
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 215-226
www.stacs-conf.org

LOG-SPACE ALGORITHMS FOR PATHS AND MATCHINGS IN

k-TREES

BIRESWAR DAS 1 AND SAMIR DATTA 2 AND PRAJAKTA NIMBHORKAR 1

1 The Institute of Mathematical Sciences
Chennai, India
E-mail address: {bireswar,prajakta}@imsc.res.in

2 Chennai Mathematical Institute, Chennai, India
E-mail address: sdatta@cmi.ac.in

Abstract. Reachability and shortest path problems are NL-complete for general graphs.
They are known to be in L for graphs of tree-width 2 [14]. However, for graphs of tree-
width larger than 2, no bound better than NL is known. In this paper, we improve these
bounds for k-trees, where k is a constant. In particular, the main results of our paper are
log-space algorithms for reachability in directed k-trees, and for computation of shortest
and longest paths in directed acyclic k-trees.

Besides the path problems mentioned above, we consider the problem of deciding
whether a k-tree has a perfect macthing (decision version), and if so, finding a perfect
matching (search version), and prove that these problems are L-complete. These problems
are known to be in P and in RNC for general graphs, and in SPL for planar bipartite
graphs [8].

Our results settle the complexity of these problems for the class of k-trees. The results
are also applicable for bounded tree-width graphs, when a tree-decomposition is given as
input. The technique central to our algorithms is a careful implementation of divide-and-
conquer approach in log-space, along with some ideas from [14] and [19].

1. Introduction

Reingold’s striking result [21], showed that undirected reachability is in L, thus col-
lapsing the class SL to L. On the other hand, directed reachability, which happens to be
NL-complete is another similar sounding problem for which there is only partial progress to
report. A result of Allender and Reinhardt, [22] hints at a partial collapse of NL by showing
that directed reachability is in the formally smaller class UL, although, non-uniformly.

In the absence of better constructive upper bounds it is natural to consider natural
restrictions on graphs which allow us to improve the upper bounds on reachability and
related problems. Typical examples of this approach are [1],[23], where the complexity of
various versions of planar and somewhat non-planar (in the sense of excluding only a K5 or
only a K3,3 minor) are considered. In the same spirit, but using different techniques, [14]

1998 ACM Subject Classification: Computational Complexity.
Key words and phrases: k-trees, reachability, matching, log-space.

c© B. Das, S. Datta, and P. Nimbhorkar
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2456

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

216 B. DAS, S. DATTA, AND P. NIMBHORKAR

considers reachability and related questions in series-parallel graphs and places all of these
in L. They leave open the question of complexity of such problems in bounded tree-width
graphs. Series-parallel graphs have tree-width two and happen to be planar. But higher
tree widths graphs are highly non-planar. In fact, any k-tree for k > 4 contains both K5

and K3,3.
We resolve the open questions posed in [14] and show a matching L lower bound to

complete the characterization of reachability problems in k-trees. Thus one of the main
results of our paper is the following:

Theorem 1.1. The following problems are L-complete:
1. Computing reachability between two vertices in directed k-trees,
2. Computing shortest and longest paths in directed acyclic k-trees.

In this paper, we also consider the perfect matching problem. The parallel complexity of
perfect matching problems is a long standing open problem where the best known algorithms
use randomness as a resource [20],[15]. Even in the planar case, the search problem for
perfect matchings is known to be in NC for bipartite graphs only [8].

We prove a complete characterization for the decision and search versions of the perfect
matching problem for k-trees. This improves significantly upon previous best known upper
bound of LogCFL for bounded tree-width graphs. Thus another main result of our paper
is:

Theorem 1.2. Deciding whether a k-tree has a perfect matching, and if so, finding a perfect
matching is L-complete.

Our primary technique is a careful use of divide-and-conquer to enable the algorithm to
run in L. However, for the distance computation we need to import a constructive version
of tree separation from [19] where it is stated in the context of Visibly Pushdown Automata
(VPAs). We believe that porting this technique for use in general log-space computation is
an important contribution of this paper.

At this point, we must mention an important caveat. All our log-space results hold
directly only for k-trees and not for partial k-trees which are also equivalent to tree-width
k graphs. The reason being that a tree decomposition for partial k-trees is apparently more
difficult to construct (best known upper bound is LogCFL[24]) as opposed to k-trees (for
which it can be done in L [17]). Having mentioned that it is important to observe that if
we are given the tree decomposition of a partial k-tree, we can do the rest of computation
in L.

The rest of the paper is organized as follows: Section 2 gives the necessary background.
Section 3 contains log-space algorithms for reachability in directed k-paths and k-trees.
Section 4 contains log-space algorithms for shortest and longest path in directed acyclic
k-paths and k-trees. Section 5 contains log-space algorithms for perfect matching problems
in a k-tree.

