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Résumé

Dans le domaine de la classification, les algorithmes d’apprentissage par compression

d’échantillons sont des algorithmes qui utilisent les données d’apprentissage disponibles

pour construire l’ensemble de classificateurs possibles. Si les données appartiennent

seulement à un petit sous-espace de l’espace de toutes les données possibles, ces al-

gorithmes possédent l’intéressante capacité de ne considérer que les classificateurs qui

permettent de distinguer les exemples qui appartiennent à notre domaine d’intérêt.

Ceci contraste avec d’autres algorithmes qui doivent considérer l’ensemble des clas-

sificateurs avant d’examiner les données d’entrâınement. La machine à vecteurs de

support (le SVM) est un algorithme d’apprentissage trés performant qui peut être con-

sidéré comme un algorithme d’apprentissage par compression d’échantillons. Malgré

son succés, le SVM est actuellement limité par le fait que sa fonction de similarité doit

être un noyau symétrique semi-défini positif. Cette limitation rend le SVM difficilement

applicable au cas où on désire utiliser une mesure de similarité quelconque.

Il a été montré que la théorie PAC-Bayes est un bon point de départ pour concevoir

des algorithmes d’apprentissage. Dans cette thése, nous proposons une approche aux

méthodes à noyaux qui permet d’utiliser n’importe quelle fonction de similarité bornée.

Cette approche est basée à la fois sur la théorie de la compression d’échantillons et la

théorie PAC-Bayes. Nous montrons que le SVM est un cas particulier de classificateur

par compression d’échantillons que l’on nomme les votes de majorité de classificateurs

comprimés. Nous proposons deux catégories différentes de bornes PAC-Bayes sur le

risque des votes de majorité de classificateurs comprimés. La premiére catégorie de

bornes proposée dépend de la KL-divergence entre la distribution a priori et la distri-

bution a posteriori sur l’ensemble des classificateurs comprimés. La deuxiéme catégorie

de bornes proposée posséde la propriété inhabituelle de ne pas utiliser la KL-divergence

lorsque la distribution a posteriori est alignée avec la distribution a priori d’une façon
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précise que nous définissons plus loin dans cette thése. Enfin, pour chaque borne pro-

posée, nous fournissons un nouvel algorithme d’apprentissage qui consiste à trouver le

classificateur qui minimise la borne. Les temps de calcul de ces algorithmes sont com-

parables à des algorithmes comme le SVM. De plus, nous montrons empiriquement que

les algorithmes proposés sont trés compétitifs avec le SVM.



Abstract

In classification, sample compression algorithms are the algorithms that make use of the

available training data to construct the set of possible predictors. If the data belongs

to only a small subspace of the space of all ”possible” data, such algorithms have the

interesting ability of considering only the predictors that distinguish examples in our

areas of interest. This is in contrast with non sample compressed algorithms which

have to consider the set of predictors before seeing the training data. The Support

Vector Machine (SVM) is a very successful learning algorithm that can be considered

as a sample-compression learning algorithm. Despite its success, the SVM is currently

limited by the fact that its similarity function must be a symmetric positive semi-

definite kernel. This limitation by design makes SVM hardly applicable for the cases

where one would like to be able to use any similarity measure of input example.

PAC-Bayesian theory has been shown to be a good starting point for designing learn-

ing algorithms. In this thesis, we propose a PAC-Bayes sample-compression approach

to kernel methods that can accommodate any bounded similarity function. We show

that the support vector classifier is actually a particular case of sample-compressed

classifiers known as majority votes of sample-compressed classifiers. We propose two

different groups of PAC-Bayesian risk bounds for majority votes of sample-compressed

classifiers. The first group of proposed bounds depends on the KL divergence between

the prior and the posterior over the set of sample-compressed classifiers. The second

group of proposed bounds has the unusual property of having no KL divergence when

the posterior is aligned with the prior in some precise way that we define later in this

thesis. Finally, for each bound, we provide a new learning algorithm that consists of

finding the predictor that minimizes the bound. The computation times of these algo-

rithms are comparable with algorithms like the SVM. We also empirically show that

the proposed algorithms are very competitive with the SVM.
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Roy, Francis Turgeon-Boutin and Sébastien Giguère for their friendship, assistance,



Acknowledgments vi

support, and encouragement.

I would also like to thank all of my friends and colleagues whose collaborative and

personal support was essential for the completion of this research. Mohak Shah may

know as much about the research work presented in my dissertation as the members of

my dissertation committee. I cannot thank him enough for his willingness to listen and

comprehend challenges I faced in my studies and for his invaluable support and friend-

ship over the years. I would like to thank Atousa Reyhani for her support and kindness

throughout my time of studying in Quebec. I think of her as a big sister. I would also

like to thank Akanksha and Maher for all the fun times, laughters, conversations, and

their friendship.

I like to thank my parents, Fatemeh and Mohammad Taghi for their love, hard work

and countless sacrifices to give me a chance at a better life. I thank my sister Solmaz

and my brother Sasan (Ali) for their support and encouragement.

Finally, most important thanks here go to my husband, Amir (Heidar), for his

endless love, constant support and encouragement all while he was pursuing his own

PhD. It is so great to have you beside me. Thank you for being such a wonderful friend

and husband. Without you I could not have done this. I love you... always.



To my husband Amir, my best friend and the love of

my life, who has been by my side throughout every step

of this journey:



Contents
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Chapter 1

Introduction

Machine learning is a subfield of artificial intelligence in which different approaches are

studied to automate the process of learning a task. There are many examples of machine

learning problems such as optical character recognition, face recognition, spam filtering,

etc. In this thesis, we focus on classification problems in which the goal is to categorize

objects into a fixed set of categories. We are interested in designing machine learning

processes (learning algorithms) capable of constructing classifiers of good quality when

given a set of already classified examples. The probability of a classifier making mistakes

in classifying future data is a factor that can show its quality. This probability is known

as the risk of the classifier. A classifier of low risk is considered to “generalize well”,

meaning that it will make few errors on new (not yet classified) examples. A risk

bound, therefore, can work as a guarantee on the future performance of the classifier.

Interestingly, the same bound can be also exploited by the learning algorithm to guide

it during its execution, to construct classifiers of better quality.

One of the most frequently used approaches to find risk bounds is the test set

approach. In this approach, the data is divided into a training set and a test set. First,

the training data is used to build a classifier. Then, the test set data is used to bound

the risk of the classifier. However, for the bound to be valid, the test set must be

independent of the classifier, which prevents us from using the bound in building a

better classifier [49].

Another approach is to bound the risk of a classifier directly from the informa-

tion obtained from the training set, including the empirical risk, which is the rate of
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misclassification of the classifier on the training set. This type of bounds has to be

simultaneously valid for all possible classifiers of a given class. This is why from such

type of bounds one can always derive a learning algorithm, the algorithm that outputs

among all possible classifiers, the one having the smallest bound value.

The PAC-Bayes theorem initiated by [42] provides this type of bounds. This type

of bounds allows us to perform model selection while not forcing us to reserve a part

of our examples to calculate the bound on the test set. Knowing that the PAC-Bayes

theorem provides a bound that is capable of guiding model selection, we would like

to find out if it would be possible to design new PAC-Bayes bounds that in turn will

propose learning algorithms. That is, we would like to know if the classifier with the

lowest PAC-Bayes bound is a classifier that generalizes well. If so, learning algorithms

that construct classifiers which can minimize the PAC-Bayes type of bounds will be

promising.

Many learning algorithms use a fixed-size set of training examples to construct a

classifier. On the other hand, there are certain types of algorithms relying on the sub-

stantially small subset of training examples to construct the classifier. These algorithms

fall under the category of Sample Compression based algorithms. Within the sample-

compression framework [14, 33], each sample-compressed classifier is partly represented

by a subset of the training examples, called the compression set. This compression

set along with possibly some additional informations called the message are enough to

reconstruct the classifier. Algorithms such as Nearest Neighbor (NN), classical Percep-

tron, Support Vectors Machine (SVM) [22], and Set Covering Machine (SCM)) [38] can

be considered as sample compression based algorithms. In the perceptron, the compres-

sion set consists of the examples used to update the weight vector and the threshold of

the separating hyperplane. In the SVM, the compression set consists of the examples

that belong to the set of support vectors. In the case of SCM, the compression set is

not enough to reconstruct the classifier; a message has to be added to the compression

set. This particular sample compressed algorithm will be addressed in Chapter 4.

Sample Compression is an important class of learning algorithms since many well

known learning algorithms, such as the SVM and the perceptron learning rule, can be

considered as sample-compression learning algorithms. Considering the capability of

PAC-Bayes bounds (as a type of training set bounds) in model selection and guiding

strategy for learning algorithms, it is worthwhile to strive to derive novel PAC-Bayes

type of bounds in the sample compression framework. This can provide us with insights



Chapter 1. Introduction 3

and intuitions towards, if not concrete algorithms, designing practical algorithms.

1.1 Thesis Contributions

Note that, all along the thesis, the publications for which the author of this thesis is a

co-author are emphasized by double brackets: “[[ ]]” instead of the usual single bracket

form “[ ]”.

The most important contribution of this thesis has been published as “A PAC-Bayes

Sample Compression Approach to Kernel Methods” [[20]], for which the author of this

thesis is a principal author. In [[20]], we proposed two different groups of PAC-Bayesian

risk bounds for majority votes of sample-compressed classifiers, and their associated

new learning algorithms. These algorithms are very competitive in comparison with

the state of the art. The approaches proposed in [[20]], were highly inspired by pre-

liminary work presented in two other publications, “From PAC-Bayes Bounds to KL

Regularization” [[19]] and “Learning the set covering machine by bound minimization

and margin-sparsity trade-off” [[31]]. In [[19]], we investigated how the PAC-Bayes

theory can be adapted to a more general notion of loss. [[19]] was itself based on [18],

a pioneer work on that topic. On the other hand, [[31]] explores learning algorithms

based on minimizing bounds for the SCM. [[31]] was a continuation of two previous

publications “Margin-Sparsity Trade-off for the Set Covering Machine” [34], and “A

PAC-Bayes Approach to the Set Covering Machine” [35]. The new proposed bounds

related to [[20]] are presented in Chapter 6, their associated learning algorithms are

presented in Chapter 7, and finally, experimental results about those algorithms can be

found in Chapter 8.

In this thesis:

• Inspired by the work in [[19]] on general loss bounds for stochastic classifiers and

also by [[31]] on proposing a learning algorithm based on minimizing a bound for

SCM, we propose two new groups of PAC-Bayesian risk bounds for majority votes

of sample-compressed classifiers [[20]].

• We propose a PAC-Bayes sample-compression approach to kernel methods that

can accommodate any bounded similarity function.
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• We show that the SVM classifier is actually a particular case of a (weighted)

majority votes of sample-compressed classifiers where the compression sequence

of each classifier consists of at most a single training example.

• For each proposed risk bound, we provide a learning algorithm that minimizes that

bound. The first group of proposed PAC-Bayes risk bounds depends on the KL

divergence between the prior and the posterior over the set of sample-compressed

classifiers. We show that the corresponding bound-minimizing learning algorithm

is KL-regularized. The second group of proposed PAC-Bayes risk bounds have the

unusual property of having no KL divergence when the posterior is aligned with

the prior in some precise way that we define later in this thesis. We show that

minimizing these risk upper bounds just amounts to minimizing the proposed

empirical loss under the constraint that the posterior is kept aligned with the

prior.

• We present an empirical study of applying the test set risk bound approach and

compare it against the Gaussian confidence interval approach to evaluate the

performance of machine learning algorithms. We also discuss the drawbacks of

test set risk bounds and the advantages of using the training set bounds. This

part of the thesis has been published as “Hold-out Risk Bounds for Classifier

Performance Evaluation” [[49]].

1.2 Thesis Organization

The rest of the thesis is organized as below:

In Chapter 2, we present some definitions that form the basis for the rest of the

thesis. We start by defining the classification problem and the risk of the classifier. We

also present the notion of majority votes of classifiers and Gibbs and Bayes classifiers.

In Chapter 3, we present the test set bound approach as one of the most frequently

used approaches to find a bound for the risk of a classifier. We empirically study the use

of the test set approach and the Gaussian confidence interval approach to see how they

compare in evaluating the performance of machine learning algorithms as explained

in [[49]].
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In Chapter 4, we define the sample compression setting and show how we can com-

pute a risk of the sample compression classifier. we also present the SCM algorithm as

a sample compression algorithm.

In Chapter 5, we first define the classical PAC-Bayes bound along with some pro-

posed versions of the PAC-Bayes bounds in the data-independent setting. We then

present the PAC-Bayes bound in the sample compression setting of [32].

In Chapter 6, we present a number of new PAC-Bayes sample compressed bounds

for majority votes of sample-compressed classifiers which are valid for any similarity

measure of input examples [[20]].

In Chapter 7, we specialize the proposed risk bounds in Chapter 6 to the majority

vote of sample compressed classifiers having compression set of size at most one. We

also show that the SVM classifier can be considered as a particular case of a (weighted)

majority votes of sample compressed classifiers [[20]]. In this particular case, the com-

pression sequence of each classifier consists of at most a single training example. We

also provide a learning algorithm that minimizes the bounds proposed in chapter 6.

In Chapter 8, we present some empirical results of applying the proposed algorithms

on a number of data sets [[20]].

Finally, in Chapter 9, we conclude the thesis and discuss some future directions.



Chapter 2

Basic Notions

2.1 Classification

Classification is the task of assigning objects to one of many predefined classes. As an

example, consider the task of categorizing bank clients (objects) who are demanding

credit cards into eligible or not eligible (classes). In this task, the credit records of each

client such as his income, other bank accounts, age, and other personal information

(attributes) are needed to be analyzed to categorize each client into eligible or not

eligible. In this thesis, we focus on binary classification problems where the input space

X consists of an arbitrary subset of Rn and the output space Y = {−1,+1}. An object

(also known as an example) is characterized by a tuple (x, y) where x ∈ X consists of

a vector of n real valued attributes and y ∈ Y is the class label.

The goal of a classification task is to construct a function h (known as classifier)

that maps each example x ∈ X to one of the predefined class labels y ∈ Y (h : X → Y).
This goal is fulfilled by a learning algorithm that receives training set S as its input and

outputs a classifier h. The training set S = {z1 = (x1, y1), ..., zm = (xm, ym)} consists of
m examples whose class labels are known. This way, classifier h is then used to classify

a new unseen example which is drawn according to a fixed but unknown distribution

D.

To measure the accuracy of classifier h, we need to measure its risk. The risk of

classifier h is the degree of disagreement between the label y of example x and the
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label assigned to x by the classifier, denoted as h(x). Given a training set S, the

goal is to construct a classifier with minimum risk without any information about D.

If the example x is drawn according to an unknown distribution D, the risk, in this

case referred to as true risk, is the probability that a classifier mis-classifies x and is

represented as:

RD(h) = Pr(x,y)∼D(h(x) 6= y)).

Since computing the exact value of the true risk of a classifier as given above is not

possible (the distribution D is unknown in our model), we compute the empirical risk

which is the risk of the classifier with respect to the training set. The empirical risk

RS(h) is shown as:

RS(h) =
1

m

m∑

i=1

I(yi 6= h(xi)).

Where I(a) = 1 if predicate a is true and 0 otherwise.

2.2 Majority Vote

When solving a classification problem, a learning algorithm is trained on a training set

S and outputs the best classifier according to some criteria (e.g, empirical risk ). The

best output classifier is not necessarily the ideal choice for the following reasons:

• When we have an insufficient number of examples in the training set, more than

one classifier may have the same empirical risk and it is not clear which of these

classifier is the best one.

• Less successful classifiers (e.g, classifiers with higher empirical risk) may also

correctly classify some examples. By discarding these classifiers some valuable

information may be lost.

Combining a number of trained classifier can lead to a better performance than a

single classifier [23]. There is a variety of methods to combine classifiers (see [5, 25,

55, 26]). Boosting [15] and Bagging [4] are two popular combining strategies. They
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both modify the training set, build classifiers on these modified training sets and then

combine them into a final classifier by a simple majority vote or a weighted majority vote.

However, each of these strategies (i.e., Boosting and Bagging ) build their classifiers in

their own specific way.

In this thesis, we are interested in weighted majority vote. Given a set of classifiers

H, a weighted majority vote is a classifier which is constructed form the combination

of a number of classifiers hi ∈ H. We denote Q as a weighted distribution on the set

of classifiers H. This way, in voting, each classifier hi ∈ H has a weight Q(hi) which

reflects how confident it is about its outputs. Simple majority vote is a special case of

weighted majority vote assigning an equal weight of 1/k to each classifier hi ∈ H where

k is the number of classifiers in H.

Definition 2.2.1. For any distribution Q over H , the Q-weighted majority vote clas-

sifier BQ, denoted as Bayes classifier, on any example x is given by:

BQ(x)
def

= sgn

[
Eh∼Qh(x)

]

where sgn(s) = +1 if real number s > 0 and sgn(s) = −1 otherwise.

The majority vote classifier BQ is related to the output of a stochastic classifier

called the Gibbs classifier. To classify an input example x, the Gibbs classifier GQ

chooses randomly a (deterministic) classifier h according to Q. The true risk RD(GQ)

and the empirical risk RS(GQ) of the Gibbs classifier are thus given by:

RD(GQ)
def
= Eh∼QRD(h)) = Eh∼QE(x,y)∼DI(h(x) 6= y).

RS(GQ)
def
= Eh∼QRS(h) = Eh∼Q

1

m

m∑

i=1

I(yi 6= h(xi)).

Note that whenever BQ mis-classifies an example x, at least half of the classifiers

(under measure Q), mis classify x. It follows that the error rate of GQ is at least half

of the error rate of BQ. Hence R(BQ) ≤ 2R(GQ). More formally we have:

BQ(x) 6= y ⇒ Eh∼QI(h(x) 6= y) > 1/2.
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2.3 Support Vector Machine

The Support Vector Machine (SVM) is a state-of-the-art classification method proposed

by [3]. SVM belongs to the group of methods that depend on the data only through

dot-products. This group is known as kernel methods. In these methods the data are

mapped into a higher dimensional space, known as feature space, and then the dot

products are replaced by a kernel function which computes the dot products in the

feature space [2].

The SVM is one of the commonly used learning algorithm in a class of kernel meth-

ods. We use SVM as a benchmark to evaluate the performance of our new suggested

learning algorithms later in this thesis.

We consider the SVM in the binary classification setting in which the SVM con-

structs a hyperplane that separates the input space into two parts. This hyperplane

can be described as:

w · x+ b = 0,

where the vector w is the normal vector perpendicular to the hyperplane, b is the bias

that allows the hyperplane not to pass through the origin, and w ·x is the dot product.

 

 

 

 

 

 

 

Figure 2.1: Maximum-margin hyperplane for SVM trained with samples from two

classes. On both side of the optimal separating hyperplane the instances are at least 1
‖w‖

away and the total margin is 2
‖w‖ . Support vectors are examples located onw·x+b = ±1.

The examples that lie closest to the hyperplane are called support vectors. Although

there are many hyperplanes that can separate the data into two parts, the goal of the

SVM is to choose a hyperplane with the maximum distance from the closest examples

of both classes. (see Figure 2.1). This distance is known as margin. Formally, let x+
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and x− respectively be the closest points to the hyperplane among the examples with

the class label +1 and −1. By using geometry, the margin of the hyperplane is given

by:

M =
1

2
ŵ · (x+ − x−),

where ŵ = w

‖w‖ is a unit vector in the direction of w. By assuming that both x+

and x− have equal distance from the hyperplane we have:

w · x+ + b = a,

w · x− + b = −a

for some constant a > 0. We can set a = 1 in order to just consider the examples that

lie closest to the separating hyperplane and make the geometric margin meaningful.

This way we obtain:

M =
1

2
ŵ · (x+ − x−) =

1

‖w‖ .

Now maximizing the geometric margin 1
‖w‖ is equivalent to minimizing ‖w‖2 which

leads to the following constrained optimization problem:

Minimize: 1
2
‖w‖2

subject to: yi(w · xi + b) ≥ 1 i = 1 · · ·m.

(2.1)

The obtained maximum margin classifier from the above equation classifies each

example correctly due to the constraints yi(w·xi+b) ≥ 1. However, in many cases when

the examples are not linearly separable, greater margin can be obtained by allowing the

classifier to mis-classify some examples. This can be done by replacing the inequality

constraints in Equation (2.1) with yi(w · xi + b) ≥ 1− ξi i = 1 · · ·m where ξ ≥ 0 are

known as slack variables and when ξ ≥ 1 the constraints yi(w.xi + b) ≥ 1 − ξ allow

the examples to be misclassified. This leads to the following constrained optimization

problem known as soft-Margin SVM which is introduced by [12].

Minimize: 1
2
‖w‖2 + C

∑m
i=1 ξi

subject to: yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0,

(2.2)

where the parameter C (C ≥ 0) controls the trade off between the slack variables

penalty and the size of the margin. By using the Lagrange multipliers method, we
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obtain:[12]

Minimize:
∑m

i=1 αi − 1
2

∑m
i=1

∑m
j=1 yiyjαiαjxi · xj

subject to:
∑m

i=1 yiαi = 0, 0 ≤ αi ≤ C.

(2.3)

where w =
∑m

i=1 yiαixi. The support vectors are the examples for which αi ≥ 0.

There are many classification problems that are not linearly separable in input space

while they are linearly separable in a higher dimensional space (feature space). In these

cases, input space X can be mapped into a higher dimensional feature space F using a

non-linear function φφφ : X → F . Suppose that the weight vector w can be expressed as

a linear combination of the training examples (w =
∑m

i=1 yiαixi), then the separating

hyperplane can be defined as:

m∑

i=1

yiαixi · x+ b = 0

In the feature space F this expression takes the following form:

m∑

i=1

yiαiφφφ(xi) · φφφ(x) + b = 0.

To calculate the value of the dot product in F we need to explicitly calculate the

mapping φφφ. This can become impractical when the feature space F is of high dimension.

In this case, a kernel function k(xi,x) = φφφ(x) · φφφ(xi) can be employed. The kernel

k(xi,x) can be computed without explicitly computing the mapping φφφ [2].

By using a kernel function, the separating hyperplane takes the following form

m∑

i=1

yiαik(xi,x) + b = 0,

and the constrained optimization problem in Equation (2.4), is given by:

Minimize α:
∑m

i=1 αi − 1
2

∑m
i=1

∑m
j=1 yiyjαiαjk(xi,xj)

subject to:
∑m

i=1 yiαi = 0, 0 ≤ αi ≤ C.

(2.4)
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Two commonly used kernels are the polynomial kernel given by k(u,v) = (u.v+1)p

which induces polynomial boundaries of degree p in the input space X , and the radial

basis function kernel k(u,v) = (e−γ(u−v).(u−v)) which induces boundaries by placing

weighted Gaussian upon key training examples.



Chapter 3

Test Set Risk Bound for Classifier

Performance Evaluation

One of the most common techniques of evaluating the performance of a machine learning

algorithm is its empirical evaluation on a separate set of test examples (not used for

training the algorithm) [27]. This is generally referred to as hold-out testing. In this

case, the full dataset is divided into a training and a hold-out set. A learning algorithm

is trained on the training set and outputs the classifier. The output classifier by the

learning algorithm after training is then tested on the hold out set of data. Furthermore,

one aims to provide a confidence interval around the performance estimate of the learned

classifier on the test set. Naturally, to do so, we assume that the test set is representative

of the underlying distribution of the test data. Providing such confidence interval

around the empirical risk estimate of the chosen classifier on the test data is the issue

that we focus on in this chapter. The main aim of such an evaluation is to answer the

following questions:

• Given the observed accuracy of a learning algorithm over a limited sample of data,

what can we say about the behavior of the learning algorithm over future unseen

examples?

• Given that one learning algorithm outperforms another over some sample data,

how probable is it that this learning algorithm is more accurate, in general?
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The estimates on the future performance of the empirical risk of the classifier, or

more appropriately the degree of deviation of the empirical risk from the true risk is

generally obtained using a confidence interval in which we believe the true risk of the

classifier to lie. The most common method of obtaining such confidence interval relies on

the assumption that the empirical risk of the classifier on the test data can be modeled as

a Gaussian distribution. Based on this assumption, the necessary statistics are obtained

from testing the classifier on the test data. That is, the mean classification error and

its corresponding variance on the test examples are obtained. A confidence interval

is then provided in terms of a Gaussian around the mean empirical risk with its tails

removed at twice the standard deviation estimate on either sides. This provides both a

lower and an upper bound on the true risk of the classifier [30, 27]. However, there is a

strong caveat in this approach. The whole confidence interval bound strategy relies very

significantly on the Gaussian assumption. But the basis of this Gaussian assumption

generally comes from the Central Limit theorem in the statistics theory. This result

implies that given a true estimate of the data statistic, the sampling distribution of this

statistic approaches a Gaussian distribution as the number of samplings reaches infinity.

That is, the Gaussian assumption holds on a fixed underlying statistic and that is too

asymptotically. However, this might not, and indeed is not, generally the case. The

risk in the case of classification is modeled as a zero-one loss. This is equivalent then to

having an indicator function which is true when the classifier errs on an example. This

would lead to a binomial distribution over a number of trials (tests of the classifier on

a number of samples). Further, the aim of learning is to obtain as low an empirical risk

as possible. That is, we are interested in modeling the empirical risk of the classifier

for lower values (values closer to zero). However, for smaller values of empirical risk

a binomial distribution cannot be approximated by a Gaussian. This observation was

made by [30]. As a result, applying a Gaussian assumption results in estimates that are

overly pessimistic when obtaining an upper bound and overly optimistic when obtaining

a lower bound around the empirical risk. [30] also showed a comparison between the

behavior of the two distributions with an empirical example of upper bounds on the

risk of a decision tree classifier on test datasets.

[48] gave a qualitative analysis of this approach and discussed some important

extension possibilities. In this chapter, we further the empirical validation of the test set

bound approach [30] by looking at the behavior of both the upper and the lower bounds

on the true risk of the classifiers. This is analogous to providing a confidence interval

around a binomial distribution. We compare this against the traditional Gaussian

confidence interval approach and show on a range of classifiers and datasets, how the



Chapter 3. Test Set Risk Bound for Classifier Performance Evaluation 15

test set bound approach yields more realistic estimates as opposed to the Gaussian

confidence intervals.

3.1 Test Set Bound

In this section, we present the test set bound on the true risk of the classifier. We saw

earlier that the true risk R(h) of any classifier h is defined as the probability that it

misclassifies an example drawn according to D:

RD(h)
def
= Pr(x,y)∼D (h(x) 6= y) = E(x,y)∼DI(h(x) 6= y)

where I(a) = 1 if predicate a is true and 0 otherwise. Given a classifier h, and a test

set T = {(x1, y1), . . . , (x|T |, y|T |)} of |T | examples, the empirical risk RT (h) on T of any

classifier h, is defined according to:

RT (h)
def
=

1

|T |

|T |∑

i=1

I(h(xi) 6= yi)
def
= E(x,y)∼T I(h(x) 6= y)

Now, we model RT (h) as a binomial distribution. The distribution is defined as the

probability of λ errors on a set of |T | examples (λ = |T |RT (h)) with true risk of the

classifier h being R(h).

