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1. Introduction 

Multiresolution-based studying has rapidly been developed in many branches of science 

and engineering; this approach allows one to investigate a problem in different resolutions, 

simultaneously. Some of such problems are: signal & image processing; computer aided 

geometric design; diverse areas of applied mathematical modeling; and numerical analysis. 

One of the multiresolution-based schemes reinforced with mathematical background is the 

wavelet theory. Development of this theory is simultaneously done by scientists, 

mathematicians and engineers [1]. Wavelets can detect different local features of data; the 

properties that locally separated in different resolutions. Wavelets can efficiently distinguish 

overall smooth variation of a solution from locally high transient ones separated in different 

resolutions. This multiresolution feature has been interested many researchers, especially 

ones in the numerical simulation of PDEs [1]. Wavelet based methods are efficient in 

problems containing very fine and sharp transitions in limited zones of a computation 

domain having an overall smooth structure. In brief, the most performance of such 

multiresolution-based methods is obtained in systems containg several length scales. 

Regarding wavelet-based simulation of PDEs, two different general approaches have been 

developed; they are: 1) projection methods, 2) non-projection ones. 

In the projection schemes, in general, the wavelet functions are used as solution basis 

functions. There, all of the computations are performed in the wavelet spaces; the results are 

finally re-projected to the physical space [2, 3]. In non-projection schemes, the wavelets are 

only used as a tool to detect high-gradient zones; once these regions are captured, the other 

common resolving schemes (e.g., finite difference or finite volume method) are employed to 

simulate considered problems. In this approach, all computations are completely done in the 

physical domain, and thereby the corresponding algorithms are straightforward and 
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conceptually simple [4]. There are some other schemes that incorporate these two general 

approaches. They use wavelets as basis functions in a wavelet-based adapted grid points, 

e.g. [5].  

The advantages of the wavelet-based projection methods are:  

1. Wavelets provide an optimal basis set; it can be improved in a systematic way. To 

improve an approximation, wavelet functions can locally be added; such improvements 

do not lead to numerical instability [3]. 

2. Most of the kernels (operators) have sparse representation in the wavelet spaces and 

therefore speed of solutions is high. The band width of the sparse operators can also be 

reduced by considering a pre-defined accuracy. This leads to inherent adaptation which 

no longer needs to grid adaptation [6-8].The matrix coefficients can easily be computed 

considering wavelet spaces relationship [6-8].  

3. The coupling of different resolution levels is easy [3]. The coupling coefficients can 

easily be evaluated considering multiresolution feature of the wavelet spaces [6-8]. 

4. Different resolutions can be used in different zones of the computation domain. 

5. The numerical effort has a linear relationship with system size [3]. In the wavelet 

system, the fast algorithms were developed [9]. Another considerable property of the 

wavelet transform is its number of effective coefficients: it is much smaller than data 

size, itself (in spit of the Fourier transform). These two features leads to fast and 

accurate resolving algorithms. 

The wavelet-based projection methods, however, have two major drawbacks: 1) projection 

of non-linear operators; 2) imposing both boundary conditions and corresponding 

geometries [4, 8]. 

The most common wavelet based projection methods are: the telescopic representation of 

operators in the wavelet spaces [6-8], wavelet-Galerkin [2, 3,10-19], wavelet-Taylor Galerkin 

[20-22], and collocation methods [5,23-26] (in this approach, the wavelet-based grid 

adaptation scheme is incorporated with the wavelet-based collocation scheme). Some efforts 

have been done to impose properly boundary conditions in these methods. Some of which 

are: 1) wavelets on an interval [11, 27], 2) fictitious boundary conditions [12, 13, 28, 29], 3) 

reducing edge effects by proper extrapolation of data at the edges [14], 4) incorporation of 

boundary conditions with the capacitance matrix method [2, 15]. 

Regarding non-projection approaches, the common method is to study a problem in 

accordance with the solution variation; i.e., using different accuracy in different 

computational domains. In this method more grid points are concentrated around high-

gradient zones to detect high variations, the adaptive simulation. In this case, only the 

important physics of a problem are precisely studied, a cost-effective modeling. Once the 

grid is adapted, the solution is obtained by some other common schemes, (e.g., the finite 

difference [4, 30- 38], or finite volume [39-43] method) in the physical space. The wavelet 

coefficients of considerable values concentrate in the vicinity of high-gradient zones. The 

coefficients have a one to one correspondence with their spatial grid points, and thereby, by 

considering points of considerable coefficient values, the grid can be adapted. For this 
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purpose, the points of small enough coefficient values are omitted from the computing grid. 

In these grid-based adaptive schemes, the degrees of freedom are considered as point values 

in the physical space; this feature leads to a straightforward and easy method. In some cases 

the two approaches, projection and non-projection ones, are incorporated; e.g., adaptive 

collocation methods [5, 23-26], and adaptive Galerkin ones [28, 29]. 

There is also some other approaches using wavelets only to detect local feature locations, 

without grid adaptation. In one approach, spurious oscillation locations are captured by the 

wavelets; thereafter, the oscillations are locally filtered out by a post-processing step [44-45]. 

The filtering can be done by the conjugate filtering method only in the detected points. In 

the other approach, to control spurious oscillations the spectral viscosity is locally added in 

high-gradient/dicontinuous regions; such zones are detcted by the wavelets. This approach 

is suitable for simulation of hyperbolic systems containing discontinuous solutions. There, 

artificial diffusion is locally added only in high-frequency components [46]. In these two 

approaches, the wavelet transforms are used as a tool to detect highly non-uniform localized 

spatial behaviors and corresponding zones.  

