865 research outputs found

    Adaptive multiresolution schemes with local time stepping for two-dimensional degenerate reaction-diffusion systems

    Full text link
    We present a fully adaptive multiresolution scheme for spatially two-dimensional, possibly degenerate reaction-diffusion systems, focusing on combustion models and models of pattern formation and chemotaxis in mathematical biology. Solutions of these equations in these applications exhibit steep gradients, and in the degenerate case, sharp fronts and discontinuities. The multiresolution scheme is based on finite volume discretizations with explicit time stepping. The multiresolution representation of the solution is stored in a graded tree. By a thresholding procedure, namely the elimination of leaves that are smaller than a threshold value, substantial data compression and CPU time reduction is attained. The threshold value is chosen optimally, in the sense that the total error of the adaptive scheme is of the same slope as that of the reference finite volume scheme. Since chemical reactions involve a large range of temporal scales, but are spatially well localized (especially in the combustion model), a locally varying adaptive time stepping strategy is applied. It turns out that local time stepping accelerates the adaptive multiresolution method by a factor of two, while the error remains controlled.Comment: 27 pages, 14 figure

    A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology

    Get PDF
    This work deals with the numerical solution of the monodomain and bidomain models of electrical activity of myocardial tissue. The bidomain model is a system consisting of a possibly degenerate parabolic PDE coupled with an elliptic PDE for the transmembrane and extracellular potentials, respectively. This system of two scalar PDEs is supplemented by a time-dependent ODE modeling the evolution of the so-called gating variable. In the simpler sub-case of the monodomain model, the elliptic PDE reduces to an algebraic equation. Two simple models for the membrane and ionic currents are considered, the Mitchell-Schaeffer model and the simpler FitzHugh-Nagumo model. Since typical solutions of the bidomain and monodomain models exhibit wavefronts with steep gradients, we propose a finite volume scheme enriched by a fully adaptive multiresolution method, whose basic purpose is to concentrate computational effort on zones of strong variation of the solution. Time adaptivity is achieved by two alternative devices, namely locally varying time stepping and a Runge-Kutta-Fehlberg-type adaptive time integration. A series of numerical examples demonstrates thatthese methods are efficient and sufficiently accurate to simulate the electrical activity in myocardial tissue with affordable effort. In addition, an optimalthreshold for discarding non-significant information in the multiresolution representation of the solution is derived, and the numerical efficiency and accuracy of the method is measured in terms of CPU time speed-up, memory compression, and errors in different norms.Comment: 25 pages, 41 figure

    Adaptive Multiresolution Methods for the Simulation ofWaves in Excitable Media

    Get PDF
    We present fully adaptive multiresolution methods for a class of spatially two-dimensional reaction-diffusion systems which describe excitable media and often give rise to the formation of spiral waves. A novel model ingredient is a strongly degenerate diffusion term that controls the degree of spatial coherence and serves as a mechanism for obtaining sharper wave fronts. The multiresolution method is formulated on the basis of two alternative reference schemes, namely a classical finite volume method, and Barkley's approach (Barkley in Phys. D 49:61-70, 1991), which consists in separating the computation of the nonlinear reaction terms from that of the piecewise linear diffusion. The proposed methods are enhanced with local time stepping to attain local adaptivity both in space and time. The computational efficiency and the numerical precision of our methods are assessed. Results illustrate that the fully adaptive methods provide stable approximations and substantial savings in memory storage and CPU time while preserving the accuracy of the discretizations on the corresponding finest uniform gri

    Wavelet and Multiscale Methods

    Get PDF
    [no abstract available

    Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux

    Full text link
    A fully adaptive finite volume multiresolution scheme for one-dimensional strongly degenerate parabolic equations with discontinuous flux is presented. The numerical scheme is based on a finite volume discretization using the Engquist--Osher approximation for the flux and explicit time--stepping. An adaptivemultiresolution scheme with cell averages is then used to speed up CPU time and meet memory requirements. A particular feature of our scheme is the storage of the multiresolution representation of the solution in a dynamic graded tree, for the sake of data compression and to facilitate navigation. Applications to traffic flow with driver reaction and a clarifier--thickener model illustrate the efficiency of this method

    Wavelet Based Simulation of Elastic Wave Propagation

    Get PDF

    On Multiscale Methods in Petrov-Galerkin formulation

    Full text link
    In this work we investigate the advantages of multiscale methods in Petrov-Galerkin (PG) formulation in a general framework. The framework is based on a localized orthogonal decomposition of a high dimensional solution space into a low dimensional multiscale space with good approximation properties and a high dimensional remainder space{, which only contains negligible fine scale information}. The multiscale space can then be used to obtain accurate Galerkin approximations. As a model problem we consider the Poisson equation. We prove that a Petrov-Galerkin formulation does not suffer from a significant loss of accuracy, and still preserve the convergence order of the original multiscale method. We also prove inf-sup stability of a PG Continuous and a Discontinuous Galerkin Finite Element multiscale method. Furthermore, we demonstrate that the Petrov-Galerkin method can decrease the computational complexity significantly, allowing for more efficient solution algorithms. As another application of the framework, we show how the Petrov-Galerkin framework can be used to construct a locally mass conservative solver for two-phase flow simulation that employs the Buckley-Leverett equation. To achieve this, we couple a PG Discontinuous Galerkin Finite Element method with an upwind scheme for a hyperbolic conservation law

    Haar wavelet-based adaptive finite volume shallow water solver

    Get PDF
    This paper presents the formulation of an adaptive finite volume (FV) model for the shallow water equations. A Godunov-type reformulation combining the Haar wavelet is achieved to enable solutiondriven resolution adaptivity (both coarsening and refinement) by depending on the wavelet’s threshold value. The ability to properly model irregular topographies and wetting/drying are transferred from the (baseline) FV uniform mesh model, with no extra notable efforts. Selected hydraulic tests are employed to analyse the performance of the Haar wavelet FV shallow water solver considering adaptivity and practical issues including choice for the threshold value driving the adaptivity, mesh convergence study, shock and wet/dry front capturing abilities. Our findings show that Haar wavelet-based adaptive FV solutions offer great potential to improve the reliability of multiscale shallow water models
    corecore