PrT∼D|T |(|T |RT (h) = λ| RD(h)) =

(|T |
λ

)
(RD(h))

λ(1−RD(h))
|T |−λ (3.1)

We use the cumulative which is the probability of λ or fewer errors with |T | examples.

Bin(|T |, λ, R(h)) = PrT∼D|T |((|T |RT (h) ≤ λ |RD(h))

=
λ∑

i=0

(|T |
i

)
(RD(h))

i(1−RD(h))
|T |−i

We define the binomial inversion tail [30] as:

Bin(|T |, λ, δ) = max{p : Bin(|T |, λ, p) ≥ δ)} (3.2)

which is the largest true error such that the probability of observing λ or fewer

errors is at least δ.
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Then, the risk bound on the true risk of the classifier is defined as [30]:

Theorem 3.1.1. For all classifiers h, for all D, for all δ ∈ (0, 1]:

PrT∼D|T |(RD(h) ≤ Bin(|T |, |T |RT (h), δ)) ≥ 1− δ

From this result , it follows that Bin(m, |T |RT (h), δ) is the smallest upper bound

which holds with probability at least 1 − δ, on the true risk RD(h) of any classifier h

with an observed empirical risk RT (h) on a set of |T | examples.

In an analogous manner, a lower bound on RD(h) can be found to be:

Theorem 3.1.2. For all classifiers h, for all D, for all δ ∈ (0, 1]:

PrT∼D|T |(RD(h) ≥ min
p
{p : 1− Bin(|T |, |T |RT (h), δ) ≥ δ}) ≥ 1− δ

3.2 Empirical Results

In this section, we present an empirical study of the generalization error bounds on the

empirical risk of the classifier on a test set. We show how this approach, by modeling

the empirical risk as a binomial1, can be used to obtain realistic confidence intervals

that lie strictly in the [0, 1] interval. More precisely, in this section, we examine how

the empirical estimates of the risk bounds around the empirical risk fares compared to

the traditionally utilized method of obtaining confidence intervals around the empirical

risk based on the gaussian assumption. This work has been published in [[49]].

We compare six learning algorithms on 16 different datasets. The learning algo-

rithms compared are the Support Vector Machine equipped with a radial basis function

kernel, the Set Covering Machine for learning conjunctions of data-dependent balls [39],

Adaboost with decision stumps, decision trees and the Naive Bayes algorithm. With

the exception of the SCM for which an in-house implementation was used, the other

algorithms were the ones implemented in the Weka machine learning toolkit [56].

Each data set was divided into two parts, a training set S and a test set T . The

training set was used to train the learning algorithm and perform model selection to

1From Equation (3.1), one can easily show that |T |RT (h) is the number of errors on a set of |T | of
iid examples knowing that on each example, classifier h has a probability R(h) of making an error. In

other words, |T |RT (h) is a random variable that follows a binomial law with parameters (|T |, R(h)).
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Data-Set A RT Bl Bu CIl CIu

USvotes

SVM 0.05 0.027 0.096 0.019 0.080

Ada 0.04 0.017 0.077 0.012 0.067

DT 0.055 0.027 0.096 0.022 0.087

DL 0.045 0.020 0.083 0.015 0.074

NB 0.07 0.038 0.114 0.033 0.106

SCM 0.105 0.066 0.156 0.061 0.148

Liver

SVM 0.352 0.235 0.376 0.279 0.424

Ada 0.291 0.225 0.364 0.222 0.359

DT 0.325 0.256 0.400 0.254 0.395

DL 0.325 0.256 0.400 0.254 0.395

NB 0.4 0.326 0.476 0.3251 0.474

SCM 0.377 0.305 0.453 0.303 0.450

Credit

SVM 0.183 0.141 0.231 0.138 0.227

Ada 0.17 0.129 0.217 0.126 0.213

DT 0.13 0.094 0.173 0.091 0.168

DL 0.193 0.150 0.242 0.147 0.238

NB 0.2 0.156 0.249 0.153 0.246

SCM 0.19 0.147 0.239 0.144 0.235

Glass

SVM 0.168 0.102 0.252 0.095 0.240

Ada 0 0 0.033 0.0 0.0

DT 0.186 0.118 0.273 0.110 0.261

DL 0.065 0.026 0.130 0.017 0.112

NB 0.299 0.214 0.395 0.210 0.387

SCM 0.215 0.141 0.304 0.135 0.294

Table 3.1: Results of various classifiers on UCI Datasets
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obtain the best parameters from a pre-defined set of parameter values. The learning pa-

rameters of all algorithms were determined from the training set only. To do the model

selection, a 10 fold cross validation was used on the training set and the parameters

with the best average cross-validation error were chosen for each of the learning algo-

rithms on each dataset. The parameters included the C and the γ values in the case of

the SVM, the penalty parameter p and the best number of features s for the SCM, the

confidence parameter for pruning C and the minimum leaf nodes in the case of decision

trees, and the number of iterations in the case of Adaboost. The algorithms were then

trained with the chosen parameter values on the training set. The final classifier output

by each algorithm was then tested on the test set.

The details of the datasets are provided in Appendix 9.2: Table A.1. The columns

|S| and |T | refers to the number of examples in the training and the test sets respectively.

In this section, we present results of testing each of the classifier on the four data

sets in Table 3.1. The results of testing each of the classifier on more data sets are

presented in Tables B.1, B.2 and B.3 in Appendix 9.2. In these tables, the column

labeled RT denotes the empirical risk of the classifier on the test set, the columns CI

denotes the confidence interval obtained using the Gaussian assumption on the sampling

distribution of the empirical risk. The lower (CIl) and the upper (CIu) limits of the

interval are the two standard deviation limits around the empirical risk.

CIl = RT (h)− 2
σ̂√
|T |

, CIu = RT (h) + 2
σ̂√
|T |

.

The variance σ̂ of the risk is obtained on the test set data samples with the empirical

risk assumed as the mean µ̂ of the distribution (see [28, 30] for more detail).

µ̂ = RT (h), σ̂2 =
1

|T | − 1

|T |∑

i=1

(I(h(xi) 6= yi)− µ̂)2

Finally, the Bl and Bu columns denote, respectively, the lower and upper intervals gen-

erated from computing the lower and upper risk bounds of Theorems 3.1.2 and 3.1.1

of Section 3.1 with δ = 0.025. This value of δ is chosen to obtain the intervals compa-

rable to the two standard deviations intervals obtained with the Gaussian assumption

approach.

As mentioned above, the risk bound technique can be considered as an alternate

approach to obtain confidence intervals around the empirical risk of the classifiers. It

is different from the traditional confidence interval technique in the sense that the
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empirical risk is modeled as a binomial distribution. In contrast, the classical approach

to obtain confidence intervals makes an implicit use of the central limit theorem in

imposing an asymptotic Gaussian assumption on the distribution of the empirical risk

considering the true risk to be fixed. However, for lower values of the empirical risk

(closer to zero), this assumption rarely, if ever, holds. As a result the limits of the

confidence intervals obtained using the classical technique are either overly pessimistic

(the upper limits) or overly optimistic (the lower limits). Moreover, the limits of these

intervals are also not restricted to the [0, 1] intervals rendering them meaningless in most

scenarios. For instance, upper limits of the confidence interval around the empirical risk

exceeding unity can hardly be interpreted. Indeed, the empirical risk of the classifier,

by definition, should always be constrained in the [0, 1], and so should be its true risk.

Hence, obtaining confidence intervals that spill over this known interval do not make

much sense. On the other hand, the risk bound approach is guaranteed to lie in the

[0, 1] interval. Moreover, as we also saw in the results presented in Tables 3.1.1 (and

also Tables B.1, B.2 and B.3 in Appendix 9.2) this technique allows us to obtain tight

intervals in practice. The upper bound never results in an overly pessimistic estimate

greater than 1 while the lower bound never becomes too optimistic. Furthermore, the

confidence interval technique cannot yield a confidence interval in the case when the

observed empirical risk is zero. This can be seen directly since the resulting Gaussian in

this case has both a zero mean and a zero variance. Hence, in the case of zero empirical

risk, the confidence interval technique becomes overly optimistic. The risk bound on

the other hand, still yields a finite upper bound (of course very small since RT (h) = 0).

Hence, we show empirically how a test set approach yields more realistic estimates on

the limits of the confidence intervals and make a case for its wider use.

However, one of the drawbacks to the test set approach is that the examples used

for training cannot be used for testing while in some cases a few extra examples make

output classifier more accurate. Another drawback is that splitting the original dataset

into a test set and a training set might result in cases where there are insufficient

examples in the training set. In those cases, the assumption that the behavior of the

training set accuracy is close to the true error dose not hold anymore. Training set

bounds including VC [53] and Sample compression bounds are alternative approaches

to bound the future error rate of the learned classifier. Sample compression bounds [39]

can result in practical realizable bounds on the true risk of the classifier. In these

bounds, all the examples can be used for both learning and bounding. Indeed, training

set based bounds can be used to design learning algorithms in the following way. Given

any such bound, learning algorithms should find a classifier that minimizes the given
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risk bound. This way, the tighter the bound is, the better the performance the algorithm

might achieve. In Chapter 6 such an approach will be proposed. Moreover, training set

bounds provide insights into the learning problems [30]. In the following chapters, we

present two training set bounds: the PAC-Bayes bound and the sample compression

bound.



Chapter 4

Sample Compression Learning

In the previous chapter, we presented the test set bound to bound the future error

rate of the learned classifier. We also discussed the drawbacks of using this approach.

These issues motivate us to study training set bounds as an alternative approach. In

this chapter, we first discuss the sample compression setting. In this setting, the set

of classifiers are constructed using a subset of the examples of the training set. We

then present the sample compression training set bounds in [[31]]. These bounds are

obtained from test set bounds via a wise utilization of the union bound.

4.1 Sample Compression Setting

In the sample compression setting, the returned classifier (called here the sc-classifier)

by the learning algorithm is encoded by a subset of the training set and a message.

More formally, given a training sequence S = 〈z1, .., zm〉 = 〈(x1, y1), .., (xm, ym)〉, each
sc-classifier is described by a subsequence Si of S called the compression sequence, and

a message µ which represents the additional information needed to obtain a classifier

from Si. Given S, the compression sequence Si is defined by the following vector i of

indices:

i
def
= 〈i1, i2, . . . , i|i|〉 ,
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with 1 ≤ i1 < i2 < . . . < i|i| ≤ m. The number of indices present in i is denoted by

|i|, and the vector of indices of a sc-classifier h by ih. The set of all the 2m possible

vectors of indices is denoted by I. The fact that each sc-classifier is described by a

compression sequence and a message implies that there exists a reconstruction function

R that outputs a classifier

hµ
S′

def
= R(S ′, µ), (4.1)

when given an arbitrary compression sequence S ′ and a message µ chosen from the set

MS′ of all messages that can be supplied with the compression sequence S ′. MS′ must

be defined a priori (before observing S) for all possible sequences S ′ of size at most m

of elements of X × Y . The messages can be strings or values taken from a continuous

set. Given a training set S, we denote by HS the set of all sc-classifiers R(Si, µ) such

that µ ∈MSi
and i ∈ I. Also, let us denote R(Si, µ) by hµ

Si
.

As examples of learning algorithms that output sc-classifier, let us point out the

perceptron learning rule and the SVM algorithm where the final classifier can be re-

constructed solely from a compression sequence [21]. In the case of the perceptron,

the compression sequence is the set of all examples used to update the weight vector

and threshold of the separating hyperplane (classifier). Indeed, applying the perceptron

algorithm to the compression set will output the same classifier. Hence, the reconstruc-

tion function is the perceptron algorithm itself. For the SVM, the compression set is the

set of all support vectors, and again, the reconstruction function is the algorithm itself.

In contrast, the reconstruction function of the Set Covering Machine (SCM) [39] needs

both a compression set and a message string. SCM constructs the smallest possible

conjunction of boolean-valued features. Each feature is a ball identified by two training

examples; the center and the border. The compression set is the set of examples used

to construct the (features) balls. The message string specifies which examples of the

compression set is a center of balls. Also, most of the time additional information is

needed to determine for each center which example is the border example associated

with it (see Section 4.4 for more details).

4.2 Calculating the Risk

The risk RD(h
µ
Si
) (or generalization error) of any sc-classifier hµ

Si
is defined as:

RD(h
µ
Si
)

def
= E

(x,y)∼D
I(hµ

Si
(x) 6= y) = Pr

(x,y)∼D
(hµ

Si
(x) 6= y) (4.2)
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where I(a) = 1 if predicate a is true.

Depending on the learning algorithm the empirical risk RS(h
µ
Si
) on S of any sc-

classifier hµ
Si

is defined in one of the following ways:

(1) : RS(h
µ
Si
)

def
= E

(x,y)∼S/Si

I(hµ
Si
(x) 6= y)

def
=

1

m− |i|

m∑

i=1

I(hµ
Si
(xi) 6= yi)I((xi, yi) /∈ Si).

(4.3)

(2) : RS(h
µ
Si
)

def
= E

(x,y)∼S
I(hµ

Si
(x) 6= y)

def
=

1

m

m∑

i=1

I(hµ
Si
(xi) 6= yi). (4.4)

where I(a) = 1 if predicate a is true and 0 otherwise, and where (x, y)∼S/Si means

that (x, y) is drawn according to the uniform distribution on S/Si.

As we can see in Equation (4.4), the empirical risk is a biased estimate of the true

risk. The bias comes from the elements of S that are in the compression sequence. This

is not the case in Equation (4.3). To be more precise, note that with the i.i.d assumption,

in the classical (non-sample compressed) setting, mRS(h) is a random variable that

follows a binomial law with parameters (m,RD(h)). As we said earlier, this is no longer

the case in Equation (4.4) because the risk can then be biased by the elements of

S that are in the compression sequence. However, if ah
def
=

∑
(x,y)∈Si

I(hµ
Si
(x 6= y),

then mRS(h) − ah is a binomial random variable with parameters (m − |i|, RD(h)).

In the case of Equation (4.3), mRS(h) is a binomial random variable with parameters

(m − |i|, RD(h)). On the other hand, the definition of Equation (4.4) can be of our

interest if we are dealing with sample compressed algorithms that among other things

try to minimize the empirical risk. This is especially true if the algorithm is designed to

be very confident on classifying the examples of the compression set and on examples

that are close to these examples. In this case, we want the algorithm to take into account

its performance on the examples of the compression sequence. Using Equation (4.4) is

one way to achieve that.
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4.3 Sample Compression Risk Bound

In this section, we present the sample compressed bound presented in [[31]]. The

proposed risk bound is a generalization of the sample-compression risk bound of [30]

to the case where part of the data-compression information is given by the message. It

also has the property to reduce to the Occam’s Razor bound (see [30]) when the sample

compression set vanishes.

We define priors over I ×MS for any possible S ∈ Dm. Moreover, for any given S,

we will consider only the priors PS that can be factorized as

PS(h
µ
Si
) = PI(i)PSi

(µ)

where PI(i) is the prior probability of using the vector i of indices as defined above

and where PSi
(µ) is the prior probability of using the message µ given that we use the

compression set Si. The proposed bound in Theorem 4.3.1 applies to any compression

set-dependent distribution of messages PSi
(µ) satisfying:

∑

µ∈MS
i

PSi
(µ) ≤ 1 ∀Si (4.5)

and any prior distribution PI of vectors of indices satisfying:

∑

i∈I
PI(i) ≤ 1 (4.6)

Theorem 4.3.1. [[31]] For any sample compressed classifier hµ
Si
, for any prior dis-

tribution PI of vectors of indices, for any compression set-dependent distribution of

messages PSi
(µ), and for any δ ∈ (0, 1], we have:

Pr
S∼Dm

(
∀i ∈ I, ∀µ ∈MSi

: RD(h
µ
Si
) ≤

Bin
(
(m− |i|)RS(h

µ
Si
), (m− |i|), PI(i)PSi

(µ)δ
))
≥ 1− δ

where Bin is the inversion of a binomial tail function defined in Equation (3.2).

Proof. We seek a tight risk bound for arbitrary reconstruction functions that holds

uniformly for all compression sets and messages. To obtain the tightest possible risk
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bound, we fully exploit the fact that the distribution of classification errors is a binomial

and make use of the Theorem 3.1.1.(see Chapter 3, Section 3.1).

Consider:

P ′ = Pr
S∼Dm

(
∃i ∈ I : ∃µ ∈MSi

: RD(h
µ
Si
) >

Bin
(
(m− |i|)RS(h

µ
Si
), (m− |i|), PI(i)PSi

(µ)δ
))

To prove the theorem, we show that P ′ ≤ δ. Since PrS∼Dm(·) = ESi
PrS/Si|Si

(·), the
union bound, Theorem 3.1.1 and Equations 4.5, and 4.6 imply that we have:

P ′ ≤
∑

i∈I
ESi

∑

µ∈MS
i

Pr
S/Si|Si

(
RD(h

µ
Si
) > Bin

(
(m− |i|)RD(h

µ
Si
), (m− |i|), PI(i)PSi

(µ)δ
))

≤
∑

i∈I
ESi

∑

µ∈MS
i

PI(i)PSi
(µ)δ

≤ δ

By inverting a standard approximation of the binomial tail using Lemma 4.3.2, the

bound of Theorem 4.3.1 is rewritten into the bound of Theorem 4.3.3.

Lemma 4.3.2. [[31]] For any integer m ≥ 1 and k ∈ {0, . . . ,m}, we have:

Bin (k,m, δ) ≤ 1− exp

(
−1

m− k

[
ln

(
m

k

)
+ ln

(
1

δ

)])
(4.7)

≤ 1

m− k

[
ln

(
m

k

)
+ ln

(
1

δ

)]
(4.8)

Proof. We first show that

Bin (m, k, r)
def
=

k∑

i=0

(
m

i

)
ri(1− r)m−i ≤

(
m

k

)
(1− r)m−k

Let h be a classifier with risk RD(h) = r. Recall that the binomial tail distribution

Bin (m, k, r) associated with a classifier of (true) risk r is defined as the probability that

this classifier makes at most k errors on a test set of m examples:
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Bin (m, k, r)
def
=

k∑

i=0

(
m

i

)
ri (1− r)m−i

= Pr ∃S ′ ⊆ {1, 2, ..,m} such that |S ′| = m− k ∧RS′(h) = 0

≤
∑

S′⊆{1,...,m} : |S′|=m−k

Pr {RS′(h) = 0} (the union bound)

=

(
m

m− k

)
(1− r)m−k =

(
m

k

)
(1− r)m−k

def
= g (m, k, r)

Since the tail of the binomial is a decreasing function of r when k and m are fixed,

it follows that:

Bin (m, k, δ)
def
= sup

{
r : Bin (k,m, r) ≥ δ

}

≤ sup{r : g (m, k, r) ≥ δ}
= {r : g (m, k, r) = δ}

Now, note that the value of r that satisfies the equation g (m, k, r) = δ is precisely

given by:

r = 1− exp

[
− 1

m− k

(
ln

(
m

k

)
+ ln

1

δ

)]

Hence,

Bin (m, k, δ) ≤ 1− exp

[
− 1

m− k

(
ln

(
m

k

)
+ ln

1

δ

)]

We, therefore, have the following relaxation of Theorem 4.3.1:

Theorem 4.3.3. [[31]] For any sample compressed classifier hµ
Si
, for any prior dis-

tribution PI of vectors of indices, for any compression set-dependent distribution of
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messages PSi
(µ), and for any δ ∈ (0, 1], we have:

Pr
S∼Dm

(
∀i ∈ I, ∀µ ∈MSi

: RD(h
µ
Si
) ≤

1− exp

(
−1

m− d− k

[
ln

(
m− d

k

)
+ ln

(
1

PI(i)PSi
(µ)δ

)]))
≥ 1− δ (4.9)

and, consequently:

Pr
S∼Dm

(
∀i ∈ I, ∀µ ∈MSi

: RD(h
µ
Si
) ≤

1

m− d− k

[
ln

(
m− d

k

)
+ ln

(
1

PI(i))PSi
(µ)δ

)])
≥ 1− δ (4.10)

where d
def

= |i| is the sample compression set size of classifier hµ
Si

and k
def

= (m− i)RS(h
µ
Si
)

is the number of training errors that this classifier makes on the examples that are not

in the compression set.

Proof. The proof is straightforward by using the following inequality given in Lemma 4.3.2

in Theorem 4.3.1:

Bin
(
(m− |i|), (m− |i|)RS(h

µ
Si
), PI(i)PSi

(µ)δ
)
≤

1− exp

(
−1

m− d− k

[
ln

(
m− d

k

)
+ ln

(
1

PI(i)PSi
(µ)δ

)])

where d
def
= |i| is the sample compression set size of classifier hµ

Si
and k

def
= (m− i)RS(h

µ
Si
)

is the number of training errors that this classifier makes on the examples that are not

in the compression set.

As we can see in Theorem 4.3.3, the risk bound of classifier hµ
Si

is small when its

compression set size d and its number k of training errors are both much smaller than

the number m of training examples. The bound of Equation (4.9) is very similar to,

and slightly tighter than, the recent bound of [40] owing to the more efficient treatment

of errors by the binomial tail inversion.

The bound of Equation (4.10) is similar to the bounds of [36] and [14] when the

setM of all possible messages is independent of the compression set Si and when we

choose [[31]]:

PSi
(µ) = 1/|M| ∀µ ∈M (4.11)



Chapter 4. Sample Compression Learning 28

PI(i) =

(
m

|i|

)−1

(m+ 1)−1 ∀i ∈ I (4.12)

However, other choices that give better bounds are clearly possible. For example, we

can choose:

PI(i) =

(
m

|i|

)−1

ζ(|i|) with ζ(a)
def
=

6

π2
(a+ 1)−2 ∀a ∈ N (4.13)

which satisfies the constraint of Equation (4.6) since
∑∞

i=1 i
−2 = π2/6. This choice

for PI has the advantage that the risk bounds do not deteriorate too rapidly when |i|
increases. But clearly, since the number of compression sets of size |i| increases rapidly
with |i|, a good choice for PI is the one that gives more weight to smaller compression

sets. The bound of Theorem 4.3.3 then indicates that a good classifier should not only

have a good performance on the training set (low empirical risk on S/Si), but also

should have a small compression set. Thus, the bounds of Theorems 4.3.1 and 4.3.3

express the importance of looking for an empirical accuracy–sparsity trade off.

In the next section, we present the Set covering machine algorithm (SCM) [39] .

This is a sample compression algorithms that expresses this empirical accuracy–sparsity

trade-off. We also present the application of the presented sample compression bound

to SCM [[31]].

4.4 Set Covering Machine (SCM)

The Set Covering Machine (SCM) was proposed by [39]. The Set Covering Machine

algorithm is the generalized form of the two-step algorithm which was proposed by

[52, 24]. The set covering Machine extends this algorithm for learning conjunctions 1 of

boolean attributes over arbitrary sets of boolean features which are constructed from

data (i.e., Data dependent). This learning algorithm also provides some learning param-

eters which controls the trade off between the accuracy and the size of the conjunction.

In this section, we will give a brief explanation of the SCM algorithm that uses data

dependent balls as its set of features.

We consider classification problems where the input space X consists of an arbi-

trary subset of R
n and the output space Y = {−1,+1}. Let a training set S =

1In the set covering machine, we can also consider the disjunction of the boolean attributes. In this

thesis, we just consider the conjunction case.
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{(x1, y1), · · · , (xm, ym)} consists of two parts (S = P ∪N), the set of positive examples

P and the set of negative examples N . In this case for each (xi, yi) ∈ S, we have:

yi =

{
1 if xi ∈ P

−1 if xi ∈ N

Let hi be a feature where a feature is an arbitrary boolean valued function that maps X
to {0, 1}. Let F = {hi}|F|

i=1 be any set of features . The learning algorithm then returns

a small subset F ⊂ F of features when given any such set F . Given this subset F and

an arbitrary input vector x ∈ X , the output of SCM is defined to be2:

hSCM(x) = ∧i∈Fhi(x)

hSCM(x) outputs True (1) if all h(x) ∈ F are True and False otherwise. Note that,

here we use the value of −1 to denote the output of 0 (False) for the conjunction.

We describe the SCM for the case where the set of features F is constructed from

the data (data-dependent features). The set of data dependent features that we use for

the SCM is the set of data dependent balls which has been introduced by [38]. In the

following, we present this set of features.

Let d : x × x 7→ R
+ be a metric which defines the distance d(x,xi) between a pair

of points of xi and x. Let hρ,i be a feature identified by a center i and raduis ρ. We

define hρ,i be the following data dependent ball centered on xi:

hρ,i(x) =

{
yi if d(x,xi) ≤ ρ

−yi otherwise

(4.14)

where ρ = d(xi,xj)+ ε if xi ∈ P , ρ = d(xi,xj)− ε if xi ∈ N , xj is the border point and

ε is a small positive real number. Note that a center xi is defined by every example

in the training set, however, a ball border xj is defined from the set of P (positive)

examples. This way, the compression set Si consists of examples denoting the centers

and borders of the balls. Given a compression set Si, we need to specify the examples

in Si that are used for the border point without being used as a center. Recall that,

each border point is defined from the set of P (positive) examples. Thus, each message

µ ∈MSi
just needs to specify the positive examples that are the border point without

being a center.

2In the case of disjunction, the output of the SCM is defined to be: h(x) = ∨i∈Fhi(x)
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4.4.1 The SCM Learning Algorithm

In the following, we present the SCM learning algorithm. Note that, here, a ball

(feature) hρ,i is sometimes used interchangeably with h. The SCM algorithm is divided

into two parts. The first part simply generates a set of SCMs. We will call this part

the SCMs generator algorithm. The second part will select a single SCM among those

SCMs that have been generated by the first part. We will call this second part the

SCM model selector.

The SCM Generator Algorithm

 

 

 

 

 

 

 

Figure 4.1: An example of SCM generator algorithm. One ball is added at a time, in

this example, a classification error on an example “+” cannot be fixed by adding other

balls. However, it is possible for a classification error on an example “-” to be fixed

later.

Let Qi be the subset of examples of N on which feature hi makes no error. Thus,

hSCM makes no error on N iff ∪i∈FQi = N . Hence, the problem of finding the smallest

set F for which hSCM makes no training error can be considered as the problem of finding

the smallest collection of Qis that covers all N , which is the well known minimum set

cover problem[16]. Although this problem is NP-hard and it is hard to find the set

cover of minimum size, the greedy algorithm of the minimum set covering problem will

always find a cover of size z ln(|N |) if the smallest cover is of size z [11, 29]. The set
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covering greedy algorithm is a simple algorithm : first choose the set Qi which covers

the largest number of elements in N , remove from N and each Qj the elements that are

in Qi, then repeat this process of finding the set Qk of largest cardinality and updating

N and each Qj until there are no more elements in N .