The two aforementioned general wavelet based outlooks, projection and non-projection 

ones, have successfully been implemented for simulation of stress wave propagation 

problems. The wavelet-based projection methods were successfully used for simulation of 

wave propagation problems in infinite and semi-infinite medias [12, 47-52]. Another 

important usage is wave propagation in structural engineering elements; e.g. wave 

propagation in the nano-composites [53]. The non-projection methods were also employed 

for wave-propagation problems, one can refer to [35-38]. 

In brief, it should be mentioned that other powerful and common methods exist for 

simulation of wave propagation problems for engineering problems; some of which are: the 

finite difference and finite element schemes, e.g. [54, 55]. These methods are precisely 

studied and relevant numerical strength and drawbacks are investigated. Regarding these 

schemes, some of important numerical features are: 1) source of numerical errors: truncation 

and roundoff errors, [56]; 2) effect of grid/element irregularities on truncation error and 

corresponding dissipation and dispersion phenomena [57]; 3) internal reflections from 

grids/element faces [58-65]; 4) the inherent dissipation property [66, 67]. These features lead 

in general to numerical (artificial) dissipation and dispersion phenomena. In general to 

control these two numerical drawbacks in wave propagation problems, it is desirable to 

refine spatio-temporal discritizations [68]. Considering the spatial domain, this can 

effectively be done by the wavelet theory. In the wavelet-based projection methods, the 

inherent adaptation is used, while in the non-projection ones, the multiresolution-based grid 

adaptation is utilized. 

This chapter is organized as follows. In section 2, the wavelet-based projction method will 

be survived. This section includes: 1) a very brief explanation of main concept of 

multiresolution analysis; 2) in brief review of wavelet-based projection method for solution 

of PDEs and computation of the spatial derivatives; 3) the issues related to a 2D wave 

propagation example. In section 3, the wavelet-based non-projection ones will be presented. 
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It includes: 1) wavelet-based grid adaptation scheme with interpolating wavelets; 2) solution 

algorithm; 3) smoothing splines; 4) an example: wave propagation in a two layered media. 

This chapter ends with a brief conclusion about the presented wavelet-based approaches. 

2. Wavelet based projection method in wave propagation problem 

In the wavelet based projection methods, the wavelets are used as basis functions in 

numerical simulation of wave equations. This section has following sub-sections: 

multiresolution analysis and wavelets; representation of operators in the wavelet spaces; the 

semi group time integration methods; a SH wave propagation problem.  

2.1. Multiresolution analysis and wavelet basis 

In this subsection, wavelet-based multiresolution analysis and wavelet construction 

methods will be survived.  

2.1.1. Multiresolution analysis 

A function or a signal, in general, can be viewed as a set of a smooth background with low 

frequency component (approximation one) and local fluctuations (local details) of variant 

high frequency terms. The word “multiresolution” refers to the simultaneous presence of 

different resolutions in data. In the multiresolution analysis (MRA), the space of functions 

that belong to square integrable space, 2( )L  , are decomposed as a sequence of detail 

subspaces, denoted by  kw , and an approximation subspace, indicated with jv . The 

approximation of ( )f t  at resolution level j , ( )f t , is in jv  and the details ( )kd t  are in kw  

(detail sub-spaces of level k ). The corresponding scale of resolution level j  is usually 

chosen to be of order 2 j  [69, 70]. In orthogonal wavelet systems, the multiresolution 

analysis of 2( )L   is nested sequences of the subspaces  jv  such that: 

i. 2
1 0 1... ... ( )v v v L      

ii.   2
0 ,v v L

 
   

iii. 1( ) (2 )j jf t v f t v     

iv. 0 0( ) ( )f t v f t k v     

v. Exists a function ( )t , called the scaling function such that set  ( )
k Z

t k


 is a basis of 

0v . 

The sub-space jv  denotes the space spanned by family ,{ ( )}j k t , i.e., ,{ ( )}j j k
k

v span t  where 

/2
, ( ) 2 (2 )j j

j k t t k   . The , ( )j k t  is a scaled and shifted version of the ( )t ; thereby the 

function ( )t  is known as the father wavelet. The scale functions ( , ( )j k t ) are localized in 

both spatial (or time) and frequency (scale) spaces. The function ( )t  is usually designed so 
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that: ( ) 1t dt   & 
2

( ) 1t dt  . The second equation implies that the scaling function ( ( )t

) has unit energy and therefore by multiplying it with data, the energy of signals do not 

alter. The dilated and shifted version of the scale function, , ( )j k t  is usually normalized with 

the coefficient /22 j  to preserve the energy conservation concept; namely, 
2

, ( ) 1j k t dt  . 

