈ [2,k], the node v performs an
UP-JUMP at time tr (say) from the level ir−1 to the level ir, due to a call to FIX-UP-DIRTY(v). This implies

8

that t1 < t2 < · · ·< tk. The phase ends, say, at time tk+1 > tk when the node v again performs a DOWN-JUMP

from the level ik due to a call to FIX-DOWN-DIRTY(v).
Let ∆up denote the total increase in the value of the counter Cup due to the phase Φv. For r ∈ [2,k], let

∆
up
r denote the increase in the value of the counter Cup due to the UP-JUMP of v at time tr. Thus, we have:

∆
up =

k

∑
r=2

∆
up
r (7)

We define two more counters: ∆T , ∆down. The former counter equals the number of hyperedge inser-
tions/deletions incident on v during the time-interval [t1, tk]. The latter counter equals the increase in the
value of Cdown due to the hyperedges incident on v during the time-interval [t1, tk]. Alternately, these two
counters can be defined as follows. At time t1, we set ∆T ← 0 and ∆down← 0. Subsequently, whenever at any
time t ∈ [t1, tk], a hyperedge incident on v gets inserted into or deleted from the input graph, we increment
the value of ∆T by one. Further, whenever at any time t ∈ [t1, tk], a hyperedge e incident on v gets its level
decreased because of a DOWN-JUMP of some node u ∈ e,u 6= v, we increment the value of ∆down by one.

Since v enters the level i1 at time t1 due to a call to FIX-DOWN-DIRTY(x), Claim 3.2 implies that:

Wv→i1(t1)≤ 1/β and W+
v→i1(t1)≤ 1/β

2 (8)

Our main goal is to upper bound ∆up in terms of the final values of the counters ∆T and ∆down.

Claim 4.6. For 2≤ r ≤ k, ∆
up
r ≤ β ir−1.

Proof. By Claim 3.3 we have Wv→ir(tr)≤ 1/β , that is, the total weight incident on v after it has gone through
FIX-UP-DIRTY at time tr is at most 1/β . Now, each hyperedge e ∈ Ev which contributes to ∆

up
r has weight,

right after time tr, precisely β−`(v) = β−ir . Putting together, we get ∆
up
r ≤ β ir−1.

Using the above claim, we get the following upper bound on the sum of all but the last ∆
up
k .

Claim 4.7. We have: ∑
k−1
r=2 ∆

up
r < 2(∆T +∆down).

Proof. If k = 2, then we have an empty sum ∑
k−1
r=2 ∆

up
r = 0, and hence the claim is trivially true. For the rest

of the proof, we suppose that k > 2, which implies that ik−1 ≥ i2 > i1 ≥ 0. Thus, we get:

k > 2 and ik−1 > 0. (9)

To continue with the proof, summing over the inequalities from Claim 4.6, we get:

k−1

∑
r=2

∆
up
r ≤ β

ik−1 (10)

Since the node v performs an UP-JUMP at time tk−1 from level ik−1 > 0 (see equation (9)), the node
must be UP-DIRTY at that time. It follows that Wv→ik−1(tk)> 1. From equation (8), we have Wv→ik−1(t1)≤
Wv→i1(t1)< 1/β . Thus, during the time interval [t1, tk] the value of Wv→ik−1 increases by at least (1−1/β).
This can be either due to (a) some hyperedge incident to v being inserted, or (b) some hyperedge e ∈ Ev

gaining its weight because of some endpoint u ∈ e,u 6= v, going down. The former increases ∆T and the
latter increases ∆down. Furthermore, the increase in Wv→ik−1 due to every such hyperedge is at most β−ik−1 .
This gives us the following lower bound.

∆
T +∆

down ≥ (1−1/β) ·β ik−1 > β
ik−1/2 and so from equation (10), we have

k−1

∑
r=2

∆
up
r < 2(∆T +∆

down)

(11)
The claim follows from equation (11).

9

It now remains to upper bound ∆
up
k . This is done in Claim 4.8, whose proof appears in Section 4.4.1.

Claim 4.8. We have: ∆
up
k < (8β 2) · (∆T +∆down).

