
From Path Graphs to Directed Path Graphs

Steven Chaplick1, Marisa Gutierrez2,
Benjamin Lévêque3, and Silvia B. Tondato4

1 University of Toronto, Canada
chaplick@cs.toronto.edu

2 CONICET, Universidad Nacional de La Plata, Argentina
marisa@mate.unlp.edu.ar

3 CNRS, LIRMM, Montpellier, France
benjamin.leveque@lirmm.fr

4 Universidad Nacional de La Plata, Argentina
tondato@mate.unlp.edu.ar

Abstract. We present a linear time algorithm to greedily orient the
edges of a path graph model to obtain a directed path graph model
(when possible). Moreover we extend this algorithm to find an odd sun
when the method fails. This algorithm has several interesting conse-
quences concerning the relationship between path graphs and directed
path graphs. One is that for a directed path graph, path graph mod-
els and directed path graph models are the same. Another consequence
concerns the difference between path graphs and directed path graphs
in terms of forbidden induced subgraphs. This can be used to deduce
the forbidden induced subgraph characterization of directed path graphs
from the forbidden induced subgraph characterization of path graphs.
The last consequence is algorithmic and shows that the recognition of
directed path graphs is not more difficult than the recognition of path
graphs.

1 Introduction

A hole is a chordless cycle of length at least four. A graph is a chordal graph
if it contains no hole as an induced subgraph. Gavril [3] proved that a graph is
chordal if and only if it is the intersection graph of a family of subtrees of a tree.
In this paper, whenever we talk about the intersection of subgraphs of a graph
we mean that the vertex sets of the subgraphs intersect. A graph is an interval
graph if it is the intersection graph of a family of intervals on the real line; or
equivalently, the intersection graph of a family of subpaths of a path. The class
of path graphs lies between interval graphs and chordal graphs. A graph is a path
graph if it is the intersection graph of a family of subpaths of a tree. Two variants
of path graphs have been defined when the tree is a directed graph. A directed
tree is a directed graph whose underlying undirected graph is a tree. A directed
subpath of a directed tree is a subpath whose edges are all oriented in the same
way. A graph is a directed path graph if it is the intersection graph of a family of
directed subpaths of a directed tree. A rooted tree is a directed tree in which the

D.M. Thilikos (Ed.): WG 2010, LNCS 6410, pp. 256–265, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

From Path Graphs to Directed Path Graphs 257

path from a particular vertex r to every other vertex is a directed path; vertex
r is called the root. A graph is a rooted path graph if it is the intersection graph
of a family of directed subpaths of a rooted tree.

The following inclusions hold by definition:

interval ⊂ rooted path ⊂ directed path ⊂ path ⊂ chordal

and these inclusions are strict.
In Section 4, we present a method to greedily orient the edges of a tree T that is

a path graph model to obtain a directed path graph model (when possible). The
idea is very simple: Pick any non oriented edge e of T and orient it arbitrarily.
Orient every edge of T that is forced by e. Repeat the process until all edges of T
are oriented. In fact, to ensure that the algorithm runs in linear time the formal
description of the algorithm is more complex and uses a particular order obtained
by an algorithm presented in Section 3. Moreover, we extend this method to find
an odd sun when the greedy path forcing fails. A sun is a graph with vertices
C = {c0, . . . , cr}, and S = {s0, . . . , sr}, r ≥ 2, where C is a clique, S is a stable
set and for 0 ≤ i ≤ r, N(si) ∩ C = {ci−1, ci} (subscripts are modulo r + 1). An
odd sun is a sun where |S| is odd. Finding an odd sun is interesting as it certifies
that the input graph is not a path graph.

This algorithm has several interesting consequences concerning the relation-
ship between path graphs and directed path graphs presented in Section 5. One
is that for a directed path graph, every path graph model has a corresponding di-
rected path graph model. Another consequence concerns the difference between
path graphs and directed path graphs in terms of forbidden induced subgraphs.
This can be used to deduce the forbidden induced subgraph characterization of
directed path graphs from the forbidden induced subgraph characterization of
path graphs. The last consequence is algorithmic and shows that the recognition
of directed path graph is not more difficult than the recognition of path graphs.