Since 1j jv v  , there exist a detail space jw  that are complementary of jv  in 1jv  , i.e., 

1j j jv w v   . The subspace jw  itself is spanned by a dilated and shifted wavelet function 

family, i.e.  , ( )j k t , where 
/2

, ( ) 2 (2 )j j
j k t t k   ; the function ( )t  is usually referred as 

the mother wavelet. The wavelet function, , ( )j k t  is localized both in time (or space) and 

frequency (scale); it oscillates in such a way that its average to be zero, i.e.: , ( ) 0j k t dt 
.This is because the wavelet function measures local fluctuations; the variations which are 

assumed to have zero medium. Similar to scaling function and for the same reason, energy 

of the wavelet functions are unit, i.e., 
2

, ( ) 1j k t dt  . The approximate and detail subspaces 

satisfy orthogonally conditions as follows: j jv w  & ( j jw w for j j   ). These relations 

lead to: , ,, 0j k j l    & , ,,j k j l kl jj      & , ,,j k j l kl   where 

*( ). ( ) ( ) ( )f t g t f t g t dt    (the inner product). Due to the fact that 0 1v v  and 0 1w v , then 

any function in 0v  or 0w  can be expanded in terms of the basis function of 1v , i.e.: 

( ) 2 (2 )k
k

t h t k    & ( ) 2 (2 )k
k

t h t k   . These important equations are known as: 

dilation equations, refinement equations or two-scale relationships [69-72]. The 
k

h  and 
k

h  are 

called filter coefficients, and can be obtained, in general, by the following relationships: 

1, ,k kh     and 1, ,k kh     . The orthogonality condition of ( )x k   and ( )x k   

leads to relationship: 1( 1)k
k N kh h      where N  is length of the scaling coefficient filters, 

  , 1, ,kh k N  .  

As mentioned before, the multiresolution decomposition of 2( )L   leads to a set of 

subspaces with different resolution levels; i.e., 2
1 ...j j jL v w w     . In this regard, by 

using one decomposition level, a function 
max

( ) Jf x v  (a space with sampling step max1 / 2 J ) 

can be expanded as: 
max max 1max 1,, max ,( ) ( 1, ) ( ) ( 1, ) ( )J l J n

l n

f x c J k x d J n x 


 


 

   
         
   
   

By following the step by step decomposition of approximation space, if the coarsest 

resolution level is min max 1J J  , then the function 
max

( ) Jf x v  can be represented as:  
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max

min

min

1

min , ,( ) ( , ) ( ) ( , ) ( )
J

J l j n
l j J n

f x c J k x d j n x 
 

  

  
         

    

This equation shows that the function ( )f x  is converted into an overall smooth 

approximation (the first parenthesis), and a series of local fluctuating (high-frequency 

details) of different resolutions (the second parenthesis). In the above equation ( , )c j k  and 

( , )d j k  are called the scaling (approximation) and wavelet (detail) coefficients, respectively. 

These transform coefficients are usually stored in an array as follows: 

        max max min min( 1, ) , ( 2, ) , , ( , ) , ( , )d J n d J n d J n c J n   ; this storing style is commonly 

referred as the standard form. 

In the orthogonal wavelet systems, the coefficients ( , )c j k  and ( , )d j k  can be determined by: 

,( , ) ( ), ( )j kc j k f x x   & ,( , ) ( ), ( )j kd j k f x x  . Fast algorithms were developed to these 

coefficient evaluations and relevant inverse transform [9, 69]. 

In the following, the multiresolution-based decomposition procedure is qualitatively 

investigated by an example. Figure 1, illustrates the horizontal acceleration recorded at the 

El-Centro substation (
1

f ) and corresponding wavelet-based decompositions. There, the 

symbol 0a  refers to the approximation space ( 0 0,(0, ) ( )ll
a c k x


 ) and 0d to 9d  denote 

the detail spaces ( ,( , ) ( )j j nn
d d j n x


 ); where, the finest and coarsest resolution levels 

are max 10J   and min 0J  , respectively. The superposition of all projected data, 2f  (i.e., 

9

2 0 0 jj
f a d


  ) and the difference 2 1f f  are presented as well. It is clear that 0a  

approximates the overall smooth behavior; the projections 0d - 9d  include local fluctuations 

in different resolutions. There, the frequency content of jd is in accordance with the 

resolution level j . The wavelet used for the decompositions is the Daubechies wavelet of 

order 12 (will be explained subsequently). 

2.1.2. Derivation of filter coefficients 

Considering the above mentioned necessary properties of scaling function and other 

possible assumptions for scaling/wavelet functions, the filter coefficients can be evaluated. 

In orthogonal systems, necessary conditions for the scaling functions are [71]: 

1. Normalization condition: ( ) 1t dt   which leads to 
1

1
N

k
k

h


 ; N  denotes filter length. 

2. Orthogonality condition: 0,( ). ( ) lt t l dt     or equivalently 2 0,
1

N

k k l l
k

h h 


 ; the 

parameter 0,l  denotes the Kronecker delta. For filter set   : 1,2, ,kh k N  where N  is 

an even number, this condition provides / 2N  independent conditions. 
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Figure 1. The El Centro acceleration and corresponding multiresolution representation.  

Essential conditions 1 & 2 provide / 2 1N   independent equations. Other requirements can 

be assumed to obtain the remaining equations. 

One choice is the necessity that the set function  ( )x k  can exactly reconstruct 

polynomials of order upto but not greater than p  [71, 72]. The polynomial can be 

represented as: 1
0 1 1( ) p

pf x x x   
    ; on the other hands: ( ) ( )k

k

f x c x k




  . 

By taking the inner product of the wavelet function ( ( )x ) with the above equation, other 

conditions can be obtained; since: ( ), ( ) ( ), ( ) 0k
k

f x x c x k x  




      , or: 

1
0 1 1( ), ( ) ( ) . ( ) . ( ) 0p

pf x x x dx x x dx x x dx      
        . 