2. Preliminaries

We define k-trees and a subclass of k-trees known as k-paths here, and also describe
a suitable representation for the graphs in these two classes. This representation is used
in our algorithms in the rest of the paper. All the definitions given here are applicable
to both directed as well as undirected graphs. For directed graphs, the directions of the

LOG-SPACE ALGORITHMS FOR PATHS AND MATCHINGS IN k-TREES 217

edges can be ignored while defining k-trees and k-paths and while computing their suitable
representations.

The class of graphs known as k-trees is defined as (cf. [12]):

Definition 2.1. The class of k-trees is inductively defined as follows.

• A clique with k vertices (k-clique for short) is a k-tree.
• Given a k-tree G′ with n vertices, a k-tree G with n + 1 vertices can be constructed

by picking a k-clique X (called the support)in G′ and then joining a new vertex v to
each vertex u in X. Thus, V (G) = V (G′) ∪ {v}, E(G) = E(G′) ∪ {{u, v} | u ∈ X}.

A partial k-tree is a subgraph of a k-tree. The class of partial k-trees coincides with
the class of graphs that have tree-width at most k. k-trees are recognizable in log-space
[2] but partial k-trees are not known to be recognizable in log-space. In literature, several
different representations of k-trees have been considered [10, 2, 17]. We use the following
representation given by Köbler and Kuhnert [17]:

Definition 2.2. Let G = (V,E) be a k-tree. The tree representation T (G) of G is defined
by

V (T (G)) = {M ⊆ V |M is a k-clique or a (k + 1)-clique},

E(T (G)) = {{M1,M2} ⊆ V |M1 (M2}

In [17], it is proved that T (G) is a tree and can be computed in log-space. In the rest
of the paper, we use G in place of T (G). Thus, by a k-tree G, we always mean that G is
in fact represented as T (G). The term vertices in G refers to the vertices in the original
graph, whereas a node in G and a clique in G refer to the nodes of T (G). Partial k-trees
also have a tree-decomposition similar to that of k-trees, which is also not known to be
log-space computable.

k-paths is a sub-class of k-trees (e.g. see [11]). The recursive definition of k-paths is
similar to that of k-trees. However, a new vertex can be added only to a particular clique
called the current clique. After addition of a vertex, the current clique may remain the same,
or may change by dropping a vertex and adding the new vertex in the current clique. We
consider the following representation of k-paths, which is based on the recursive definition
of k-paths, and is known to be computable in log-space [2]:

Given a k-path G = (V,E), for i = 1, · · · ,m, let Xi be the current cliques at the ith
stage of the recursive construction of the k-path. Let V1 = ∪iXi and V2 = V \ V1. We call
the vertices in V2 as spikes. The following facts are easy to see:

1. No two spikes have an edge between them.
2. Each spike is connected to all the vertices of exactly one of the Xi’s.
3. Xi and Xi+1 share exactly k − 1 vertices
The representation of G consists of a graph G′ = (V ′, E′) where V ′ = {X1, . . . ,Xm} ∪

V2 and E′ = {(Xi,Xi+1) | 1 ≤ i < m} ∪ {(X, v)|X is a clique in ∈ V ′, v ∈
V2 has a neighbour in X}.

3. Reachability

We give log-space algorithms to compute reachability in k-paths and in k-trees. Al-
though the graphs considered in this section are directed, when we refer to any of the
definitions or decompositions in Section 2, we consider the underlying undirected graph.

218 B. DAS, S. DATTA, AND P. NIMBHORKAR

3.1. Reachability in k-paths

Without loss of generality, we can assume that s and t are vertices in some k-cliques
Xi and Xj , and not spikes. If s (t) is a spike, then it has at most k out-neighbors (resp. in-
neighbors) and we can take one of the out-neighbors (resp. in-neighbors) as the new source
s′ and new sink t′ and check reachability. As there are only k2 such pairs, we can cycle
through all of them in log-space. The algorithm is based on the observation that a simple
s to t path ρ can pass through any clique at most k times. We use a divide- and-conquer
approach similar to that used in Savitch’s algorithm (which shows that directed reachability
can be computed in DSPACE(log2 n)). The main steps involved in the algorithm are as
follows:

1. Preprocessing step: Make the cliques disjoint by labeling different copies of each ver-
tex with different labels and introducing appropriate edges. Compute reachabilities within
each clique including its spikes, and remove the spikes. Number the cliques X1, . . . ,Xm left
to right.