2 Definitions and Background

In a graph G, a clique is a set of pairwise adjacent vertices. Let C(G) be the set
of all (inclusionwise) maximal cliques of G. For any vertex v ∈ V , let Cv(G) =
{C ∈ C(G) : v ∈ C}. When there is no ambiguity we write C and Cv instead of
C(G) and Cv(G). Given a set X of vertices, let G[X] denote the subgraph of G
induced by the vertices of X .

A clique tree T of a graph G is a tree whose vertices are the members of C
and, for each vertex v of G, the induced subgraph T [Cv] is a tree. A classical
result of Gavril [3] states that a graph is chordal if and only if it has a clique
tree. A clique path tree T of G is a clique tree of G such that, for each vertex v of
G, the subtree T [Cv] is a path. Gavril [4] proved that a graph is a path graph if
and only if it has a clique path tree. A clique directed path tree T of G is a clique
path tree of G such that edges of the tree T are directed and for each vertex v
of G, the subpath T [Cv] is a directed path. A clique rooted path tree T of G is a
clique directed path tree of G such that T is a rooted tree. Monma and Wei [9]

258 S. Chaplick et al.

proved that a graph is a directed path graph if and only if it has a clique directed
path tree, and that a graph is a rooted path graph if and only if it has a clique
rooted path tree. These results allow us to restrict our attention to intersection
models that are clique trees when studying the properties of these graph classes.

For more information about clique trees and chordal graphs, see [5,8].

3 Maximum Cardinality Clique Search

First, we need an algorithm (see Algorithm 1) that provides the vertex order used
to accomplish the greedy path forcing algorithm (see Algorithm 2). In particular,
we order the vertices of a given graph G starting from an arbitrary vertex and
selecting the next vertex vi such that the number of maximal cliques vi shares
with v0, ..., vi−1 is as large as possible.

Algorithm 1. Maximum Cardinality Clique Search

Input: A graph G and the sets Cv for every vertex v.
Output: An ordering σ on the vertices of G such that for every vertex

v the cardinality of Cv ∩ (∪σ(u)<σ(v)Cu) is maximum.
1 All vertices and maximal cliques of G are non-marked.
2 Let label(v) = 0 for every vertex v.
3 for i = 1 to n do
4 Choose a non-marked vertex v with maximum label.
5 Mark v and let σ(v) = i.
6 foreach non-marked clique C ∈ Cv do
7 Mark C.
8 foreach u ∈ C \ {v} do
9 label(u) = label(u) + 1.

10 return σ.

Notice that the above algorithm runs in linear time with respect to its input,
i.e. O(Σv∈V |Cv|). In particular, this is the same as the number of ones in the
vertex to maximal clique incidence matrix of the input graph G. Furthermore,
we have the following result by Fulkerson and Gross [6]:

Theorem 1 ([6]). For a chordal graph, the number of non-zero entries in the
vertex to maximal clique incidence matrix is O(n + m).

Therefore Algorithm 1 runs in time O(n+m) for a chordal graph with n vertices
and m edges.

4 Greedy Path Forcing

We now provide a linear time algorithm that for any path graph G and any clique
path tree T of G, returns either an orientation of T that is a clique directed path
tree of G or an induced subgraph of G that is an odd-sun.

From Path Graphs to Directed Path Graphs 259

Algorithm 2 considers all the vertices of G one by one, using the order obtained
by Algorithm 1, and orients their corresponding subpath in T to form a directed
path without modifying already oriented edges. If the method fails, there is a
subpath that cannot be oriented. This subpath cannot be oriented because it
has two consecutive edges e, f which are already oriented in opposite directions.
By following the sequence of vertices that leads from the orientation of e to f , it
is possible to find an odd sun whose central clique corresponds to the common
extremity of e and f .