As mentioned earlier, the Set Covering Machine algorithm provides learning param-

eters which control the trade-off between the accuracy and the size of the conjunction.

Hence, in general we are not looking for a SCM with zero training error, but instead

we are looking for a “small” SCM which makes a few errors on the training set. Theo-

rems 4.3.1 and 4.3.3 point out that this might give a better generalization than a larger

SCM with more features that makes zero training error. Hence, there is a sparsity-

empirical accuracy trade-off here. One way to control this trade-off is to stop the set

covering algorithm when there still exist some training examples to be covered. In this

case, the SCM has fewer features and also makes errors on those training examples

which are not covered (see Figure 4.1). According to the algorithm, the training ex-

amples which are not covered by SCM all belong to N and, since it is not suitable in

general to make all the errors in N , early stopping is not sufficient.

Hence, to include the flexibility in choosing the proper trade off between complexity

and accuracy, each greedy step will be modified as follows. Let Qh be the set of examples

in N on which a ball h makes no error and also let Rh be the set of examples in P on

which a ball h makes an error. Given that, each example in P misclassified by h should

decrease by some fixed penalty p the “usefulness” of ball (feature) h. The usefulness Uh

of ball(feature) h is defined by the following equation:

Uh = |Qh| − p. |Rh| (4.15)

Note that parameter p in Equation (4.15) gives the trade-off that will be used in

the greedy algorithm at each step of the construction (that is, a step of the algorithm

consisting of choosing a new ball (feature)) . A value of p = 1 means that at each step

of the construction, we consider that making an error on a positive example is as bad

as making an error on a negative one. This might not be a good idea since as shown

in Figure 4.1, an error on a positive example on a single ball implies an error in the

conjunction. However, an error on a negative example is not so dramatic since it can be

corrected later on during the construction. For this reason, it might be better to choose

values of p that are greater than one. This way, an error on a positive example at a
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given step of the algorithm has a bigger long-run impact than an error on a negative

example. The good value of p is a non trivial trade-off which is determined either by

cross validation or by referring to the bounds of Theorems 4.3.1 and 4.3.3 (the later

case is presented in Algorithm 2). Thus, the set covering greedy algorithm is modified

as follows: instead of using the feature that covers the largest number of examples in

N , the feature h ∈ F that has the highest usefulness value Uh is used. We remove from

N and from each Qg (for g 6= h) the elements that are in Qh and we remove from each

Rg (for g 6= h) the elements that are in Rh. Note that, we update each such set Rg

because a feature g that makes an error on an example in P does not increase the error

of the machine if another feature h is already making an error on that example. We

repeat this process of finding the feature h of largest usefulness Uh and updating N ,

and each Qg and Rg, until N is empty or until the early stopping criterion |F | > s is

reached (where s is some positive integer number). Therefore, SCM contains a stopping

parameter s that stops the SCM early so that a smaller conjunction of features is being

returned (see Algorithm 1).

Algorithm 1 :(SCM Generator Algorithm)

1: Initialize: F ← ∅, a set of data dependent balls F = {hi}|F|
i=1, a stopping parameter

s and penalty parameter p.

2: For each hi ∈ F let Qi be the set of examples in N on which hi makes no error and

let Ri be the set of examples in P on which hi makes errors.

3: repeat

4: Choose a new ball hk ∈ F/F that maximizes Equation (4.15). (|Qk| − p. |Rk|).
5: Update F ← F ∪ {k}, N ← (N −Qk) and P ← (P −Rk).

6: for all i ∈ {1, · · · |F|} do: Qi ← Qi −Qk and Ri ← Ri −Rk

7: until (|F | > s or N = ∅)
8: Return hSCM(x) = ∧i∈Fhi(x) and F

The SCM Selector Algorithm

As we can see in Algorithm 1, the penalty value p and early stopping point s give us

the ability to control the proper trade off between the learning accuracy and the size

of the conjunction. The penalty p and early stopping point s are two model-selection

parameters. The values of these two parameters are determined by using k-fold cross-

validation or by computing the objective function f that, given any SCM, outputs a

real value. This objective function can be a training set bound similar to the bounds
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of Theorems 4.3.1 and 4.3.3. The goal is to find a SCM that minimizes this objective

function f . To fulfill this goal, we use Algorithm 2. Note that, in the case of using cross

validation, we can still use Algorithm 2 where the objective function f is the k-fold

cross validation risk.

Algorithm 2 :(SCM Model Selector)

1: Initialize: Define a list of parameter P = {p1, p2, · · · , pp} as penalty values and a

list of parameter S = {1, 2, · · · , s} as early stopping points. Let f be an objective

function.

fmin ←∞.

2: For each pair of parameters (p, s) where p ∈ P and s ∈ S. (Do step 3 to 5)

3: Run Algorithm 1 for parameters (p, s), and let hSCM be the SCM it outputs.

4: Compute fF : the value of f for hSCM .

5: if fF ≤ fmin then

fmin ← fF and hmin
SCM ← hSCM

6: return hmin
SCM
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Sample Compressed PAC-Bayes

Theorems

In this chapter, we present another type of training set bounds, called the PAC-Bayes

bounds. We also presents a PAC-Bayes bound proposed by [33] for the data-dependent

setting (sample compression).

5.1 PAC-Bayes Bounds

The PAC-Bayes approach was initiated by [42]. It aims at providing PAC guarantees to

“Bayesian” learning algorithms. Bayesian algorithms are generally specified in terms of

a prior distribution P over a space of classifiers and a posterior distribution Q (over the

same space of classifiers). The prior distribution characterizes our prior belief about

good classifiers (before the observation of the data). On the other hand, the posterior

distribution takes into account the additional information provided by the training data.

The “PAC-Bayes theorem”, provides a tight upper bound on the risk of a stochastic

classifier called the Gibbs classifier .

Recall from Section 2.2 that given an input example x, the label GQ(x) assigned to

x by the Gibbs classifier is defined by the following process. We first choose a classifier

h according to the posterior distribution Q and then use h to assign the label h(x) to

x. As we have seen before (Section 2.2), the risk of GQ is defined as the expected risk
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of classifiers drawn according to Q:

RD(GQ)
def
= Eh∼QR(h) = Eh∼QE(x,y)∼DI(h(x) 6= y) (5.1)

In the following, we present some PAC-Bayes bounds. The following quantities are

part of these bounds:

• KL(Q‖P ): is the Kullback-Leibler divergence between distributions Q and P :

KL(Q‖P )
def
= Eh∼Q ln

Q(h)

P (h)
(5.2)

Note that, the Kullback-Leibler is often intuitively presented as a measure of

distance between two probability distributions.

• kl(q‖p): is the Kullback-Leibler divergence between the Bernoulli distributions

with probabilities of success q and p (p, q ∈ [0, 1]):

kl(q‖p) def
= q ln

q

p
+ (1− q) ln

1− q

1− p
.

We also define:

ξ(m) :=
m∑

k=0

(
m

k

)(
k

m

)k(
1− k

m

)m−k

,

where ξ(m) ∈ [
√
m, 2
√
m] (Please see [41] for the proof).

The PAC-Bayes theorem was first proposed by [43]. The first version presented here

is due to [47, 30].

Theorem 5.1.1. (Classical PAC-Bayes bound) Given any space H of classifiers,

for any data-independent prior distribution P over H and for any (possibly data-

dependent) posterior distribution Q over H, we have:

Pr
S∼Dm

(
∀Q onH : kl(RS(GQ), RD(GQ)) ≤

1

m

[
KL(Q‖P ) + ln

ξ(m)

δ

])
≥ 1 − δ .

The proof of Theorem 5.1.1 is given in Section 5.1.1.

Note that, in Theorem 5.1.1, kl(RS(GQ), RD(GQ)) quantifies the “distance” between

the true Gibbs risk and the empirical Gibbs risk which is bounded by 1
m

[
KL(Q‖P ) + ln ξ(m)

δ

]
.
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Hence, we achieve a better guarantee as m grows, but the guarantee is looser when the

posterior distribution Q is “far” from the prior P (in the sense that the KL-divergence

between prior P and posterior Q is big). Moreover, Theorem 5.1.1 provides both an

upper bound and a lower bound on the true risk R(GQ) based on its empirical risk

RS(GQ) [33]. With probability at least 1 − δ over the random draws of S, R(GQ) is

upper-bounded by:

sup

(
B : kl(RS(GQ), B) ≤ 1

m

[
KL(Q‖P ) + ln

ξ(m)

δ

])

and lower bounded by:

inf

(
B : kl(RS(GQ), B) ≤ 1

m

[
KL(Q‖P ) + ln

ξ(m)

δ

])

.

There exists also the following version of PAC-Bayes bound proposed by McAllester [42,

44] (it should be mentioned that the version presented here is slightly different from

the original McAllester PAC-bayes bounds in [42, 44]).

Theorem 5.1.2. (PAC-Bayes Theorem McAllester) Given any space H of clas-

sifiers, for any data-independent prior distribution P over H and for any (possibly

data-dependent) posterior distribution Q over H, we have:

Pr
S∼Dm

(
∀Q onH : RD(GQ) ≤ RS(GQ) +

√
KL(Q‖P ) + ln ξ(m)

δ

2m

)
≥ 1 − δ .

Note that Theorem 5.1.2 can be straightforwardly retrieved from Theorem 5.1.1

using the following inequality which is known as Pinsker’s inequality [13]:

2(RD(GQ)−RS(GQ))
2 ≤ kl(RS(GQ)‖RD(GQ)).

The more precise proof of Theorem 5.1.2 is given in Section 5.1.1.

In [7], Catoni proposed the following PAC-Bayes bound:

Theorem 5.1.3. (PAC-Bayes Theorem Catoni) Given any space H of classi-

fiers, for any data-independent prior distribution P over H and for any (possibly data-
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dependent) posterior distribution Q over H, we have:

Pr
S∼Dm

(
∀Q onH : RD(GQ) ≤

1

1− e−C
·
[
C ·RS(GQ)+

KL(Q‖P ) + ln 1
δ

m

])
≥ 1− δ .

We give the proof of Theorem 5.1.3 in Section 5.1.11. The bound of Theorem 5.1.3

is an interesting bound in for deriving learning algorithm since it has a hyper-parameter

C that leads to a hyper-parameter for the algorithm itself. Many interesting learning

algorithms have such a hyper-parameter (SVM, L2-regularized adaboost, etc...).

Finally, in [1], Audibert proposed a version of PAC-Bayes bound which is tighter

than Theorem 5.1.2 (Mcallester bound) when RD(GQ) is small (see [1] for the proof) .

In the following we present this bound:

Theorem 5.1.4. (PAC-Bayes Theorem Audibert) Given any space H of clas-

sifiers, for any data-independent prior distribution P over H and for any (possibly

data-dependent) posterior distribution Q over H, we have:

PrS∼Dm

(
∀Q onH : |RD(GQ)−RS(GQ)| ≤

√
2RS(GQ)[1−RS(GQ)][KL(Q‖P ) + ln 2

√
m
δ

]

m

+
4[KL(Q‖P ) + ln 2

√
m
δ

]

3m

)
≥ 1− δ .

It should be mentioned that the bound given by the PAC-Bayes theorem for the

risk of Gibbs classifiers can be turned into a bound for the risk of Bayes classifiers in

the following way. Given a posterior distribution Q, the Bayes classifier BQ performs a

majority vote (under measure Q) of binary classifiers in H. When BQ misclassifies an

example x, at least half of the binary classifiers (under measure Q) misclassifies x. It

follows that the error rate of GQ is at least half of the error rate of BQ. Hence,

RD(BQ) ≤ 2RD(GQ). (5.3)

5.1.1 General PAC-Bayes Theorem

Now that we presented some PAC-Bayes theorems existing in the literature, we also

present a general PAC-Bayes theorem proposed by [17] from which all presented PAC-

Bayes risk bounds except Theorem 5.1.4 can be obtained as particular cases.

1This proof is inspired by the proof given by [17].
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Before stating the general PAC-Bayes theorem (Theorem 5.1.7), we present some

preliminaries containing a few lemmas and definitions which make the demonstration

of the Theorem 5.1.7 more comprehensible.

Lemma 5.1.5. (Markov’s inequality) for all none negative random variable X with

expected value µ and for all t ∈ ℜ we have:

Pr(X > tµ) <
1

t
.

Lemma 5.1.6. (Jensen’s inequality) Let f be any convex function and X any none

negative random variable then we have:

E f(X) ≥ f(E X).

An overview of the above lemmas are presented in [37]. note that if f is any concave

function then we have:

E f(X) ≤ f(E X).

Also, often in the demonstration of the theorems we use the following property of the

probability in which for all distributions P and Q on H and for all function f : H → ℜ
we have:

Eh∼Pf(h) ≤ Eh∼Q
P (h)

Q(h)
f(h) (5.4)

Now that we have all the necessary lemmas and definitions we present the general

PAC-Bayes theorem proposed by [17].

Theorem 5.1.7. (General PAC-Bayes bound) Given any space H of classifiers,

for any data-independent prior distribution P over H, for any (possibly data-dependent)

posterior distribution Q over H and for all convex function D : [0, 1]× [0, 1]→ R, we

have:

Pr
S∼Dm

(
∀Q onH : D(RS(GQ), RD(GQ)) ≤

KL(Q‖P ) + log(1δ E
S∼Dm

E
h∼P

emD(RS(h),RD(h)))

m

)
≥ 1−δ .

Proof. This proof is based on the proof presented in [17].
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Since emD(RS(h),RD(h)) is a non negative random variable, by using Markov’s inequal-

ity (Lemma 5.1.5) we have:

Pr
S∼Dm

(
E

h∼P
emD(RS(h),RD(h)) ≤ 1

δ
E

S∼Dm
E

h∼P
emD(RS(h),RD(h))

)
≥ 1− δ

By taking the logarithm on each side of the innermost inequality and by transforming

expectation over P to the expectation over Q using Equation (5.4) we obtain:

Pr
S∼Dm

(
∀Q onH : log( E

h∼Q

P (h)

Q(h)
emD(RS(h),RD(h))) ≤ log(

1

δ
E

S∼Dm
E

h∼P
emD(RS(h),RD(h)))

)
≥ 1−δ

Using Equation (6.14) together with Jensen’s inequality (Lemma 5.1.6) applied to

concave log(x) gives:

log( E
h∼Q

P (h)

Q(h)
emD(RS(h),RD(h))) ≥ −KL(Q‖P ) + E

h∼Q
mD(RS(h), RD(h))

Again from using Jensen’s inequality applied to the convex functionD(RS(h), RD(h))

together with the Equation (5.1) we obtain:

log( E
h∼Q

P (h)

Q(h)
emD(RS(h),RD(h))) ≥ −KL(Q‖P ) +mD(RS(GQ), RD(GQ))

Therefore,

Pr
S∼Dm

(
∀Q onH : −KL(Q‖P )+mD(RS(GQ), RD(GQ)) ≤ log(

1

δ
E

S∼Dm
E

h∼P
emD(RS(h),RD(h)))

)
≥ 1−δ

Based on the results presented in [17] by using a certain convex function D : [0, 1]×
[0, 1]→ R and by upper-bounding E

S∼Dm
E

h∼P
emD(RS(h),RD(h)) . we can use Theorem 5.1.7

to derive the PAC-Bayesian risk bounds that we have already presented.
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Proof of Theorem 5.1.1:

The PAC-Bayes theorem 5.1.1 proposed by [47, 30] can be obtained from Theorem 5.1.7

by using D(q, p) = kl(q, p). Indeed, in this case we have :

E
S∼Dm

E
h∼P

emkl(RS(h),RD(h))

= E
h∼P

E
S∼Dm

(
RS(h)

RD(h)

)mRS(h)(
1−RS(h)

1−RD(h)

)m(1−RS(h))

= E
h∼P

∑m

k=0 Pr
S∼Dm

(RS(h)=
k
m)
(

k
m

RD(h)

)k(
1− k

m
1−RD(h)

)m−k

= E
h∼P

∑m

k=0 (
m
k)(RD(h))k(1−RD(h))m−k

(
k
m

RD(h)

)k(
1− k

m
1−RD(h)

)m−k

,

where the last equality arises from the fact that mRS(h) is a binomial random variable

that follows the binomial law with parameter (m,RD(h)). Thus, we have:

Pr
S∼Dm

(
RS(h) =

k

m

)
=

(
m

k

)
(RD(h))

k(1−RD(h))
m−k (5.5)

and simplifying it gives us:

E
S∼Dm

E
h∼P

emkl(RS(h),RD(h)) = E
h∼P

m∑

k=0

(
m

k

)(
k

m

)k(
1− k

m

)m−k

= ξ(m)

Now, by using D(q, p) = kl(q, p) and the upper bound of E
S∼Dm

E
h∼P

emD(RS(h),RD(h))

in Theorem 5.1.7 we obtain Theorem 5.1.1.

Proof of Theorem 5.1.2:

The PAC-Bayes bound of Theorem 5.1.2 can also be obtained by using D(q, p) =

2(q − p)2.

By upper bounding E
S∼Dm

E
h∼P

em·2(RS(h)−RD(h))2 using the property 2(q−p)2 ≤ kl(q, p)
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we have:

E
S∼Dm

E
h∼P

em·2(RS(h)−RD(h))2

≤ E
S∼Dm

E
h∼P

emkl(RS(h),RD(h))

= E
h∼P

E
S∼Dm

(
RS(h)

RD(h)

)mRS(h)
(
1−RS(h)

1−RD(h)

)m(1−RS(h))

= E
h∼P

m∑

k=0

Pr
S∼Dm

(
RS(h) =

k

m

)( k
m

RD(h)

)k(
1− k

m

1−RD(h)

)m−k

=
m∑

k=0

(
m

k

)
(k/m)k(1− k/m)m−k = ξ(m) ,

The last equality obtained by using Equation (5.5). Now by using D(q, p) = 2(q −
p)2 and the upper bound of E

S∼Dm
E

h∼P
emD(RS(h),RD(h))) in Theorem 5.1.7 we obtain

Theorem 5.1.2.

Proof of Theorem 5.1.3:

The PAC-Bayes bound of Theorem 5.1.3 is obtained from Theorem 5.1.7 by using

functions that are linear in the empirical risk, i.e., functions of the form D(q, p) =

F(p)−C · q for convex F . This choice for D gives a PAC-Bayes bound whose minimum

is obtained for Gibbs classifiers GQ minimizing a simple linear combination of RS(GQ)

and KL(Q‖P ).

Let D(q, p) = F(p)− C · q for some function F to be defined. Then

E
S∼Dm

E
h∼P

emD(RS(h),R(h))

= E
h∼P

E
S∼Dm

emF(R(h))−CmRS(h)

= E
h∼P

emF(R(h))
∑m

k=0 Pr
S∼Dm

(RS(h)=
k
m)e−Ck

= E
h∼P

emF(R(h))
∑m

k=0 (
m
k)RD(h)k(1−RD(h))m−ke−Ck

= E
h∼P

emF(RD(h))(RD(h)e−C+(1−RD(h)))
m
,

The third inequality obtained by using Equation (5.5). The result follows easily

from Theorem 5.1.7 when F is the convex function F(p)=ln 1
(1− p [1−e−C ])

.
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5.1.2 PAC-Bayes Bounds without Kullback-Leibler (KL) Term:

In the standard PAC-Bayes approach the divergence between prior and posterior forms

part of the bound. This way, analysis of the bound is constrained by the choice of

prior distribution. The choice of prior is likely to be generic and may not be suitable

for the particular problem and results in a large Kullback-Leibler divergence term in

the PAC-Bayes analysis. Therefore, removing the Kullback-Leibler (KL) term from the

bound significantly reduces the complexity penalty. Moreover, removing the Kullback-

Leibler (KL) term gives us a guarantee by which the empirical estimates of the Gibbs

risk uniformly converges to the true risk (for all Q). This statement cannot be generally

derived from the previous PAC-Bayes theorems since KL(Q‖P ) can be arbitrary large.

Catoni was the first one who investigated a PAC-bayes bound with no KL term.

In [6], Catoni achieved such a bound simply by bounding the KL-divergence by some

inequalities and developed PAC-Bayes bounds that do not rely on the KL-divergence.

In [[19]], we propose a new approach that produce PAC-Bayes risk bounds in which

the KL-term simply disappears from the bounds by restricting ourselves to aligned

posteriors. Before presenting these bounds we present some definitions and results

relating to these categories of distributions.

Definition 5.1.8. (aligned distribution) Let H = {h1, h2, · · · , h2n} be a set of binary

classifiers such that it is auto-complemented, meaning that there exists a bijection c :

H → H such that c(h) = −h for any h ∈ H. Moreover, a distribution Q on H will be

called aligned on a prior P if for any h ∈ H, we have

Q(h) +Q(c(h)) = P (h) + P (c(h)) ,

where P is the uniform distribution on H.

The following Lemma helps us obtain a version of PAC-Bayes Theorem 5.1.7 that

has no KL divergence term.

Lemma 5.1.9. Let H = {h1, h2, · · · , h2n} be a set of binary classifiers such that it is

auto-complemented, Q be a distribution which is aligned on H and D be a function

such that D(p, q) = D(1− p, 1− q) then we have:

E
h∼P

em·D(RS(h),RD(h)) = E
h∼Q

em·D(RS(h),RD(h))
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Proof.

E
h∼P

em·D(RS(h),RD(h))=

∫

h∈H
P (h)em·D(RS(h),RD(h))=

∫

h∈H
P (c(h))emD(RS(c(h)),RD(c(h)) .

2 E
h∼P

em·D(RS(h),RD(h))

=

∫

h∈H
P (h)em·D(RS(h),RD(h)) +

∫

h∈H
P (c(h))em·D(RS(c(h)),RD(c(h)))

=

∫

h∈H
P (h)em·D(RS(h),RD(h)) +

∫

h∈H
P (c(h))em·D(1−RS(h),1−RD(h))

=

∫

h∈H
(P (h) + P (c(h))) em·D(RS(h),RD(h))

=

∫

h∈H
(Q(h) +Q(c(h))) em·D(RS(h),RD(h))

=

∫

h∈H
Q(h)em·D(RS(h),RD(h)) +

∫

h∈H
Q(c(h))em·D(RS(c(h)),RD(c(h)))

= 2 E
h∼Q

em·D(RS(h),RD(h)) .

Now, let us show how Lemma 5.1.9 leads us to obtain PAC-Bayes bounds with no

KL term. In the proof of PAC-Bayes Theorem 5.1.7, we had to bound random variable

E
h∼P

em·D(RS(h)−R(h)). Basically, the term KL(Q‖P ) arises when we are transforming the

expectation over P into expectation over Q. In the case where the posterior Q is not

aligned we have:

log
[
E

h∼P
em·D(RS(h),R(h))

]

= log

[
E

h∼Q

P (h)

Q(h)
em·D(RS(h),RD(h))

]

≥ E
h∼Q

log

[
P (h)

Q(h)
em·D(RS(h),RD(h))

]

= m E
h∼Q
D (RS(h), RD(h))−KL(Q‖P )

≥ m · D( E
h∼Q

RS(h), E
h∼Q

RD(h))−KL(Q‖P )

= m · D (RS(GQ), RD(GQ))−KL(Q‖P ) .

Recall from the proof of Theorem 5.1.7 that the above results are obtained from

two applications of Jensen’s inequality(Lemma 5.1.6): one exploiting the concavity of

log(x) and the second the convexity of D.



Chapter 5. Sample Compressed PAC-Bayes Theorems 44

However, when the posterior Q is aligned, because of Lemma 5.1.9, we can instead

follow this modified argument:

log
[
E

h∼P
em·D(RS(h),RD(h))

]

= log

[
E

h∼Q
em·D(RS(h),RD(h))

]

≥ E
h∼Q

log
[
em·D(RS(h),RD(h))

]

= m E
h∼Q
D (RS(h), RD(h))

≥ m · D
(

E
h∼Q

RS(h), E
h∼Q

RD(h)

)

= m · D (RS(GQ), RD(GQ)) . (5.6)

In the following, we present a general theorem similar to Theorem 5.1.7 for the cases

where the posterior Q is aligned.

Theorem 5.1.10. (General PAC-Bayes bound with no KL term ) Given any

space H of classifiers, for any data-independent prior distribution P over H and for any

aligned posterior distribution Q over H and for all convex function D : [0, 1]× [0, 1]→
R, we have:

Pr
S∼Dm

(
∀Q aligned onP : D(RS(GQ), RD(GQ)) ≤

log(1
δ

E
S∼Dm

E
h∼P

emD(RS(h),RD(h)))

m

)
≥ 1−δ .

Proof. Since emD(RS(h),R(h)) is a non negative random variable by Markov’s inequality

we have:

Pr
S∼Dm

(
E

h∼P
emD(RS(h),RD(h)) ≤ 1

δ
E

S∼Dm
E

h∼P
emD(RS(h),RD(h))

)
≥ 1− δ

From Equation (5.6) we have:

Pr
S∼Dm

(
∀Q aligned onP : mD(RS(h), RD(h)) ≤ log(

1

δ
E

S∼Dm
E

h∼P
emD(RS(h),RD(h)))

)
≥ 1−δ
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Using particular convex function D : [0, 1] × [0, 1] → R and by upper bounding

E
S∼Dm

E
h∼P

emD(RS(h),RD(h))) , we, therefore, can obtain risk bounds with no KL term.

By using D(q, p) = 2(q−p)2 and the upper bound of E
S∼Dm

E
h∼P

emD(RS(h),RD(h))) (see

the proof of Theorem 5.1.2) in the Theorem 5.1.10 we have the following corollary:

Corollary 5.1.11. (McAllester PAC-Bayes bound with no KL term) Given any

space H of classifiers, for any data-independent prior distribution P over H and for

any aligned posterior distribution Q over H we have:

Pr
S∼Dm

(
∀Q aligned onP : RD(GQ) ≤ RS(GQ) +

√
log( ξ(m)

δ
)

2m

)
≥ 1 − δ .

Similarly, by usingD(q, p) = kl(q, p) and the upper bound of E
S∼Dm

E
h∼P

emD(RS(h),RD(h)))

(see the proof of Theorem 5.1.2) in the Theorem 5.1.10 we have the following corollary:

Corollary 5.1.12. (Seeger PAC-Bayes bound with no KL term) Given any

space H of classifiers, for any data-independent prior distribution P over H and for

any aligned posterior distribution Q over H, we have:

Pr
S∼Dm

(
∀Q aligned onP : kl(RD(GQ), RS(GQ)) ≤ log(1

δ
ξ(m))

m

)
≥ 1 − δ .