2. Now assume that s and t are in cliques Xi and Xj respectively. Note that i = j is
also possible, but without loss of generality, we can assume i < j. This is because, if i = j,
we can make another copy X ′

i of Xi, join the copies of the same vertex by bidirectional
edges to preserve reachabilities, and choose the copy of s from Xi and that of t from X ′

i.
3. Divide the k-path into three parts P1, P2 and P3 where P1 consists of cliques

X1, . . . ,Xi, P2 consists of Xi, . . . ,Xj , and P3 consists of Xj , . . . ,Xm. Note that Xi (Xj)
appears in both P1 and P2 (P2 and P3 respectively). Now compute reachabilities of all
pairs of vertices in Xi (Xj) when the graph is restricted to P1 (respectively P3). Then the
reachability of t from s within P2 is computed, using the previously computed reachabilities
within P1 and P3.

Each of these steps can be done by a log-space transducer. The details are given below.
Preprocessing: Although adjacent k-cliques in a k-path decomposition share k − 1

vertices, we perform a preprocessing step, where we give distinct labels to each copy of a
vertex. As all the copies of a vertex form a (connected) sub-path in the k-path decomposi-
tion, we join two copies of a vertex appearing in two adjacent cliques by bidirectional edges.
It can be seen that this preserves reachabilities. Any copy of s and t can be taken as the new
s and t. Another preprocessing step involves removing the spikes maintaining reachabilities
between all pairs of vertices, and computing reachabilities within each k-clique. Both of
these preprocessing steps can be done by a log-space transducer. The proof appears in the
full version of the paper.

The Algorithm: We describe an algorithm to compute pairwise reachabilities in Xi

and Xj in P1 and P3 respectively, and also s-t reachability in P2 using these previously
computed pairwise reachabilities. Algorithm 1 describes this reachability routine. The
routine gets as input two vertices u and v, and two indices i and j. It determines whether
v is reachable from u in the sub-path P = (Xi, . . . ,Xj). This input is given in such a way
that u and v always lie in Xi or Xj . Consider the case when both u and v are in Xi (or
both in Xj). Let l be the center of P . Then a path from u to v either lies entirely in the
sub-path P ′ = (Xi, . . . ,Xl) or it crosses Xl at most k times. Thus if Xl = {v1, . . . , vk}
then for {vi1 , · · · , vir} ⊆ Xl we need to check reachabilities between u and say vi1 in P ′,
then between vi1 and vi2 in P ′′ = (Xl, . . . ,Xj) and so on, and finally between vir and v in
P ′. It suffices to check all the r-tuples in Xl, where 0 ≤ r ≤ k. The case when u ∈ Xi

and v ∈ Xj (and vice versa) is analogous. In Algorithm 1, we present only one case where

LOG-SPACE ALGORITHMS FOR PATHS AND MATCHINGS IN k-TREES 219

u, v ∈ Xi. Other three cases are analogous. Thus at each recursive call, the length of the
sub-path under consideration is halved, and O(log m) iterations suffice. The algorithm can

Algorithm 1 Procedure IsReach(u, v, i, j)

1: Input: Pre-processed k-path decomposition of graph G, clique indices i, j, vertex labels
u, v ∈ Xi. {Other three cases are analogous.}

2: Decide: Whether v is reachable from u in sub-path P = (Xi, . . . ,Xj).
3: if j − i = 1 then

4: Compute the reachability directly, as the sub-path has only 2k vertices.
5: Return the result.
6: end if

7: l = j+i
2

8: if u, v ∈ Xi then

9: if IsReach(u, v, i, l) then

10: Return 1;
11: else

12: for q = 1 to k do

13: v0 ← u, vq+1 ← v

14: for all q-tuples (v1, . . . , vq) of vertices in Xl do

15: if
∧q+1

x=0
x even

IsReach(vx,vx+1,i,l) ∧
∧q+1

x=1
x odd

IsReach(vx,vx+1,l,j) then

16: Return 1;
17: end if

18: end for

19: end for

20: end if

21: end if

be implemented in log-space. The correctness and complexity analysis of the algorithm
appears in the full version.

3.2. Reachability in k-trees

Given a directed k-tree G in its tree decomposition and two vertices s and t in G, we
describe a log-space algorithm that checks whether t is reachable from s. This algorithm
uses Algorithm 1 as a subroutine and involves the following steps: The complexity analysis
is given in Lemma 3.1.