The following theorem shows the correctness of Algorithm 2:

Theorem 2. For any path graph G and any clique path tree T of G, Algorithm 2
returns in time O(n + m), either an orientation of T that is a clique directed
path tree of G or an induced subgraph of G that is an odd-sun.

Algorithm 2. Greedy Path Forcing

Input: A path graph G and a clique path tree T of G
Output: An orientation of T that is a clique directed path tree of G or an

induced subgraph of G that is an odd-sun.

1 Extract the sets Cv from the clique path tree T .
2 Let σ(vi) = i, 1 ≤ i ≤ n, obtained by applying Algorithm 1 on G and sets Cv.
3 for i = 1 to n do
4 if T [Cvi ∩ (∪σ(u)<iCu)] is a directed path (maybe empty) then
5 Orient the edges of T [Cvi] that are not already oriented such that

T [Cvi] forms a directed path.

6 else /* find an odd sun */
7 Let Cstart, Ccentre, Cstop be three consecutive cliques of

T [Cvi ∩ (∪σ(u)<iCu)] such that T [Cstart, Ccentre, Cstop] is not a
directed path.

8 Mark all vertices v with σ(v) ≥ i (all other vertices are non-marked).
9 Mark Cstart (all other cliques are non-marked).

10 Let f(Cstart) = vi and g(vi) be a vertex of Cstart \ Ccentre.
11 while Cstop is not marked do
12 Choose a non marked vertex v of a marked clique Cparent.
13 Mark v.
14 Let h(v) = f(Cparent).
15 if there exists a non marked clique C ∈ Cv ∩ N(Ccentre) then
16 Mark C.
17 Let f(C) = v and g(v) be a vertex of C \ Ccentre.

18 Let u0 = f(Cstop) and uj = hj(u0), 1 ≤ j ≤ r, with ur = vi.
19 return G[u0, . . . , ur, g(u0), . . . , g(ur)].

20 Orient all not already oriented edges of T with an arbitrary direction.
21 return T with its orientation.

260 S. Chaplick et al.

Proof. To distinguish between marked elements of Algorithm 1 and 2, we say
that a clique or a vertex is marked 1 if it corresponds to the marking of Algo-
rithm 1 and marked 2 if it corresponds to the marking of Algorithm 2. Similarly
we distinguish between lines of the two algorithms by using 1.x and 2.x.

Let G be any path graph and T be any clique path tree of G. We prove that
Algorithm 2 applied on G and T , returns a clique directed path tree when every
test of line 2.4 is satisfied, and returns an odd sun when one such test is false
(i.e., the algorithm executes lines 2.6 to 2.18 and returns an odd sun at line 2.19).

Case 1: Every test of line 2.4 is true. Every vertex is considered one by
one and its corresponding subpath in T is oriented to form a directed path
without modifying already oriented edges. At the end, there may still be some
non-oriented edges (when G is disconnected), that are oriented arbitrarily at
line 2.20. Clearly, at line 2.21, the algorithm returns an orientation of T that is
a clique directed path tree of G.

In this case, the complexity of the algorithm is O(Σv∈V |Cv|) and thus O(n+m)
by Theorem 1.

Case 2: At least one test of line 2.4 is false. Let i be the first time such that
the test of line 2.4 is false for vi. Also, consider the point when Algorithm 2 enters
the else due to vertex vi. In fact, there is only one time that this test can be false
since the algorithm will return (at line 2.19) before leaving the scope of this else
block. Let U = {v ∈ V such that σ(v) < i}. The subgraph T [Cvi ∩ (∪σ(u)<iCu)]
is connected by the choice of σ and thus the three cliques Cstart, Ccentre, Cstop

exists at line 2.7. The set Cstart ∩Cstop ∩U = ∅ as T [Cstart, Ccentre, Cstop] is not
a directed path (line 2.7). First, we prove that the clique Cstop will be marked 2
during the while loop at line 2.11 (i.e., the algorithm ends).

