208,934 research outputs found

    From path graphs to directed path graphs

    Get PDF
    We present a linear time algorithm to greedily orient the edges of a path graph model to obtain a directed path graph model (when possible). Moreover we extend this algorithm to find an odd sun when the method fails. This algorithm has several interesting consequences concerning the relationship between path graphs and directed path graphs. One is that for a directed path graph, path graph models and directed path graph models are the same. Another consequence concerns the difference between path graphs and directed path graphs in terms of forbidden induced subgraphs. This can be used to deduce the forbidden induced subgraph characterization of directed path graphs from the forbidden induced subgraph characterization of path graphs. The last consequence is algorithmic and shows that the recognition of directed path graphs is not more difficult than the recognition of path graphs.Trabajo publicado en Lecture Notes in Computer Science book series (LNCS, vol. 6410)Facultad de Ciencias Exacta

    Detours in Directed Graphs

    Get PDF
    We study two "above guarantee" versions of the classical Longest Path problem on undirected and directed graphs and obtain the following results. In the first variant of Longest Path that we study, called Longest Detour, the task is to decide whether a graph has an (s,t)-path of length at least dist_G(s,t)+k (where dist_G(s,t) denotes the length of a shortest path from s to t). Bezáková et al. [Ivona Bezáková et al., 2019] proved that on undirected graphs the problem is fixed-parameter tractable (FPT) by providing an algorithm of running time 2^{O(k)}⋅ n. Further, they left the parameterized complexity of the problem on directed graphs open. Our first main result establishes a connection between Longest Detour on directed graphs and 3-Disjoint Paths on directed graphs. Using these new insights, we design a 2^{O (k)}· n^{O(1)} time algorithm for the problem on directed planar graphs. Further, the new approach yields a significantly faster FPT algorithm on undirected graphs. In the second variant of Longest Path, namely Longest Path above Diameter, the task is to decide whether the graph has a path of length at least diam(G)+k(diam(G)denotes the length of a longest shortest path in a graph G). We obtain dichotomy results about Longest Path above Diameter on undirected and directed graphs. For (un)directed graphs, Longest Path above Diameter is NP-complete even for k=1. However, if the input undirected graph is 2-connected, then the problem is FPT. On the other hand, for 2-connected directed graphs, we show that Longest Path above Diameter is solvable in polynomial time for each k ∈ {1,..., 4} and is NP-complete for every k ≥ 5. The parameterized complexity of Longest Detour on general directed graphs remains an interesting open problem.publishedVersio

    Non-crossing shortest paths in planar graphs with applications to max flow, and path graphs

    Get PDF
    This thesis is concerned with non-crossing shortest paths in planar graphs with applications to st-max flow vitality and path graphs. In the first part we deal with non-crossing shortest paths in a plane graph G, i.e., a planar graph with a fixed planar embedding, whose extremal vertices lie on the same face of G. The first two results are the computation of the lengths of the non-crossing shortest paths knowing their union, and the computation of the union in the unweighted case. Both results require linear time and we use them to describe an efficient algorithm able to give an additive guaranteed approximation of edge and vertex vitalities with respect to the st-max flow in undirected planar graphs, that is the max flow decrease when the edge/vertex is removed from the graph. Indeed, it is well-known that the st-max flow in an undirected planar graph can be reduced to a problem of non-crossing shortest paths in the dual graph. We conclude this part by showing that the union of non-crossing shortest paths in a plane graph can be covered with four forests so that each path is contained in at least one forest. In the second part of the thesis we deal with path graphs and directed path graphs, where a (directed) path graph is the intersection graph of paths in a (directed) tree. We introduce a new characterization of path graphs that simplifies the existing ones in the literature. This characterization leads to a new list of local forbidden subgraphs of path graphs and to a new algorithm able to recognize path graphs and directed path graphs. This algorithm is more intuitive than the existing ones and does not require sophisticated data structures

