383 research outputs found

    Intelligent Embedded Software: New Perspectives and Challenges

    Get PDF
    Intelligent embedded systems (IES) represent a novel and promising generation of embedded systems (ES). IES have the capacity of reasoning about their external environments and adapt their behavior accordingly. Such systems are situated in the intersection of two different branches that are the embedded computing and the intelligent computing. On the other hand, intelligent embedded software (IESo) is becoming a large part of the engineering cost of intelligent embedded systems. IESo can include some artificial intelligence (AI)-based systems such as expert systems, neural networks and other sophisticated artificial intelligence (AI) models to guarantee some important characteristics such as self-learning, self-optimizing and self-repairing. Despite the widespread of such systems, some design challenging issues are arising. Designing a resource-constrained software and at the same time intelligent is not a trivial task especially in a real-time context. To deal with this dilemma, embedded system researchers have profited from the progress in semiconductor technology to develop specific hardware to support well AI models and render the integration of AI with the embedded world a reality

    Partitioned System with XtratuM on PowerPC

    Full text link
    XtratuM is a real-time hypervisor originally built on x86 architecture. It is designed referencing the concept of partitioned system. The main work in this thesis is to implement XtratuM in PowerPC architecture.Zhou, R. (2009). Partitioned System with XtratuM on PowerPC. http://hdl.handle.net/10251/12738Archivo delegad

    A TrustZone-assisted secure silicon on a co-design framework

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresEmbedded systems were for a long time, single-purpose and closed systems, characterized by hardware resource constraints and real-time requirements. Nowadays, their functionality is ever-growing, coupled with an increasing complexity and heterogeneity. Embedded applications increasingly demand employment of general-purpose operating systems (GPOSs) to handle operator interfaces and general-purpose computing tasks, while simultaneously ensuring the strict timing requirements. Virtualization, which enables multiple operating systems (OSs) to run on top of the same hardware platform, is gaining momentum in the embedded systems arena, driven by the growing interest in consolidating and isolating multiple and heterogeneous environments. The penalties incurred by classic virtualization approaches is pushing research towards hardware-assisted solutions. Among the existing commercial off-the-shelf (COTS) technologies for virtualization, ARM TrustZone technology is gaining momentum due to the supremacy and lower cost of TrustZone-enabled processors. Programmable system-on-chips (SoCs) are becoming leading players in the embedded systems space, because the combination of a plethora of hard resources with programmable logic enables the efficient implementation of systems that perfectly fit the heterogeneous nature of embedded applications. Moreover, novel disruptive approaches make use of field-programmable gate array (FPGA) technology to enhance virtualization mechanisms. This master’s thesis proposes a hardware-software co-design framework for easing the economy of addressing the new generation of embedded systems requirements. ARM TrustZone is exploited to implement the root-of-trust of a virtualization-based architecture that allows the execution of a GPOS side-by-side with a real-time OS (RTOS). RTOS services were offloaded to hardware, so that it could present simultaneous improvements on performance and determinism. Instead of focusing in a concrete application, the goal is to provide a complete framework, specifically tailored for Zynq-base devices, that developers can use to accelerate a bunch of distinct applications across different embedded industries.Os sistemas embebidos foram, durante muitos anos, sistemas com um simples e único propósito, caracterizados por recursos de hardware limitados e com cariz de tempo real. Hoje em dia, o número de funcionalidades começa a escalar, assim como o grau de complexidade e heterogeneidade. As aplicações embebidas exigem cada vez mais o uso de sistemas operativos (OSs) de uso geral (GPOS) para lidar com interfaces gráficas e tarefas de computação de propósito geral. Porém, os seus requisitos primordiais de tempo real mantém-se. A virtualização permite que vários sistemas operativos sejam executados na mesma plataforma de hardware. Impulsionada pelo crescente interesse em consolidar e isolar ambientes múltiplos e heterogéneos, a virtualização tem ganho uma crescente relevância no domínio dos sistemas embebidos. As adversidades que advém das abordagens de virtualização clássicas estão a direcionar estudos no âmbito de soluções assistidas por hardware. Entre as tecnologias comerciais existentes, a tecnologia ARM TrustZone está a ganhar muita relevância devido à supremacia e ao menor custo dos processadores que suportam esta tecnologia. Plataformas hibridas, que combinam processadores com lógica programável, estão em crescente penetração no domínio dos sistemas embebidos pois, disponibilizam um enorme conjunto de recursos que se adequam perfeitamente à natureza heterogénea dos sistemas atuais. Além disso, existem soluções recentes que fazem uso da tecnologia de FPGA para melhorar os mecanismos de virtualização. Esta dissertação propõe uma framework baseada em hardware-software de modo a cumprir os requisitos da nova geração de sistemas embebidos. A tecnologia TrustZone é explorada para implementar uma arquitetura que permite a execução de um GPOS lado-a-lado com um sistemas operativo de tempo real (RTOS). Os serviços disponibilizados pelo RTOS são migrados para hardware, para melhorar o desempenho e determinismo do OS. Em vez de focar numa aplicação concreta, o objetivo é fornecer uma framework especificamente adaptada para dispositivos baseados em System-on-chips Zynq, de forma a que developers possam usar para acelerar um vasto número de aplicações distintas em diferentes setores

    06141 Abstracts Collection -- Dynamically Reconfigurable Architectures

    Get PDF
    From 02.04.06 to 07.04.06, the Dagstuhl Seminar 06141 ``Dynamically Reconfigurable Architectures\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Bao: A Lightweight Static Partitioning Hypervisor for Modern Multi-Core Embedded Systems

    Get PDF

    Safety Engineering with COTS components

    Get PDF
    Safety-critical systems are becoming more widespread, complex and reliant on software. Increasingly they are engineered through Commercial Off The Shelf (COTS) (Commercial Off The Shelf) components to alleviate the spiralling costs and development time, often in the context of complex supply chains. A parallel increased concern for safety has resulted in a variety of safety standards, with a growing consensus that a safety life cycle is needed which is fully integrated with the design and development life cycle, to ensure that safety has appropriate influence on the design decisions as system development progresses. In this article we explore the application of an integrated approach to safety engineering in which assurance drives the engineering process. The paper re- ports on the outcome of a case study on a live industrial project with a view to evaluate: its suitability for application in a real-world safety engineering setting; its benefits and limitations in counteracting some of the difficulties of safety en- gineering with COTS components across supply chains; and, its effectiveness in generating evidence which can contribute directly to the construction of safety cases
    corecore