10 research outputs found

    A Primer on PAC-Bayesian Learning

    Get PDF
    International audienc

    PAC-Bayes and Domain Adaptation

    Get PDF
    We provide two main contributions in PAC-Bayesian theory for domain adaptation where the objective is to learn, from a source distribution, a well-performing majority vote on a different, but related, target distribution. Firstly, we propose an improvement of the previous approach we proposed in Germain et al. (2013), which relies on a novel distribution pseudodistance based on a disagreement averaging, allowing us to derive a new tighter domain adaptation bound for the target risk. While this bound stands in the spirit of common domain adaptation works, we derive a second bound (introduced in Germain et al., 2016) that brings a new perspective on domain adaptation by deriving an upper bound on the target risk where the distributions' divergence-expressed as a ratio-controls the trade-off between a source error measure and the target voters' disagreement. We discuss and compare both results, from which we obtain PAC-Bayesian generalization bounds. Furthermore, from the PAC-Bayesian specialization to linear classifiers, we infer two learning algorithms, and we evaluate them on real data.Comment: Neurocomputing, Elsevier, 2019. arXiv admin note: substantial text overlap with arXiv:1503.0694

    Sample Compressed PAC-Bayesian Bounds and learning algorithms

    Get PDF
    Dans le domaine de la classification, les algorithmes d'apprentissage par compression d'échantillons sont des algorithmes qui utilisent les données d'apprentissage disponibles pour construire l'ensemble de classificateurs possibles. Si les données appartiennent seulement à un petit sous-espace de l'espace de toutes les données «possibles», ces algorithmes possédent l'intéressante capacité de ne considérer que les classificateurs qui permettent de distinguer les exemples qui appartiennent à notre domaine d'intérêt. Ceci contraste avec d'autres algorithmes qui doivent considérer l'ensemble des classificateurs avant d'examiner les données d'entraînement. La machine à vecteurs de support (le SVM) est un algorithme d'apprentissage très performant qui peut être considéré comme un algorithme d'apprentissage par compression d'échantillons. Malgré son succès, le SVM est actuellement limité par le fait que sa fonction de similarité doit être un noyau symétrique semi-défini positif. Cette limitation rend le SVM difficilement applicable au cas où on désire utiliser une mesure de similarité quelconque.In classification, sample compression algorithms are the algorithms that make use of the available training data to construct the set of possible predictors. If the data belongs to only a small subspace of the space of all "possible" data, such algorithms have the interesting ability of considering only the predictors that distinguish examples in our areas of interest. This is in contrast with non sample compressed algorithms which have to consider the set of predictors before seeing the training data. The Support Vector Machine (SVM) is a very successful learning algorithm that can be considered as a sample-compression learning algorithm. Despite its success, the SVM is currently limited by the fact that its similarity function must be a symmetric positive semi-definite kernel. This limitation by design makes SVM hardly applicable for the cases where one would like to be able to use any similarity measure of input example. PAC-Bayesian theory has been shown to be a good starting point for designing learning algorithms. In this thesis, we propose a PAC-Bayes sample-compression approach to kernel methods that can accommodate any bounded similarity function. We show that the support vector classifier is actually a particular case of sample-compressed classifiers known as majority votes of sample-compressed classifiers. We propose two different groups of PAC-Bayesian risk bounds for majority votes of sample-compressed classifiers. The first group of proposed bounds depends on the KL divergence between the prior and the posterior over the set of sample-compressed classifiers. The second group of proposed bounds has the unusual property of having no KL divergence when the posterior is aligned with the prior in some precise way that we define later in this thesis. Finally, for each bound, we provide a new learning algorithm that consists of finding the predictor that minimizes the bound. The computation times of these algorithms are comparable with algorithms like the SVM. We also empirically show that the proposed algorithms are very competitive with the SVM