5.2 Sample-Compression PAC-Bayes Theorem

As seen in Section 5.1, in PAC-Bayes theory, risk bounds are obtained by comparing

a posterior distribution Q on H (the set of all classifiers) to a prior P defined be-

fore observing the training sequence S. In the sample-compression setting, this seems

problematic since sc-classifiers are defined upon S.

Recall that in the sample compression setting, each sc-classifiers hµ
Si

is described by

a compression sequence Si and a message µ. given S, the compression sequence Si is

defined by the following vector i of indices:

i
def
= 〈i1, i2, . . . , i|i|〉 ,
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with 1 ≤ i1 < i2 < . . . < i|i| ≤ m. The number of indices present in i is denoted by

|i|. The set of all 2m possible vectors of indices is denoted by I. Given an arbitrary

compression sequence Si, a message µ is chosen from the setMSi
of all messages that

can be supplied with the compression sequence Si.

[33, 32] have extended the PAC-Bayes theorem to the sample-compression setting.

Their proposed risk bound depends on a data-independent prior distribution P which

is defined as a couple (PI , PS′), where PI is a distribution on I, and, for every possible

compression sequence S ′, PS′ is a distribution onMS′ . For more details, see [33]. Given

a training sequence S, P S denotes the distribution on HS associated with the prior P ,

i.e.,

P S(hµ
Si
) = PI(i)PSi

(µ) . (5.7)

More precisely, we will only consider priors P S on I ×MSi
that can be written in the

form of Equation (5.7). Note that PI(i) does not depend on S at all and P
Si

(µ) can only

depend on S through MSi
. This implies that PI(i) must be defined before observing

S and P
Si

(µ) defined for all possible values of Si ⊆ X × Y of size at most m. Since we

do not allow any dependencies on S for PI(i), we can hardly consider any difference a

priori between two vectors of indices i, í ⊂ I that have the same size. Hence, we adopt

the convention that a same prior probability is assigned to every vector i having the

same size, that is we have:

PI(i) = p(|i|) ·
(
m

|i|

)−1

for any p(·) such that
∑m

d=0 p(d) = 1.

Given a training sequence S, we denote by QI(i), the probability that a compression

sequence Si is chosen by Q, and by Q
Si

(µ), the probability distribution of choosing µ

given Si. More precisely,

QI(i)
def
=

∫

µ∈M(Si)

Q(hµ
Si
) dµ and Q

Si

(µ)
def
= Q(hµ

Si
| Si) . (5.8)

Under this convention, the posterior Q can be written similar to P S as:

Q(hµ
Si
) = QI(i)QSi

(µ) (5.9)

Both QI(i) and Q
Si

(µ) can be dependent on S and can be chosen after observing

the training data S.
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In the data-independent PAC-Bayes setting, a bound on RD(BQ) is indirectly ob-

tained by bounding the risk of an associated stochastic classifier known as the Gibbs

classifier GQ. To assign an output label to an input example x, the Gibbs classifier GQ

randomly chooses a classifier h according to Q and uses h to assign the label h(x) to

x. In the sample compressed (data-dependent) PAC-Bayes setting, given a training se-

quence S, GQ randomly chooses i according to QI , then chooses a message µ according

to QSi
, and then classifies x according to hµ

Si
(x). Given a distribution D and a training

sequence S generated by D, the true risk RD(GQ) is given by:

RD(GQ) = E
hµ
S
i
∼Q

E
(x,y)∼D

I(hµ
Si
(x) 6= y)

As in [33] and [32] the empirical risk of a sc-classifier is usually computed on examples

of the training set S that are not in the compression set Si (S \ Si). However, based

on our discussion in Section 4.2 of Chapter 4, depending on the learning algorithm the

empirical estimate RS(GQ) on S can be given in one of the two following ways:

(1) : RS(GQ) = E
hµ
S
i
∼Q

RS(h
µ
Si
) = E

hµ
S
i
∼Q

E
(x,y)∼S\Si

I(hµ
Si
(x) 6= y)

or

(2) : RS(GQ) = E
hµ
S
i
∼Q

RD(h
µ
Si
) = E

hµ
S
i
∼Q

E
(x,y)∼S

I(hµ
Si
(x) 6= y)

With these classes of posteriors Q and priors P , we present the PAC-Bayes Theo-

rem 5.2.1 from [32] in which Q is restricted to have a non zero weight only on classifiers

having a compression set size |i| ≤ l for some l ∈ {0, · · · ,m}. Note that other versions

of the PAC-Bayes theorems for sample compression setting exist(see [32, 33]). However,

Theorem 5.2.1 is more of our interest since the new PAC-Bayes theorems proposed in

this thesis are inspired by this theorem.

Theorem 5.2.1. [32] Given all our previous definitions, for any prior P and for any

δ ∈ (0, 1]

Pr
S∼Dm

(
∀Q on I ×MSi

such that Qsi(µ) = 0 if |i| > l :

kl(RS(GQ)‖RD(GQ) ≤ 1
m−l

[
KL(Q ‖P S) + ln m+1

δ

]
)
≥ 1− δ

Inspired by the work of [33], who have generalized the PAC-Bayes approach to the

sample compression setting in which SCM is defined and the success of kernel methods

such as SVM (that can also viewed as sc-classifiers ) as state-of the-art machine learning
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algorithms, we decided to propose a PAC-Bayes sample compression approach to kernel

methods.

In the next chapter, we first present our motivations that lead us in this direction

in more details and then we present our new sample compression PAC-Bayes bounds.



Chapter 6

New Sample Compressed

PAC-Bayes Theorems

In this chapter, we propose our new PAC-Bayes theorems for the sample compression

setting. The next section presents the motivation that leads us to derive these bounds.

6.1 Motivation

Research works in [[31, 19]] showed that the PAC-Bayesian theory is a good starting

point for designing learning algorithms. PAC-Bayes bounds provide an upper bound on

the risk of stochastic classifiers (Gibbs classifiers) RD(GQ). As we showed earlier (see

Equation (5.3)), an upper-bound on RD(GQ) also provides an upper bound on the risk

of the majority vote classifier RD(BQ). While Gibbs classifiers are rare in practice, the

majority vote classifiers such as the SVM are more common. SVM is a state-of-the-art

learning algorithm that belongs to kernel methods (see Section 2.3). We will see later in

Chapter 7 that the SVM classifier is actually a particular case of a (weighted) majority

vote of sample-compressed classifiers where the compression sequence of each classifier

consists of at most a single training example. Inspired by [[31]], who specialized the

risk bound of [33] to SCM and proposed a learning strategy for SCM based on the

minimization of the mentioned bound, and also by the success of kernel methods such

as SVM, we propose PAC-Bayes risk bounds for majority votes of sample-compressed

classifiers.
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6.2 Preliminaries

In this section, we present some background information that is necessary to derive our

new sample compressed PAC-Bayes bounds.

Recall that the bound given by the PAC-Bayes theorem for the risk of Gibbs clas-

sifiers can be turned into a bound for the risk of Bayes classifiers using Equation (5.3).

This way, Theorem 5.2.1 in Chapter 5 provides an upper bound for the true risk of ma-

jority vote BQ. (RD(BQ)≤2RD(GQ)). Hence, an upper-bound on R(GQ) also provides

an upper bound on R(BQ).

However, we focus in this thesis on majority votes of sc-classifiers having a small

compression size. In this setting, HS consists mostly of weak classifiers having large

risk R(h). Then, RD(GQ) is (almost) always large (near 1/2) for any Q even if the

majority vote BQ has very low risk. Thus, the disparity between RD(BQ) and RD(GQ)

is enormous. Consequently, trying to minimize an upper-bound on RD(GQ) should not

lead to a majority vote BQ having low risk.

One way to obtain a more relevant bound on RD(BQ) from the PAC-Bayes theory

is to use a loss function for stochastic classifiers which is distinct from the zero-one

loss used for the deterministic classifiers. In order to obtain a tractable optimization

problem, we propose to use a convex loss function of the margin of the Q-convex combi-

nation of sc-classifiers where the margin on example (x, y) of the Q-convex combination

is given by

MQ(x, y)
def
= Ehµ

S
i
∼Q yhµ

Si
(x) . (6.1)

Note that RD(GQ) = 1
2
− 1

2
E(x,y)∼DMQ(x, y) gives a relation between RD(GQ) and

MQ(x, y).

As in [[19]], we restrict ourselves to losses that upper-bound the zero-one loss of BQ.

More precisely, we consider functions ζ : [−1, 1]→ R of the form

ζ(α)
def
=

deg(ζ)∑

k=0

ak α
k with ak ≥ 0 and such that ζ(α) ≥ I(−α ≤ 0) ,

and we will then look for PAC-Bayes bounds of the following expected loss

ζQD
def
= E(x,y)∼Dζ(−MQ(x, y)) = E

(x,y)∼D

deg(ζ)∑

k=0

ak (−MQ(x, y))
k , (6.2)
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based on its empirical (possibly biased) estimate we have:

ζQS
def
= E

(x,y)∼S

deg(ζ)∑

k=0

ak (−MQ(x, y))
k . (6.3)

Such a ζ is called a convex margin loss function (also called a convex surrogate loss).

Since ζ(α) ≥ I(−α ≤ 0) we have

ζQD ≥ E
(x,y)∼D

I(MQ(x, y) ≤ 0 ) ≥ RD(BQ) . (6.4)

Thus, the convex loss function ζQD is always an upper bound of the true risk of the
 

 

 

 

 

Figure 6.1: Three different loss functions. The curves of 1−MQ(x, y) and I(MQ(x, y) ≤
0 ) illustrate: RD(BQ) ≤ 2RD(GQ).

Bayes classifier RD(BQ). In particular, the factor-of-two rule RD(BQ) ≤ 2RD(GQ)

simply corresponds to the case where a0 = a1 = 1, and aj = 0 for all j > 1, since for

these values, ζQD = 1−MQ(x, y) = 2RD(GQ) (see Figure 6.1).

We obtain a bound on ζQD by linking the risk of this classifier with the risk of a

particular Gibbs classifier that we denote as GQ which is defined on the space HS of

classifiers where

HS def
= {h1..hk | k ∈ {0, . . . , d}, h1, . . . , hk ∈ HS}.

h1..hk = h̄ represents an “abstract” sc-classifier for each k ∈ {0, .., d} and any k-

tupple (h1, .., hk) where d = deg(ζ) and the size of the compression sequence of each
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hi ( ∀i ∈ {0, · · · , d}) is at most l. For each S, we define HS as the set of all such sc-

classifiers, and for each distribution Q on HS, we denote by Q the following distribution

on HS:

Q(h1..hk )
def
=

ak
ζ(1)

Q(h1) · . . . ·Q(hk) . (6.5)

Note that since ζ(1)=
∑d

k=0 ak, Q is a probability distribution.

The true and empirical risks of h1..hk are respectively defined as:

RD(h1..hk )
def
= E

(x,y)∼D
I(¬⊻

k

i=1

(hi(x) 6=y)) (6.6)

RS(h1..hk )
def
= E

(x,y)∼S
I(¬⊻

k

i=1

(hi(x) 6=y)) =
1

m

m∑

j=1

I(¬⊻
k

i=1

(hi(xj) 6=yj)) , (6.7)

where ⊻ denotes the exclusive or. (Observe that since the compression sequence size of

each hi’s is at most l, for any h̄ = h1..hk, we have |ih̄| ≤ l · k. Moreover, for the case

where k = 0, we have RD(h1..h0)=1, because the exclusive or over an empty sequence

outputs false. Finally, note that GQ̄ is the Gibbs classifier related to the distribution

Q̄. Its empirical and true risks are calculated as usual, that is:

RS(GQ̄) = E
h̄∼Q̄

RD( h̄ ),

RD(GQ) = E
h̄∼Q̄

RS( h̄).

As we can see in Equation (6.7), the empirical risk of a sc-classifier is not computed

on S \ Si (recall our discussion in Section 4.2 of Chapter 4). This way, the empirical

risk is a biased estimate of the true risk (the bias comes from the elements of S that

are in the compression sequence). There is, therefore, a bias for the Gibbs classifiers.

We take the performance of each sc-classifier on its compression set into consideration

when we want to find the “best” posterior Q. Because of this consideration and also for

simplicity, we decide to compute the empirical risk of a sc-classifier on S and deal with

this bias directly in the elaboration of the proposed risk bounds. Indeed, otherwise,

the performance of sc-classifiers on the compression set would have been totally absent

in the resulting risk bounds. This way, we have to introduce R̃S, the unbiased abstract
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empirical risk. R̃S is computed on the examples of S that are not in the compression

sequence of h̄. More formally,

R̃S(h1..hk )
def
=

1

m− |ih1..hk
|

m∑

j=1

I

(
¬⊻

k

i=1

(hi(xj) 6=yj)

)
I
(
(xj, yj) 6∈ ih1..hk

)
. (6.8)

Hence, contrarily to m · RS(h̄) which may contain some bias, (m− |ih̄|) · R̃S(h̄) is an

arithmetic mean of truly iid random variables. On the other hand, the two values are

very close. Indeed, since

0 ≤ m ·RS(h̄)− (m− |ih̄|) · R̃S(h̄) ≤ |ih̄| , (6.9)

we have

−|ih̄| ≤ −|ih̄| · R̃S(h̄) ≤ m · RS(h̄)−m · R̃S(h̄) ≤ |ih̄| − |ih̄| · R̃S(h̄) ≤ |ih̄| .

Therefore,
∣∣∣RS(h̄)− R̃S(h̄)

∣∣∣ ≤ |ih̄|
m

. (6.10)

Now, from Equation (6.6) we have:

RD(h1..hk ) = E
(x,y)∼D

I(¬⊻
k

i=1

(hi(x) 6=y)) = E
(x,y)∼D

1

2

[
1 +

k∏

i=1

−yhi(x)

]
(6.11)

Thus for U=D and U=S, we have:

RU(GQ) = E
h̄∼Q

RU(h̄)

=

deg(ζ)∑

k=0

ak
ζ(1)

E
h1∼Q

. . . E
hk∼Q

E
(x,y)∼D

1

2

[
1 +

k∏

i=1

−yhi(x)

]

=

deg(ζ)∑

k=0

ak
ζ(1)

E
(x,y)∼D

1

2

[
1 +

k∏

i=1

E
hi∼Q

− yhi(x)

]

=
1

2

[
1 +

1

ζ(1)
E

(x,y)∼D

deg(ζ)∑

k=0

ak( E
h∼Q

− yh(x))k
]

=
1

2

[
1 +

1

ζ(1)
E

(x,y)∼D

deg(ζ)∑

k=0

ak(−MQ(x, y))
k

]

=
1

2

[
1 +

1

ζ(1)
ζQU

]
(6.12)
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The last equality is obtained from Equations 6.2 or 6.3. We have now made a direct

link between the ζQD and the risk of a Gibbs classifier defined on HS .

Recall that, here we want PAC-Bayes bounds on R(GQ) that translate into a bound

for ζQD . As usual, the upper bounds on ζQD depend on the value of KL(Q||P S) where

KL(Q||P S) = E
h̄∼Q

ln
Q(h̄)

P S(h̄)

denotes the Kullback-Leibler divergence between distributions Q and P S defined onHS.

Thus, to obtain PAC-Bayes bounds on ζQD , we now calculate the value of KL(Q||P S).

To simplify the calculation and restrict the size of KL(Q||P S) which is best to keep it

small, it is preferable to choose a prior P S having properties similar to those of Q (see

Equation (6.5)). Therefore, for any S, the prior P S is given by:

P S(h1..hk )
def
=

ak
ζ(1)

P S(h1) · . . . · P S(hk) . (6.13)

In this case, we have:

KL(Q||P S) =

deg(ζ)∑

k=0

ak
ζ(1)

E
h1∼Q

. . . E
hk∼Q

ln
ak
∏k

i=1 Q(hi)

ak
∏k

i=1 P (hi)

=

deg(ζ)∑

k=0

ak
ζ(1)

E
h1∼Q

. . . E
hk∼Q

k∑

i=1

ln
Q(hi)

P (hi)

=

deg(ζ)∑

k=0

ak
ζ(1)

k · E
h∼Q

ln
Q(h)

P (h)

=
ζ ′(1)

ζ(1)
·KL(Q‖P S)

(6.14)

where ζ ′(1)=
∑d

k=1 k ·ak.

The theorems presented in this chapter give a bound on ζQD and, consequently, on

RD(BQ) (see Equation (6.4)). These bounds can be categorized into two groups. In

the first group named sample compressed Pac-Bayes bounds with KL, the PAC-Bayes

risk bounds depend on the KL divergence between the prior and the posterior over the

set of sample-compressed classifiers. In the second group named sample compressed

Pac-Bayes bounds without KL, the PAC-Bayes risk bound has the unusual property of

having no KL divergence term when the posterior is aligned with the prior in some

precise way defined later.
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Before stating our PAC-Bayes sample compressed theorems, we present Lemma 6.2.1(see

Maurer [41]) for the proof) which we often refer to in the demonstrations of some the-

orems in this chapter.

Lemma 6.2.1. (Maurer [41]) Let n ≥ 8, and suppose that X = (X1, . . . , Xn) is a

vector of iid random variables, 0 ≤ Xi ≤ 1, E[Xi] = ν and let M(X) = 1
n

∑n
j=1 Xi be

the arithmetic mean of the random variables. Then
√
n ≤ E en kl(M(X)‖ν) ≤ 2

√
n .

In the following section, we present the first group of PAC-Bayes theorems: PAC-

Bayes Bounds with KL.

6.3 PAC-Bayes Bounds with KL Term

In this Section, we present the PAC-Bayes risk bounds which, as usual, depend on the

KL divergence between the prior and the posterior of sample-compressed classifiers.

These bounds are valid for any margin loss ζ and for any sample-compressed classifier.

Catoni bound with KL

The next theorem gives a bound on ζQD and, consequently, on RD(BQ). It can be viewed

as a generalization of Theorem 1.2.1 of [7].

Theorem 6.3.1. For any D, any family (HS)S∈Dm of sets of sc-classifiers of size at

most l, any prior P, any δ ∈ (0, 1], any positive real number C1, and any margin loss

function ζ such that l · deg(ζ) < m, we have

Pr
S∼Dm

(
∀Q on HS:

ζQD ≤ ζ(1)[C ′ − 1] + C ′ ·
(
ζQS + 2

m·C1
[ζ ′(1) ·KL(Q‖P S) + ζ(1) · ln 1

δ
]
)
)
≥ 1− δ

where KL(·‖·) is the Kullback-Leibler divergence, and where C ′ =
C1· m

m−l·deg ζ

1−e−C1·
m−l·deg ζ

m

.

Proof. Let S be any training sequence, d
def
= deg ζ . Similarly as in the Section 6.2, we

define h̄ = h1..hk (with k∈{0, .., d}), RD(h̄), RS(h̄), HS, P S, Q, ζQD , and ζQS . Let F
be a convex function to be defined later, and D(q, p) def

= F(p)− C1 · q.
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Now, let us consider the following random variable:

X
PS

def
= E

h̄∼PS e(m−|ih̄|)D(RS(h̄),RD(h̄)) .

Since E
h̄∼PS e(m−|ih̄|)D(RS(h̄),RD(h̄)) is a non negative random variable it then follows from

Markov’s inequality (Lemma 5.1.5) that

Pr
S∼Dm

(
X

PS ≤
1

δ
E

S∼Dm
X

PS

)
≥ 1− δ .

By taking the logarithm on each side of the innermost inequality and by transforming

the expectation over P S into an expectation over Q using Equation (5.4), we obtain

Pr
S∼Dm

(
∀Q : ln

[
E

h̄∼Q

P S(h̄)

Q(h̄)
e(m−|ih̄|)D(RS(h̄),RD(h̄))

]
≤ ln

[
1

δ
E

S∼Dm
E

h̄∼PS

e(m−|ih̄|)D(RS(h̄),RD(h̄))

])

≥ 1− δ . (6.15)

Using Equation (6.14), together with Jensen’s inequality(Lemma 5.1.6) applied to

the concave ln(x) gives:

ln

[
E

h̄∼Q

P S(h̄)

Q(h̄)
e(m−|ih̄|)D(RS(h̄),RD(h̄))

]
≥ E

h̄∼Q
ln

P S(h̄)

Q(h̄)

+ E
h̄∼Q

(m− |ih̄|)D(RS(h̄), RD(h̄)) .

Now, it follows from Equation (6.12) and the definition of the Kullback-Leibler diver-

gence that:

E
h̄∼Q

ln
P S(h̄)

Q(h̄)
= −KL(Q||P S) = −ζ ′(1)

ζ(1)
·KL(Q‖P S) .

So we have:

ln

[
E

h̄∼Q

P S(h̄)

Q(h̄)
e(m−|ih̄|)D(RS(h̄),RD(h̄))

]
≥ −ζ ′(1)

ζ(1)
·KL(Q‖P S)

+ E
h̄∼Q

(m− |ih̄|)D(RS(h̄), RD(h̄))(6.16)
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Again from the Jensen’s inequality(Lemma 5.1.6), applied to the convex function

F together with Equation (6.12) and the fact that m− l · d ≤ (m− |ih̄|) ≤ m , we

obtain

E
h̄∼Q

(m− |ih̄|) D(RS(h̄), RD(h̄)) ≥ (m− ld) E
h̄∼Q
F(RD(h̄))−m E

h̄∼Q
C1 ·RS(h̄))

≥ (m− ld)F
(
1

2

[
1 +

1

ζ(1)
ζQD

])
−mC1 ·

1

2

[
1 +

1

ζ(1)
ζQS

]
(6.17)

Let us now analyze the value of ES∼DmX
PS , appearing in the right-hand side of the

innermost inequality of Equation (6.32) . First, let us define ic as the vector of indices

of I that are not in the vector i. Thus, |ic| = m− |i|. Now, note that:

E
S∼Dm

E
h̄∼PS

e(m−|ih̄|)D(RS(h̄),RD(h̄)) = E
i∼P

I

E
Si∼D|i|

E
µ̄∼P

S
i

E
Sic∼Dm−|i|

e
|ic| D(RS(h

µ̄
S
i
),RD(hµ̄

S
i
))
.

Recall that P S denotes the distribution on HS and is given by P S(h̄) = PI(i)PSi

(µ)

(see Equation (5.7) ).

Now, for each hµ̄
Si
∈ HS define aµ̄Si

def
=
∑

(x,y)∈Si
I(hµ̄

Si
(x) 6= y), and observe that

m · RS(h
µ̄
Si
) − aµ̄Si

is then the number of errors made by hµ̄
Si

on Sic . Since the later is

iid and disjoint from the compression sequence of hµ̄
Si
, we have that m · RS(h

µ̄
Si
) − aµ̄Si

is a random variable following a binomial law of parameters (|ic|, RD(h
µ̄
Si
)). Since,

(m− ld) · k
m
≤ |ic| · k+aµ̄S

i

m
for any k ∈ {0, .., |ic|}, we have:

E
S
ic ∼Dm−|i| e

|ic|D(RS(h
µ̄
S
i

),RD(h
µ̄
S
i

))

= E
S
ic ∼Dm−|i| e

|ic|F(RD(h
µ̄
S
i

))−C1|i
c|RS(h

µ̄
S
i

)

= e
|ic|F(RD(h

µ̄
S
i

))·∑|ic|
k=0 Pr

S∼Dm
(m·RS(h

µ̄
S
i
)−aµ̄S

i
= k) e−C1|i

c|·
k+ a

µ̄
S
i

m

≤ e
|ic|F(RD(h

µ̄
S
i

))·∑|ic|
k=0 Pr

S∼Dm
(m·RS(h

µ̄
S
i
)−aµ̄S

i
= k) e−C1·(m−ld)· km

= e
|ic|F(RD(h

µ̄
S
i

))·∑|ic|
k=0 (

|ic|
k )(RD(hµ̄

S
i
))

k

(1−RD(hµ̄
S
i
))

|ic|−k
e−C1·

m−ld
m ·k

= e
|ic|F(RD(h

µ̄
S
i

))
(
1−RD(hµ̄

S
i
) [1−e−C1·

m−ld
m ]

)|ic|
.

(6.18)

The last equation being obtained from the Newton binomial:
∑m

k=0

(
m
k

)
xkym−k =

(x+ y)k with m replaced by |ic|, x by RD(h
µ̄
Si
)) and y by 1−RD(h

µ̄
Si
).
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Let us now define F such that 1 = e
|ic|F(RD(hµ̄

S
i
))
(
1− RD(h

µ̄
Si
) [1− e−C1·m−ld

m ]
)|ic|

, or

equivalently, let

F(RD(h
µ̄
Si
)))

def
=− ln

(
1−RD(h

µ̄
Si
)

[
1− e−C1

m−ld
m

])
. (6.19)

Note that F is convex since it is minus the logarithm of a linear function (recall

that the logarithm is a concave function).

Therefore, with this choice and by replacing F in Equation (6.18) we get:

E
S∼Dm

E
hµ̄
S
i
∼PS

e
|ic|D(RS(h

µ̄
S
i
),RD(hµ̄

S
i
))
= 1 .

In order to finish the proof, combine Equations (6.16), (6.17), (6.18) and (6.19) to
rewrite the innermost inequality of Equation (6.15) as follows:

(m− ld) · F
(
1

2

[
1 +

1

ζ(1)
ζQ
D

])
−mC1 · 1

2

[
1 +

1

ζ(1)
ζQ
S

]
− ζ′(1)

ζ(1)
·KL(Q‖PS) ≤ ln

1

δ

(m− ld)

{
− ln

(
1− 1

2

[
1 +

1

ζ(1)
ζQD

] [
1− e

−C1

m−ld
m

])}
≤ mC1 · 1

2

[
1 +

1

ζ(1)
ζQS

]
+
ζ′(1)

ζ(1)
·KL(Q‖PS) + ln

1

δ

1

2

[
1 +

1

ζ(1)
ζQD

] [
1− e

−C1

m−ld
m

]
≤ 1− exp

{
−

(
1

m− ld

)(
mC1 · 1

2

[
1 +

1

ζ(1)
ζQS

]
+
ζ′(1)

ζ(1)
·KL(Q‖PS) + ln

1

δ

)}

1

2

[
1 +

1

ζ(1)
ζQ
D

] [
1− e−C1

m−ld
m

]
≤

(
1

m− ld

)(
mC1 · 1

2

[
1 +

1

ζ(1)
ζQ
S

]
+
ζ′(1)

ζ(1)
·KL(Q‖PS) + ln

1

δ

)

The last transformation is an application of the inequality 1− e−x ≤ x. We are now

able to isolate ζQD :

ζQD ≤
(

2 · ζ(1)
1− e−C1

m−ld
m

)(
1

m− ld

)(
mC1 ·

1

2

[
1 +

1

ζ(1)
ζQS

]
+
ζ ′(1)

ζ(1)
·KL(Q‖P S) + ln

1

δ

)
− ζ(1)

=

(
C1

m
m−ld

1− e−C1
m−ld
m

)(
ζ(1) + ζQS +

2

mC1

[ζ ′(1) ·KL(Q‖P S) + ζ(1) · ln 1

δ
]

)
− ζ(1)

= ζ(1)[C ′ − 1] + C ′ ·
(
ζQS +

2

mC1

[ζ ′(1) ·KL(Q‖P S) + ζ(1) · ln 1

δ
]

)

where

C ′ =
C1 · m

m−l·deg ζ

1− e−C1·m−l·deg ζ
m

.
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In the particular case of non-sample compressed classifiers (when l = 0) Theo-

rem 6.3.1 reduces to the following corollary:

Corollary 6.3.2. For any D, any H of sets of classifiers any prior P, any δ ∈ (0, 1],

any positive real number C1, and any margin loss function we have:

Pr
S∼Dm

(
∀Q on H:
ζQD ≤ ζ(1)[C ′ − 1] + C ′ ·

(
ζQS + 2

m·C1
[ζ ′(1) ·KL(Q‖P S) + ζ(1) · ln 1

δ
]
)
)
≥ 1− δ

where KL(·‖·) is the Kullback-Leibler divergence, and where C ′ = C1

1−e−C1
.