Claim. While Cstop is not marked 2, there exists a non marked 2 vertex v of
an already marked 2 clique and a non marked 2 clique C ∈ Cv ∩ N(Ccentre)
(corresponding to lines 2.12 and 2.15).

Proof. Suppose on the contrary that at one point of the loop of line 2.11 these
v and C do not exist. Let M be the set of already marked 2 cliques. Note that
M ⊆ N(Ccentre) as all marked 2 cliques (at line 2.9 or 2.16) are adjacent to
Ccentre. Let N = N(Ccentre) \ M. Note that Cstart ∈ M and Cstop ∈ N . Let
A = U ∩ Ccentre ∩ (∪C∈MC) and B = U ∩ Ccentre ∩ (∪C∈NC). The set A ∩ B
is empty, otherwise there exists v ∈ A ∩ B and C ∈ Cv ∩ N that can play the
role of v and C as in the claim. Edges CstartCcentre and CstopCcentre are already
oriented, so the sets Cstart ∩Ccentre ∩U and Cstop ∩Ccentre ∩U are non empty.
So A and B are non empty. Let x (resp. y) be the minimum vertex for σ in
A (resp. in B). We have x /∈ B and y /∈ A. Let Cx be a clique of Cx ∩ M.
Let t0 = f(Cx) and tj = hj(t0), 1 ≤ j ≤ s, with ts = vi. We distinguish two
cases corresponding to the relation between x and y for the order σ obtained by
applying Algorithm 1 at line 2.2.

Case σ(x) < σ(y). Consider the point of Algorithm 1 when y is chosen at
line 1.4. Note that x is already marked 1, so Ccentre and Cx are already marked 1.
Vertex y is the first vertex of B chosen by Algorithm 1. So, when y is chosen, the
only marked 1 clique in Cy is Ccentre and so label(y) = 1 (otherwise, y ∈ A∩B).

From Path Graphs to Directed Path Graphs 261

We claim that σ(tj) < σ(y) for 0 ≤ j ≤ s. Suppose the contrary and let k
be minimal such that σ(tk) > σ(y). If k = 0, then Cx and Ccentre are already
marked 1 cliques of Ct0 , so label(t0) ≥ 2, a contradiction to the choice of y.
If 1 ≤ k ≤ s, then tk−1 is already marked 1, so f−1(tk) is already marked 1.
Then f−1(tk) and Ccentre are already marked 1 cliques of Ctk , so label(tk) ≥ 2, a
contradiction to the choice of y. Thus σ(vi) = σ(ts) < σ(y), contradicting y ∈ U .

Case σ(y) < σ(x). Consider the point of Algorithm 1 when x is chosen at
line 1.4. Note that y is already marked 1, so Ccentre is already marked 1. Vertex
x is the first chosen vertex of A in Algorithm 1. So when it is chosen, the only
marked 1 clique in Cx is Ccentre and so label(x) = 1 (otherwise, x ∈ A ∩ B).

Suppose there exists z ∈ B with σ(x) < σ(z) and let z be minimal with
this property. Clearly label(z) ≤ label(x) when x is chosen, so label(z) = 1 as
Ccentre ∈ Cz. Vertex z is the first vertex of B chosen after x, so its label remains
the same until it is marked. Consider (temporarily) the point of Algorithm 1
when z is chosen at line 1.4. Note that x is already marked 1, so Cx is already
marked 1. We claim that all tj , 0 ≤ j ≤ s, satisfy σ(tj) < σ(z). Suppose the
contrary and let k minimal such that σ(tk) > σ(z). If k = 0, then Cx and Ccentre

are already marked 1 cliques of Ct0 , so label(t0) ≥ 2, a contradiction to the choice
of z. If 1 ≤ k ≤ s, then tk−1 is already marked 1, so f−1(tk) is already marked 1.
Then f−1(tk) and Ccentre are already marked 1 cliques of Ctk , so label(tk) ≥ 2, a
contradiction to the choice of z. Thus σ(vi) = σ(ts) < σ(z), contradicting z ∈ U .
So there are no vertices in B with σ(x) < σ(z).