As i coefficients are arbitrary, then it is necessary that each of the above integration to be 

equal to zero: . ( ) 0, 0,1, , 1lx x dx l p     ; these equations lead to p  equations where 

1p   of them are independent [69, 71, 72]. These equations mean that the first p  moments 

of the wavelet function must be equal to zero; this condition in the frequency domain leads 

to relationship 
0

ˆ ( ) / 0, 0,1, , 1l l

w
d w dw l p


       . It can be shown that these conditions 

lead to conditions: ( 1) 0, 0,1, , 1
N

k l
k

k

h k l p     . 
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In case that / 2p N , where N  is even (for filter coefficients of length N ) the resulted 

wavelet family is known as the Daubechies wavelets. In this case, for N  scaling filter 

coefficients, N  independent equations exist, and unique results can be obtained. 

In Figure 2 the Daubechies scaling and wavelet functions of order 12 in spatial ( ( )x & 

( ))x  and frequency ( ˆ( )w & ˆ ( )w ) domains are illustrated. It is evident that functions 

( )x
 
& ( )x , and ˆ( )w  & ˆ ( )w  have localized feature. In this figure ( )x  denotes the 

first derivative of the scaling function. 

Other choices can be considered for scaling/wavelet functions construction; some of such 

assumptions are: imposing vanishing moment conditions for both scaling and wavelet 

functions (e.g., Coiflet wavelets), obtaining maximum smoothness of functions, 

interpolating restriction, and/or symmetric condition [69]. To fulfill some of these 

requirements, the orthogonality requirement can be relaxed and the bi-orthogonal system is 

used [69]. For numerical purposes, some other requirements can also be considered; for 

example Dahlke et al. [16] designed a wavelet family which is orthogonal to their 

derivatives. This feature leads to a completely diagonal projection matrix and thereby a fast 

solution algorithm [14]. 

 

Figure 2. The Daubechies scaling and wavelet functions of order 12 in spatial and frequency domains, 

as well as first derivative of the scaling function. 

2.2. Expressing operators in wavelet spaces 

In this subsection, multiresolution analysis of operators will be presented [6-8].  

Assume T  denotes an operator of the following form: 2 2: ( ) ( )T L L  . The aim is to 

represent the operator T in the wavelet spaces; this can be done by projection the operator in 

the wavelet spaces.  
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The projection of the operator in the approximation space of resolution level j  ( jv ) can be 

represented as: 2: ( )j jP L v  where, , ,( )( ) , ( )j j k j kP f x f x   . In the same way, the 

projection of the operator in the detail subspace jw , of resolution j , is: 

2
1: ( ) ;j j j j jQ L w Q P P    where, , ,( )( ) , ( )j j k j kQ f x f x  . The jQ  definition is 

directly resulted from the multiresolution property, i.e., 1j jv v   and 1 1j j jv v w   . 

For representing the operator T  in the multiresolution form, firstly, a signal 
maxJx v  is 

considered, where maxJ  denotes the finest resolution level, where max1 / 2 J
dx  . The data x  

can then be projected into the scaling (approximation) and detail spaces of resolution 

max 1j J   by one step wavelet transform, i.e.: ( ) ( )j jx P x Q x  . 

Considering a linear operator (function) T  and multiresolution feature, the function ( )T x  

can be presented as follows: 
max

( ) ( ) ( ) ( )J j j j j j jT x T T P Q T P T Q TP TQ       . 

However ( )jT P  & ( )jT Q  are no longer orthogonal to each other; so each of them can be re-

projected to jv  and jw  as follows: ( ) & ( )j j j j j j j j j jT P PTP Q TP T Q PTQ Q TQ    . 

By substituting these relationships in the equation 
max

( ) JT x T , we have: 

( ) ( )j j j j j j j jT x Q TQ Q TP PTQ P TP     

Each term of the above equation belongs to either jv  or jw  as follows: 

;j j j jA Q fQ w  ;j j j jB Q fP w  ;j j j jP fQ v   j j j jT P fP v   

In the above equations, jB  and j  represent interrelationship effects of subspaces jv  and 

jw . Using these symbols, the operator T can be rewritten as: 
max 1 ( )J j j j j jT T A B T     

By continuously repeating the above mentioned procedure for operators jT , finally, the 

maxJT  can be expressed in the multiresolution representation as follows: 

max

max min

min

( )
J

J i i i J
i J

T A B T


      

where minJ  denotes the coarsest resolution level (i.e., min1 / 2 Jdx  ). This representation is 

the telescopic form of the operator T . 

The schematic shape of the operator T in telescopic (multiresolution) form is presented in 

Figure 3; this form of representation is known as the Non-Standard form (NS form). In this 
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figure, it is assumed that: min 1J  , max 4J  . There, the coefficients id  and is  are the scale 

and detail coefficients, respectively; these coefficients are obtained from the common 

discrete wavelet transform of data x . The ˆ ˆ&i id s are the NS form of the wavelet coefficients, 

and should be converted to standard form by a proper algorithm (will be discussed). 

The projection of the operator T  in the wavelet space results to set  , ,j j j
j Z

A B


 , where j  

denotes resolution levels. This form is called NS from, since both of the scale ( js ) and detail 

( jd ) coefficients are simultaneously appeared in the formulation, see Figure 3. 

 

Figure 3. Schematic shape of a NS form of the operator T . 