McAllester bound with KL

Theorem 6.3.3. For any D, for any m ≥ 8, for any family (HS)S∈Dm of sets of sc-

classifiers of size at most l, for any prior P, for any margin loss function ζ such that

l · deg(ζ) < m, and for any δ ∈ (0, 1], we have

Pr
S∼Dm



∀Q ∈ HS :

ζQD ≤ ζQS + ζ(1)√
1
2
(m−l deg(ζ))

√
ζ′(1)
ζ(1)
·KL(Q‖P S) + 4 l deg(ζ) + ln 2

√
m
δ


 ≥ 1− δ

Proof. Let S be any training sequence, d
def
= deg ζ . Similarly as in the Section 6.2, we

define h̄ = h1..hk (with k∈{0, .., d}), RD(h̄), RS(h̄), HS, P S, Q, ζQD , and ζQS .

We will consider the following random variable:

X
PS

def
= E

h̄∼PS

em−|ih̄|)2(RS(h̄)−RD(h̄))2 . (6.20)

By using Markov’s inequality (Lemma 5.1.5) we have

Pr
S∼Dm

(
X

PS ≤
1

δ
E

S∼Dm
X

PS

)
≥ 1− δ .

By taking the logarithm on each side of the innermost inequality and by transforming

the expectation over P S into an expectation over Q using Equation (5.4), we obtain

Pr
S∼Dm

(
∀Q : ln

[
E

h̄∼Q

PS(h̄)

Q(h̄)
e(m−|ih̄|)2(RS(h̄)−RD(h̄))2

]
≤ ln

[
1
δ

E
S∼Dm

X
PS

] )
≥ 1− δ . (6.21)
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Using Equation (6.14), together with Jensen’s inequality(Lemma 5.1.6) applied to

the concave ln(x) gives

ln

[
E

h̄∼Q

P S(h̄)

Q(h̄)
e(m−|ih̄|)2(RS(h̄)−RD(h̄))2

]
≥ −ζ ′(1)

ζ(1)
·KL(Q‖P S)

+ E
h̄∼Q

(m− |ih̄|)2(RS(h̄)−RD(h̄))
2 (6.22)

Again from the Jensen’s inequality, applied to the convex function D(q, p) = (q−p)2,
together with the definition of ζQD and ζQS (see Equation (6.12)) and the fact that

m− |ih̄| ≥ m− l · d , we obtain:

E
h̄∼Q

(m− |ih̄|)2(RS(h̄)− RD(h̄))
2 ≥ (m− ld)2

(
E

h̄∼Q
RS(h̄)− E

h̄∼Q
RD(h̄)

)2

(6.23)

Thus, from Equations (6.21) to (6.23), we obtain:

Pr
S∼Dm

(
∀Q : (m− ld)2

(
E

h̄∼Q
RS(h̄)− E

h̄∼Q
RD(h̄)

)2

≤ ζ ′(1)
ζ(1)

·KL(Q‖PS) + ln

[
1

δ
E

S∼Dm
X

PS

] )
≥ 1−δ .

(6.24)

Let us analyze ES∼DmX
PS . Let R̃S(h̄) be the abstract empirical risk (Equation (6.8)).

Now, let us show that

ES∼DmX
PS ≤ e4ld · 2√m. (6.25)

First note that, since

ES∼DmX
PS

def
= E

S∼Dm
E

h̄∼PS

e(m−|ih̄|)2(RS(h̄)−RD(h̄))2

= E
i∼P

I

E
Si∼D|i|

E
µ̄∼P

S
i

E
Sic∼Dm−|i|

e
(m−|i|)2 (RS(h

µ̄
S
i
)−RD(hµ̄

S
i
))2

,

to prove Equation (6.25), it suffices to show that we have

E
Sic∼Dm−|i|

e
(m−|i|)2 (RS(h

µ̄
S
i
)−RD(hµ̄

S
i
))2 ≤ e4ld · 2√m. (6.26)

for any i ∈ I, Si ∈ (X × Y)|i|, and µ̄ ∈ MSi
. Here is the sketch of the proof of
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Equation (6.26). Justification for line (6.27) to (6.30) follows below.

E
Sic∼Dm−|i|

e
(m−|i|)2 (RS(h

µ̄
S
i
)−RD(hµ̄

S
i
))2

= E
Sic∼D(m−|i|)

e
(m−|i|)2

(
RS(h

µ̄
S
i
)−R̃S(h

µ̄
S
i
)+R̃S(h

µ̄
S
i
)−RD(hµ̄

S
i
)
)2

≤ E
Sic∼D(m−|i|)

e
(m−|i|)2

([
RS(h

µ̄
S
i
)−R̃S(h

µ̄
S
i
)
]2
+2

∣∣∣RS(h
µ̄
S
i
)−R̃S(h

µ̄
S
i
)
∣∣∣·
∣∣∣R̃S(h

µ̄
S
i
)−RD(h

µ̄
S
i
)
∣∣∣+

[
R̃S(h

µ̄
S
i
)−RD(h

µ̄
S
i
)
]2)

≤ E
Sic∼D(m−|i|)

e
(m−|i|)2

(
[ |i|m ]

2
+2

|i|
m
·1+

[
R̃S(h

µ̄
S
i
)−RD(hµ̄

S
i
)
]2)

(6.27)

≤ E
Sic∼D(m−|i|)

e
4ld + (m−|i|)2

[
R̃S(h

µ̄
S
i
)−RD(hµ̄

S
i
)
]2

(6.28)

≤ E
Sic∼D(m−|i|)

e
4ld + (m−|i|)·kl

(
R̃S(h

µ̄
S
i
)‖RD(hµ̄

S
i
)
)

(6.29)

= e4ld · E
Sic∼D(m−|i|)

e
(m−|i|) · kl

(
R̃S(h

µ̄
S
i
)‖RD(hµ̄

S
i
)
)

≤ e4ld · 2
√

m− |i| (6.30)

≤ e4ld · 2√m

Line (6.27) follows from Equation (6.10) and the fact that the exponential function

is increasing. For Line (6.28), we have :

(m− |i|)2
( |i|2
m2

+
2|i|
m

)
= |i|(m− |i|)2

( |i|
m2

+
2

m

)
.

From |i| ≤ ld ≤ m, it follows that m− |i| ≤ m and |i|
m
≤ 1. Thus, we have:

(m− |i|)2
( |i|
m2

+
2

m

)
≤ m2

( |i|
m2

+
2

m

)
≤ 2
|i|
m

+ 2 ≤ 4.

Therefore, we have:

(m− |i|)2
( |i|2
m2

+
2|i|
m

)
= |i|(m− |i|)2

( |i|
m2

+
2

m

)
≤ 4|i| ≤ 4ld.

Line (6.29) follows directly from the property : 2(q−p)2 ≤ kl(q ‖ p) (Pinsker’s inequal-
ity [13]). Finally, for Line (6.30), first observe that R̃S(h

µ̄
Si
) is an arithmetic mean of

(m−|i|) iid random variables. Thus Line (6.30) is simply an application of Lemma 6.2.1
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with M(X) replaced by R̃S(h
µ̄
Si
), n replaced by m − |i|, and ν replaced by RD(h

µ̄
Si
) .

Thus, Equation (6.25) is proved.

By substituting Equations (6.12) and (6.25) into Equation (6.24) we have:

(m−ld)2
(
1

2

[
1 +

1

ζ(1)
ζQS

]
−1

2

[
1 +

1

ζ(1)
ζQD

])2

≤ ζ ′(1)

ζ(1)
·KL(Q‖P S)+ln

[
1

δ
· e4ld · 2√m

]

By rearranging the above equations we get:

ζQD ≤ ζQS +
ζ(1)√

1
2
(m− l deg(ζ))

√
ζ ′(1)

ζ(1)
·KL(Q‖P S) + 4 l deg(ζ) + ln

2
√
m

δ

In the particular case of non-sample compressed classifiers (when l = 0) Theo-

rem 6.3.3 reduces to the following corollary:

Corollary 6.3.4. For any D, any H of sets of classifiers any prior P, any δ ∈ (0, 1],

and any margin loss function we have:

Pr
S∼Dm



∀Q ∈ H :

ζQD ≤ ζQS + ζ(1)√
1
2
m

√
ζ′(1)
ζ(1)
·KL(Q‖P S) + ln 2

√
m
δ


 ≥ 1− δ

Seeger bound with KL

The following theorem gives a bound on ζQD and, consequently, on RD(BQ).

Theorem 6.3.5. For any D, any family (HS)S∈Dm of sets of sc-classifiers of size at

most l, any prior P, any δ ∈ (0, 1], any margin loss function ζ of degree < m/l, we

have

Pr
S∼Dm




∀Q∈HS :

kl+
(

m
m−l·deg(ζ) (

1
2

[
1 + 1

ζ(1)
ζQS

]
+ ld

m
) ‖ 1

2

[
1 + 1

ζ(1)
ζQD

])

≤ 1
m−l·deg(ζ)

(
ζ′(1)
ζ(1)
·KL(Q‖P S) + ln 2

√
m
δ

)



≥ 1− δ
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where kl(q‖p) def

= q ln q
p
+ (1 − q) ln 1−q

1−p
, and where kl+(q‖p) = kl(q‖p) if q ≤ p and 0

otherwise. Moreover, if l = 0, the function kl+ can be replace by the function kl in the

statement, giving rise to both a lower and an upper bound of ζQD .

Proof. The first part of the proof is very similar to the one of Theorem 6.3.3. Similarly

as in the Section 6.2, we again define d, h̄ = h1..hk (with k∈{0, .., d}), RD(h̄), RS(h̄),

HS, P S, Q, ζQD , and ζQS . However, we will instead consider this quite different random

variable that among other thing is not based on RS(h̄) but on a slightly different

value R̃S(h̄) given by Equation (6.8). Note that in the case of the McAllester bound

(Theorem 6.3.3) , we manage to deal with the bias that comes from the examples of the

compression set in the calculation of the random variable X
PS (see Equations (6.27) to

(6.30)). In the case of Seeger bound, this is no more possible. In the presence of such

bias, the random variable X
PS using the kl as the divergence D can be huge. For this

reason, contrarily to the preceding proof, in this proof, we consider the unbiased R̃S(h̄)

instead of RS(h̄) in the definition of the random variable X
PS

1. Therefore, we consider

the following random variable which is based on the value R̃S(h̄).

X
PS

def
= E

h̄∼pS
e(m−|ih̄|)kl(R̃S(h̄),RD(h̄)) , (6.31)

By using Markov’s inequality(Lemma 5.1.5) we have:

Pr
S∼Dm

(
X

PS ≤
1

δ
E

S∼Dm
X

PS

)
≥ 1− δ .

By taking the logarithm on each side of the innermost inequality and by transforming

the expectation over P S into an expectation over Q using Equation (5.4), we obtain

Pr
S∼Dm

(
∀Q : ln

[
E

h̄∼Q

P S(h̄)

Q(h̄)
e(m−|ih̄|)kl(R̃S(h̄),RD(h̄))

]
≤ ln

[
1

δ
E

S∼Dm
E

h̄∼PS

e(m−|ih̄|)kl(R̃S(h̄),RD(h̄))

])

≥ 1− δ . (6.32)

Using Equation (6.14), together with Jensen’s inequality(Lemma 5.1.6) applied to

1This is the main reason why the mechanism of the proof of Theorems 6.3.3 and 6.3.5 seems

so different, although in the non sample compression case where R̃S(h̄) = RS(h̄), the proof of these

theorems are very similar (See Chapter 5, Section 5.1.1).
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the concave ln(x) gives

ln

[
E

h̄∼Q

P S(h̄)

Q(h̄)
e(m−|ih̄|)kl(R̃S(h̄),RD(h̄))

]
≥ −ζ ′(1)

ζ(1)
·KL(Q‖P S)

+ E
h̄∼Q

(m− |ih̄|) kl(R̃S(h̄), RD(h̄))(6.33)

where

E
h̄∼Q

ln
P S(h̄)

Q(h̄)
= −KL(Q||P S) = −ζ ′(1)

ζ(1)
·KL(Q‖P S) .

Again from the Jensen’s inequality, applied to the convex function kl(·‖ ·), and the fact

that m− |ih̄| ≥ m− l · d , we obtain:

E
h̄∼Q

(m− |ih̄|) kl
(
R̃S(h̄) ‖ RD(h̄)

)
≥ (m− ld) kl

(
E

h̄∼Q
R̃S(h̄) ‖ E

h̄∼Q
RD(h̄)

)
(6.34)

Let us now analyse the value of ES∼DmX
PS .

Let ic be the vector of indices of I that are not in the vector i, and note that

E
S∼Dm

E
h̄∼PS

e(m−|ih̄|) kl(R̃S(h̄),RD(h̄)) = E
i∼P

I

E
Si∼D|i|

E
µ̄∼P

S
i

E
Sic∼Dm−|i|

e
|ic| kl(R̃S(h

µ̄
S
i
),RD(hµ̄

S
i
))

Since R̃S(h
µ̄
Si
) is an arithmetic mean of iid random variables, one can apply Lemma 6.2.1

with M(X) replaced by R̃S(h
µ̄
Si
), n replaced by m − |i|, and ν replaced by RD(h

µ̄
Si
) to

obtain:

ES ic ∼Dm−|i| e
(m−|i|) kl(R̃S(h

µ̄
S
i
),RD(hµ̄

S
i
)) ≤ 2

√
m− |i| ≤ 2

√
m. (6.35)

By rearranging Equation (6.32) based on Equation 6.35 and using Equations 6.33

and 6.34, we have:

(m− ld) kl

(
E

h̄∼Q
R̃S(h̄) ‖ E

h̄∼Q
RD(h̄)

)
≤ ln

2
√
m

δ
+

ζ ′(1)
ζ(1)

·KL(Q‖PS) (6.36)
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Finally, observe that for any classifier h̄ ∈ HS, we have

R̃S(h̄) ≤
(
RS(h̄) +

ld

m

)
m

m− |i|

≤
(
RS(h̄) +

ld

m

)
m

m− ld

≤ m

m− ld
RS(h̄) +

ld

m− ld

=
m

m− ld

(
RS(h̄) +

ld

m

)
, (6.37)

and consider the following two cases.

case 1 : l = 0. In that case we have that E
h̄∼Q

R̃S(h̄) = E
h̄∼Q

RS(h̄). Hence we have

kl

(
E

h̄∼Q
R̃S(h̄) ‖ E

h̄∼Q
RD(h̄)

)
= kl

(
m

m− ld
E

h̄∼Q
RS(h̄) +

ld

m
‖ E

h̄∼Q
RD(h̄)

)

case 2 : l > 0. In that case, following Equation (6.37), we have:

kl

(
E

h̄∼Q
R̃S(h̄) ‖ E

h̄∼Q
RD(h̄)

)
≥ kl+

(
m

m− ld
E

h̄∼Q
RS(h̄) +

ld

m
‖ E

h̄∼Q
RD(h̄)

)

In each cases, the result then follows from Equation (6.36):

(m− ld) kl+
(

m

m− ld
E

h̄∼Q
RS(h̄) +

ld

m
‖ E

h̄∼Q
RD(h̄)

)
≤ ln

2
√
m

δ
+

ζ ′(1)
ζ(1)

·KL(Q‖PS)

Now, by replacing E
h̄∼Q

RU (h̄) by
1
2

[
1 + 1

ζ(1) ζ
Q
U

]
from Equation (6.12) for U = D and U = S

we get:

kl+
(

m

m− l · deg(ζ) (
1

2

[
1 +

1

ζ(1)
ζ
Q
S

]
+
ld

m
) ‖ 1

2

[
1 +

1

ζ(1)
ζ
Q
D

])

≤ 1

m− l · deg(ζ)

(
ζ ′(1)
ζ(1)

·KL(Q‖PS) + ln
2
√
m

δ

)

In the particular case of non-sample compressed classifiers (when l = 0), Theo-

rem 6.3.5 reduces to the following corollary:
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Corollary 6.3.6. For any D, any H of sets of classifiers any prior P, any δ ∈ (0, 1],

any positive real number C1, and any margin loss function we have:

Pr
S∼Dm




∀Q∈H :

kl

(
1
2

[
1 + 1

ζ(1)
ζQS

]
‖ 1

2

[
1 + 1

ζ(1)
ζQD

])

≤ 1
m

(
ζ′(1)
ζ(1)
·KL(Q‖P S) + ln 2

√
m
δ

)



≥ 1− δ

where kl(q‖p) def

= q ln q
p
+ (1− q) ln 1−q

1−p
.

6.4 PAC-Bayes Bounds without KL

In this section, we present the other PAC-Bayes risk bounds that have the unusual

property of having no KL divergence when the posterior is aligned with the prior in

some precise way defined in the following subsection.

6.4.1 The case of aligned posteriors

Recall the definition of the aligned posteriors in the non-sample compression setting

(see Definition 5.1.8), here, we also present the notion of aligned in the sample com-

pression setting in the similar way. To define the notion of aligned posteriors in the

sample compression setting, we need to consider the boolean complement −hµ
Si

of any

sc-classifier hµ
Si
. Thus, we will now always suppose that all the message sets are of the

form

MSi
= M1

Si
× {+, −} , (6.38)

and that we will always have :

h
(σ,+)
Si

(x) = −h(σ,−)
Si

(x) ∀x, σ ∈M1
Si

(6.39)

Definition 6.4.1. Given a prior P and a training sequence S, we say that a posterior

Q is aligned on P S if

Q(h
(σ,+)
Si

) +Q(h
(σ,−)
Si

) = P S(h
(σ,+)
Si

) + P S(h
(σ,−)
Si

) ∀(i, σ) ∈ I ×M1
Si
.
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Note that an aligned posterior is totally defined by the values

w(i, σ)
def
= Q(h

(σ,+)
Si

)−Q(h
(σ,−)
Si

) , (6.40)

under the constraints |w(i, σ)| ≤ P S(h
(σ,+)
Si

)+P S(h
(σ,−)
Si

) (i, σ) ∈ I×M1
Si
.

(6.41)

Indeed, it immediately follows that Q can be retrieve from P and w because

Q(h
(σ,±)
Si

) =
1

2

(
P S(h

(σ,+)
Si

)+P S(h
(σ,−)
Si

) ± w(i, σ)
)
. (6.42)

Moreover, given any function w : I×M1
Si
→ R satisfying Equation (6.41), the function

Q given by Equation (6.42) is a distribution aligned on P S.

The next proposition follows directly from what precedes and points out that there

is (almost) no loss of expressiveness if we restrict ourselves to aligned posterior.

Proposition 6.4.2. Let P be a prior, S a training sequence, and Q a distribution on

HS for which there exists A > 0 such that for all i and σ, A |Q(h
(σ,+)
Si

) − Q(h
(σ,−)
Si

)| ≤
P S(h

(σ,+)
Si

) + P S(h
(σ,−)
Si

) . Let Q′ be a distribution aligned on P S such that w′(i, σ) =

A (Q(h
(σ,+)
Si

)−Q(h
(σ,−)
Si

)). Then Q′ is Bayes-equivalent to Q (i.e., BQ′(x)=BQ(x) ∀x∈
X ).

Proof. Let Q′(h
(σ,+)
Si

) = 1
2
(AQ(h

(σ,+)
Si

) − AQ(h
(σ,−)
Si

) + w′(i, σ)), and let Q′(h
(σ,−)
Si

) =
1
2
(w′(i, σ))− AQ(h

(σ,+)
Si

) + AQ(h
(σ,−)
Si

)). This way, we have:

Q′(h
(σ,+)
Si

) +Q′(h
(σ,−)
Si

) = w′(i, σ) = A (Q(h
(σ,+)
Si

)−Q(h
(σ,−)
Si

)) ≤ P S(h
(σ,+)
Si

) + P S(h
(σ,−)
Si

),

which shows that Q′ is aligned on P S. Moreover, we have:

BQ′(x) = sgn



∑

i∈I

∑

s∈{−,+}

∫

M1
S
i

dσQ′(h
(σ,s)
Si

)h
(σ,s)
Si

(x)




= sgn

(
∑

i∈I

∫

M1
S
i

dσ
[
Q′(h

(σ,+)
Si

)−Q′(h
(σ,−)
Si

]
h
(σ,+)
Si

(x

)

The last equality is obtained from Equation (6.39). By incorporating the value of

[
Q′(h

(σ,+)
Si

)−Q′(h
(σ,−)
Si

]
= A (Q(h

(σ,+)
Si

) +Q(h
(σ,−)
Si

)),
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into above equation, we then have:

BQ′(x) = sgn


A

∑

i∈I

∑

s∈{−,+}

∫

M1

dσQ(h
(σ,s)
Si

)h
(σ,s)
Si

(x)




= sgn



∑

i∈I

∑

s∈{−,+}

∫

M1

dσQ(h
(σ,s)
Si

)h
(σ,s)
Si

(x)


 = BQ(x).

Now, by using the following Lemma we can obtain versions of Theorems 6.4.4 and

6.4.7 that have no KL divergence terms (when the posterior is aligned with the prior).

Lemma 6.4.3. Let S be any training sequence, d
def

= deg ζ and posterior Q be aligned

with prior P S. Let D(q, p) be a function such that D(q, p) = D(1− q, 1− p). Similarly

as in the Section 6.2, we define h̄ = h1..hk (with k ∈ {0, .., d}), RD(h̄), RS(h̄), HS,

P S, Q, then we have:

X
PS

def

= E
h̄∼PS

e(m−|ih̄|)·D(RS(h̄)||RD(h̄)) = E
h̄∼Q

e(m−|ih̄|)·D(RS(h̄)||RD(h̄)) . (6.43)

Proof. For each k ∈ {0, .., d}, define HS
(k) as the set of abstract classifiers h that are

k-tupples h1..hk. Then, for each h ∈ HS
(k) and each j = 0, .., 2k−1, let us define

h
[j] def

= h
(s1)
1 ..h

(sk)
k , where s1s2..sk is the binary representation of the number j, and

where h(0)=h and h(1)=−h. For any h ∈ HS
(k), let G(h) be the set of all h

[j]
s for the

different choices of j. Note that, given any two h, h′ ∈ HS
(k), both G(h) and G(h′) either

coincide or are disjoint. They will coincide iff h′ = h
[j]

for some j, and in that case they

will have the same compression sequence, i.e., i
h
[j] = ih. Moreover, if Q is aligned on
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P , we have:

2k−1∑

j=0

P (h
[j]
) =

ak

ζ(1)

∑

s∈{0,1}k

k∏

i=1

P

(
h
(si)
i

)

=
ak

ζ(1)

k∏

i=1

[
P
(
h
(0)
i

)
+ P

(
h
(1)
i

)]

=
ak

ζ(1)

k∏

i=1

[
Q
(
h
(0)
i

)
+Q

(
h
(1)
i

)]

=
ak

ζ(1)

∑

s∈{0,1}k

k∏

i=1

Q

(
h
(si)
i

)

=

2k−1∑

j=0

Q(h
[j]
) . (6.44)

By the definition of abstract classifier from Equation (6.11) for all h
[j] ∈ G(h) we

have one of the two following cases:

(1) : RS(h) = RS(h
[j]
) and RD(h) = RD(h

[j]
).

(2) : RS(h) = 1−RS(h
[j]
) and RD(h) = 1−RD(h

[j]
).

Therefore, from the property D(q, p) = D(1− q, 1− p), it follows that:

D(RS(h), RD(h)) = D(RS(h
[j]
), RD(h

[j]
)) (6.45)
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From Equations (6.44) and (6.45), we now have:
∫

h∈HS
(k)

P (h)e(m−|i
h
|)·D(RS(h),RD(h))

=
1

2k

2k−1∑

j=0

∫

h∈HS
(k)

P (h)e(m−|i
h
|)·D(RS(h),RD(h))

=
1

2k

2k−1∑

j=0

∫

h∈HS
(k)

P (h
[j]
)e

(m−|i
h
[j] |)·D(RS(h

[j]
),RD(h

[j]
))

=
1

2k

2k−1∑

j=0

∫

h∈HS
(k)

P (h
[j]
)e(m−|i

h
|)·D(RS(h),RD(h))

=
1

2k

∫

h∈HS
(k)

2k−1∑

j=0

P (h
[j]
)e(m−|i

h
|)·D(RS(h),RD(h))

=
1

2k

∫

h∈HS
(k)

2k−1∑

j=0

Q(h
[j]
) e(m−|i

h
|)·D(RS(h),RD(h))

...

=

∫

h∈HS
(k)

Q(h)e(m−|i
h
|)·D(RS(h),RD(h)) . (6.46)

Thus,

E
h∼P

e(m−|i
h
|)·D(RS(h),RD(h))

=

deg ζ∑

k=0

∫

h∈HS
(k)

P (h)e(m−|i
h
|)·D(RS(h),RD(h))

=

deg ζ∑

k=0

∫

h∈HS
(k)

Q(h)e(m−|i
h
|)·D(RS(h),RD(h))

= E
h∼Q

e(m−|i
h
|)·D(RS(h),RD(h)) .