Let z be a vertex of Cstop∩Ccentre∩U , thus z ∈ B. By the preceding paragraph
σ(z) < σ(x). We consider again the point of Algorithm 1 when x is chosen at
line 1.4 with label(x) = 1. Cliques Cstop and Ccentre are already marked 1 cliques
of Cvi , so label(vi) ≥ 2, a contradiction to the choice of x.
�

By the claim, a new clique will always be marked 2 at line 2.15 until Cstop is
marked. So the while loop of line 2.11 ends and so the algorithm ends. Let uj ,
0 ≤ j ≤ r, be as defined at line 2.18. For 0 ≤ j ≤ r, let zj = g(uj). At line 2.19,
the graph G′ induced by u0, . . . , ur, z0, . . . , zr is returned. We now prove that G′

is an odd sun.
For 0 ≤ j ≤ r, let Cj = f−1(uj). Note that C0 = Cstop and Cr = Cstart. All of

the cliques Ci are distinct and adjacent to Ccentre so the tree T [Ccentre, C0, . . . , Cr]
is a star centred at Ccentre. Thus u0, . . . , ur is a clique Q and z0, . . . , zr is a stable
set with N(zj)∩Q = {uj−1, uj}, for 0 ≤ j ≤ r and subscripts modulo r+1. So G′

is a sun. The tree T [Ccentre, C0, . . . , Cr] is already oriented and T [C0, Ccentre, Cr]
is not directed by the choice of Cstart, Ccentre, Cstop of line 2.7. So C0Ccentre and
CcentreCr are not directed in the same way. Suppose, by symmetry, that C0 →
Ccentre and Cr → Ccentre (where a → b means there is a edge oriented from a to
b). Vertices C0, Ccentre, C1 appear in this order along T [Cu0] and C0 → Ccentre,
so Ccentre → C1. Vertices C1, Ccentre, C2 appear in this order along T [Cu1] and
Ccentre → C1, so C2 → Ccentre. Propagating this forward, for 2 ≤ j < r, vertices
Cj , Ccentre, Cj+1 appear in this order along T [Cuj], so Cj+1 → Ccentre when j is
odd and Ccentre → Cj+1 when j is even. Thus r is even as Cr → Ccentre and G′

is an odd sun.

262 S. Chaplick et al.

Vertices and maximal cliques are marked at most once in the while loop of
line 2.11, so the complexity of the else part is O(|V | + |C|). Thus the total
complexity of the algorithm is O(n + m).
�

5 Consequences

Theorem 2 has several consequences concerning the relationship between path
graphs and directed path graphs.

First, we need the following lemma that is part of the work of Panda [10].
We give a short proof of this lemma here. One consequence of this lemma,
Theorem 2, and [7] is a new proof of the main result of [10] (i.e., the forbidden
induced subgraph characterization of directed path graphs).

Lemma 1 ([10]). Odd suns are minimally not directed path graphs.

Proof. Let G be an odd sun. Let C = {c0, . . . , c2k}, S = {s0, . . . , s2k}, k ≥ 1,
be the vertices of G where C is a clique, S is a stable set and for 0 ≤ i ≤ 2k,
N(si) ∩ C = {ci−1, ci} (subscripts are modulo 2k + 1).

Suppose that G is a directed path graph and let T be a clique directed path
tree of G. The maximal cliques of G are C and Ci = {si, ci−1, ci} for 0 ≤ i ≤ 2k.
For 0 ≤ i ≤ 2k, the clique C is between Ci and Ci+1 in T as otherwise ci−1 is
adjacent to si+1 or ci+1 is adjacent to si. Thus the subtree T [Cci] is the path
Ci, C, Ci+1. Suppose, by symmetry, that C0 → C. Vertices C0, C, C1 appear in
this order along T [Cc0] and C0 → C, so C → C1. Vertices C1, C, C2 appear in
this order along T [Cc1] and C → C1, so C2 → C. Propagating this forward,
for 2 ≤ i ≤ 2k, vertices Ci, C, Ci+1 appear in this order along T [Cci], where
Ci+1 → C when i is odd and C → Ci+1 when i is even. So for i = 2k, we have
C → C2k+1 and C2k+1 = C0, contradicting C0 → C. So G is not a directed path
graph.