From equations 1, 7 and Claims 4.7, 4.8, we get:

∆
up ≤ (8β

2 +2)(∆T +∆
down)≤ (9β

2) · (∆T +∆
down) (12)

Using equation (12), now we can prove Lemma 4.4. For every phase of a node v, as per equation (12)
we can charge the increase in Cup to the increase in (T +Cdown) corresponding to hyperedges incident of
v. Summing up over all nodes and phases, the LHS gives Cup while the RHS gives (9β 2) · (f · T +(f −
1) ·Cdown). The coefficient f before T comes from the fact that every hyperedge insertion can contribute
f times to the RHS, once for each of its endpoints. The coefficient (f − 1) before Cdown comes from the
fact that whenever the level of a hyperedge e decreases due to the DOWN-JUMP of a node u ∈ e, this event
contributes at most (f −1) times to the RHS: once for every other endpoint v ∈ e,v 6= u. Thus, we get:

Cup ≤ (9β
2) · (f ·T +(f −1) ·Cdown)≤ 9 f β

2 · (T +Cdown)

4.4.1 Proof of Claim 4.8

We fork into two cases.

Case 1: ik ≤ ik−1 +3.

Since ik ≤ ik−1 +3, Claim 4.6 implies that:

∆
up
k ≤ β

ik−1 ≤ β
ik−1 ·β 2 (13)

In the proof of Claim 4.7, we derived equation (11), which gives us:

∆
T +∆

down ≥ β
ik−1/2 (14)

Equations 13, 14 imply that ∆
up
k < 2β 2 · (∆T +∆down) ≤ 8β 2 · (∆T +∆down). This concludes the proof of

Claim 4.8 for this case.

Case 2: ik > ik−1 +3.

We start by noting that the weight of a node is always less than 2 at every time.

Claim 4.9. We have: Wv(t)< 2 at every time t.

Proof. The crucial observation is that fixing an UP-DIRTY node u never increases the weight of any node.
Furthermore, a DOWN-DIRTY node gets fixed only if no other node is UP-DIRTY (see Figure 1).

In the beginning of time-step t = 0, the input graph is empty, and we clearly have Wv(t) = 0 < 1. By
induction, suppose that Wv(t)< 1 in the beginning of some time-step t. Now, during time-step t, the weight
Wv can increase only if one of the following events occur:
• (a) A hyperedge containing v gets inserted into the graph. This increase the value of Wv by at most

one. Thus, we have Wv(t +1)< 2.
• (b) We call the subroutine FIX-DOWN-DIRTY(u) for some node u. Note that fixing a DOWN-DIRTY

node u can increase the weight Wu by at most one, and hence this can increase the weight of a neigh-
bour of u also by at most one. It again follows that Wv(t +1)< 2.

If Wv(t +1) < 1, then we are back in the same situation as in time-step t. Otherwise, if 1 ≤Wv(t +1) < 2,
then v is UP-DIRTY in the beginning of time-step t + 1. In this case, no DOWN-DIRTY node gets fixed
(and no hyperedge gets inserted) until we ensure that Wv becomes smaller than one. Hence, the value of Wv

always remains smaller than 2.

10

Claim 4.10. We have: Wv→(ik−1)(tk)> 1/β .

Proof. While making the UP-JUMP at time tk, the node v does not stop at level ik−1. The claim follows.

Claim 4.11. We have: W+
v→(ik−3)(tk)> 1/(2β).

Proof. Suppose that the claim does not hold. Then we get:

Wv→(ik−1)(tk) ≤ W+
v→(ik−3)(tk)+

Wv→(ik−3)(tk)−W+
v→(ik−3)(tk)

β 2 ≤ 1/(2β)+2/β
2 ≤ 1/β (15)

The first inequality holds since the weights of the hyperedges e∈Ev with `v(e)≤ ik−3 get scaled by at least a
factor of 1/β 2 when v moves from level ik−3 to ik−1, and the rest can only go down. The second inequality
holds since Wv→(ik−3)(tk) ≤Wv→ik−1(tk) < 2 by Claim 4.9 and the assumption W+

v→(ik−3)(tk) ≤ 1/(2β). The
last inequality holds since β = 17 by equation (1). However, equation (15) contradicts Claim 4.10.