We now provide a PAC-Bayes bound for aligned posteriors which does not depend

on how far they are from the prior.
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McAllester bound without KL

Theorem 6.4.4. For any D, for any m ≥ 8, for any family (HS)S∈Dm of sets of sc-

classifiers of size at most l, for any prior P, for any margin loss function ζ such that

l · deg(ζ) < m, and for for any δ ∈ (0, 1], we have

Pr
S∼Dm

(
∀Q aligned on P S : ζQD ≤ ζQS + ζ(1)√

1
2
(m−l deg(ζ))

√
4 l deg(ζ) + ln 2

√
m
δ

)
≥ 1− δ

Proof. Similarly as in the proof of Theorem 6.3.1, we define d = deg ζ, h̄ = h1..hk (with

k∈{0, .., d}), RD(h̄), RS(h̄), HS, P S, Q, ζQD , and ζQS . However, we will consider the

following random variable

X
PS

def
= E

h̄∼PS

e(m−|ih̄|)·2(RS(h̄)−RD(h̄))2 . (6.47)

By the same proof as in Lemma 6.4.3, except that D(RS(h̄)||RD(h̄)) is replaced by

(RS(h̄)−RD(h̄))
2, one can show that : for any posterior Q aligned on P S, we have:

X
PS = E

h̄∼Q
e(m−|ih̄|)·2(RS(h̄)−RD(h̄))2 . (6.48)

Now, again, as in the proof of Theorem 6.3.1, by Markov’s inequality we have

Pr
S∼Dm

(
X

PS ≤
1

δ
E

S∼Dm
X

PS

)
≥ 1− δ .

Thus, by applying the claim and by taking the logarithm on each side of the innermost

inequality, we obtain

Pr
S∼Dm




∀Qaligned on PS :

ln

[
E

h̄∼Q
e(m−|ih̄|)·2(RS(h̄)−RD(h̄))2

]
≤ ln

[
1
δ

E
S∼Dm

X
PS

]


 ≥ 1− δ . (6.49)

Jensen’s inequality applied to the concave ln(x) gives

ln

[
E

h̄∼Q
e(m−|ih̄|)·2(RS(h̄)−RD(h̄))2

]
≥ E

h̄∼Q
(m− |ih̄|) · 2(RS(h̄)−RD(h̄))

2 . (6.50)
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Again from the Jensen’s inequality, applied to the convex function D(q, p) = (q−p)2,
together with the definition of ζQD and ζQS (see Equation (6.12)) and the fact that

m− |ih̄| ≥ m− l · d , we obtain:

E
h̄∼Q

(m− |ih̄|)2(RS(h̄)−RD(h̄))
2 ≥ (m− ld)2

(
E

h̄∼Q
RS(h̄)− E

h̄∼Q
RD(h̄)

)2

(6.51)

Thus, from Equations (6.49) to (6.51), we obtain:

Pr
S∼Dm




∀Qaligned on PS :

(m− ld) · 2
(

E
h̄∼Q

RS(h̄)− E
h̄∼Q

RD(h̄)

)2

≤ ln

[
1

δ
E

S∼Dm
X

PS

]

 ≥ 1− δ .

(6.52)

Let us now analyze the value of ES∼DmX
PS .

For this, we have to use the abstract empirical risk R̃S(h̄) as given by Equation (6.8).

Now, let us show that,

ES∼DmX
PS ≤ e4ld · 2√m. (6.53)

First note that, since

ES∼DmX
PS

def
= E

S∼Dm
E

h̄∼PS

e(m−|ih̄|)2(RS(h̄)−RD(h̄))2

= E
i∼P

I

E
Si∼D|i|

E
µ̄∼P

S
i

E
Sic∼Dm−|i|

e
(m−|i|)2 (RS(h

µ̄
S
i
)−RD(hµ̄

S
i
))2

,

to prove Equation (6.53), it suffices to show that we have

E
Sic∼Dm−|i|

e
(m−|i|)2 (RS(h

µ̄
S
i
)−RD(hµ̄

S
i
))2 ≤ e4ld · 2√m, (6.54)

for all i ∈ I, Si ∈ (X × Y)|i|, and µ̄ ∈ MSi
. Here is the sketch of the proof of
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Equation (6.54). Justification for Line (6.55) to (6.58) follows below.

E
Sic∼Dm−|i|

e
(m−|i|)·2 (RS(h

µ̄
S
i
)−RD(hµ̄

S
i
))2

= E
Sic∼D(m−|i|)

e
(m−|i|)·2

(
RS(h

µ̄
S
i
)−R̃S(h

µ̄
S
i
)+R̃S(h

µ̄
S
i
)−RD(hµ̄

S
i
)
)2

≤ E
Sic∼D(m−|i|)

e
(m−|i|)·2

([
RS(h

µ̄
S
i
)−R̃S(h

µ̄
S
i
)
]2
+2

∣∣∣RS(h
µ̄
S
i
)−R̃S(h

µ̄
S
i
)
∣∣∣·
∣∣∣R̃S(h

µ̄
S
i
)−RD(h

µ̄
S
i
)
∣∣∣+

[
R̃S(h

µ̄
S
i
)−RD(h

µ̄
S
i
)
]2)

≤ E
Sic∼D(m−|i|)

e
(m−|i|)·2

(
[ |i|m ]

2
+2

|i|
m
·1+

[
R̃S(h

µ̄
S
i
)−RD(hµ̄

S
i
)
]2)

(6.55)

≤ E
Sic∼D(m−|i|)

e
4ld + (m−|i|)·2

[
R̃S(h

µ̄
S
i
)−RD(hµ̄

S
i
)
]2

(6.56)

≤ E
Sic∼D(m−|i|)

e
4ld + (m−|i|)·kl

(
R̃S(h

µ̄
S
i
)‖RD(hµ̄

S
i
)
)

(6.57)

= e4ld · E
Sic∼D(m−|i|)

e
(m−|i|) · kl

(
R̃S(h

µ̄
S
i
)‖RD(hµ̄

S
i
)
)

≤ e4ld · 2
√

m− |i| (6.58)

≤ e4ld · 2√m

Line (6.55) follows from Equation (6.10) and the fact that the exponential function is

increasing. For Line (6.56) we have :

(m− |i|)2
( |i|2
m2

+
2|i|
m

)
= |i|(m− |i|)2

( |i|
m2

+
2

m

)
.

From |i| ≤ ld ≤ m, it follows that m− |i| ≤ m and |i|
m
≤ 1. Thus, we have:

(m− |i|)2
( |i|
m2

+
2

m

)
≤ m2

( |i|
m2

+
2

m

)
≤ 2
|i|
m

+ 2 ≤ 4.

Therefore, we have:

(m− |i|)2
( |i|2
m2

+
2|i|
m

)
= |i|(m− |i|)2

( |i|
m2

+
2

m

)
≤ 4|i| ≤ 4ld.

Line (6.57) follows directly from the property : 2(q − p)2 ≤ kl(q ‖ p) (Pinsker’s

inequality [13]). Finally, for Line (6.58), first observe that R̃S(h
µ̄
Si
) is an arithmetic

mean of (m − |i|) iid random variables. Thus Line (6.58) is simply an application of
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Lemma 6.2.1 with M(X) replaced by R̃S(h
µ̄
Si
), n replaced by m − |i|, and ν replaced

by RD(h
µ̄
Si
) . Thus, Equation (6.53) is proved.

By using Equations (6.12), (6.24), and (6.53) in Equation (6.52) we have:

(m− ld)2

(
1

2

[
1 +

1

ζ(1)
ζQS

]
−1

2

[
1 +

1

ζ(1)
ζQD

])2

≤ ln

[
1

δ
· e4ld · 2√m

]

By rearranging the above equations we obtain:

ζQD ≤ ζQS +
ζ(1)√

1
2
(m− l deg(ζ))

√
4 l deg(ζ) + ln

2
√
m

δ

In the particular case of non-sample compressed classifiers (when l = 0) Theo-

rem 6.4.4 reduces to the following corollary:

Corollary 6.4.5. For any D, any H of sets of classifiers any prior P, any δ ∈ (0, 1],

and any margin loss function we have:

Pr
S∼Dm

(
∀Q aligned on P : ζQD ≤ ζQS + ζ(1)√

1
2
m

√
ln 2

√
m
δ

)
≥ 1− δ

Seeger bound without KL

Theorem 6.4.6. For any D, for any family (HS)S∈Dm of sets of sc-classifiers of size

at most l, for any prior P, for any margin loss function ζ such that l · deg(ζ) < m,

and for for any δ ∈ (0, 1], we have

Pr
S∼Dm



∀Q aligned on P S :

kl+
(

m
m−l·deg(ζ) (

1
2

[
1 + 1

ζ(1)
ζQS

]
+ ld

m
) ‖ 1

2

[
1 + 1

ζ(1)
ζQD

])
≤ ln 2

√
m

δ

m−l·deg(ζ)


 ≥ 1−δ

where kl(q‖p) def

= q ln q
p
+ (1 − q) ln 1−q

1−p
, and where kl+(q‖p) = kl(q‖p) if q ≤ p and 0

otherwise. Moreover, if l = 0, the function kl+ can be replace by the function kl in the

statement, giving rise to both a lower and an upper bound of ζQD .
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Proof. The first part of the proof is very similar to the one of Theorem 6.4.4. We

again define d, h̄ = h1..hk (with k ∈ {0, .., d}), RD(h̄), RS(h̄), HS, P S, Q, ζQD , and

ζQS . However, we will instead consider this quite different random variable that among

other thing is not based on RS(h̄) but on a slightly different value R̃S(h̄) given by

Equation (6.8). Note that in the case of the McAllester bound (Theorem 6.4.4) , we

manage to deal with the bias that comes from the examples of the compression set in

the calculation of the random variable X
PS (see Equations (6.55) to (6.58)). In the case

of Seeger bound, this is no longer possible. In the presence of such bias, the random

variable X
PS using the kl as the divergence D can be huge. For this reason, contrarily

to the preceding proof, in this proof, we consider the unbias R̃S(h̄) instead of RS(h̄)

in the definition of the random variable X
PS

2. Therefore, we consider the following

random variable which is based on the value R̃S(h̄).

X
PS

def
= E

h̄∼pS
e(m−|ih̄|)kl(R̃S(h̄),RD(h̄)) , (6.59)

By the same proof as in Lemma 6.4.3, except that everywhere in the proof, RS is

replaced by R̃S, and D(RS(h̄)||RD(h̄))
2 is replaced by kl(R̃S(h̄), RD(h̄)), one can show

that : for any posterior Q aligned on P S, we have

X
PS = E

h̄∼Q
e(m−|ih̄|)kl(R̃S(h̄),RD(h̄)). (6.60)

Now, again, as in the proof of Theorem 6.3.3, by Markov’s inequality we have

Pr
S∼Dm

(
X

PS ≤
1

δ
E

S∼Dm
X

PS

)
≥ 1− δ .

Thus, by applying the claim and by taking the logarithm on each side of the innermost

inequality, we can obtain

Pr
S∼Dm




∀Qaligned on PS :

ln

[
E

h̄∼Q
e(m−|ih̄|)kl(R̃S(h̄)‖RD(h̄))

]
≤ ln

[
1
δ

E
S∼Dm

E
h̄∼PS

e(m−|ih̄|)kl(R̃S(h̄)‖RD(h̄))

]

 ≥ 1− δ .

(6.61)

2This is the main reason why the mechanism of the proof of Theorems 6.4.4 and 6.4.7 seems

so different, although in the non sample compression case where R̃S(h̄) = RS(h̄), the proof of these

theorems are very similar (See Chapter 5, Section 5.1.2).
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Jensen’s inequality applied to the concave ln(x) gives

ln

[
E

h̄∼Q
e(m−|ih̄|)kl(R̃S(h̄)‖RD(h̄))

]
≥ E

h̄∼Q
(m− |ih̄|) kl(R̃S(h̄)‖RD(h̄) . (6.62)

Again from the Jensen’s inequality, applied to the convex function kl(·‖ ·), together with
the definition of ζQD and ζQS (see Equation (6.12)) and the fact that m−|ih̄| ≥ m− l · d
we obtain:

E
h̄∼Q

(m− |ih̄|)kl
(
R̃S(h̄) ‖ RD(h̄)

)
≥ (m− ld)kl

(
E

h̄∼Q
R̃S(h̄) ‖ E

h̄∼Q
RD(h̄)

)
(6.63)

Let us now analyse the value of ES∼DmX
PS .

As in the preceding proof, let ic be the vector of indices of I that are not in the

vector i, and note that

E
S∼Dm

E
h̄∼PS

e(m−|ih̄|) kl(R̃S(h̄),RD(h̄)) = E
i∼P

I

E
Si∼D|i|

E
µ̄∼P

S
i

E
Sic∼Dm−|i|

e
|ic| kl(R̃S(h

µ̄
S
i
),RD(hµ̄

S
i
))

Since R̃S(h
µ̄
Si
) is an arithmetic mean of iid random variables, one can apply Lemma 6.2.1

with M(X) replaced by R̃S(h
µ̄
Si
), n replaced by m − |i|, and ν replaced by RD(h

µ̄
Si
) to

obtain:

ES ic ∼Dm−|i| e
(m−|i|) kl(R̃S(h

µ̄
S
i
),RD(hµ̄

S
i
)) ≤ 2

√
m− |i| ≤ 2

√
m. (6.64)

By rearranging Equation (6.61) based on Equation (6.64) and using Equations (6.62)

and (6.63), we have:

E
S∼Dm

(m− ld) kl

(
E

h̄∼Q
R̃S(h̄) ‖ E

h̄∼Q
RD(h̄)

)
≤ ln

2
√
m

δ
(6.65)

Finally, observe that for any classifier h̄ ∈ HS, we have

R̃S(h̄) ≤
(
RS(h̄) +

ld

m

)
m

m− |i|

≤
(
RS(h̄) +

ld

m

)
m

m− ld

≤ m

m− ld
RS(h̄) +

ld

m− ld

=
m

m− ld

(
RS(h̄) +

ld

m

)
, (6.66)
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and consider the following two cases.

case 1 : l = 0. In that case we have that E
h̄∼Q

R̃S(h̄) = E
h̄∼Q

RS(h̄). Hence we have

kl

(
E

h̄∼Q
R̃S(h̄) ‖ E

h̄∼Q
RD(h̄)

)
= kl

(
m

m− ld
E

h̄∼Q
RS(h̄) +

ld

m
‖ E

h̄∼Q
RD(h̄)

)

case 2 : l > 0. In that case, following Equation (6.66), we have:

kl

(
E

h̄∼Q
R̃S(h̄) ‖ E

h̄∼Q
RD(h̄)

)
≥ kl+

(
m

m− ld
E

h̄∼Q
RS(h̄) +

ld

m
‖ E

h̄∼Q
RD(h̄)

)

In each case, the result then follows from Equation (6.65):

(m− ld) kl+
(

m

m− ld
E

h̄∼Q
RS(h̄) +

ld

m
‖ E

h̄∼Q
RD(h̄)

)
≤ ln

2
√
m

δ

Now, by replacing E
h̄∼Q

RU (h̄) by
1
2

[
1 + 1

ζ(1) ζ
Q
U

]
from Equation (6.12) for U = D and U = S

we get:

kl+
(

m

m− l · deg(ζ) (
1

2

[
1 +

1

ζ(1)
ζ
Q
S

]
+
ld

m
) ‖ 1

2

[
1 +

1

ζ(1)
ζ
Q
D

])

≤ ln 2
√
m
δ

m− l · deg(ζ)

In the particular case of non-sample compressed classifiers (when l = 0) Theo-

rem 6.4.7 reduces to the following corollary:

Corollary 6.4.7. For any D, any H of sets of classifiers any prior P, any δ ∈ (0, 1],

any positive real number C1, and any margin loss function we have:

Pr
S∼Dm



∀Q aligned on P :

kl

(
1
2

[
1 + 1

ζ(1)
ζQS

]
‖ 1

2

[
1 + 1

ζ(1)
ζQD

])
≤ ln 2

√
m

δ

m


 ≥ 1− δ

where kl(q‖p) def

= q ln q
p
+ (1− q) ln 1−q

1−p
.



Chapter 7

A general Sample compressed

PAC-Baysian Approach to Kernel

Methods.

In this chapter, we propose a PAC-Bayes sample-compression approach to kernel meth-

ods that can generalize to any bounded similarity function. We also show that the

support vector machine (SVM) is a particular case of a more general class of data-

dependent classifiers known as majority votes of sample-compressed classifiers. We

then apply the risk bounds proposed in Chapter 6 to these majority votes and provide

new algorithms that consist of minimizing these risk bounds. Empirically, we observe

that the learning algorithms obtained in this way are very competitive when compared

with the state-of-the-art algorithms.

7.1 Specialization to Majority Votes of Sc-classifiers

of Compression Size of at Most One:

Here, we specialize ourselves to the case where each sc-classifier has a compression set

size of at most one. In that case, each sample compression sequence Si consists of at

most a single training example and, consequently, each possible vector i has at most

only one index (i.e., |i| ≤ 1). When |i| = 1 and its single index points to example
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(xi, yi) of S, we have i = 〈i〉 and Si = S〈i〉 = (xi, yi). When |i| = 0, then i = 〈〉 and
Si = S〈〉 = ∅. In this latter case, we will only consider the two constant sc-classifier

h
(ε,+)
S〈〉

and h
(ε,−)
S〈〉

where h
(ε,+)
S〈〉

(x) = +1 and h
(ε,−)
S〈〉

(x) = −1 for all x ∈ X . Here ε denotes

the empty message. As presented in Section 6.4.1, for each compression set Si the mes-

sage sets are of the form

MSi
= M1

Si
× {+, −} ,

In particular case where each sc-classifier has a compression set size of at most one a

message is defined in the following way:

• M1
S〈i〉

is a real interval and we denote it byM1.

• M1
S〈〉

= {ε}

• MSi
= ∅ for all i ≥ 2.

Therefore, each sc-classifiers h
(σ,s)
S〈i〉

(that we will define below) of compression size 1 uses

a message (σ, s) ∈ M1 × {−,+} whereM1 is a real interval having a length denoted

by |M1|.

We will see later (in Section 7.1.2), that this set of sc-classifiers can include SVM

classifier.

7.1.1 The Choice of Prior and Posterior

Uniform priors:

Recall that in Chapter 5, we only considered the prior distribution P S on I ×MSi
in

the sample-compression setting that can be written as: P S(hµ
Si
) = PI(i)PSi

(µ) . (see

Equation (5.7)). In this section, we use a uniform prior over all relevant parameters.

More precisely, for all i ∈ {1, . . . ,m}, and s ∈ {−,+}, we have

PI(〈〉) = PI(〈i〉) =
1

m+ 1
; PS〈〉(ε, s) =

1

2
; PS〈i〉(σ, s) =

1

2|M1|I(σ ∈M
1) .

(7.1)
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Equation (5.7) implies that P S(h
(ε,s)
S〈〉

) = PI(〈〉)PS〈〉(ε, s) and P S(h
(σ,s)
S〈i〉

) = PI(〈i〉)PS〈i〉(σ, s).

This way, we have:

P S(h
(ε,+)
S〈〉

) = 1
2m+2

, P S(h
(σ,+)
S〈i〉

) = 1
2m+2

1
|M1| ,

P S(h
(ε,−)
S〈〉

) = 1
2m+2

, P S(h
(σ,−)
S〈i〉

) = 1
2m+2

1
|M1| ,

(7.2)

for any i ∈ {1, ..,m} and any σ ∈M1.

We can then easily verify that we have

∑

s∈{−,+}
P S(h

(ε,s)
S〈〉

) +
m∑

i=1

∑

s∈{−,+}

∫

M1

dσP S(h
(σ,s)
S〈i〉

) = 1 .

We saw earlier in Chapter 5, that we considered the posteriors that are written as:

Q(hµ
Si
) = QI(i)QSi

(µ) (See Equation (5.9)).

Uniform on messages posteriors:

Here, we restrict ourselves to the posteriors called uniform on messages. In other

words, we restrict ourselves to a posterior distribution such that for any compression

set i, QSi
(µ) is a function that does not depend on the σ part of the message (σ, s).

More formally, the posterior Q will be defined as follows. A posterior Q is said to be

uniform on messages if there exists v
def
= (v+, v1, . . . , v2m, v−), where v ≥ 0 for all v ∈

v,
∑

v∈v v = 1, and such that:

Q(h
(ε,+)
S〈〉

) = v+, Q(h
(σ,+)
S〈i〉

) = vi
1

|M1| ,

Q(h
(ε,−)
S〈〉

) = v−, Q(h
(σ,−)
S〈i〉

) = vm+i
1

|M1| ,
(7.3)

for any i ∈ {1, ..,m} and any σ ∈M1.

A reason for this restriction is to simplify the computations of the posterior that

minimizes our PAC-Bayes bounds. Indeed, as shown above the posterior is fully de-

termined by the values (v+, v1, . . . , v2m, v−). Moreover, under this restriction, the set

of these posteriors remains strong enough to include kernel methods such as the SVM

as a special case, even if we also impose the posterior to be aligned to the prior (see

Section 7.1.2).

Aligned and uniform on messages posteriors:

Encouraged by the theoretical results we obtained in the preceding section, we consider

the case where the posterior is also aligned to the prior. In this case, an algorithm
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that minimizes a PAC-Bayes bound would not have to consider any Kullback-Leibler

divergence term. Recall that, in Section 6.4.1 (Equation (6.42)) the aligned posteriors

are defined as follows.

For the sc-classifiers of compression size zero, we have:

Q(h
(ε,s)
S〈〉

) =
1

2

(
P S(h

(ε,+)
S〈〉

) + P S(h
(ε,−)
S〈〉

) + s · w(〈〉, ε)
)

(7.4)

For the sc-classifiers of compression size one, we have:

Q(h
(σ,s)
S〈i〉

) =
1

2

(
P S(h

(σ,+)
S〈i〉

) + P S(h
(σ,−)
S〈i〉

) + s · w(〈i〉, σ)
)

(7.5)

It is easy to see that to obtain an aligned posterior that is uniform on the messages,

one only needs to restrict the w(i, σ) to the following form:

w(〈i〉, σ) = wi
1

|M1|I(σ ∈M
1) where |wi| ≤

1

m+ 1
(7.6)

w(〈〉, ε) def
= w0 where |w0| ≤

1

m+ 1
(7.7)

Now, from Equation (7.2), we have:

P S(h
(ε,+)
S〈〉

) + P S(h
(ε,−)
S〈〉

) =
1

m+ 1
, P S(h

(σ,+)
S〈i〉

) + P S(h
(σ,−)
S〈i〉

) =
1

|M1|(m+ 1)

Therefore, we get:

Q(h
(ε,s)
S〈〉

) =
1

2

(
P S(h

(ε,+)
S〈〉

) + P S(h
(ε,−)
S〈〉

) + s · w(〈〉, ε)
)

=
1

2

(
1

m+ 1
+ s · w0

)
, (7.8)

where s ∈ {+,−}, w0
def
= w(〈〉, ε) and must satisfy |w0| ≤ 1

m+1

and

Q(h
(σ,s)
S〈i〉

) =
1

2

(
P S(h

(σ,+)
S〈i〉

) + P S(h
(σ,−)
S〈i〉

) + s · w(〈i〉, σ)
)

=
1

2

(
1

m+ 1
+ s · wi

)
1

|M1| , (7.9)
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where we have defined wi by the equality w(〈i〉, σ) = wi
1

|M1| , and where (σ, s) ∈M1 ×
{+,−}. Note that we must always satisfy |wi| ≤ 1

m+1
. Hence, similar to the uniform

on messages case, aligned and uniform on messages posteriors are totally defined by a

finite number of values, namely (w0, w1, ..., wm), provided that each wi belongs to the

interval [ −1
m+1

, 1
m+1

]. Note that in the uniform on messages case, we need 2m+2 of such

values, which is twice the number of values needed here. This smaller number of values

provides a computational advantage to an algorithm based on minimizing a PAC-Bayes

bound in the aligned setting. We will also see other advantages of that setting later in

this chapter.

7.1.2 SVM as a Special Case:

The specialization to uniform on messages and aligned posterior might seem too re-

strictive. However, let us show that this setting remains powerful enough to include

kernel methods such as the SVM as a special case. Recall that the output of an SVM

classifier, fSVM , is always of the form:

fSVM(x) = sgn
(∑m

i=1 yiαik(xi,x) + b
)
, (7.10)

where b ∈ R and αi ≥ 0 for all i. Hence, we have to show that, for any set of values

(b, α1, · · · , αm) defining a predictor fSVM , there exist values (w0, w1, .., wm) defining an

aligned and uniform on messages posterior Q such that

fSVM(x) = BQ(x) for all x ∈ X . (7.11)

First, let us show that for any kernel k such that k(x,x′) ≤ 1 for all x,x′ ∈ X , one
can define a set of sc-classifiers HS = h

(ε,+)
S〈〉

, h
(ε,−)
S〈〉
∪ h

(σ,s)
S〈i〉

: σ ∈ M1 ∧ s ∈ {+,−} such
that for any aligned and uniform on messages posterior, Q, the output of BQ(x), on

any x ∈ X is given by

BQ(x) = sgn( E
h∼Q

h(x)) = sgn

(
w0 +

m∑

i=1

wik(xi,x)

)
, (7.12)

To prove this, let us first note that in our setting:

E
h∼Q

h(x) =
∑

s∈{-,+}
Q(h

(ε,s)
S〈〉

)h
(ε,s)
S〈〉

(x)+
m∑

i=1

∑

s∈{-,+}

∫

M1

dσQ(h
(σ,s)
S〈i〉

)h
(σ,s)
S〈i〉

(x)

= w0 +
m∑

i=1

wi
1

|M1|

∫

M1

h
(σ,+)
S〈i〉

(x)dσ (7.13)
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The last equality is obtained by substituting Q(h
(ε,s)
S〈〉

) with its value given by Equa-

tions (7.8) and (7.9), and by choosing h
(ε,+)
S〈〉

(x) = 1 and h
(ε,−)
S〈〉

(x) = −1 for the sc-

classifiers that have compression set of size 0. This, therefore, implies that

E
h∼Q

h(x) = w0 +
m∑

i=1

wik(xi,x),

whenever one chooses both h
(σ,+)
S〈i〉

and h
(σ,−)
S〈i〉

in such a way that they satisfy the

condition
∫
M1 h

(σ,+)
S〈i〉

(x)dσ = |M1|k(xi,x) , for all i. One way to satisfy this condition

is to choose:

h
(σ,+)
S〈i〉

(x) = sgn

(
I(
1

2
|M1|k(xi,x) > σ)

)
∀x ∈ X , (7.14)

h
(σ,−)
S〈i〉

(x) = sgn

(
I(
1

2
|M1|k(xi,x) ≤ σ)

)
∀x ∈ X (7.15)

with σ ∈ M1 = [−1,+1] and with k(x′,x) ≤ 1 ∀(x′,x) ∈ X 2 (note that, I(a) = +1

if predicate a is true and I(a) = −1 otherwise). This last condition implies that k

must be bounded by 1. However, note that no other condition needs to be satisfied for

k. Indeed, k can be any normalized similarity measure and does not even need to be

symmetric in its two arguments.