The matrix elements of projected operators jA , jB , j , and jT  are '

j , '

j , '

j and '

js , 

respectively; for the derivative operator of order n , /n nd dx , the element definitions are: 

     ( )2 (2 ) (2 ) 2 2
n n

j j j j j jn
il i lx i x l dx   






     

     ( )2 (2 ) (2 ) 2 2
n n

j j j j j jn
il i lx i x l dx   






     

     ( )2 (2 ) (2 ) 2 2
n n

j j j j j jn
il i lx i x l dx   






     
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     ( )2 (2 ) (2 ) 2 2
n n

j j j j j jn
il i ls x i x l dx s 






     

Where: 

( ) ( )
n

l n

d
x l x dx

dx
  




  ( ) ( ) ,

n

l n

d
x l x dx

dx
  




   

( ) ( ) ,
n

l n

d
x l x dx

dx
  




  ( ) ( )

n

l n

d
s x l x dx

dx
 




   

The coefficients j
il , j

il , j
il and j

ils  are not independent; the coefficients j
il , j

il , j
il  can be 

expressed in terms of j
ils  . This is because there is the two-scale relationship between the 

wavelet (detail) and scale functions; for more details see [6, 7]. This fact, leads to a simple 

and fast algorithm for calculation of jA , jB , j  elements. The NS form of the operator 

/d dx obtained by the Daubechies wavelet of order 12 ( 12Db ) is presented in Figure 4; there 

min 7J  & max 10J  . It is clear that the projected operator is banded in the wavelet space. 

To convert  
min max 1

ˆ ˆ,j j
J j J

d s
  

to the standard form  
min

min max 1
,j J

J j J
d s

  

 
 
 

, the vector ˆ
js  is 

expanded for min max 1J j J    by the following algorithm [73]: 

1. Set 
max max1 1 0J Jd s    (the initialization step), 

2. For max max min1, 2, ,j J J J      

(2.1.) If max 1j J  then evaluate 1jd  & 1js  from equation 1 1
ˆ

j j j js s d s    , where 

1 1
ˆ( )j j j jd Q s s   and 1 1

ˆ( )j j j js P s s   . 

(2.2.) evaluate 1 1 1
ˆ

j j jd d d    , 

3. At level 
minj J , we have 

min min min
ˆ

J J Js s s  . 

The aforementioned telescopic representation is for 1D data. For higher dimensions, the 

extension is straightforward: the method can independently be implemented for each 

dimension. 

2.3. The semi-group time discretization schemes 

The scheme used here for temporal integration is the semi-group methods [74, 75]. These 

schemes have a considerable stability property: corresponding explicit methods have a 

stability region similar to typical implicit ones. 

The semi-group time integration scheme can be used for solving nonlinear equations of 

form: in, L N ( ) d
tu u f u    
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Figure 4. The NS form of operator /d dx  obtained by 12Db ; it is assumed: 
min 7J  & 

max 10J  . 

where: L  and N  represent the linear and non-linear terms, respectively; ( , )u u x t ; dx , 

1,2,3d  ; [0, ]t T . The initial condition is: in0( ,0) ( )u x u x  , and the linear boundary 

condition is: n
1B ( ,0) 0 , [0, ]du x o t T   . 

Regarding the standard semi-group method, the solution of the above mentioned equations 

is a non-linear integral equation of the form: .L ( )L

0
( , ) . ( ,0) N( ( , ))

tt tu x t e u x e u x d     . 

For numerical simulations, the ( , )u x t should be discretized in time; the discretized value at 

time 0nt t n t    ( t  is the time step) will be denoted by ( , )n nu u x t . In the same way the 

discrete form of N( ( , ))u x t  at nt t  is N N( ( , ))n nu x t . 

If the linear operator is a constant, i.e., L q , the discretized form of the above equation is 

[74]: 
1

. .
1 1 1

0

( .N .N )
M

q l t
n n l n m n m

m

u e u t  



    


     , where 1M   is the number of time levels 

considered in the discretization and l M ; the coefficients   and m are functions of .q t . 

It is clear that the explicit solution is obtained when 0  ; for other choices the scheme is 

implicit. For case 1l  & 0   (the explicit method) the coefficients   and m  are presented 

in Table (1). In this table, for linear operator L  the coefficient kQ  is [74]: 

L. 1

0

(L. ) (L. )
(L. ); (L. ) ; (L. ) ; 0,1,

!(L. )

t j k
j

k k j jj
k

e E t t
Q Q t Q t E t j

kt

 



  
      


   

For 0,1,2j   the above mentioned relations yield: L
0(L ) ;tQ t e  

L 1
1(L ) ( )(L ) ;tQ t e t    I L 2

2(L ) ( L )(L )tQ t e t t      I ; where I  is the identity matrix. 
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order  
2  1  0  M  

1 0  
0  1Q  1 

2 0
2Q  1 2Q Q  2 

3 
2 3/ 2Q Q  2 32( )Q Q   1 2 33 / 2Q Q Q   3 

Table 1. Coefficient values for case 0 & 1l    (the explicit scheme), where  k kQ Q q t  . 

2.4. Simulation of 2D SH propagating fronts 

The governing equation of the SH scalar wave (anti-plane shear wave) is: 

2

2

y y y

y

u u u
f

x x z zt
  

      
               

 

Where ( , )y yu u x z  is the out-of plane displacement;   and   are shear modules and 

density, respectively. By defining a linear operator Ly , the above mentioned equation can 

be rewritten as: 
2

2
L .

y y

y y

u f
u

t 


 


 where 

1 1
Ly x x z z

 
 

      
          

. 

For using the semi-group temporal integration scheme, a new variable /y yv u t    is 

introduced and consequently the above equation will be represented as a system of vectors: 

 &  L .
y y y

y y y

u v f
v u

t t 

 
  

 
 

This system can be rewritten in vector notation as follows [48]: 

0 01
 where ; ;

L 0

y

y yy

u

fv 

     
                 

I
U LU F U L F  

The simplest explicit semi-group time integration scheme is obtained for case 0 & 1M   ; 

in this case the discretized form of the wave equation is: 1 0. .t
n n ne t 
   LU U F . 