    Forêts Aléatoires PAC-Bayésiennes

    Get PDF
    Dans ce mémoire de maîtrise, nous présentons dans un premier temps un algorithme de l'état de l'art appelé Forêts aléatoires introduit par Léo Breiman. Cet algorithme effectue un vote de majorité uniforme d'arbres de décision construits en utilisant l'algorithme CART sans élagage. Par après, nous introduisons l'algorithme que nous avons nommé SORF. L'algorithme SORF s'inspire de l'approche PAC-Bayes, qui pour minimiser le risque du classificateur de Bayes, minimise le risque du classificateur de Gibbs avec un régularisateur. Le risque du classificateur de Gibbs constitue en effet, une fonction convexe bornant supérieurement le risque du classificateur de Bayes. Pour chercher la distribution qui pourrait être optimale, l'algorithme SORF se réduit à être un simple programme quadratique minimisant le risque quadratique de Gibbs pour chercher une distribution Q sur les classificateurs de base qui sont des arbres de la forêt. Les résultasts empiriques montrent que généralement SORF est presqu'aussi bien performant que les forêts aléatoires, et que dans certains cas, il peut même mieux performer que les forêts aléatoires.In this master's thesis, we present at first an algorithm of the state of the art called Random Forests introduced by Léo Breiman. This algorithm construct a uniformly weighted majority vote of decision trees built using the CART algorithm without pruning. Thereafter, we introduce an algorithm that we called SORF. The SORF algorithm is based on the PAC-Bayes approach, which in order to minimize the risk of Bayes classifier, minimizes the risk of the Gibbs classifier with a regularizer. The risk of Gibbs classifier is indeed a convex function which is an upper bound of the risk of Bayes classifier. To find the distribution that would be optimal, the SORF algorithm is reduced to being a simple quadratic program minimizing the quadratic risk of Gibbs classifier to seek a distribution Q of base classifiers which are trees of the forest. Empirical results show that generally SORF is almost as efficient as Random forests, and in some cases, it can even outperform Random forests

    From PAC-Bayes bounds to KL regularization

    No full text
    We show that convex KL-regularized objective functions are obtained from a PAC-Bayes risk bound when using convex loss functions for the stochastic Gibbs classifier that upper-bound the standard zero-one loss used for the weighted majority vote. By restricting ourselves to a class of posteriors, that we call quasi uniform, we propose a simple coordinate descent learning algorithm to minimize the proposed KL-regularized cost function. We show that standard â„“p-regularized objective functions currently used, such as ridge regression and â„“p-regularized boosting, are obtained from a relaxation of the KL divergence between the quasi uniform posterior and the uniform prior. We present numerical experiments where the proposed learning algorithm generally outperforms ridge regression and Ada-Boost.

    Generalization Bounds: Perspectives from Information Theory and PAC-Bayes

    Full text link
    A fundamental question in theoretical machine learning is generalization. Over the past decades, the PAC-Bayesian approach has been established as a flexible framework to address the generalization capabilities of machine learning algorithms, and design new ones. Recently, it has garnered increased interest due to its potential applicability for a variety of learning algorithms, including deep neural networks. In parallel, an information-theoretic view of generalization has developed, wherein the relation between generalization and various information measures has been established. This framework is intimately connected to the PAC-Bayesian approach, and a number of results have been independently discovered in both strands. In this monograph, we highlight this strong connection and present a unified treatment of generalization. We present techniques and results that the two perspectives have in common, and discuss the approaches and interpretations that differ. In particular, we demonstrate how many proofs in the area share a modular structure, through which the underlying ideas can be intuited. We pay special attention to the conditional mutual information (CMI) framework; analytical studies of the information complexity of learning algorithms; and the application of the proposed methods to deep learning. This monograph is intended to provide a comprehensive introduction to information-theoretic generalization bounds and their connection to PAC-Bayes, serving as a foundation from which the most recent developments are accessible. It is aimed broadly towards researchers with an interest in generalization and theoretical machine learning.Comment: 222 page

    Bornes PAC-Bayes et algorithmes d'apprentissage

    Get PDF
    Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011L’objet principale de cette thèse est l’étude théorique et la conception d’algorithmes d’apprentissage concevant des classificateurs par vote de majorité. En particulier, nous présentons un théorème PAC-Bayes s’appliquant pour borner, entre autres, la variance de la perte de Gibbs (en plus de son espérance). Nous déduisons de ce théorème une borne du risque du vote de majorité plus serrée que la fameuse borne basée sur le risque de Gibbs. Nous présentons également un théorème permettant de borner le risque associé à des fonctions de perte générale. À partir de ce théorème, nous concevons des algorithmes d’apprentissage construisant des classificateurs par vote de majorité pondérés par une distribution minimisant une borne sur les risques associés aux fonctions de perte linéaire, quadratique, exponentielle, ainsi qu’à la fonction de perte du classificateur de Gibbs à piges multiples. Certains de ces algorithmes se comparent favorablement avec AdaBoost.The main purpose of this thesis is the theoretical study and the design of learning algorithms returning majority-vote classifiers. In particular, we present a PAC-Bayes theorem allowing us to bound the variance of the Gibbs’ loss (not only its expectation). We deduce from this theorem a bound on the risk of a majority vote tighter than the famous bound based on the Gibbs’ risk. We also present a theorem that allows to bound the risk associated with general loss functions. From this theorem, we design learning algorithms building weighted majority vote classifiers minimizing a bound on the risk associated with the following loss functions : linear, quadratic and exponential. Also, we present algorithms based on the randomized majority vote. Some of these algorithms compare favorably with AdaBoost

    Apprentissage de vote de majorité pour la classification supervisée et l'adaptation de domaine : approches PAC-Bayésiennes et combinaison de similarités