1. Preprocessing: Like k-paths, assign distinct labels to the copies of each vertex
u in different cliques. Introduce a bidirectional edge between the copies of u in all the
adjacent pairs of cliques. As reachabilities are maintained during this process, any copy of
s and t can be taken as the new s and t. Let Xi and Xj be the cliques containing s and t

respectively.
2. The Procedure: After this preprocessing, we have a tree T with its nodes as

disjoint k-cliques of vertices of G, and s and t are contained in cliques Xi and Xj . Compute
the unique undirected path ρ between Xi and Xj in T in log-space. Each node on ρ has
two of its neighbors on ρ, except Xi and Xj , which have one neighbor each. An s to t path
has to cross each clique in ρ, and additionally, it can pass through the subtrees attached to

220 B. DAS, S. DATTA, AND P. NIMBHORKAR

each node Xl on ρ. Hence for each node Xl on ρ, we pre-compute the pairwise reachabilities
among the k vertices contained in Xl when the k-tree is restricted to the subtree rooted
at Xl. We define the subtree rooted at Xl as the subtree consisting of Xl and those nodes
which can be reached from Xl without going through any node on ρ. Note that once this
is done for each node Xl on ρ, we are left with ρ. As ρ is a k-path, we can use Algorithm 1
in Section 3.1 to compute reachabilities within ρ.

3. Computing reachabilities within the subtree rooted at Xl: We do this induc-
tively. If the subtree rooted at Xl contains only one node Xl, we have only k vertices, and
their pairwise reachabilities within Xl can be computed in O(k log k) space. We recursively
find the reachabilities within the subtrees rooted at each of the children of Xl. Let the size
of the subtree rooted at Xl be N . At most one of the children of Xl can have a subtree of
size larger than N

2 . Let Xa be such a child. Recursively compute the pairwise reachabilities
for each pair of vertices in Xa within the subtree rooted at Xa. The reachabilities are repre-
sented as a k×k boolean matrix referred to as the reachability matrix M for the vertices in
Xa, when the graph is confined to the subtree rooted at Xa. M is then used to compute the
pairwise reachabilities of vertices in Xl, when the graph is confined to Xl and the subtree
rooted at Xa. This gives a new matrix M ′ of size k2. It is stored on stack while computing
the reachability matrix M ′′ for another child Xb of Xl. The matrix M ′ is updated using
M ′′, so that it represents reachabilities between each pair of vertices in Xl when the graph
is confined to Xl and the subtrees rooted at Xa and Xb. This process is continued till all the
children of Xl are processed. The matrix M ′ at this stage reflects the pairwise reachabilities
between vertices of Xl, when the graph is confined to the subtree rooted at Xl. Note that
the storage required while making a recursive call is only the current reachability matrix
M ′. Recall that M ′ contains the pairwise reachabilitities among the vertices in Xl in the
subgraph corresponding to Xl and the subtrees rooted at those children of Xl which are
processed so far. We give the complexity analysis in the full version.

Lemma 3.1. The procedure described above can be implemented in log-space.

Hardness for L: L-hardness of reachability in k-trees follows from L-hardness of the problem
of path ordering (proved to be SL-hard in [9], and is L-hard due to SL=L result of [21]).
We give the details in the full version.

4. Shortest and Longest Paths

We show that the shortest and longest paths in weighted directed acyclic k-trees can be
computed in log-space, when the weights are positive and are given in unary. Throughout
this section, the terms k-path and k-tree always refer to directed acyclic k-paths and k-
trees respectively, with integer weights on edges and we here onwards omit the specification
weighted directed acyclic. We use the following (weighted) form of the result from [18]: The
proof is exactly similar to that in [18] and we omit it here.

Theorem 4.1 (See[18], Theorem 9). Let C be any subclass of weighted directed acyclic
graphs closed under vertex deletions. There is a function f , computable in log-space with
oracle access to Reach(C), that reduces Distance(C) to Long-Path(C) and Long-Path(C) to
Distance(C), where Reach(C), Distance(C), and Long-Path(C) are the problems of deciding
reachability, computing distance and longest path respectively for graphs in C.

LOG-SPACE ALGORITHMS FOR PATHS AND MATCHINGS IN k-TREES 221

We use this theorem to reduce the shortest path problem in k-trees to the longest
path problem, and then compute the longest (that is, maximum weight) s to t path. The
reduction involves changing the weights of the edges such that the shortest path becomes
the longest path and vice versa. This gives a directed acyclic k-tree with positive integer
weights on edges given in unary. The class of k-trees is not closed under vertex deletions.
However, once a tree decomposition of a k-tree is computed, deleting vertices from the
cliques leaves some cliques of size smaller than k, which does not affect the working of the
algorithm.

We show that the maximum weight of an s to t path can be computed in log-space
using a technique which uses ideas from [14]. The algorithm to compute maximum weight
s to t path in k-trees uses the algorithm for computing maximum weight path in k-paths
as subroutine. Therefore we first describe the algorithm for k-paths in Section 4.1

4.1. Maximum Weight Path in Directed Acyclic k-paths

Let G be a directed acyclic k-path and s and t be two designated vertices in G. The
computation of maximum weight of an s to t path is done in five stages, described below in
detail. The main idea is to obtain a log-depth circuit by a suitable modification of Algorithm
1, and to transform this circuit to an arithmetic formula over integers, whose value is used
to compute the maximum weight of an s to t path in G.