We now prove that G is minimally not directed path graph, that is for any
vertex w of G, the graph G \ w is a directed path graph. If w ∈ S, then we can
assume that w = s0. Thus the tree on vertices C, Ci, 1 ≤ i ≤ 2k and edges
Ci → C when i is odd and C → Ci when i is even is a clique directed path tree
of G \ w. If w ∈ C, then we can assume that w = c2k. Thus the tree on vertices
C′ = C \ {w}, C′

0 = C0 \ {w}, C′
2k = C2k \ {w}, C′

i = Ci, 1 ≤ i ≤ 2k − 1 and
edges C′

i → C′ when i is odd and C′ → C′
i when i is even is a clique directed

path tree of G \ w.
�
A consequence of Theorem 2 and Lemma 1 is that, for a directed path graph,
clique path trees and clique directed path trees are the same. More precisely:

Theorem 3. For any directed path graph G and any clique path tree T of G,
the edges of T can be oriented to obtain a clique directed path tree of G.

Note that there is no analogous of Theorem 3 for rooted path graph. In fact,
there exists rooted path graphs having clique (directed) path tree that cannot
be oriented to obtain a clique rooted path tree (see Figure 1 for an example).

From Path Graphs to Directed Path Graphs 263

c

a

b

e f
d

e

e f

f
b e

d f

c f

e f

a e

Fig. 1. A rooted path graph with a clique path tree that cannot be rooted to obtain a
clique rooted path tree

Thus, there is no algorithm that can return a clique rooted path tree of a rooted
path graph G by simply orienting the edges of any clique path tree of G.

Another consequence of Theorem 2 and Lemma 1 concerns the difference
between path graphs and directed path graphs in terms of forbidden induced
subgraphs:

Theorem 4. A path graph is a directed path graph if and only if it does not
contain an odd sun as an induced subgraph.

Theorem 4 can be used to deduce the forbidden induced subgraph characteriza-
tion of directed path graphs from the forbidden induced subgraph characteriza-
tion of path graphs. The forbidden induced subgraph characterization of path
graphs was obtained by Lévêque, Maffray and Preissmann [7] (see Figure 2) (an
independent proof has been obtained by Tondato [12]):

Theorem 5 ([7]). A graph is a path graph if and only if it does not contain any
of F0(n)n≥4, F1, F2, F3, F4, F5(n)n≥7, F6, F7, F8, F9, F10(n)n≥8, F11(4k)k≥2,
F12(4k)k≥2, F13(4k + 1)k≥2, F14(4k + 1)k≥2, F15(4k + 2)k≥2, F16(4k + 3)k≥2 as
an induced subgraph.

Form the list of minimal forbidden induced subgraphs of path graphs of The-
orem 5, if we remove every graph that contains an odd sun, namely F2, F8,
F11(4k)k≥2, F12(4k)k≥2, F14(4k + 1)k≥2, and add the odd suns to the list, we
obtain the list of minimal forbidden induced subgraphs of directed path graphs
(see Figure 3):

Theorem 6 ([10]). A graph is a directed path graph if and only if it contains
no F0(n)n≥4, F1, F3, F4, F5(n)n≥7, F6, F7, F9, F10(n)n≥8, F13(4k + 1)k≥2,
F15(4k + 2)k≥2, F16(4k + 3)k≥2, F17(4k + 2)k≥1 as an induced subgraph.

Theorem 6 has already been proven by Panda [10] with the use of the Separator
Theorem of Monma and Wei [9] and a technical case analysis. Here we obtain
an independent proof using [7]. This new proof does not rely on the Separator
Theorem as it is not used in the proof of Theorem 5 in [7].