    No full text
    Nowadays, due to the expansion of the web a plenty of data are available and many applications need to make use of supervised machine learning methods able to take into account different information sources. For instance, for multimedia semantic indexing applications, one have to efficiently take advantage of information about color, textual, texture or sound sources of the document. Most of the existing methods try to combine these multimodal informations, either by directly fusionning the descriptors or by combining similarities or classifiers, in order to produce a classification model more reliable for the considered task. Usually, these multimodal facets imply two main issues. On the one hand, one have to be able to correctly make use of all the a priori information available. On the other hand, the data, on which the model will be applied, does not come from the same probability distribution than the data used during the learning step. In this context, we have to adapt the model on new data, which is known as domain adaptation. In this thesis, we propose several theoretically-founded contributions for tackle these issues. A first serie of contributions studies the problem of learning a weighted majority vote over a set of voters in a supervised classification setting.These results fall within the context of the PAC-Bayesian theory allowing to derive generalization abilities for such a vote by assuming an a priori on the relevance of the voters. Our first contribution aims at extending a recent algorithm, MinCq, minimizing a bound over the error of the majority vote in binary classification. This extension can take into account an a priori belief on the performances of the voters. This belief is expressed as an aligned distribution. We illustrate its usefulness for combining nearest neighbor classifiers, and for classifier fusion on a multimedia semantic indexing task. Then, we propose a theoretical contribution for multiclass classification tasks. Our approach is based on an original PAC-Bayesian analysis considering the operator norm of the confusion matrix as an error measure. Our second series of contributions relates to domain adaptation. In this situation we present our third result for combining similarities in order to infer a representation space for moving closer the learning distribution and the testing distribution. This contribution is based on the theory of learning from (epsilon,gamma,tau)-good similarity functions and is justified by the minimization of an usual bound in domain adaptation. For our last contribution, we propose the first PAC-Bayesian analysis for domain adaptation. This analysis is based on a consistent divergence measure between distributions allowing us to derive a generalization bound for learning majority votes in binary classification. Moreover, we propose a first algorithm specialized to linear classifiers and able to directly minimize our bound.De nos jours, avec l'expansion d'Internet, l'abondance et la diversité des données accessibles qui en résulte, de nombreuses applications requièrent l'utilisation de méthodes d'apprentissage automatique supervisé capables de prendre en considération différentes sources d'informations. Par exemple, pour des applications relevant de l'indexation sémantique de documents multimédia, il s'agit de pouvoir efficacement tirer bénéfice d'informations liées à la couleur, au texte, à la texture ou au son des documents à traiter. La plupart des méthodes existantes proposent de combiner ces informations multimodales, soit en fusionnant directement les descriptions, soit en combinant des similarités ou des classifieurs, avec pour objectif de construire un modèle de classification automatique plus fiable pour la tâche visée. Ces aspects multimodaux induisent généralement deux types de difficultés. D'une part, il faut être capable d'utiliser au mieux toute l'information a priori disponible sur les objets à combiner. D'autre part, les données sur lesquelles le modèle doit être appliqué ne suivent nécessairement pas la même distribution de probabilité que les données utilisées lors de la phase d'apprentissage. Dans ce contexte, il faut être à même d'adapter le modèle à de nouvelles données, ce qui relève de l'adaptation de domaine. Dans cette thèse, nous proposons plusieurs contributions fondées théoriquement et répondant à ces problématiques. Une première série de contributions s'intéresse à l'apprentissage de votes de majorité pondérés sur un ensemble de votants dans le cadre de la classification supervisée. Ces contributions s'inscrivent dans le contexte de la théorie PAC-Bayésienne permettant d'étudier les capacités en généralisation de tels votes de majorité en supposant un a priori sur la pertinence des votants. Notre première contribution vise à étendre un algorithme récent, MinCq, minimisant une borne sur l'erreur du vote de majorité en classification binaire. Cette extension permet de prendre en compte une connaissance a priori sur les performances des votants à combiner sous la forme d'une distribution alignée. Nous illustrons son intérêt dans une optique de combinaison de classifieurs de type plus proches voisins, puis dans une perspective de fusion de classifieurs pour l'indexation sémantique de documents multimédia. Nous proposons ensuite une contribution théorique pour des problèmes de classification multiclasse. Cette approche repose sur une analyse PAC-Bayésienne originale en considérant la norme opérateur de la matrice de confusion comme mesure de risque. Notre seconde série de contributions concerne la problématique de l'adaptation de domaine. Dans cette situation, nous présentons notre troisième apport visant à combiner des similarités permettant d'inférer un espace de représentation de manière à rapprocher les distributions des données d'apprentissage et des données à traiter. Cette contribution se base sur la théorie des fonctions de similarités (epsilon,gamma,tau)-bonnes et se justifie par la minimisation d'une borne classique en adaptation de domaine. Pour notre quatrième et dernière contribution, nous proposons la première analyse PAC-Bayésienne appropriée à l'adaptation de domaine. Cette analyse se base sur une mesure consistante de divergence entre distributions permettant de dériver une borne en généralisation pour l'apprentissage de votes de majorité en classification binaire. Elle nous permet également de proposer un algorithme adapté aux classifieurs linéaires capable de minimiser cette borne de manière directe