Computing the maximum weight s to t path in G involves the following steps:

(1) Construct a log-depth formula from Algorithm 1: Modify Algorithm 1 so
that it outputs a circuit C that has nodes corresponding to the recursive calls made
in Line 15 and the tuples considered in the for loop in Line 14. A node q in
C that corresponds to a recursive call IsReach(u, v, i, j) has children q1, · · · , qN ,
which correspond to the tuples considered in that recursive call (for-loop on Line
12 of Algorithm 1). We refer to q as a call-node and q1, . . . , qN as tuple-nodes. A
tuple-node q′ corresponding to a tuple (v1, . . . , vN) has call-nodes q′1, . . . , q

′
N as its

children, which correspond to the recursive calls made while considering the tuple
(v1, . . . , vN) (Line 15 of Algorithm 1). The leaves of C are those recursive calls which
satisfy the if condition on Line 3 of Algorithm 1, thus they are always call-nodes.
As the depth of the recursion in Algorithm 1 is O(log n), the circuit C also has
O(log n) depth. Hence it can be converted to a formula F by only a polynomial
factor blow-up in its size. The maximum number of children of a node is O(kk) and
hence the size of F is bounded by O(kk log n), which is polynomial in n for constant
k.

(2) Prune the boolean formula: The internal call-nodes of F are replaced by ∨
gates and tuple-nodes are replaced by ∧ gates. The leaves of F are replaced by 0
or 1 depending on whether the corresponding recursive call returned 0 or 1 in the if

block on Line 3 of Algorithm 1. It can be seen that a sub-formula of F rooted at a
call-node evaluates to 1 if and only if the corresponding recursive call returns 1 in
Algorithm 1. Similarly, the sub-formula rooted at a tuple-node evaluates to 1 if and
only if the conjunction corresponding to it (on Line 15 of Algorithm 1) evaluates
to 1. Now, we evaluate the sub-formula rooted at each node of F . Note that a
node that evaluates to 0 does not contribute to any path from s to t, and hence its
subtree can be safely removed.

222 B. DAS, S. DATTA, AND P. NIMBHORKAR

(3) Transformation into a {+,max}-tree: The new, pruned formula obtained in
Step 2 is then relabeled: Each ∧ label is replaced with a + label and each ∨ label
with a max label. Each leaf corresponds to calls of the form IsReach(u, v, i, i + 1).
It is labeled with the length of the maximum weight u to v path confined within
cliques i and i + 1, which can be computed in O(1) space. This weight is strictly
positive, since the 0-weight leaves are removed in Step 2. Further, all the weights
are in unary. Thus we now have a {+,max}-tree T with positive, unary weights on
its leaves. It is easy to see that the value of the {+,max}-tree T is the maximum
weight of any s to t path in G.

(4) Transformation into a {+,×}-tree: The evaluation problem on the {+,max}-
tree T obtained in Step 3 is then reduced to the evaluation problem on a {+,×}-
tree T ′ whose leaves are labeled with positive integer weights coded in binary. This
reduction works in log-space and is similar to that of [14]. The reduction involves
replacing a +-node of T with a ×-node, and a max-node with a + node. The weight
w of a leaf is replaced with rmw, where r is the smallest power of 2 such that r ≥ n,
and m is the sum of the weights of all the leaves of T plus one. The correctness of
the reduction follows from a similar result in [14], and we omit the proof here.

(5) Evaluation of the {+,×} tree: This can be done in log-space due to [5, 3, 7, 13].

The value of T is v = ⌊ logrv′

m ⌋.

4.2. Maximum Weight Path in Directed Acyclic k-trees

Given a directed acyclic k-tree (in its tree-decomposition) G, two vertices s and t in G,
and weights on the edges of G, encoded in unary, we show how to compute the maximum
weight of an s to t path in G. Unlike the case of k-paths, the reachability algorithm for
k-trees given in Section 3.2 can not be used to get a log-depth circuit since the recursion
depth of the algorithm is same as the depth of the k-tree. Therefore we need to find another
way of recursively dividing the k-tree into smaller and smaller subtrees, as we did for k-
paths in Sections 3.1 and 4.1. This is based on the technique used in the following result of
[19]:

Lemma 4.2. (Lemma 6 of [19], also see [4]) Let M be a visibly pushdown automaton ac-
cepting well-matched strings over an alphabet ∆. Given an input string x, checking whether
x ∈ L(M) can be done in log-space.