    Join-Reachability Problems in Directed Graphs

    Full text link
    For a given collection G of directed graphs we define the join-reachability graph of G, denoted by J(G), as the directed graph that, for any pair of vertices a and b, contains a path from a to b if and only if such a path exists in all graphs of G. Our goal is to compute an efficient representation of J(G). In particular, we consider two versions of this problem. In the explicit version we wish to construct the smallest join-reachability graph for G. In the implicit version we wish to build an efficient data structure (in terms of space and query time) such that we can report fast the set of vertices that reach a query vertex in all graphs of G. This problem is related to the well-studied reachability problem and is motivated by emerging applications of graph-structured databases and graph algorithms. We consider the construction of join-reachability structures for two graphs and develop techniques that can be applied to both the explicit and the implicit problem. First we present optimal and near-optimal structures for paths and trees. Then, based on these results, we provide efficient structures for planar graphs and general directed graphs

    Complexity of the Temporal Shortest Path Interdiction Problem

    Get PDF
    In the shortest path interdiction problem, an interdictor aims to remove arcs of total cost at most a given budget from a directed graph with given arc costs and traversal times such that the length of a shortest s-t-path is maximized. For static graphs, this problem is known to be strongly NP-hard, and it has received considerable attention in the literature. While the shortest path problem is one of the most fundamental and well-studied problems also for temporal graphs, the shortest path interdiction problem has not yet been formally studied on temporal graphs, where common definitions of a "shortest path" include: latest start path (path with maximum start time), earliest arrival path (path with minimum arrival time), shortest duration path (path with minimum traveling time including waiting times at nodes), and shortest traversal path (path with minimum traveling time not including waiting times at nodes). In this paper, we analyze the complexity of the shortest path interdiction problem on temporal graphs with respect to all four definitions of a shortest path mentioned above. Even though the shortest path interdiction problem on static graphs is known to be strongly NP-hard, we show that the latest start and the earliest arrival path interdiction problems on temporal graphs are polynomial-time solvable. For the shortest duration and shortest traversal path interdiction problems, however, we show strong NP-hardness, but we obtain polynomial-time algorithms for these problems on extension-parallel temporal graphs

    Log-space Algorithms for Paths and Matchings in k-trees

    Get PDF
    Reachability and shortest path problems are NL-complete for general graphs. They are known to be in L for graphs of tree-width 2 [JT07]. However, for graphs of tree-width larger than 2, no bound better than NL is known. In this paper, we improve these bounds for k-trees, where k is a constant. In particular, the main results of our paper are log-space algorithms for reachability in directed k-trees, and for computation of shortest and longest paths in directed acyclic k-trees. Besides the path problems mentioned above, we also consider the problem of deciding whether a k-tree has a perfect macthing (decision version), and if so, finding a perfect match- ing (search version), and prove that these two problems are L-complete. These problems are known to be in P and in RNC for general graphs, and in SPL for planar bipartite graphs [DKR08]. Our results settle the complexity of these problems for the class of k-trees. The results are also applicable for bounded tree-width graphs, when a tree-decomposition is given as input. The technique central to our algorithms is a careful implementation of divide-and-conquer approach in log-space, along with some ideas from [JT07] and [LMR07].Comment: Accepted in STACS 201

    Complexity and Algorithms for ISOMETRIC PATH COVER on Chordal Graphs and Beyond

    Get PDF
    A path is isometric if it is a shortest path between its endpoints. In this article, we consider the graph covering problem Isometric Path Cover, where we want to cover all the vertices of the graph using a minimum-size set of isometric paths. Although this problem has been considered from a structural point of view (in particular, regarding applications to pursuit-evasion games), it is little studied from the algorithmic perspective. We consider Isometric Path Cover on chordal graphs, and show that the problem is NP-hard for this class. On the positive side, for chordal graphs, we design a 4-approximation algorithm and an FPT algorithm for the parameter solution size. The approximation algorithm is based on a reduction to the classic path covering problem on a suitable directed acyclic graph obtained from a breadth first search traversal of the graph. The approximation ratio of our algorithm is 3 for interval graphs and 2 for proper interval graphs. Moreover, we extend the analysis of our approximation algorithm to k-chordal graphs (graphs whose induced cycles have length at most k) by showing that it has an approximation ratio of k+7 for such graphs, and to graphs of treelength at most ?, where the approximation ratio is at most 6?+2
    • …
    corecore