    Apprentissage automatique avec garanties de généralisation à l'aide de méthodes d'ensemble maximisant le désaccord

    Get PDF
    Nous nous intéressons au domaine de l’apprentissage automatique, une branche de l’intelligence artificielle. Pour résoudre une tâche de classification, un algorithme d’apprentissage observe des données étiquetées et a comme objectif d’apprendre une fonction qui sera en mesure de classifier automatiquement les données qui lui seront présentées dans le futur. Plusieurs algorithmes classiques d’apprentissage cherchent à combiner des classificateurs simples en construisant avec ceux-ci un classificateur par vote de majorité. Dans cette thèse, nous explorons l’utilisation d’une borne sur le risque du classificateur par vote de majorité, nommée la C-borne. Celle-ci est définie en fonction de deux quantités : la performance individuelle des votants, et la corrélation de leurs erreurs (leur désaccord). Nous explorons d’une part son utilisation dans des bornes de généralisation des classificateurs par vote de majorité. D’autre part, nous l’étendons de la classification binaire vers un cadre généralisé de votes de majorité. Nous nous en inspirons finalement pour développer de nouveaux algorithmes d’apprentissage automatique, qui offrent des performances comparables aux algorithmes de l’état de l’art, en retournant des votes de majorité qui maximisent le désaccord entre les votants, tout en contrôlant la performance individuelle de ceux-ci. Les garanties de généralisation que nous développons dans cette thèse sont de la famille des bornes PAC-bayésiennes. Nous généralisons celles-ci en introduisant une borne générale, à partir de laquelle peuvent être retrouvées les bornes de la littérature. De cette même borne générale, nous introduisons des bornes de généralisation basées sur la C-borne. Nous simplifions également le processus de preuve des théorèmes PAC-bayésiens, nous permettant d’obtenir deux nouvelles familles de bornes. L’une est basée sur une différente notion de complexité, la divergence de Rényi plutôt que la divergence Kullback-Leibler classique, et l’autre est spécialisée au cadre de l’apprentissage transductif plutôt que l’apprentissage inductif. Les deux algorithmes d’apprentissage que nous introduisons, MinCq et CqBoost, retournent un classificateur par vote de majorité maximisant le désaccord des votants. Un hyperparamètre permet de directement contrôler leur performance individuelle. Ces deux algorithmes étant construits pour minimiser une borne PAC-bayésienne, ils sont rigoureusement justifiés théoriquement. À l’aide d’une évaluation empirique, nous montrons que MinCq et CqBoost ont une performance comparable aux algorithmes classiques de l’état de l’art.We focus on machine learning, a branch of artificial intelligence. When solving a classification problem, a learning algorithm is provided labelled data and has the task of learning a function that will be able to automatically classify future, unseen data. Many classical learning algorithms are designed to combine simple classifiers by building a weighted majority vote classifier out of them. In this thesis, we extend the usage of the C-bound, bound on the risk of the majority vote classifier. This bound is defined using two quantities : the individual performance of the voters, and the correlation of their errors (their disagreement). First, we design majority vote generalization bounds based on the C-bound. Then, we extend this bound from binary classification to generalized majority votes. Finally, we develop new learning algorithms with state-of-the-art performance, by constructing majority votes that maximize the voters’ disagreement, while controlling their individual performance. The generalization guarantees that we develop in this thesis are in the family of PAC-Bayesian bounds. We generalize the PAC-Bayesian theory by introducing a general theorem, from which the classical bounds from the literature can be recovered. Using this same theorem, we introduce generalization bounds based on the C-bound. We also simplify the proof process of PAC-Bayesian theorems, easing the development of new families of bounds. We introduce two new families of PAC-Bayesian bounds. One is based on a different notion of complexity than usual bounds, the Rényi divergence, instead of the classical Kullback-Leibler divergence. The second family is specialized to transductive learning, instead of inductive learning. The two learning algorithms that we introduce, MinCq and CqBoost, output a majority vote classifier that maximizes the disagreement between voters. An hyperparameter of the algorithms gives a direct control over the individual performance of the voters. These two algorithms being designed to minimize PAC-Bayesian generalization bounds on the risk of the majority vote classifier, they come with rigorous theoretical guarantees. By performing an empirical evaluation, we show that MinCq and CqBoost perform as well as classical stateof- the-art algorithms
    corecore