Simulation-based Modeling Frameworks for
Networked Multi-processor System-on-Chip

Shankar Mahadevan

Kongens Lyngby 2006
IMM-PHD-2006-157

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Abstract

This thesis deals with modeling aspects of multi-processor system-on-chip (Mp-
SoC) design affected by the on-chip interconnect, also called the Network-on-
Chip (NoC), at various levels of abstraction. To begin with, we undertook a
comprehensive survey of research and design practices of networked MpSoC.
The survey presents the challenges of modeling and performance analysis of the
hardware and the software components used in such devices. These challenges
are further exasperated in a mixed abstraction workspace, which is typical of
complex MpSoC design environment.

We provide two simulation-based frameworks: namely ARTS and RIPE, that
allows to model hardware (computation time, power consumption, network la-
tency, caching effect, etc.) and software (application partition and mapping,
operating system scheduling, interrupt handling, etc.) aspects from system-level
to cycle-true abstraction. Thereby, we can realistically model the application
executing on the architecture. This includes e.g. accurate modeling of syn-
chronization, cache refills, context switching effects, so on, which are critically
dependent on the architecture and the performance of the NoC. The foundation
of the ARTS model is abstract tasks, while the foundation of the RIPE model
is cycle-count. For ARTS, using different case-studies with over one hundred
tasks (five applications) from the mobile multimedia domain, we show the po-
tential of the framework under real-time constraints. For RIPE, first using six
applications we derive the requirements to model the application and the archi-
tecture properties independent of the NoC, and then use these applications to
successfully validate the approach against a reference cycle-true system.

The presence of a standard socket at the intellectual property (IP) and the NoC
interface in both the ARTS and the RIPE frameworks allows easy incorporation
of IP cores from either frameworks, into a new instance of the design. This
could pave the way for seamless design evaluation from system-level to cycle-
true abstraction in future component-based MpSoC design practice.

Preface

This thesis was prepared at the institute of Informatics Mathematical Mod-
elling, in partial fulfillment of the requirements for acquiring the Ph.D. degree
in Computer Science and Engineering department at the Technical University
of Denmark. The Ph.D. was supervised by Associate Professor Jens Sparsg and
Professor Jan Madsen.

The thesis stems out of the “On-Chip Interconnect Networks” project started
in September 2002. The original Ph.D. study plan proposed an evaluation of
reconfigurable networks for multi-processor systems-on-chip (MPSoC) with fo-
cus on low-power solutions. During the course of the study, it was found that
understanding the application and the architectural properties of the MPSoC
was the first crucial step towards this goal. The investigation of these proper-
ties was found to be a challenge in its own right. In this thesis, the solutions
pursued to meet these challenges are presented for perusal towards the Ph.D.
degree requirements. The outcome of this thesis are the ARTS and the RIPE
frameworks, which can now allow a realistic investigation of the goals stated in
the original study plan.

The thesis consists of a collection of seven research papers written during the
period 2003-2005, and published elsewhere.

Lyngby, March 2006

Shankar Mahadevan

Manuscript Collection

The following list of manuscripts contribute directly to the body of this thesis.

#1:

#2:

#3:

#4:

#5:

Tobais Bjerregaard, and Shankar Mahadevan. “A Survey of Research
and Practices of Network-on-Chip.” To appear in the Journal of ACM
Computing Surveys. ACM, 2006.

Jan Madsen, Shankar Mahadevan, Kashif Virk and Mercury Gonza-
lez. “Network-on-Chip Modeling for System-Level Multiprocessor Simula-
tion.” In Proceedings of the 24th Real-Time Systems Symposium (RTSS),
Cancun Mexico. IEEE, Dec. 2003: 265-274.

Jan Madsen, Shankar Mahadevan, and Kashif Virk. “Network-Centric
System-Level Model for Multiprocessor System-on-Chip Simulation.”
Interconnect-Centric Design for Advanced SoC and NoC. FEds. Nurmi
J., Tenhunen H., Isoaho J., and Jantsch A. Dordrecht, The Netherlands.
Kluwer Publications, 2004: 341-365.

Shankar Mahadevan, Michael Storgaard, Jan Madsen, and Kashif Virk.
“ARTS: A System-Level Framework for Modeling MPSoC Components
and Analysis of their Causality” Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), Atlanta USA.
IEEE, Sept. 2005: 480-483.

Shankar Mahadevan, Federico Angiolini, Michael Storgaard, Rasmus G.
Olsen, Jens Sparsg and Jan Madsen. “A Network Traffic Generator Model
for Fast Network-on-Chip Simulation.” In Proceedings of Design, Automa-
tion and Testing in Furope Conference (DATE), Munich Germany. IEEE,
Mar. 2005: 780-785.

Vi

#6:

#7:

Federico Angiolini, Shankar Mahadevan, Jan Madsen, Luca Benini and
Jens Sparsg. “Realistically Rendering SoC Traffic Patterns with Interrupt
Awareness.” IFIP Very Large Scale Integration Systems and their Designs
Conference (VLSI-SoC), Perth Australia. IEEE, Oct. 2005: 211-216.

Shankar Mahadevan, Federico Angiolini, Jens Sparsg, Luca Benini and Jan
Madsen. “A Reactive IP Emulator for Multi-Processor System-on-Chip
Exploration.” Submitted for Journal Publication.