Using Lemma 4.2, we can compute a set of recursive separators for a tree defined below:

Definition 4.3. Given a rooted tree T , separators of T are two nodes a and b of T such
that

1. The subtrees rooted at a and b respectively are disjoint,
2. T is split into subtrees T1, T2, T3 where T1 consists of a, some (or possibly all) of

the children of a, and subtrees rooted at them, T2 is defined similarly for b, and T3 consists
of the rest of the tree along with a copy of a and b each.

3. Each of T1, T2, T3 consists of at most a 3
4 fraction of the leaves of T .

This process is done recursively for T1, T2, T3, until the number of leaves in the subtrees
is two. Such a subtree is in fact a path. A set of recursive separators of T consists of the
separators of T and of all the subtrees obtained in the recursive process.

LOG-SPACE ALGORITHMS FOR PATHS AND MATCHINGS IN k-TREES 223

The following lemma gives the procedure to compute a set of recursive separators of a
tree T :

Lemma 4.4. Given a tree T , the set of recursive separators of T can be computed in
log-space.

Proof. The algorithm of [19] deals with well-matched strings. An example of a well-matched
string is a balanced parentheses expression, which is a string over {(,)}. In [19], a log-space
algorithm is given for membership testing in those languages which are subsets of well-
matched strings and are accepted by visibly pushdown automata. We restrict ourselves
to balanced parentheses expressions. To check whether a string on parentheses is in the
language, the algorithm of [19] recursively partitions the string into three disjoint substrings,
such that each of the parts forms a balanced parentheses expression, and length of each
part is at most 3

4th of the length of the original string. To use this algorithm, we order the
children of each node of T in a specific way, label the leaves with parentheses ‘(′ and ‘)′

such that the leaves of the subtree rooted at any internal node form a string on balanced
parentheses. We add dummy leaves if needed. The steps are as follows:

1. By adding dummy leaves, ensure that each internal node has an even number of
children which are leaves, and there are at least two such children.

2. Arrange the children of each node from left to right such that the non-leaves are
consecutive, and they have an equal number of leaves to the left and to the right.

3. For each internal node, label the left half of its leaf-children with ‘(’ and the right
ones by ‘)’. This ensures that the leaves of the subtree rooted at each internal node form
a balanced parentheses expression. Conversely, leaves which form a balanced parentheses
expression are consecutive leaves in the subtree rooted at an internal node.

The leaves of T now form a balanced parentheses expression, and we run the algorithm
of [19] on this string. The recursive splitting of the string into smaller substrings corre-
sponds to the recursive splitting of T at some internal nodes, which satisfies Definition 4.3.
This is ensured by the way the leaves are labeled. Each balanced parentheses expression
corresponds to either a subtree rooted at an internal node or the subtrees rooted at some
of the children of an internal node.

The subtrees obtained by splitting a tree have at most 3
4 th of the number of leaves in

the tree. Thus at each stage of recursion, the number of leaves in the subtrees is reduced by
a constant fraction. Moreover, the algorithm of [19] can output all the substrings formed
at each stage of recursion in log-space. As a substring completely specifies a subtree of T ,
our procedure outputs the set of recursive separators for T in log-space.

Once an algorithm to compute the set of recursive separators for k-trees is known,
a reachability routine similar to Algorithm 1 can be designed in a straight forward way.
We give the details in the full version. From the reachability routine, the computation of
maximum weight path follows from the steps 1 to 5 described in Section 4.1.

4.3. Distance Computation in Undirected k-trees

We give a simple log-space algorithm for computing the shortest path between two
given vertices in an undirected k-tree. We use the decomposition of [16], where a k-tree is
decomposed into layers. We use the following properties of the decomposition:

1. Layer 0 is a k-clique. Each vertex in layer i > 0 has exactly k neighbors in layers
j < i. Further, these neighbors of i which are in layers lower than that of i form a k-clique.

224 B. DAS, S. DATTA, AND P. NIMBHORKAR

2. No two vertices in the same layer share an edge.
This decomposition is log-space computable [17]. Moreover, given two vertices s and t,

it is always possible to find a decomposition in which t lies in layer 0. This can also be done
in log-space. If both s and t are in layer 0, then there is an edge between s and t, which is
the shortest path from s to t. Therefore assume that s lies in a layer r > 0. The following
claim leads to a simple algorithm. The proof appears in the full version.

Claim 4.5. 1. The shortest s to t path never passes through two vertices u and v such that
layer(u) < layer(v). 2. There is a shortest path from s to t passing through the neighbor
of s in the lowest layer.

This claim suggests a simple algorithm which can be implemented in log-space: Start
from s and choose the next vertex from the lowest possible layer, at each step till we reach
layer 0.

5. Perfect Matching in k-trees

Hardness for L: To show that the decision version of perfect matching is hard for L, we
show that the problem of path ordering, can be reduced to the perfect matching problem
for k-trees. We give the proof in the full version:

Lemma 5.1. Determining whether a k-tree has a perfect matching is L-hard.