Hence, if we compare the set of majority votes classifiers described by Equation (7.12)

to the set of SVM classifiers where the output fSVM(x) for any x ∈ X is given by Equa-

tion (7.10), we can conclude that the latter set of classifiers forms a strict subset of

the former set. Indeed, even if for BQ we must have k(x′,x) ≤ 1 ∀(x′,x) ∈ X 2 and

|wi| ≤ 1
m+1

for all i, while no such restriction exists for fSVM, one can always choose

w0 = b
(m+1)Z

and wi =
yiαi

(m+1)Z
where Z

def
=
∑m

i=1 αi + |b|. Clearly, with these choices,

we have that fSVM(x) = BQ(x) ∀x ∈ X . However, in our setting, k can be any similar-

ity measure (possibly not symmetric in its two arguments), while k in fSVM must be a

positive semi-definite kernel [45].

Several generalizations from the above are possible. Indeed, for Q(h
(σ,s)
S〈i〉

), we could

consider distributions over σ that vary with i. This would effectively provide a mecha-

nism for adapting the similarity measure to each training example. We could also use

sc-classifiers having a compression size larger than one.

Finally, note that the risk bounds of Chapter 6 apply to this larger class of majority

votes of sc-classifiers of compression size of at most one. In the following we presents how
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to apply these risk bounds to this class of majority votes of sc-classifiers of compression

size of at most one.

7.1.3 Applying the Presented Risk Bounds in Chapter 6 to the

Class of Majority Votes of Sc-classifiers of Compression

Size of at Most One

As we saw earlier in Chapter 6, the presented risk bounds are based on the following

elements: a training sequence S, a prior distribution P S on HS (a set of sc-classifiers of

size at most one as defined in Section 7.1), a posterior distribution Q (either uniform

on messages or aligned and uniform on messages as defined in Section 7.1.1) on HS, an

empirical loss ζQS , and, possibly, the Kullback-Leibler Divergence KL(Q‖P S) between

distribution P S and Q. Earlier, we defined the prior distribution P S and the posterior

distribution Q. In the following sections, we first calculate KL(Q‖P S) for the case

of posteriors that are uniform on messages (but not necessarily aligned). We, then,

calculate the empirical loss ζQS for both cases where the considered posteriors are uniform

on messages, and uniform on messages and aligned.

7.1.4 Calculation of Kullback-Leibler Divergence

Here, we present the calculation through which we obtain the Kullback-Leibler Di-

vergence between distributions P S and Q. In Chapter 6, we have seen that aligned

posteriors lead us to risks bounds that have the unusual property of having no KL

divergence. Therefore, in these cases, we do not need to calculate the KL(Q‖P S) .

Thus, in the following we calculate KL(Q‖P S) for the posterior Q that is uniform on
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messages but is not aligned (See Subsection 7.1.1).

KL(Q‖P S) = E
h∼Q

ln Q(h)
P (h)

=
m∑

i=1

∑

s∈{−,+}

∫

M1

dσQ(h
(σ,s)
S〈i〉

) ln


 Q(h

(σ,s)
S〈i〉

)

P S(h
(σ,s)
S〈i〉

)


+

∑

s∈{−,+}
Q(h

(ε,s)
S〈〉

) ln


 Q(h

(ε,s)
S〈〉

)

P S(h
(ε,s)
S〈〉

)




=
2m∑

i=1

∫

M1

dσ
vi
|M1| ln

[
vi

|M1|
1

2|M1|(m+1)

]
+ v+ ln

v+
1

2(m+1)

+ v− ln
v−
1

2(m+1)

=
∑

v∈v
v ln

[
v
1

2(m+1)

]

= ln(2m+ 2) +
∑

v∈v
v ln [v] . (7.16)

7.1.5 Choice of the Empirical Loss ζQS :
 

 

 

 

 

Figure 7.1: Three different loss functions.

As we mentioned earlier, in Chapter 6 Section 6.2, in this thesis, we restrict ourselves

to losses that upper-bound the zero-one loss of BQ (the loss is described by the black

line in Figure 7.1). Moreover, and in order to obtain a tractable optimization problem,

we propose to use a convex loss function of the margin of the Q-convex combination of

sc-classifiers where the margin on example (x, y) of the Q-convex combination is given

by

MQ(x, y)
def
= Ehµ

S
i
∼Q yhµ

Si
(x) .
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Figure 7.1 shows three different loss functions: zero-one loss (I(MQ(x, y) ≤ 0 )), linear

loss (1 −MQ(x, y)), and Quadratic loss (1 − 1
q
MQ(x, y))

2 where q is the minimum of

the parabolic of the loss function. As shown in this figure, the linear loss and quadratic

loss upper bound the zero-one loss. Moreover, recall that,

RD(GQ) =
1

2
− 1

2
E(x,y)∼DMQ(x, y) (7.17)

or equivalently,

2RD(GQ) = 1− E(x,y)∼DMQ(x, y) (7.18)

gives a relation between the Gibbs riskRD(GQ) and the expected margin E(x,y)∼DMQ(x, y).

In [[19]], we developed a learning algorithm that minimizes a bound derived from

the PAC-Bayes theory on the majority vote of complementary classifiers. The proposed

bound applies the PAC-Bayes theory to general loss functions which leads us to mini-

mization of a quadratic loss function. Inspired by [[19]], let us consider margin losses

of the form ζ(α) =
(
1 + 1

q
α
)2

where q is the minimum of the parabolic of the loss

function. The parameter q will be, therefore, a hyper-parameter of the algorithms we

will propose later in this chapter. This parameter will be determined on each dataset

by cross-validation.

The reason for choosing margin losses of the form ζ(α) =
(
1 + 1

q
α
)2

is that in our

setting, the sc-classifiers are weak (their compression sets are of size at most one). This

way, the majority vote of sc-classifiers may have (in practice, really have) a low risk

even if the Gibbs risk, which is the average risk of all voters, is necessarily close to 1/2.

Clearly, the average of weak voters is also weak. Now, it follows from Equation (7.18)

that the expected margin E(x,y)∼SMQ(X, y) will be close to 0. Thus, if we consider the

case where the linear loss is chosen (i.e., :ζ(MQ(x, y)) = 1 −MQ(x, y)), the obtained

bound on the risk of the majority vote will be close to one. Since we know that the

risk of the majority vote never exceeds one, this bound gives us very little information.

In this chapter, we will nevertheless consider this possible choice of loss function and

empirically provide evidence that reinforce our point of view. On the other hand,

and especially if the variance of MQ(X, y) is small, by taking a value of q close to

E(x,y)∼SMQ(X, y) we will obtain a very small (quadratic) loss, and therefore, a very

small bound on the risk of the majority vote, see Figure 7.1.

For margin losses of the form ζ(α) =
(
1 + 1

q
α
)2

, we have ζ(1) = (1 + q−1)2 and

ζ
′
(1) = (2q + 2)/q2 and, consequently, ζQS is convex in Q. We will see that this will

result in a tractable optimization problem that can be efficiently solved by a learning
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algorithm (see Section 7.3). Moreover, using a small positive value for parameter q

favors the majority vote of small margins unlike the Gibbs classifiers that favor large

margins ((See Figure 7.1). It is known that when voters are weak, majority votes of

small margins can result in a powerful classifier. In the next section, we present the

calculation of the quadratic and linear empirical losses.

7.1.6 Calculation of Empirical Losses:

In this section, we present the calculations of the empirical quadratic loss of the form

ζ(α) =
(
1 + 1

q
α
)2
, and linear empirical loss of the form of ζ(α) = 1 + α.

Calculation of Empirical Quadratic Loss:

• Empirical quadratic loss ζQ,q
S : uniform on messages posteriors

Here, we present the calculation of the empirical quadratic loss for the case where

posteriors are not necessarily aligned to the prior. Thus, Q is defined by Equa-

tion (7.3) and to express ζQ,q
S in terms of v, the margin MQ(x, y) on example

(x, y) is given by

MQ(x, y)
def
= Ehµ

S
i
∼Qyh

µ
Si
(x) = y

[
(v+−v−) +

m∑

i=1

(vi−vi+m)k(xi,x)

]
.

Consequently, we have

ζQ,q
S =

1

mq2

m∑

j=1

(
q−yj

[
v+−v−+

m∑

i=1

(vi−vi+m)k(xi,xj)

])2
.

Let v0
def
= v+ and v2m+1

def
= v−. Let us define a matrix G of size (2m+ 2)×m as

Gi,j =





1 if i = 0,

k(xi,xj) if 1 ≤ i, j ≤ m,

−k(xi−m,xj) if m+ 1 ≤ i ≤ 2m (and 1 ≤ j ≤ m),

−1 if i = 2m+ 1 .

(7.19)

With this notation we have:

ζQ,q
S =

1

mq2

m∑

j=1

(
q − yj

2m+1∑

i=0

viGi,j

)2

(7.20)
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• Empirical quadratic loss ζQ,q,al
S : aligned and uniform on messages pos-

teriors

Now, we present the calculation of the empirical Quadratic loss for the case where

posteriors are aligned and uniform on messages. Thus, Q is defined by Equa-

tions (7.8) and (7.9) and to express ζQ,q,al
S in terms of w, the margin MQ(x, y) on

example (x, y) is given by:

MQ(x, y)
def
= Ehµ

S
i
∼Qyh

µ
Si
(x) = y

[
w0 +

m∑

i=1

wik(xi,x)

]
.

Consequently, the empirical quadratic risk ζQ,q,al
S is given by

ζQ,q,al
S =

1

mq2

m∑

j=1

(
q − yj

[
w0 +

m∑

i=1

wik(xi, xj)

])2

.

Let us define a matrix G of size (m+ 1)×m as

Gi,j =

{
1 for i = 0,

k(xi,xj) for 1 ≤ i, j ≤ m .
(7.21)

With this notion we have:

ζQ,q,al
S =

1

m

m∑

j=1

(
1− 1

q
yj

m∑

k=0

wkGk,j

)2

=
1

q2m

m∑

j=1

(
q − yj

m∑

k=0

wkGk,j

)2

(7.22)

Calculation of Empirical Linear Loss:

• Empirical linear loss ζQ,lin
S : uniform on messages posteriors

Here, we present the calculation of the empirical linear loss for the case where

posteriors are not aligned to the prior. To express ζQ,lin
S in terms of v, recall that

the margin MQ(x, y), on example (x, y), is given by

MQ(x, y) = y

[
(v+−v−) +

m∑

i=1

(vi−vi+m)k(xi,x)

]
.
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Therefore, we have:

ζQ,lin
S =

1

m

m∑

j=1

(1− yj

2m+1∑

i=0

viGi,j),

where Gi,j is given by Equation (7.19).

• Empirical linear loss ζQ,lin,al
S : aligned and uniform on messages posteri-

ors

Here, we present the calculation of empirical linear loss for the case that posterior

are aligned to the prior. To express ζQ,lin,al
S in terms of w, recall that the margin

MQ(x, y), on example (x, y), is given by:

MQ(x, y) = y

(
w0 +

m∑

i=1

wik(xi,x)

)
.

Therefore, we have:

ζQ,lin,al
S =

1

m

m∑

j=1

(1− yj

m∑

i=0

wiGi,j) (7.23)

where Gi,j is given by Equation (7.21).

Note that, the matrix G is very similar to the Gram matrix used in kernel methods (ex-

cept it does not have to be positive semi-definite) [50]. Note also that with this matricial

notation, we can easily express both the margin and the majority vote classifier. Indeed,

for any (x, y) ∈ X × Y , we have MQ(x, y) = yw ·G(x) and BQ(x) = sgn (w ·G(x)) .

7.2 The Influence of parameter q on the value of the

proposed Bounds

In this section, we investigate the influence of parameter q on each of the proposed risk

bound.

Figure 7.2 shows the value of the bounds of Theorems 6.4.7 and 6.4.4 according

to q (for m = 300, ζQ,q,al
S = 0.2, δ = 1

20
). These two bounds are only valid for aligned

posteriors and both have no KL terms.
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Figure 7.2: The value of the bounds for Theorem 6.4.7 (solid line) and Theorem 6.4.4

(dashed line) according to q (For m = 300, ζQ,q,al
S = 0.2, and δ = 1

20
).

Figure 7.3 shows the value of the bounds of Theorems 6.3.1, 6.3.3 and 6.3.5 (for

C1 = 1 m = 300, ζQ,q
S = 0.2, δ = 1

20
, and KL(Q ‖ P S) = 20) according to q.

As we can see in the case of without KL(Figure 7.2) the bound of Theorem 6.4.7

is tighter than the bound of Theorem 6.4.4. In the case with a KL term the bounds

scale with similar values (as shown by the Figure 7.3), however, the Seeger bound

(Theorem 6.3.5) is always tighter than the two others (the McAllester (Theorem 6.3.3

) and the Catoni (Theorem 6.3.1) with C=1. It is important to notice that, ζ(1), ζ
′
(1)

are very large values if q, the minimum of the function of quadratic loss, is near 0.

Consequently, the bounds become trivial (their values are greater than 1). However,

the empirical results obtained by [[19]] show that it is appropriate to design a learning

algorithm that minimizes such bounds. Many attempts have been made to tighten

those bounds, but, unfortunately, without real success. Nevertheless, as it is also the

case for other types of bounds, such as the VC-bounds [53], even if their values are very

large, they are a good guidance to select classifiers. The rest of this chapter together

with the next chapter will make this idea clearer.
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Figure 7.3: The value of the bounds of Theorems 6.3.1, 6.3.3 and 6.3.5 ((for C1 = 1

m = 300, ζQ,q
S = 0.2, δ = 1

20
, and KL(Q ‖ P S) = 20)) according to q.

7.3 Bound Minimization Algorithms

Previously, we presented the majority vote of sample compressed classifiers and showed

how we can apply the proposed risk bounds of Chapter 6 to bound the majority vote

itself. This suggests the following learning algorithm: find the distributionQminimizing

a given bound, and then return the majority vote of sample compressed classifiers

weighted by Q. We can categorize the learning algorithms obtained by minimizing

these bounds into three groups, namely, PBSC-A, PBSC-L, and PBSC-N;

PBSC-A is the learning algorithm that finds the aligned and uniform on messages

posterior Q minimizing the bounds of Chapter 6 with no KL term using a quadratic

loss. Note that we have therefore two possibilities to define the PBSC-A algorithm:

Theorem 6.4.4 (McAllester with no KL term) and Theorem 6.4.7 (Seeger with no KL

term). We will show later that minimizing these two bounds give rise to the same

algorithm. In both cases, the posterior Q minimizing these bounds will be equivalent

to minimizing the empirical quadratic loss ζQ,q,al
S .

PBSC-L is similar to the PBSC-A algorithm except that PBSC-L consists of mi-

nimizing the linear loss ζQ,lin,al
S . Recall that this algorithm will is not expected to be
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accurate. We only define it for the sake of comparison.

PBSC-N is the learning algorithm that finds the uniform on messages posterior

Q (without restricting to be aligned to the prior) minimizing the bound of Chapter 6

with KL term corresponding to Theorem 6.3.1. The bound is known as the Generalized

version of the Catoni bound (with KL).1 We will see later that finding the posterior Q

(without restricting to be aligned to the prior) that minimizes this bound also minimizes

the following function:

C · ζQ,q
S +KL(Q‖P S),

where C is some positive constant and ζQ,q
S is the empirical quadratic loss.

In the following we present these learning algorithms (PBSC-A, ,PBSC-L, PBSC-N)

in more detail.

7.3.1 The PBSC-A Algorithm

Minimizing the Bound of Theorem 6.4.4 (McAllester With no KL Term)

Consider Theorem 6.4.4, given any training sequence S with m examples, any prior P S,

a confident parameter δ, and a fixed loss function ζ given by coefficient {ak}deg(ζ)k=0 , the

objective is to find the posterior Q that minimizes the bound B which is given by the

following function:

B = ζQ,q,al
S +

ζ(1)
1
2
(
√
m− l deg(ζ))

√
4 l deg(ζ) + ln

2
√
m

δ

Since δ and ζ(1) are constant, the posterior Q that minimizes the following function

1Note that, in Chapter 6, we presented two other bounds with KL term: Theorem 6.3.3 (McAllester

with KL) and Theorem 6.3.5 (Seeger with KL)). Here, we do not present the algorithms that mini-

mize these two bounds since the objective functions associated with these bounds may not be convex

leading to a much more complicated optimization problem. Moreover, preliminary results (not given

here) showed that these two other possible versions are not as accurate as the Catoni’s version (The-

orem 6.3.1).
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also minimizes the bound B:

fA(Q)
def
= ζQ,q,al

S (7.24)

This theorem indicates that l ·deg(ζ) should be small for the risk bound to be small.

Consequently, as stated before, we consider here only margin losses that are quadratic

or linear (deg(ζ) ≤ 2) and sc-classifiers of compression sequence size of at most one

(l ≤ 1). Moreover, for algorithmic simplicity, here, we restrict ourselves to aligned and

uniform on messages posteriors. Knowing that ζQ,q,al
S is convex in Q, it follows that

objective function f to minimize is always convex in Q.

The Optimization Problem

By substituting ζQ,q,al
S with its value as given by Equation (7.22) in Equation (7.24),

we obtain the following optimization problem:

Minimize: fA(w) =
m∑

j=1

(
q − yj

m∑

i=0

wiGi,j

)2

subject to: |wi| ≤ 1
m+1

for i = 0, 1, . . . ,m ,

(7.25)

where Gi,j is given by Equation (7.21).

We propose to solve this optimization problem by minimizing fA coordinate-wise,

similarly as it is done for AdaBoost ([46]), with the difference that we will have to ensure

that Q remains an aligned distribution at each step of the algorithm. Starting from

the uniform distribution P (i.e., w = 0 ), the learning algorithm iteratively chooses

(at random) k ∈ {0, . . . ,m}, and updates wk ← wk + θ (without updating the other

weights) according to some optimally chosen value of θ. Let wk,θ be the new weight

vector obtained with such an update (wk,θ = (w0, · · · , wk−1, wk + θ, wk+1, · · · , wm)).

After that update, the objective function becomes:

fA(wk,θ) =
m∑

j=1

[
q − yj

(
m∑

i=0

wiGi,j + θGk,j

)]2
.

The optimal value for θ is obtained when
dfA(wk,θ)

dθ
= 0, provided that wk + θ ∈
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[ −1
m+1

, 1
m+1

] . The derivative of fA with respect to the θ is given by

∂fA(wk,θ)

∂θ
=

m∑

j=1

2

(
q − yj

m∑

i=0

wiGi,j − yjθGk,j

)
(−yjGk,j)

= 2
m∑

j=1

[
θG2

k,j + yjGk,j

(
yj

m∑

i=0

wiGi,j − q

)]

= 2

[
θ

m∑

j=1

G2
k,j +

m∑

j=1

Gk,j

(
m∑

i=0

wiGi,j − qyj

)]

= 2

[
θ

m∑

j=1

G2
k,j +

m∑

j=1

Gk,jDw(j)

]
, (7.26)

where Dw(j)
def
=

m∑

i=0

wiGi,j − qyj.

Equation (7.26) implies that, for a given k, the optimal value for θ is given by:

θ = −
∑m

j=1 Gk,j Dw(j)∑m
j=1G

2
k,j

. (7.27)

Algorithm 3 presents the complete optimization procedure that we have used.

Algorithm 3 : PBSC-A optimization procedure

1: Initialize: wi=0 ∀i ∈ {0, . . . ,m} and Dw(j) = − q yj ∀j ∈ {1, . . . ,m} .
2: repeat

3: Choose at random k ∈ {0, ..,m}.
4: Compute θ given by Equation (7.27) .

5: If [wk + θ > 1
m+1

] then θ ← 1
m+1
− wk.

6: If [wk + θ < −1
m+1

] then θ ← −1
m+1
− wk.

7: wk ← wk + θ.

8: Update Dw(j) ← Dw(j) + θ Gk,j ∀j ∈ {1, . . . ,m}.
9: until Convergence

Minimizing the Bound of Theorem 6.4.7 (Seeger With no KL Term)

In this section, we show that minimizing the bound given in Theorem 6.4.7 gives rise to

the same optimization problem given by Equation (7.25). In other words, the posterior

Q minimizing this bound also minimizes the empirical quadratic loss ζQ,q,al
S .
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Consider Theorem 6.4.7, given any training sequence S with m examples, a prior

P S, a confidence parameter δ, and a fixed loss function ζ given by coefficients {ak}deg(ζ)k=0 ,

the objective is to find the posterior Q that minimizes the bound given by the following

function:

kl+
(

m

m− l · deg ζ (
1

2

[
1 +

1

ζ(1)
ζQ,q,al
S

]
+
ld

m
) ‖ 1

2

[
1 +

1

ζ(1)
ζQD

])
≤ ln 2

√
m
δ

m− l · deg ζ
Starting from the uniform distribution P S (i.e., w = 0 ), the learning algorithm itera-

tively chooses (at random) k ∈ {0, ..,m}, and updates wk ← wk+θ , (without updating

the other weights) according to some optimally chosen value of θ. Let Qk,θ and wk,θ

be, respectively, the new posterior and the new weight vector obtained with such an

update. Let f be a function given by the bound of Theorem 6.4.7. Here, we claim that,

considering the function f given by the bound of Theorem 6.4.7, the optimal value for

θ is obtained when
df(Qk,θ)

dθ
= 0 provided that wk + θ ∈ [ −1

m+1
, 1

m+1
] where

df(Qk,θ)

dθ
=

dζ
Qk,θ,q,al
S

dθ
= 0

Proof of claim:

Let Mk,θ be the function that represents the bound of the ζ
Qk,θ,q,al
S provided by the

Theorem 6.4.7,

Mk,θ
def
= max

B∈[0,1]

{
B : kl+

(
m

m− l · deg ζ (
1

2

[
1 +

1

ζ(1)
ζ
Qk,θ,q,al

S

]
+

ld

m
) ‖ 1

2

[
1 +

1

ζ(1)
B

])
=

ln 2
√
m

δ

m− l · deg ζ

}

Note that, it follows from the definition of kl+ (Theorem 6.4.7) that one can replace

kl+ by kl in the definition of Mk,θ. Indeed, if m = maxb∈[0,1]{b : kl(a||b) = c}, then
a ≤ m, because f(x) = kl(a||x) is a convex function on [0, 1] having its minimum at

x = a. Thus, the values of kl and kl+ coincide when b = m.

Here, we have to show that for any fixed k, we have:

dζ
Qk,θ,q,al
S

dθ
= 0⇔ dMk,θ

dθ
= 0

By definition of Mk,θ we have:

0 = kl

(
m

m− l · deg ζ (
1

2

[
1 +

1

ζ(1)
ζ
Qk,θ,q,al
S

]
+
ld

m
) ‖ 1

2

[
1 +

1

ζ(1)
Mk,θ

])
− ln 2

√
m
δ

m− l · deg ζ
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For simplicity, we consider the following definitions:

AS =
m

m− l · deg ζ (
1

2

[
1 +

1

ζ(1)
ζ
Qk,θ,q,al
S

]
+
ld

m
), AD =

1

2

[
1 +

1

ζ(1)
Mk,θ

]

By the above definition, for all θ, we have:

0 = kl (AS ‖ AD) −
ln 2

√
m
δ

m− l · deg ζ .

By taking the derivative of each side of the above equation we have:

0 =
d

dθ

[
kl (AS ‖ AD) −

ln 2
√
m
δ

m− l · deg ζ

]
=

AD − AS

(1− AD)AD

dAD

dθ
+

log
AS(1− AD)

AD(1− AS)

dAS

dθ

for optimal value of θ, dAD

dθ
= 0 it then follows that we have:

log

(
AS(1− AD)

AD(1− AS)

)
·dAS

dθ
= 0 (7.28)

Since log(x) 6= 0 ∀x 6= 1 and 1 > AD > AS > 0, Equation (7.28) is equivalent to:

dAS

dθ
= 0

Therefore, we have:

dAS

dθ
= 0⇔ dAD

dθ
= 0

According to the definitions of AS and AD it immediately follows that:

dζ
Qk,θ,q,al
S

dδ
= 0⇔ dMk,θ

dθ
= 0,

which proves the claim.



Chapter 7. A general Sample compressed PAC-Baysian Approach to Kernel Methods.97

7.3.2 The PBSC-L Algorithm

To show the need for a non-linear margin loss function in PBSC-A algorithms, we pro-

pose the PBSC-L algorithm that consists of finding the aligned and uniform on messages

posterior Q that minimizes the empirical linear loss ζQ,lin,al
S given by Equation (7.23).

This way, the optimization problem for PBSC-L can be written as:

Minimize: fA(w) =
m∑

j=1

(
1− yj

m∑

i=0

wiGi,j

)

subject to: |wi| ≤ 1
m+1

for i = 0, 1, . . . ,m ,

(7.29)

where Gi,j is given by Equation (7.21).

We propose to solve this optimization problem by minimizing fA in the following

way: starting from the uniform distribution P (i.e., w = 0 ), the learning algorithm

iteratively chooses (at random) k ∈ {0, . . . ,m}, and updates wk (without updating the

other weights). Equation (7.29) shows that the weight given to wk does not depend

on the other weights. Therefore, the algorithm is very simple. It is sufficient to up-

date the weights wk for all k ∈ {0, . . . ,m} for a single time in the following way: if
m∑

j=1

(−yjGk,j) < 0, it means that the derivative is negative and we need to update the wk

with the maximum weight (wk =
1

m+1
). If

m∑

j=1

(−yjGk,j) > 0, it means that the deriva-

tive is positive and we need to update the wk with the minimum weight (wk = −1
m+1

).

Algorithm 4 presents the complete optimization procedure that we have used.

Algorithm 4 : PBSC-L optimization procedure

1: Initialize: wi=0 ∀i ∈ {0, . . . ,m}.
2: For each k ∈ {0, ..,m} repeat steps 3 to 5:

3: Compute θ =
m∑

j=1

(−yjGk,j) .

4: If θ < 0 then wk ← 1
m+1

.

5: If θ > 0 then wk ← −1
m+1

.
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7.3.3 The PBSC-N Algorithm

In this section, we present the PBSC-N algorithm that minimizes the bound of Theo-

rem 6.3.1, (Catoni with KL).

Minimizing the Bound of Theorem 6.3.1 (Catoni with KL)

Consider Theorem 6.3.1, given any training sequence S with m examples, a prior P S,

a confidence parameter δ, a fixed loss function ζ given by coefficients {ak}deg(ζ)k=0 , and

any positive value C ′, the objective is to find the uniform on messages posterior Q that

minimizes the bound B which is given by the following function:

B = ζ(1)[C ′ − 1] + C ′ ·
(
ζQ,q
S +

2

mC1

[ζ ′(1) ·KL(Q‖P S) + ζ(1) · ln 1

δ
]

)

Since δ and ζ(1) are constant the posterior Q that minimizes the following function

also minimizes the bound B:

C · ζQ,q
S +KL(Q‖P S) (7.30)

Note that C, in the above equation, is some positive constant obtained form C1,

ζ(1), ζ ′(1), and m. The theorem 6.3.1 indicates that l · deg(ζ) should be small for the

risk bound to be small. Consequently, we will, as usual, consider here only margin

losses that are quadratic and sc-classifiers of compression sequence size of at most one.