For utilizing the semi-group method the non-linear term te L  is approximated by 

corresponding Taylor expansion [48]: 
2 3 4

2 3 4. ...
2! 3! 4!

t t t t
e t   

      L I L L L L . 

The coefficient 0  can be evaluated as: 0 1
1( ) ( )( )tQ t e t      LL I L . Similarly, the 0  

can be approximated by its Taylor expansion, i.e.: 
2 3

2 3
0 . ...

2 6 24

t t t   
    I L L L . 
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2.4.1. The absorbing boundary conditions: infinite boundaries 

The absorbing boundaries are usually used for presenting infinite boundaries. The defect of 

numerical simulations is occurrence of artificial boundaries which reflect incoming energies 

to the computation domain. In this study, the absorbing boundary introduced in [76] is used 

to simulate infinite boundaries, where the absorbing boundary condition is considered 

explicitly. Therefore, the wave equation is modified by a damping term ( , ). ( , , )yQ x z u x z t  

where, ( , )Q x z  is an attenuation factor. This factor is zero in computation domain and 

increases gradually approaching to the artificial boundaries. Consequently, the waves 

incoming towards these boundaries are gradually diminished. In general, no absorbing 

boundary can dissipate all incoming energies, i.e. some small reflections will always remain. 

The above mentioned modification, performed for SH wave equation is as follows:  

2

2

1y y y y yu u u u f
Q

t x x z zt
 

 

                            
 

And the modified vector form of the equation is: 
0 01

; ;
L

y

y yy

u

Q fv 

     
               

I
U L F . 

2.4.2. Free boundaries 

There are different approaches for imposing the free boundary conditions in finite-

difference methods; some of which are: 1) using equivalent surface forces (explicit 

implementation) [48]. In this method the equivalent forces will be up-dated in each time 

step; 2) employing artificial grid points by extending the computing domain (a common 

method); 3) considering nearly zero properties for continuum domain in simulation of the 

free ones [77]; in this case the boundary is replaced with an internal one. In the following 

examples (done by the wavelet based projection method) the third approach will be used. 

The first method are mostly be used for simple geometries. 

2.4.3. Example 

In the following, a scalar elastic wave propagation problem will be considered. The results 

confirm the stability and robustness of the wavelet-based simulations. 

Example: Here scattering of plane SH waves due to a circular tunnel in an infinite media will 

be presented. The absorbing boundary is used for simulation of infinite domain; the 

considered function of ( , )Q x z  is:    2 22 2. .. .( , ) . .x x z zx zb X n b Z nb X b Z
x zQ X Z a e e a e e

          
   

 

where: /X x dx ; /Z z dz ; 1 / 128dx dz  ; 10000x za a  ; 0.02x zb b   ; 128;x zn n   

0,1x     ; 0,1z     . In simulations it assumed: max 7J   (the finest resolution level); 
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min 4J  . The Daubechies wavelet of order 12 is considered in calculations. The assumed 

mechanical properties are: 41.8 10 kPa    & 32 /ton m  .  

The plane wave condition is simulated by an initial imposed out-of plane harmonic 

deformation where corresponding wave number is 64 / 12k  . For time integration, the 

simplest form of the semi-group temporal integration method is used. The snapshots of 

results (displacement ( , , )yu x z t ) at different time steps are presented in Figure 5; there the 

light gray circle represents the tunnel. The displacement ( , , 0.0048)yu x z t   is illustrated in 

Figure 6; the total CPU computation time is 569 sec. for two different uniform grids, this 

problem is re-simulated by the finite difference method (with accuracy of order 2 in the 

spatial domain); the grid sizes are 143 143  and 200 200  uniform points. Temporal 

integrations are done by the 4th Runge-Kutta method. Corresponding displacements at 

0.0048t   are illustrated in Figure 7. Considering Figures 6 & 7, it is clear that the 

dispersion phenomenon occurs in the common finite difference scheme. There, in each 

illustration, total CPU computational time presented in the below of each figure. 

 

Figure 5. The snapshots of displacement ( ( , , )yu x z t ) at different times. 
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Figure 6. The displacement ( , , )yu x z t  at time 0.0048t  , obtained by the wavelet-based method. 

 

Figure 7. The displacement ( , , )yu x z t  at 0.0048t  , obtained by the finite difference method; the 

right and the left figures correspond to grids of size 143 143  and 200 200 , respectively.  

3. Wavelet based simulation of second order hyperbolic systems (wave 

equations) 

In this section, wavelet-based grid adaptation method is survived for modeling the second 

order hyperbolic problems (wave equations). The strategy used here is to remove spurious 

oscillations directly from adapted grids by a post-processing method. The employed stable 

smoothing method is the cubic smoothing spline, a kind of the Tikhonov regularization 

method. This section is devoted to the following subsections: interpolating wavelets and 
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corresponding grid adaptation; relevant algorithm for adaptive simulation of wave 

equations; smoothing splines definition; a 2D P-SV wave propagation example. 

3.1. Interpolating wavelets and grid adaptation 

In multiresolution analysis, each wavelet coefficient (detail or scale) is uniquely linked to a 

particular point of underlying grid. This distinctive property is incorporated with 

compression power of the wavelets and therefore a uniform grid can be adapted by grid 

reduction technique. 

In this method a simple criteria is applied in 1D grid, based on the magnitude of 

corresponding wavelet coefficients. The existing odd grid points at level j  should be 

removed if corresponding detail coefficients are smaller than predefined threshold (  ); 

wavelet coefficients and grid points have one-to-one correspondence [69]. 