L upper bounds: We describe a log-space algorithm to decide whether a k-tree has a
perfect matching and, if so, output a perfect matching. The algorithm is inspired by an
O(n3) algorithm [6] for computing the matching polynomial in series-parallel graphs. The
idea is to exploit the fact that k-trees have a tree decomposition of bounded width, so that
any perfect matching of the entire k-tree induces a partial matching on any subtree which
leaves at most constantly many vertices unmatched. Thus we generalize the problem to
that of determining, for each set, S, of constantly many vertices in the root of the subtree,
whether there is a matching of the subtree that leaves exactly the vertices in S unmatched.
Now we “recursively” solve the generalized problem and for this purpose we need to maintain
a bit-vector indexed by the sets S which is still of bounded length. The algorithm composes
the bit-vectors of the children of a node to yield the bit-vector for the node. The bit-vector,
which we refer to as matching vector, is defined as follows:

Definition 5.2. Let G be a k-tree with tree-decomposition T . T has alternate levels of
k-cliques and k+1-cliques. Root T arbitrarily at a k-clique. Let s be a node in T that shares
vertices {u1, . . . , uk} with its parent. Further, let H be the subgraph of G corresponding to

the subtree of T rooted at s. The matching vector for s is a vector ~vH = (v
(S1)
H , . . . , v

(S
2k)

H)

of dimension 2k, where S1, . . . , S2k are all the distinct subsets of {u1, . . . , uk}, and v
(Si)
H = 1

if H has a matching in which all the vertices of H matched, except those in Si, v
(Si)
H = 0 if

there is no such matching.

It can be seen that G has a perfect matching if and only if v
(∅)
G = 1.We show how to

compute ~vG in L, and also show how to construct a perfect matching in G, if one exists. We
prove Part 1 of the following theorem. For a proof of part 2, we refer to the full version.

LOG-SPACE ALGORITHMS FOR PATHS AND MATCHINGS IN k-TREES 225

Theorem 5.3. 1. The problem of deciding whether a k-tree has a perfect matching is in L.
2. Finding a perfect matchings in a k-tree is in FL.

Proof. (of 1) We compute the matching vector for the root by recursively computing the
matching vectors of each of its children. For a leaf node in the tree-decomposition, the
matching vector can be computed in a brute-force way. At an internal node s, the matching
vector is computed from the matching vectors of its children, which we describe here:

Case 1: s is a k-node Let s has vertices Vs = {u1, . . . , uk}. Recall that a k-node
shares all its vertices with all its neighbors. Let the children of s in T be s1, . . . , sr. Let
the subgraph corresponding to the subtree rooted at s be H and those at its children be

H1, . . . ,Hr. In order to determine v
(S)
H , we need to know if there is a matching in H that

leaves exactly the vertices in S unmatched. This holds if and only if the vertices in S are
not matched in any of the Hj ’s, and each vertex in Vs \ S is matched in exactly one of the
Hj’s. In other words, we need to determine if there is a partition T1, T2, ..., Tr of Vs \ S,

such that Hj has a matching in which precisely Vs \ Tj is unmatched. That is, v
(Vs\Tj)
Hj

= 1

for all 1 ≤ j ≤ r. More formally,

v
(S)
H =

∨

T1,...,Tr⊆Vs\S:
∀j 6=j′∈[r]Tj∩Tj′=∅:

∪j∈[r]Tj=Vs\S

∧

j∈[r]

v
(Vs\Tj)
Hj

=
∨

∅=U0⊆...⊆Ur=Vs\S

∧

j∈[r]

v
(Vs\(Uj\Uj−1))
Hj

(5.1)

where, the second equality follows by defining U0 = ∅ and Ui = ∪j∈[i]Tj for i ∈ [r]. The size
of the above DNF formula depends on r which is not a constant hence the straightforward
implementation of the above computation would not be in L. However, consider a conjunct

in the big disjunction in the second line above. The jth factor of this conjunct depends
only on Uj and Uj−1, each of which can be represented by a constant number (= 2k) of bits.
Thus, we can iteratively extend Uj−1 in all possible ways to Uj and use the bit indexed by
Vs \ (Uj \ Uj−1) in the vector for the child. How to obtain the vector of the child within a
log-space bound is detailed in the full version.