Claim 4.11 states that W+
v→(ik−3)(tk)> 1/(2β). Since ik−1 < ik−3, equation (8) implies that W+

v→(ik−3)(t1)≤
W+

v→ik−1
(t1) ≤W+

v→i1(t1) ≤ 1/β 2. Thus during the time-interval [t1, tk], the value of W+
v→(ik−3) increases by

at least 1/(2β)− 1/β 2. This increase can occur in three ways: (1) a hyperedge e ∈ Ev is inserted with
`v(e) > ik− 3 before the UP-JUMP at time tk (which contributes to ∆T), (2) some hyperedge e ∈ Ev gains
weight due to a DOWN-JUMP of some node (say) u ∈ e,u 6= v, and `v(e) > ik− 3 after the DOWN-JUMP

(which contributes to ∆down), and (3) some hyperedge e ∈ Ev had `v(e)≤ ik−3 at t1 but `v(e)> ik−3 at tk.
Note that the total weight of the hyperedges of type (3) at time t1 incident on v at level ik−3 is at most 1/β ;
this follows from (8). Therefore, when `v(e) for such an edge e raises to > ik−3, the weight decreases by at
least a 1/β factor. Hence the total increase in W+

v→(ik−3) due to type (3) hyperedges is at most 1/β 2, and the
weight increase of at least 1/(2β)− 2/β 2 must come from hyperedges of type (1) and type (2). However
each such hyperedge e can contribute at most β−(ik−2) to the weight (since `v(e) > ik− 3). And therefore,
we get (recall that β = 17 by equation (1)):(

∆
T +∆

down
)
·β−(ik−2) ≥ 1

2β
− 2

β 2 >
1

8β
implying

(
∆

T +∆
down

)
≥ β ik−1

8β 2

Claim 4.6 gives ∆
up
k ≤ β ik−1, and therefore we get:

∆
up
k ≤ 8β

2
(

∆
T +∆

down
)

(16)

This concludes the proof of Claim 4.8 for this case.

4.5 Proof of Lemma 4.1

For technical reasons, we assume that we end with the empty graph as well. This is without loss of generality
due to the following reason. Suppose we made T updates and the current graph is G. At this point, the graph
has T ′≤ T edges. Suppose the time taken by our algorithm till now is T1. Now delete all the T ′ edges, and let
the time taken by our algorithm to take care of these T ′ updates be T2. If T1+T2 =Θ(f 2(T +T ′)) =Θ(f 2T),
then T1 = Θ(T) as well. Therefore, we assume we end with an empty graph.

When a hyperedge e is inserted into or deleted from the graph, we take O(f) time to update the relevant
data structures for its f endpoints. The rest of the time is spent in implementing the WHILE loop in Figure 1.
We take care of the two subroutines separately.
Case 1. The subroutine FIX-DOWN-DIRTY(v) is called which moves the node v from level i to level
j < i (say). We need to account for the time to find the relevant index j and the time taken to update
the relevant data structures. By Lemma 2.8, the time taken for the latter is proportional Θ(f ·∆Cdown).

11

Further, the value of Cup remains unchanged. For finding the index j < i, it suffices to focus on the edges
Ev,i = {e ∈ Ev : `v(e) ≤ i} since these are the only edges that change weight as v goes down. Therefore,
this takes time Θ(|{e ∈ Ev : `v(e) ≤ i}|). Since each of these edges had w(e) = β−i and since Wv ≤ 1

αβ 2

before the FIX-DOWN-DIRTY(v) call, we have |{e ∈ Ev : `v(e)≤ i}| ≤ β i−2/α which is precisely ∆Idown.
Therefore, the time taken to find the index j is Θ(∆Idown).

Case 2. The subroutine FIX-UP-DIRTY(v) is called which moves the node v from level i to level j > i, say.
Once again, we need to account for the time to find the relevant index j and the time taken to update the
relevant data structures, and once again by Lemma 2.7 the time taken for the latter is Θ(f ·∆Cup). Further,
the value of Cdown remains unchanged. We now account for the time taken to find the index j.

Claim 4.12. j can be found in time Θ(j− i).