Optimization Problem

By substituting ζQ,q
S with its value given by Equation (7.20) and KL(Q‖P S) with its

value given by Equation (7.16) in Equation (7.30) we obtain the following optimization
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problem:

Minimize: fN(v) =
C

mq2

m∑

j=1

(
q − yj

2m+1∑

i=0

viGi,j

)2

+
2m+1∑

i=0

vi ln vi

subject to: vi ≥ 0 for i = 0, 1, . . . , 2m+ 1 ,
2m+1∑

i=0

vi = 1

(7.31)

where Gi,j is given by Equation (7.19).

We propose to solve this optimization problem by minimizing fN with a coordinate-

pair descent algorithm that works iteratively by exchanging weights between two com-

ponents of v. Starting from the uniform distribution P (i.e., vi = 1
2m+2

for i =

0, 1, . . . , 2m+1), the learning algorithm iteratively chooses (at random) k, l ∈ {0, . . . , 2m+

1} (with k 6= l), and updates vk ← vk + θ and vl ← vl − θ (without updating the other

weights) according to some optimally chosen value of θ. Let vk,θ be the new weight

vector obtained with such an update. After an update, the objective function becomes

fN(vk,θ) =
C

mq2

m∑

j=1

[
q − yj

(
2m+1∑

i=0

viGi,j + θGk,j − θGl,j

)]2

+
2m+1∑

i=0

I(i /∈ {k, l}) · vi ln vi + (vk + θ) ln(vk + θ) + (vl − θ) ln(vl − θ)

The optimal value for θ is obtained when
dfN (vk,θ)

dθ
= 0, provided that vk+θ ∈ [0, vk+vl]

and vl − θ ∈ [0, vk + vl]. The derivative of fN with respect to the θ is given by

∂fN(vk,θ)

∂θ
=

C

mq2

m∑

j=1

2

(
q − yj

2m+1∑

i=0

viGi,j − yjθ (Gk,j −Gl,j)

)
(−yj (Gk,j −Gl,j)) + ln

vk + θ

vl − θ

=
2C

mq2

m∑

j=1

[
θ (Gk,j −Gl,j)

2 + yj (Gk,j −Gl,j)

(
yj

2m+1∑

i=0

viGi,j − q

)]
+ ln

vk + θ

vl − θ

=
2C

mq2

[
θ

m∑

j=1

(Gk,j −Gl,j)
2 +

m∑

j=1

(Gk,j −Gl,j)

(
2m+1∑

i=0

viGi,j − qyj

)]
+ ln

vk + θ

vl − θ

=
2C

mq2

[
θ

m∑

j=1

(Gk,j −Gl,j)
2 +

m∑

j=1

(Gk,j −Gl,j)Dv(j)

]
+ ln

vk + θ

vl − θ
, (7.32)
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where Dv(j) =
2m+1∑

i=0

viGi,j − qyj.

We find the optimal value for θ with the help of a root finding method. Algorithm 5

presents the complete optimization procedure that we have used.

Algorithm 5 : PBSC-N (Catoni) optimization procedure

1: Initialize: vi =
1

2m+2
∀i ∈ {0, . . . ,m} and Dv(j) = − q yj ∀j ∈ {1, . . . ,m} .

2: repeat

3: Choose at random k, l ∈ {0, . . . , 2m+ 1} (with k 6= l).

4: Find θ given by the root of Equation (7.32).

5: If θ > vl then θ ← vl.

6: If θ < −vk then θ ← −vk.
7: vk ← vk + θ and vl ← vl − θ.

8: Update Dv(j) ← Dv(j) + θ (Gk,j −Gl,j) ∀j ∈ {1, . . . ,m}.
9: until Convergence

Recovering Ridge Regression from PBSC-N

We can find a quadratic upper bound on the KL(Q ‖ P S) term for Equation (7.16).

According to the Equation (7.16) we have:

(7.33)

KL(Q ‖ P S) =
2m+1∑

i=0

vi ln

[
vi
1

2(m+1)

]

=
1

2(m+ 1)

2m+1∑

i=0

(2(m+ 1))vi ln

[
vi
1

2(m+1)

]

≤ 1

2(m+ 1)

2m+1∑

i=0

[(2(m+ 1)vi]
2 − [2(m+ 1)vi] = 2(m+ 1))

2m+1∑

i=0

[vi]
2 − 1

≤ 2(m+ 1)
2m+1∑

i=0

[vi]
2

The first inequality is obtained using the following inequality:

x ln(x) ≤ (x2 − x) ∀x > 0
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This way, the optimization problem for PBSC-N given by Equation (7.31) can be

written as:

Minimize: f ′
N(v) =

C

m

m∑

j=1

(
1− 1

q
yj

2m+1∑

i=0

viGi,j

)2

+
2m+1∑

i=0

(vi)
2

subject to: vi ≥ 0 for i = 0, 1, . . . , 2m+ 1 ,
2m+1∑

i=0

vi = 1 .

Now, if we minimize f ′
N for v

′
= 1

q
v we recover exactly the ridge regression [51] for

the quadratic loss.



Chapter 8

Empirical Results

In this section, we present all the empirical results that we have obtained in our exper-

iments.

We present the results of the Algorithm 3 (PBSC-A). Recall that minimizing the

proposed bounds that do not depend on the KL term is equivalent to minimizing the

empirical Quadratic loss ζQ,q,al
S .

We also present the results of Algorithm 5 for the minimization of Theorem 6.3.1

(PBSC-N (Catoni)). We chose Theorem 6.3.1 since it has a hyper-parameter C that

leads to a hyper-parameter for the algorithm itself and we wanted to compare our results

with SVM which also has such a hyper-parameter.

We also compare both mentioned PBSC algorithms to Algorithm 4 PBSC-L that just

consists of minimizing ζQ,lin
S for the linear margin loss function of the form ζ(α) = α+1

given by Equation (7.23). The comparison with the latter is only to point out the need

for a non-linear margin loss function. Note that PBSC-N has two hyper-parameters

(C and q) to tune whereas PBSC-A needs only one (q). The SVM also needs to

tune only one hyper-parameter: the soft-margin C parameter. All these results are

shown in Table 8.1. For all algorithms, we used the standard RBF kernel kRBF(x, x
′) =

exp(−γ‖x − x′‖) and the sigmoid kernel kSIG(x, x
′) = tanh(s x ·x′ + d). The RBF

kernel adds the extra hyper-parameter γ and the sigmoid kernel adds the extra hyper-

parameters s and d to each algorithm. All hyper-parameters C, q, γ, s, and d are

determined by performing 10-fold cross validation on the training data. We performed
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experiments on 22 data sets (see Table A.1 in Appendix 9.2) that, except for MNIST,

were taken from the UCI repository. Each data set was randomly partitioned into a

training set S of size |S| and a testing set T of size |T |.

Rbf kernel

DataSet-Name SVM PBSC-A PBSC-N(Catoni) PBSC-L

Adult 0.158 0.156 0.160 0.193

BreastCancer 0.038 0.044 0.038 0.144

Credit-A 0.190 0.140 0.173 0.200

Glass 0.150 0.150 0.168 0.187

Heberman 0.267 0.280 0.267 0.267

Heart 0.197 0.204 0.218 0.238

Ionosphere 0.057 0.040 0.040 0.326

Letter:AB 0.001 0.001 0.001 0.038

Letter:DO 0.014 0.011 0.012 0.069

Letter:OQ 0.016 0.016 0.014 0.123

Liver 0.286 0.280 0.286 0.349

MNIST:0vs8 0.003 0.004 0.004 0.031

MNIST:1vs7 0.014 0.008 0.007 0.161

MNIST:1vs8 0.011 0.010 0.011 0.292

MNIST:2vs3 0.020 0.019 0.020 0.114

Mushroom 0.000 0.000 0.000 0.022

Ringnorm 0.015 0.013 0.013 0.103

sonar 0.154 0.125 0.192 0.490

Tic-tac-toe 0.015 0.019 0.052 0.365

Usvotes 0.075 0.065 0.065 0.140

Waveform 0.068 0.068 0.066 0.143

Wdbc 0.042 0.049 0.074 0.180

Table 8.1: The results of Algorithm 3 for the minimization of any proposed theorems

that do not depend on KL term (PBSC-A1) and Algorithm 5 for the minimization of

Theorem 6.3.1(PBSC-N (Catoni)), in comparison with SVM and PBSC-L.

As Table 8.1 shows, when using the RBF kernel, PBSC-A is very competitive with

PBSC-N( 6.3.1) and SVM, and outperforms PBSC-L. However, the differences between

the three first algorithms are never statistically significant. To determine when a dif-

ference of empirical risk measured on set T is statistically significant, we have used the

test set bound method (see Chapter 3) (based on the binomial tail inversion) with a
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sigmoid kernel

DataSet-Name SVM PBSC-A

Adult 0.163 0.157

BreastCancer 0.038 0.038

Credit-A 0.190 0.170

Glass 0.355 0.411

Heberman 0.273 0.273

Heart 0.184 0.197

Ionosphere 0.126 0.091

Letter:AB 0.009 0.005

Letter:DO 0.022 0.028

Letter:OQ 0.018 0.039

Liver 0.400 0.400

MNIST:0vs8 0.007 0.0031

MNIST:1vs7 0.012 0.007

MNIST:1vs8 0.014 0.015

MNIST:2vs3 0.025 0.031

Mushroom 0.000 0.010

Ringnorm 0.020 0.035

sonar 0.250 0.183

Tic-tac-toe 0.023 0.159

Usvotes 0.070 0.065

Waveform 0.067 0.067

Wdbc 0.366 0.366

Table 8.2: Results of PBSC-A in comparison with SVM using sigmoid kernel.

confidence level of 95%. Moreover, PBSC-L is statistically significantly worse than the

others on 16 of the 22 datasets (for more details see Appendix C).

The Results using sigmoid kernel are shown in Table 8.2. Unlike the RBF kernel,

the sigmoid kernel is not positive semi-definite for certain parameter values. In this

case, the standard SVM algorithm might not converge to a solution (like the popular

SVM-Light implementation). In our experiments, we used the LIBSVM implementation

of [8] because it returns a solution even if the kernel is indefinite. In this context, it

turns out that PBSC-A and LIBSVM are competitive.
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Table 8.3: Mean and standard deviation (in parentheses) of the empirical risk across

20 partitions.

Dataset Linear SVM k-NN PBSC-A

Aural Sonar 0.1425 (0.694) 0.1825 (0.597) 0.1500 (0.827)

Voting 0.0534 (0.193) 0.0546 (0.174) 0.0529 (0.184)

Yeast-5-7 0.2688 (0.622) 0.3063 (0.580) 0.2975 (0.668)

Yeast-5-12 0.1075 (0.482) 0.1275 (0.439) 0.1088 (0.598)

To pursue the exploration with indefinite similarity measures (see Table 8.3), we

have executed PBSC-A on four binary data sets referenced by [9, 10]. Since these data

sets provide directly a similarity measure between each pair of examples, we used these

similarities for the PBSC-A algorithm. To compare our results, we followed the same

experimental framework as [9, 10] and computed the mean and standard deviation

of the empirical risk across 20 test/training standardized partitions. Table 8.3 shows

that PBSC-A is competitive with the Linear SVM using similarities as features and is

better than the k-Nearest Neighbor using similarities as a measure of distance. Note

that [10] suggests an algorithm that has generally better achievements on these data

sets, however, these results are obtained by substituting a “surrogate kernel function”

with the real similarity function that one wants to use.



Chapter 9

Conclusion and Future Work

9.1 Conclusion

The initial attempts in this work started by the results of research work in [[31, 19]]

where we showed that the PAC-Bayesian theory is a good starting point for designing

learning algorithms. Inspired by [[31]], who specialized the risk bound of [33] to SCM

and proposed a learning strategy for SCM based on the minimization of the mentioned

bound, and also by the success of kernel methods such as SVM, we proposed here a

PAC-Bayes sample-compression approach to kernel methods that can accommodate any

bounded similarity function.

In this thesis, we showed that the SVM classifier is actually a particular case of

a (weighted) majority vote of sample-compressed classifiers where the compression se-

quence of each classifier consists of at most a single training example. Inspired by the

work in [[19]] on general loss bounds for stochastic classifiers, we proposed different

PAC-Bayes risk bounds for majority votes of sample-compressed classifiers which are

valid for any bounded similarity measure of input examples. Consequently, we also

applied the proposed bounds to the class of linear classifiers of similarity-based features

that were studied by [9]. For the class of indefinite similarity measures, the risk bound

proposed by [9] becomes trivial (and useless) in the limit where each training example

is used for a prototype. In contrast, the risk bounds presented here did not suffer from

such a limitation.



Chapter 9. Conclusion and Future Work 107

With the exception of the risk bounds of Theorem 6.3.3 and Theorem 6.3.5, for

each proposed risk bound, we provided a learning algorithm that minimizes that bound.

The first group of the proposed PAC-Bayes risk bounds depend on the KL divergence

between the prior and the posterior over the set of sample-compressed classifiers and,

consequently, we showed that the corresponding bound-minimizing learning algorithm

is KL-regularized. The second group of proposed PAC-Bayes risk bounds have the

unusual property of having no KL divergence when the posterior is aligned with the

prior in some precise way that we defined in Chapter 7. Consequently, we showed that

minimizing these risk upper bounds just amount to minimizing the proposed empirical

loss under the constraint that the posterior is kept aligned with the prior.

When a positive semi-definite kernel is used, our experiments indicated that the

proposed algorithms are very competitive with the SVM. Good empirical results are

also obtained when the proposed algorithms are used with a non positive semi-definite

kernel. Finally, we showed that the proposed algorithms are also competitive with the

best similarity-based learning algorithms proposed by [9].

9.2 Future Work

Considering the results we obtained in this thesis, one can investigate the following

future avenues:

Utilizing the risk bounds for model selection: The first important task that should

be investigated is to see if the risk bounds that we proposed can successfully perform

model selection (i.e., the selection of the hyper-parameters of our proposed algorithms

in a similar way as in [[31]]). This could potentially eliminate the need to perform

the time-consuming cross-validation method for selecting the model and provide bet-

ter guarantees on the generalization error of classifiers output by learning algorithms.

Unfortunately, our preliminarily investigation in that direction indicates that we are

presently far from achieving such an objective.

Improve the bounds: It is worthwhile to theoretically and empirically compare the

proposed bounds of Chapter 6 and investigate to see if we can improve these bounds to

obtain tighter bounds which might lead to better learning algorithms.
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Applying the proposed risk bounds in Chapter 6 to the majority vote of sc-classifiers

having the compression set size of more than one: In this thesis, we proposed the

PAC-Bayes sample compression bounds and then we applied the proposed bounds to

construct algorithms that deal with the majority vote of sample compressed classi-

fiers having a compression size of at most one. It would be worthwhile to extend our

framework to the sample compressed classifiers where the compression sequence of each

classifier consists of more than one training example.

Using the proposed algorithms in the unsupervised or semi-supervised learning frame-

work: In many real world learning problems, obtaining sufficient amount of labeled data

for a training algorithm is costly and time-consuming while an enormous amount of un-

labeled data is available. Unsupervised and semi-supervised learning tackle these prob-

lems. Therefore, it would be worthwhile to investigate if we could apply the proposed

algorithms of this thesis to these learning framework as well.

Transductive bounds: In this thesis, we have dealt with the inductive learning in

which the learning algorithm is given a finite set of labeled examples (training set) from

which a function (classifier) is constructed and this function (classifier) is then used

to label a new unseen example. On the other hand, [54] pointed out that in many

real life cases we are dealing with the problem in which a learning algorithm is given

a set of labeled examples (training set) together with the set of unlabeled examples.

The goal is to construct a function that labels the unlabeled examples. As denoted

by [54], transduction is an easier task than induction therefore the above solution to

the transductive problem is similar to transforming the problem to a more difficult one.

However, although transduction seems to be an easier task there have not been many

useful algorithms for it. Thus, it would be interesting to derive a risk bound similar

to the proposed bound of Chapter 6 for the transductive framework. This may lead to

algorithms for the transductive learning. This is an ongoing work.
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Appendix A

Data Sets

In this thesis, we performed experiments on a variety of data sets. The following tables

show some comprehensive details about used data sets.
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Dataset

Name |T | |S| n

Adult 10000 1809 14

BreastCancer 340 343 9

Credit-A 300 353 15

Glass 107 107 9

Haberman 150 144 3

Heart 147 150 13

Ionosphere 175 176 34

Letter:AB 1055 500 16

Letter:DO 1058 500 16

Letter:OQ 1036 500 16

Liver 175 170 6

MNIST:0vs8 1916 500 784

MNIST:1vs7 1922 500 78

MNIST:1vs8 1936 500 784

MNIST:2vs3 1905 500 784

Mushroom 4062 4062 22

Ringnorm 3700 3700 20

sonar 104 104 60

sonar-mixed 104 104 60

Tic-tac-toe 479 479 9

Usvotes 200 235 16

Waveform 4000 4000 21

Wdbc 284 285 30

Table A.1: Data Set Description



Appendix B

Empirical Results of Chapter 3

Here we present the results of the experiments that have been done in Chapter 3 on

more data sets.
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Data-Set A RT Bl Bu CIl CIu

Haberman

SVM 0.273 0.203 0.352 0.200 0.345

Ada 0.233 0.185 0.330 0.163 0.302

DT 0.273 0.203 0.352 0.200 0.345

DL 0.273 0.203 0.352 0.200 0.345

NB 0.246 0.180 0.323 0.175 0.316

SCM 0.253 0.185 0.330 0.182 0.323

HeartS

SVM 0.204 0.142 0.278 0.137 0.270

Ada 0.272 0.202 0.351 0.198 0.345

DT 0.197 0.136 0.270 0.13 0.262

DL 0.156 0.101 0.225 0.096 0.215

NB 0.136 0.085 0.202 0.079 0.192

SCM 0.190 0.130 0.263 0.125 0.254

Sonar

SVM 0.116 0.061 0.194 0.053 0.178

Ada 0.135 0.076 0.217 0.067 0.202

DT 0.365 0.099 0.251 0.270 0.459

DL 0.281 0.197 0.378 0.192 0.369

NB 0.262 0.180 0.358 0.175 0.348

SCM 0.310 0.223 0.409 0.219 0.400

SonarM

SVM 0.182 0.113 0.270 0.106 0.257

Ada 0.153 0.090 0.237 0.082 0.223

DT 0.365 0.273 0.465 0.270 0.459

DL 0.221 0.145 0.313 0.139 0.302

NB 0.269 0.186 0.365 0.182 0.355

SCM 0.403 0.308 0.504 0.306 0.499

Table B.1: Results of various classifiers on UCI Datasets
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Data-Set A RT Bl Bu CIl CIu

BreastCancer

SVM 0.038 0.020 0.063 0.0172 0.058

Ada 0.049 0.029 0.078 0.0255 0.072

DT 0.061 0.038 0.092 0.035 0.086

DL 0.046 0.026 0.074 0.023 0.068

NB 0.046 0.026 0.074 0.023 0.068

SCM 0.037 0.020 0.063 0.016 0.057

Wdbc

SVM 0.070 0.043 0.106 0.039 0.100

Ada 0.042 0.022 0.072 0.018 0.065

DT 0.052 0.029 0.085 0.025 0.078

DL 0.059 0.035 0.094 0.031 0.086

NB 0.049 0.027 0.081 0.023 0.074

SCM 0.056 0.032 0.089 0.0287 0.083

Tic-Tac-Toe

SVM 0.062 0.042 0.088 0.039 0.084

Ada 0.016 0.007 0.326 0.004 0.027

DT 0.135 0.106 0.169 0.103 0.166

DL 0.048 0.030 0.071 0.0284 0.067

NB 0.340 0.297 0.384 0.296 0.383

SCM 0.106 0.080 0.137 0.077 0.134

Ionosphere

SVM 0.045 0.019 0.088 0.0136 0.076

Ada 0.091 0.053 0.144 0.047 0.134

DT 0.091 0.053 0.144 0.047 0.134

DL 0.142 0.094 0.203 0.089 0.194

NB 0.16 0.109 0.222 0.104 0.215

SCM 0.24 0.178 0.310 0.175 0.304

Table B.2: Results of various classifiers on UCI Datasets
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Data-Set A RT Bl Bu CIl CIu

Letter-AB

SVM 0.001 0 0.005 -0.0009 0.002

Ada 3.8e-3 0.001 0.009 1.148 0.007

DT 0.017 0.010 0.026 0.009 0.024

DL 0.016 0.009 0.025 0.008 0.023

NB 0.080 0.064 0.098 0.063 0.096

SCM 0.029 0.020 0.041 0.0186 0.039

Letter-OQ

SVM 0.010 0.005 0.018 0.003 0.016

Ada 0.043 0.031 0.057 0.0303 0.055

DT 0.077 0.061 0.095 0.060 0.093

DL 0.055 0.041 0.070 0.0408 0.069

NB 0.157 0.135 0.180 0.134 0.179

SCM 0.109 0.090 0.129 0.089 0.128

Letter-DO

SVM 0.013 0.007 0.022 0.006 0.019

Ada 0.024 0.016 0.035 0.0145 0.033

DT 0.061 0.047 0.077 0.046 0.075

DL 0.054 0.042 0.070 0.040 0.067

NB 0.080 0.064 0.098 0.063 0.096

SCM 0.061 0.047 0.077 0.046 0.075

Mushroom

SVM 0 0 0.0009 0.0 0.0

Ada 0 0 0.0009 0.0 0.0

DT 0 0 0.0009 0.0 0.0

DL 0 0 0.0009 0.0 0.0

NB 0.091 0.083 0.101 0.0534 0.068

SCM 0.025 0.020 0.304 0.020 0.029

Table B.3: Results of various classifiers on UCI Datasets



Appendix C

Calculating the Test Set Bound for

Table 8.1 of Chapter 7

Here, we present the lower and upper intervals generated from computing the lower (Bl)

and upper (Bu) risk bounds of Theorems 3.1.2 and 3.1.1 of Section 3.1 with δ = 0.05

for Table 8.1.
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Data-Set A RT Bl Bu

Adult

SVM 0.158 0.152 0.146

PBSC-A 0.156 0.150 0.162

PBSC-N 0.160 0.153 0.166

PBSC-L 0.193 0.186 0.199

BreastCancer

SVM 0.038 0.022 0.060

PBSC-A 0.044 0.027 0.067

PBSC-N 0.038 0.022 0.060

PBSC-L 0.144 0.027 0.067

Credit-A

SVM 0.190 0.153 0.231

PBSC-A 0.140 0.108 0.177

PBSC-N 0.173 0.138 0.213

PBSC-L 0.200 0.162 0.241

Glass

SVM 0.150 0.103 0.228

PBSC-A 0.150 0.103 0.228

PBSC-N 0.168 0.111 0.239

PBSC-L 0.187 0.135 0.270

Heberman

SVM 0.267 0.213 0.339

PBSC-A 0.280 0.220 0.340

PBSC-N 0.267 0.213 0.339

PBSC-L 0.267. 0.213 0.339

Heart

SVM 0.197 0.144 0.259

PBSC-A 0.204 0.187 0.310

PBSC-N 0.218 0.169 0.288

PBSC-L 0.238 0.175 0.295

Ionosphere

SVM 0.057 0.031 0.094

PBSC-A 0.040 0.018 0.073

PBSC-N 0.040 0.018 0.073

PBSC-L 0.326 0.272 0.394

Letter-AB

SVM 0.001 0.0003 0.005

PBSC-A 0.001 0.0003 0.005

PBSC-N 0.001 0.0003 0.005

PBSC-L 0.038 0.029 0.050

Table C.1: The lower and upper risk bounds of Theorems 3.1.2 and 3.1.1 of Section 3.1

with δ = 0.05.
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Data-Set A RT Bl Bu

Letter-DO

SVM 0.014 0.008 0.021

PBSC-A 0.011 0.006 0.018

PBSC-N 0.012 0.007 0.014

PBSC-L 0.069 0.034 0.056

Letter-OQ

SVM 0.016 0.010 0.024

PBSC-A 0.016 0.010 0.024

PBSC-N 0.014 0.008 0.022

PBSC-L 0.0123 0.107 0.0141

Liver

SVM 0.286 0.235 0.353

PBSC-A 0.280 0.224 0.341

PBSC-N 0.0.286 0.235 0.353

PBSC-L 0.349 0.294 0.418

MNIST:0vs8

SVM 0.003 0.001 0.006

PBSC-A 0.004 0.002 0.007

PBSC-N 0.004 0.002 0.007

PBSC-L 0.031 0.025 0.038

MNIST:1vs7

SVM 0.014 0.009 0.019

PBSC-A 0.008 0.005 0.012

PBSC-N 0.007 0.004 0.011

PBSC-L 0.161 0.147 0.175

MNIST:1vs8

SVM 0.011 0.007 0.016

PBSC-A 0.010 0.006 0.014

PBSC-N 0.011 0.007 0.016

PBSC-L 0.292 0.275 0.309

MNIST:2vs3

SVM 0.020 0.014 0.026

PBSC-A 0.019 0.0145 0.025

PBSC-N 0.020 0.014 0.026

PBSC-L 0.114 0.103 0.127

Table C.2: The lower and upper risk bounds of Theorems 3.1.2 and 3.1.1 of Section 3.1

with δ = 0.05.
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Data-Set A RT Bl Bu

Mushroom

SVM 0.000 0.000 0.0007

PBSC-A 0.000 0.000 0.0007

PBSC-N 0.000 0.000 0.0007

PBSC-L 0.022 0.018 0.026

Ringnorm

SVM 0.015 0.011 0.018

PBSC-A 0.013 0.010 0.018

PBSC-N 0.013 0.010 0.018

PBSC-L 0.103 0.007 0.013

sonar

SVM 0.154 0.098 0.224

PBSC-A 0.125 0.075 0.191

PBSC-N 0.192 0.131 0.267

PBSC-L 0.490 0.396 0.565

Tic-tac-toe

SVM 0.015 0.008 0.029

PBSC-A 0.019 0.009 0.032

PBSC-N 0.052 0.034 0.069

PBSC-L 0.365 0.328 0.403

Usvotes

SVM 0.075 0.046 0.113

PBSC-A 0.065 0.038 0.101

PBSC-N 0.0.65 0.038 0.113

PBSC-L 0.140 0.101 0.186

Waveform

SVM 0.068 0.061 0.074

PBSC-A 0.068 0.061 0.074

PBSC-N 0.066 0.059 0.072

PBSC-L 0.143 0.133 0.074

Wdbc

SVM 0.042 0.024 0.067

PBSC-A 0.049 0.030 0.075

PBSC-N 0.074 0.053 0.108

PBSC-L 0.180 0.146 0.225

Table C.3: The lower and upper risk bounds of Theorems 3.1.2 and 3.1.1 of Section 3.1

with δ = 0.05.
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