Case 2: s is a k + 1 node The procedure is slightly more complex in this case. Let s

have vertices {u1, . . . , uk+1}. Let the subgraph corresponding to the subtree rooted at s be
H. Let s1, . . . , sr be the children of s, with corresponding subgraphs H1, . . . ,Hr. Note that
s may share a different subset of k vertices with each of its children and with its parent. Let
the vertices s shares with its parent be {u1, . . . , uk}. Then its matching vector is indexed
by the subsets of {u1, . . . , uk}, and moreover, uk+1 should always be matched in H. To
compute ~vH , we first extend the matching vectors of each of its children and make a 2k+1

dimensional vector ~wH . The matching vector ~vHj
of a child sj of s is extended to the new

vector ~wHj
as follows: Let sj contain {u1, . . . , uk}. We consider an entry v

(S)
Hj

of ~vHj
. The

vector ~wHj
has two entries corresponding to it.

w
(S∪{uk+1})
Hj

= v
(S)
Hj

, w
(S)
Hj

=
∨

p∈[k],up /∈S,
(uk+1,vp)∈E

u
(S∪{up})
Hj

These new vectors of each of the children can be composed similar to that in the previous
case to get ~wH . To get ~vH , we remove the 2k entries from ~wH which are indexed on subsets
containing uk+1. This vector is passed on to the parent of s. The complexity analysis, and
a proof of (2) appears in the full version.

226 B. DAS, S. DATTA, AND P. NIMBHORKAR

References

[1] Eric Allender, David Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambuddha Roy. Planar
and grid graph reachability problems. Theory of Computing Systems, 45, 2009.

[2] V. Arvind, B. Das, and J. Köbler. The Space Complexity of k-Tree Isomorphism. In In Proceedings of
ISAAC, 2007.

[3] Michael Ben-or and Richard Cleve. Computing algebraic formulas using a constant number of registers.
SIAM J. Comput., 21(1):54–58, 1992.

[4] Burchard von Braunmühl and Rutger Verbeek. Input driven languages are recognized in log n space.
In Selected papers of the international conference on ”foundations of computation theory” on Topics in
the theory of computation, pages 1–19, 1985.

[5] S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm for formula evalua-
tion. SIAM J. Comput., 21(4):755–780, 1992.

[6] N. Chandrasekharan and S. Hannenhalli. Efficient algorithms for computing matching and chromatic
polynomials on series-parallel graphs. Computing and Information Proceedings, (ICCI 92), 1992.

[7] A. Chiu, G. Davida, and B. Litow. Division in logspace-uniform NC1. Theoretical Informatics and
Applications, 35, 2001.

[8] Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministically isolating a perfect matching in
bipartite planar graphs. In STACS 2008, volume 1 of Leibniz International Proceedings in Informatics,
2008.

[9] Kousha Etessami. Counting quantifiers, successor relations, and logarithmic space. J. Comput. Syst.
Sci., 54(3):400–411, 1997.

[10] J. G. Del Greco, C. N. Sekharan, and R. Sridhar. Fast parallel reordering and isomorphism testing of
k-trees. Algorithmica, 32(1):61–72, 2002.

[11] A. Gupta, N. Nishimura, A. Proskurowski, and P. Ragde. Embeddings of k -connected graphs of path-
width k. Discrete Applied Mathematics, 145(2):242–265, 2005.

[12] F. Harary and E. M. Palmer. On acyclic simplicial complexes. Mathematica, 15, 1968.
[13] William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth threshold circuits

for division and iterated multiplication. JCSS, 65(4), 2002.
[14] Andreas Jakoby and Till Tantau. Logspace algorithms for computing shortest and longest paths in

series-parallel graphs. In Proceedings of 27th FSTTCS, LNCS 4855, 2007.
[15] Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in random NC.

Combinatorica, 6(1):35–48, 1986.
[16] M. M. Klawe, D. G. Corneil, and A. Proskurowski. Isomorphism testing in hookup classes. SIAM Journal

on Algebraic and Discrete Methods, 3(2):260–274, 1982.
[17] Johannes Köbler and Sebastian Kuhnert. The isomorphism problem for k-trees is complete for logspace.

ECCC, (TR09-053), 2009.
[18] Nutan Limaye, Meena Mahajan, and Prajakta Nimbhorkar. Longest paths in planar dags in unambigu-

ous log-space. In Computing: Australasian Theory Symposium (CATS), 2009.
[19] Nutan Limaye, Meena Mahajan, and B. V. Raghavendra Rao. Arithmetizing classes around NC1 and

L. In STACS, 2007.
[20] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix inversion.

Combinatorica, 7(1):105–113, 1987.
[21] Omer Reingold. Undirected st-connectivity in logspace. In Proc. 37th STOC, 2005.
[22] Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. In IEEE Symposium on

Foundations of Computer Science, pages 244–253, 1997.
[23] Thomas Thierauf and Fabian Wagner. Reachability in K3,3-free graphs and K5-free graphs is in un-

ambiguous log-space. In FCT, 2009.
[24] Egon Wanke. Bounded tree-width and LOGCFL. J. Algorithms, 16(3):470–491, 1994.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