264 S. Chaplick et al.

F0(n)n≥4

F1 F2 F3 F4 F5(n)n≥7

F6 F7 F8 F9 F10(n)n≥8

F11(4k)k≥2 F12(4k)k≥2 F13(4k + 1)k≥2 F14(4k + 1)k≥2 F15(4k + 2)k≥2 F16(4k + 3)k≥2

Fig. 2. Minimal forbidden induced subgraphs for path graphs (the vertices in the cycle
marked by bold edges form a clique)

F0(n)n≥4

F1 F3 F4 F5(n)n≥7

F6 F7 F9 F10(n)n≥8

F13(4k + 1)k≥2 F15(4k + 2)k≥2 F16(4k + 3)k≥2 F17(4k + 2)k≥1

Fig. 3. Minimal forbidden induced subgraphs for directed path graphs (the vertices in
the cycle marked by bold edges form a clique)

From Path Graphs to Directed Path Graphs 265

The algorithmic consequence of Theorem 2 and Lemma 1 is the following:

Theorem 7. If there exists a polynomial algorithm that tests if a graph G is a
path graph and returns a clique path tree of G when the answer is “yes.” Then,
there exists an algorithm with the same complexity to test if a graph is a directed
path graph.

Some efficient recognition algorithms for path graphs were given by Gavril [4],
Schäffer [11] and Chaplick [1], whose complexity is respectively O(n4), O(nm)
and O(nm) for graphs with n vertices and m edges. Another algorithm was
proposed in [2] and claimed to run in O(n + m) time, but it has only appeared
as an extended abstract and is not considered to be complete or correct (see
comments in [1, Section 2.1.4]). All of these algorithms can be extended to
recognize directed path graphs with the use of Algorithm 2 without increasing the
time complexity. Thus, the fastest recognition algorithm of directed path graphs
with this method has complexity O(nm). This is the fastest known algorithm
to recognize directed path graphs. Previously, the fastest known algorithm to
recognize directed path graphs was from Monma and Wei [9] and has complexity
O(n2m).

References

1. Chaplick, S.: PQR-trees and undirected path graphs, M.Sc. Thesis, Dept. of Com-
puter Science, University of Toronto, Canada (2008)

2. Dahlhaus, E., Bailey, G.: Recognition of path graphs in linear time. In: 5th Italian
Conference on Theoretical Computer Science (Revello, 1995), pp. 201–210. World
Sci., Publishing, River Edge (1996)

3. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. J. Combin. Theory B 16, 47–56 (1974)

4. Gavril, F.: A recognition algorithm for the intersection graphs of paths in trees.
Discrete Math. 23, 211–227 (1978)

5. Golumbic, M.C.: Algorithmic graph theory and perfect graphs. Annals Disc.
Math. 57 (2004)

6. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J.
Math. 15, 835–855 (1965)

7. Lévêque, B., Maffray, F., Preissmann, M.: Characterizing path graphs by forbidden
induced subgraphs. Journal of Graph Theory 62, 369–384 (2009)

8. McKee, T.A., McMorris, F.R.: Topics in intersection graph theory. SIAM Mono-
graphs on Discrete Mathematics and Applications, Philadelphia (1999)

9. Monma, C.L., Wei, V.K.: Intersection graphs of paths in a tree. Journal of Com-
binatorial Theory B 41, 141–181 (1986)

10. Panda, B.S.: The forbidden subgraph characterization of directed vertex graphs.
Discrete Mathematics 196, 239–256 (1999)

11. Schäffer, A.A.: A faster algorithm to recognize undirected path graphs. Discrete
Appl. Math. 43, 261–295 (1993)

12. Tondato, S.B.: Grafos Cordales: Árboles clique y Representaciones canónicas, Doc-
toral Thesis, Universidad Nacional de La Plata, Argentina (2009) (in spanish)

View publication statsView publication stats

https://www.researchgate.net/publication/220753119

	From Path Graphs to Directed Path Graphs
	Introduction
	Definitions and Background
	Maximum Cardinality Clique Search
	Greedy Path Forcing
	Consequences
	References