Proof. To see this note that for k ≥ i,

Wv→k(t) = ∑`≥k ∑e∈Ev,`
w(e)+∑`<k

1
β k−` ∑e∈Ev,`

w(e)

since (a) edges not incident on v are immaterial, (b) the edges incident on v whose levels are already ≥ k do
not change their weight, and (c) edges whose levels are ` < k have their weight go from β−` to β−k. The
above implies that for k ≥ i,

Wv→(k+1)(t) =Wv→k(t)−
(

1− 1
β

)
∑e∈Ev,k

w(e) =Wv→k(t)−
(

1− 1
β

)
|Ev,k| ·β−k

That is, Wv→(k+1) can be evaluated from Wv→k(t) in Θ(1) time since we store |Ev,k| in our data structure. The
claim follows.

Note that the LHS of Claim 4.12 can be as large as Θ(logn). To account for the movement, we again fix
a vertex v and a phase Φv where the level of v changes from i1 to say ik. The total time for finding indices is
Θ(ik− i1). After this, there must be a DOWN-JUMP due to a call to FIX-DOWN-DIRTY(v) since the final
graph is empty. Thus, we can charge the time taken in finding indices in this phase ΦV to ∆Idown in the FIX-
DOWN-DIRTY(v) call right at the end of this phase. We can do so since ∆Idown = β ik−2/α = 1

f 2 Θ(ik) since
β = Θ(1) and α = Θ(f 2) by (1). Therefore, the total time taken to find indices in the FIX-UP-DIRTY(v)
calls in all is at most f 2Idown.

In sum, the total time taken to initialize update data structures is at most Θ
(

f ·
(
Cup +Cdown +T

))
and the

total time taken to find indices is at most Θ(f 2 · Idown). This proves Lemma 4.1.

References
[1] A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for dynamic problems.

In FOCS 2014. 1

[2] S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in O(logn) update time. In
FOCS 2011. 1

[3] A. Bernstein and C. Stein. Faster fully dynamic matchings with small approximation ratios. In SODA
2016. 1

[4] S. Bhattacharya, M. Henzinger, and G. F. Italiano. Design of dynamic algorithms via primal-dual
method. In ICALP 2015. 2

[5] S. Bhattacharya, M. Henzinger, and G. F. Italiano. Deterministic fully dynamic data structures for
vertex cover and matching. In SODA 2015. 1, 2

12

[6] S. Bhattacharya, M. Henzinger, and D. Nanongkai. New deterministic approximation algorithms for
fully dynamic matching. In STOC 2016. 1, 2

[7] B. Bosek, D. Leniowski, P. Sankowski, and A. Zych. Online bipartite matching in offline time. In
FOCS 2014. 1

[8] A. Gupta, R. Krishnaswamy, A. Kumar, and D. Panigrahi. Online and dynamic algorithms for set
cover. In STOC 2017. 2

[9] M. Gupta and R. Peng. Fully dynamic (1+ ε)-approximate matchings. In FOCS 2013. 1

[10] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and strengthening hardness
for dynamic problems via the online matrix-vector multiplication conjecture. In STOC 2015. 1

[11] M. R. Henzinger and M. L. Fredman. Lower bounds for fully dynamic connectivity problems in graphs.
Algorithmica, 22(3):351–362, 1998. 1

[12] O. Neiman and S. Solomon. Simple deterministic algorithms for fully dynamic maximal matching. In
STOC 2013. 1

[13] K. Onak and R. Rubinfeld. Maintaining a large matching and a small vertex cover. In STOC 2010. 1,
2

[14] M. Parter, D. Peleg, and S. Solomon. Local-on-average distributed tasks. In SODA 2016. 1

[15] M. Patrascu. Lower bounds for dynamic connectivity. In Encyclopedia of Algorithms, pages 1162–
1167. 2016. 1

[16] P. Sankowski. Faster dynamic matchings and vertex connectivity. In SODA 2007. 1

[17] S. Solomon. Fully dynamic maximal matching in constant update time. In FOCS 2016. 1

13

	1 Introduction
	1.1 Our Techniques

	2 Notations and Preliminaries
	3 The algorithm: Handling the insertion/deletion of a hyperedge in the input graph
	4 Analysis of the algorithm
	4.1 Epochs, jumps and phases
	4.2 Proof of Lemma 4.2
	4.3 Proof of Lemma 4.3
	4.4 Proof of Lemma 4.4
	4.4.1 Proof of Claim 4.8

	4.5 Proof of Lemma 4.1

	References