In this work, Dubuc-Deslauriers (D-D) interpolating wavelet [69] is used to grid adaptation. 

The D-D wavelet of order 2 1M   (with support ( ) [ 2 1,2 1]Supp M M     ), is obtained by 

auto-correlations of Daubechies scaling function of order M  (with M  vanishing moments). 

The D-D scaling function satisfies the interpolating property and has a compact support 

[69]. In the case of the D-D wavelets, the grid points correspond to the approximation and 

detail spaces at resolution j  are denoted by jV  and jW , respectively. These sets are 

locations of the wavelet transform coefficients: the ( , )c j k and ( , )d j k locations belong to jV  

and jW , respectively. These locations are: 

, ,

1
1,2 1 1,2 1

{ [0,1] : / 2 }; , {0,1, ,2 }

{ (0,1) : (2 1) / 2 }; , {0,1, ,2 1}

j j
j j k j k

j j
j j k j k

V x x k j k

W x x k j k
   

    

      

 

 
 

Regarding interpolation property of D-D scaling functions, the approximation coefficients (

min( , )c J k ) at points 
min min,J k Jx V  are equal to sampled values of a considered function ( )f x

at these points, i.e., 
minmin ,( , ) ( )J kc J k f x . The detail coefficients measured at points 

1,2 1j k jx W    (of resolution j ) is the difference of the function at points 1,2 1j kx    (i.e., 

1,2 1( )j kf x   ) and corresponding predicted values (the estimated ones in the approximation 

space). The predicted values are those obtained from the approximation space of resolution 

j  (the corresponding points belong to jV ); the estimated values are denoted by 

1 1,2 1( )j j kPf x   . In the D-D wavelets, a simple and physical concept exist for such estimation; 

the estimation at 1,2 1j kx    is attained by the local Lagrange interpolation by the known 

surrounding grid points  1,2 ,j k j k jx x V    (namely, the even-numbered grid points in 1jV 

). For the D-D wavelet of order 2 1M  , 2M most neighbor points, including in jV , are 

selected in the vicinity of 1,2 1j kx    for interpolation; for points far enough from boundary 

points, the selected points are: 1,2 2{ } { 1, 2, , }j k nx n M M M        . Using such set, the 

estimation at the point 1,2 1j kx    is denoted by 1 1,2 1( )j j nPf x   , and the detail coefficients are: 

, 1,2 1 1 1,2 1( ) ( )j n j n j j nd f x Pf x      . 
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The above mentioned 1D reduction technique can easily be extended to 2D grid points [30, 

34]. The boundary wavelets, introduced by Dohono [78], are also used around edges of 

finite grid points. 

3.2. Wavelet-based adaptive-grid method for solving PDEs 

At the time step (
n

t t ), if the solution of PDE is ( , )f x t , then the procedure for wavelet-

based adaptive solution is: 

1. Determining the grids, adapted by adaptive wavelet transform, using 1( , )nf x t   (step

1n ). The values of points without 1( , )nf x t  , are obtained by locally interpolation (for 

example, by the cubic spline method); 

2. Computing the spatial derivatives in the adapted grid using local Lagrange 

interpolation scheme, improved by anti-symmetric end padding method [36]. In this 

regard, extra non-physical fluctuations, deduced by one sided derivatives, are reduced. 

Here, five points are locally chosen to calculate derivatives and therefore a high-order 

numerical scheme is achieved [4, 33]; 

3. Discretizing PDEs in spatial domain first, and then solving semi-discrete systems. The 

standard time-stepping methods such as Runge-Kutta schemes can be used to solve 

ODEs at the time t=tn; 

4. Denoising the spurious oscillations directly performed in non-uniform grid by 

smoothing splines (the post processing stage); 

5. Repeating the steps from the beginning. 

For 1D data of length n, smoothing spline of degree 2 1m  , needs 2
.m n  operations [79], and 

a wavelet transform (employing pyramidal algorithm) uses n operations. Therefore both 

procedures are fast and effective. However for cost effective simulation, the grid is adapted 

after several time steps (e.g. 10-20 steps) based on the velocity of moving fronts. In this case, 

the moving fronts can be properly captured by adding some extra points to the fronts of 

adapted grid at each resolution level (e.g., 1 or 2 points to each end at each level). 

3.3. Smoothing splines 

The noisy data are recommended not to be fitted exactly, causing significant distortion 

particularly in the estimation of derivatives. The smoothing fit is used to remove noisy 

components in a signal; therefore, interpolation constraint is relaxed. The discrete values of 

n  observations ( )
j j

y y x  where 1,2,...,j n  and 
1 2

...
n

x x x    are assumed in order to 

determine a function ( )f x , that ( )
j j j

y f x   . 
j

  are random, uncorrelated errors with zero 

mean and variance 2

j
 . Here, ( )f x  is the smoothest possible function in fitting the 

observations to a specific tolerance. It is well known that the solution to this problem is 

minimizer, ( )f x ,of the functional:  

22

1

(1 )
( ) ( ( ) / ) , 0 1

n
m m

j j j
j

p
W y f x d f x dx dx p

p


      
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where, (1 ) /p p    ( 0    ) is a Lagrangian parameter, n is the number of observations,

j
W  is weight factor at point jx and m is the derivative order . 

It can be shown that spline of degree 2 1k m  , having 2 2m   continuous derivatives, is an 

optimal solution; where, 2n m . In this chapter the cubic smoothing spline is chosen to 

have a minimum curvature property; hence, 2m   ( 2 1 3m   ) and 2
1[ , ]nf C x x  [80-82].  

According to this formula, the natural cubic spline interpolation is obtained by 1p   and 

the least-squares straight line fit by 0p  . In 1p   the interpolating property is vanished 

while the smoothing property is increased. In the above functional, the errors are measured 

by summation and the roughness by integral. Therefore, the smoothness and accuracy are 

obtained simultaneously. In the mentioned equations, the trade-off between smoothness 

and goodness of fit to the data is controlled by smoothing parameter. 

The p  should be selected properly, otherwise it leads to over smoothed or under smoothed 

results. The former are seen in the scheme presented in Reinsch [80], according to 

Hutchinson-Hoog, [79] and the latter in the scheme offered in Craven-Wahba [83], according 

to Lee [84]. 

The smoothness and accuracy in fitting should be incorporated in such a way that the 

proper adapted grid and accurate solution are obtained simultaneously in adaptive 

simulations. Hence trial-and-error method is effective in finding appropriate range of p . 

This study shows that in { } 1jW  , the approximated proper values of p  are 0.75- 0.95. The 

lower values of p  are applicable for non-uniformly weighed data, i.e. 1jW  . The values 

of { }iW  and p  can be constant or variable in {( , )}i ix y sequence [85]. Here, the constant 

weights and smoothing parameter are studied. The { }jW is assumed as 1  in all considered 

cases.  

Smoothing spline, being less sensitive to noise in the data, has optimal properties for 

estimating the function and derivatives. The error bounds in estimating the function, 

belonging to Sobolev space, and its derivatives are presented by Ragozin [86]. He showed 

that the estimation of function and its corresponding derivatives are converged as the 

interpolating properties and the sampled points are increased [86].  

The smoothing splines work satisfactory for irregular data; this is because the method is a 

kind of Tikhnov regularization scheme [82, 87, 88].  

3.4. Numerical example  

The following example is to study the effectiveness of the proposed method concerning 

some phenomena in elastodynamic problems. Regarding using multiresolution-based 

adaptive algorithm, the simulation of wave-fields can properly be performed in the media 

especially one has localized sharp transition of physical properties. The example of such 

media is solid-solid configurations. In fact, to be analyzed by traditional uniform grid-based 
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methods, these media show major challenges. The main assumptions in the presented 

example are: 1- applying D-D interpolating wavelet of order 3; 2- decomposing the grid 

(sampled at 8
1 / 2  spatial step in the finest resolution) in three levels; 3- repeating re-

adaptation and smoothing processes every ten time steps. 

Example: In this example, the wave-fields are presented in inclined two-layered media with 

sharp transition of physical properties in solid-solid configuration. The numerical methods 

which do not increase the number of grid points around the interface, have difficulties with 

the problems of layered media. In such problems, the speeds of elastic waves are largely 

different. The incident waves, either P or S, can be reflected and refracted from interface in 

the form of P and S waves.  

Schematic shape of considered computational domain is illustrated in Figure 8. It is 

assumed that the top layer is a soft one, while the other one is a stiff layer. It is considered 

that at point S, the top layer is subjected to an initial imposed deformation ( , , 0)
x

u x z t   

which is: 2 2( , , 0) exp( 500(( 0.35) ( 0.25) ))zu x z t x z      . In the numerical simulation it is 

assumed that: 0.85p   and 5
10  . As mentioned before, the absorbing boundary condition 

is considered explicitly for simulation of infinite boundaries. This modification, performed 

for P-SV wave equations, is: 

   
   

, , ,

, , ,

( 2 ) ( ) ( ( , ). )

( 2 ) ( ) ( ( , ). )

x xx x zz z xz x x

z zz z xx x xz z z

u u u u Q x z u

u u u u Q x z u

     

     

     

     

 

 
 

In the above equation, it is assumed that: 
2 2 2

. .(1 ) .(1 )
( ) ( )x x z

b x b x b z

x z
Q a e e a e

    , where 

30
x z

a a  , and 110, 70
x z

b b    . The free boundary is imposed by equivalent force in the 

free surface boundary [48]. 

The snapshots of solutions 
x

u  and 
z

u  and corresponding adapted grids are shown in 

Figures 9-11, respectively. In each figure, the illustrations (a) to (d) correspond to times 

0.298, 0.502, 0.658, and 0.886 sec, respectively. It is obvious that, the points are properly 

adapted and most of the energy is confined in the top layer, the soft one. 

4. Conclusion 

Multiresolution based adaptive schemes have successfully been used for simulation of the 

elastic wave propagation problems. Two general approaches are survived: projection and 

non-projection ones. In the first case the solution grid in not adapted, while in the second 

one it is done. the results confirm that the projection method is more stable than the 

common finite differnce schemes; since in the common methods spurious oscillations 

develop in numerical solutions. In the wavelet-based grid adaptation method, it is shown 

that grid points concentrate properly in both high-gradient and transition zones. There, 

for remedy non-physical oscillations the smoothing splines (a regularization method) are 

used. 
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Figure 8. Schematic shape of a inclined two-layered media, solid-solid configuration. The soft layer is 

above a stiff layer. 

 

Figure 9. Snapshots of solution xu  at times: a) 0.298, b) 0.502, c) 0.658, d) 0.886. 
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Figure 10. Snapshots of solution zu  at times: a) 0.298, b) 0.502, c) 0.658, d) 0.886. 

 

Figure 11. Adapted grid points at times: a) 0.298, b) 0.502, c) 0.658, d) 0.886. 
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