The following maniscripts where also published during the course of this PhD,
but are not part of this thesis.

e Tobias Bjerregaard, Shankar Mahadevan, and Jens Sparsg. ”A Channel

Library for Asynchronous Circuit Design Supporting Mixed-Mode Mod-
eling.” In Proceedings of the 1th International Workshop on Power and
Timing Modeling, Optimization and Simulation (PATMOS), Isle of San-
torini Greece. Springer Publications, 2004: 301-310.

Tobias Bjerregaard, Shankar Mahadevan, Rasmus G. Olsen, and Jens
Sparsg. “An OCP Compliant Network Adapter for GALS-based SoC De-
sign Using the MANGO Network-on-Chip.” Proceedings of the Interna-
tional Symposium on System-on-Chip (I1SSoC), Tempere Finland. IEEE
2005: 171-174.

Acknowledgements

It was the best of times, it was the worst of times, it was the age of

wisdom, it was the age of foolishness. . . .
- Charles Dickens, A Tale of Two Cities. London 1859.

In the journey towards my Ph.D. degree, culminating in this thesis, many peo-
ple have shared their wisdom and warned me about pitfalls. My fellow Ph.D.
student and friend, Tobias Bjerregaard for many intense and fruitful discussion.
Thanks Tobias for introducing me to the electronic music scene in Copenhagen.
This thesis would not have been possible without expert guidance and navi-
gation by my supervisors, Associate Professor Jens Sparsg and Professor Jan
Madsen. I am grateful to them for allowing me to follows the path charted
in this thesis. Thanks also goes to Kashif Virk for his patience in answering
my many questions. In Bologna, I am very grateful for the academic stimulus
and the camaraderie of Federico Angiolini and the rest of the gang. Thanks
Federico for introducing me to the best-of-the-best pizza and pasta places in
Bologna. Thank you Prof. Luca Benini for many discussions, but mostly for
allowing me to come to Italy and escape the danish weather. Two Masters’
students, Michael Storgaard and Rasmus Olsen, who partook in the implemen-
tation activities. Thanks Michael for introducing me to <deque> in C/C++.
Maria Jensen for keeping track of my Ph.D. accounts and patience. Per Friis for
twice rescuing my hard disk. For funding my research, I am grateful to Nokia
Denmark, SoC-MobiNET, Thomas B. Thrige Foundation and ARTIST.

Last but not the least, my parents and brother for their love - despite seeing me
only for a few weeks in the past three years!

Shankar Mahadevan
Lyngby, March 2006.

Contents

[2__Concluding Remarks

iii

vii

12

13

X CONTENTS

[3_Overview of Networked MPSad 19

4__The ARTS Modeling Environmentl 75

4.1 Network-Centric System-Level Model for Multiprocessor System-
on-Chip Simulation 76

4.2 ARTS: A Svstem-Level Framework for Modeling MPSoC Com-
ponents and Analysis of their Causality 100

[5_The RIPE Modeling Environmentl 105

III__Appendix 129

6 _Network-on-Chip Modeling for System-Level Multiprocessor
Simulation 131

7 A Network Traffic Generator Model for Fast Network-on-Chip
Simulation 143

8 Realistically Rendering SoC Traffic Patterns with Interrupt
Awareness 151

Part 1

Preamble

CHAPTER 1

Introduction

Integrated circuit (IC) design is driven by the target application domain, the
architectural choices and the performance trade-offs. Generally, the applications
dictates the architecture and the performance requirements. The architecture is
the composition of hardware and software, while performance is speed, power,
mobility, etc. The flow from specification to a deployable IC is influenced by
the availability and ease of integration of the hardware and the software compo-
nents. Investigating the performance of the IC, deviced by integration of these
components can be a challenge due to many factors. First, the components have
to be designed with a level of accuracy to give confidence in the eventual result.
Second, due to correlations between the behaviors of the components, it is dif-
ficult to postulate how the optimization performed during design of individual
components percolates to the entire IC.

The detail to which extent the IC components are modeled and simulated has
direct impact on the accuracy and the time for understanding its performance.
The closer the design description is to the eventual IC, the higher is the con-
fidence in its performance. For example, a post-layout simulation accounts for
all variables, i.e. wire and gate delays, suggesting a high degree of accuracy of
the design. However, a large investment in man-hours is required for modeling
and simulation at this level of detail. Given the shrinking time-to-market con-
straints, this investment would not be possible for many of the complex designs
of the future.

4 Introduction

A typical approach to IC design starts by taking an existing design methodol-
ogy and apply it to the application and architecture in question. As is observed
in [I3], while this approach may indeed work for traditional “well-behaved” ap-
plications and architectures, the attempt is more likely to fail for more complex
applications and architectures that can be expected in the forthcoming years.
This is because of the increase in transistor density and the growing gap in
using them productively in a timely fashion. This has given rise to a new 1C
design paradigm namely: networked multi-processor system-on-chip (MpSoC).
We explain this new terminology as follows:

networked: This refers to the interconnect fabric used to bind the architectural
components. As has been motivated in [2,[6], the future of IC design will be
limited not by computation, but by communication. Hence a multi-hop,
concurrent and distributed interconnect model, the so called Network-
on-Chip (NoC) has emerged as candidate solution. We comprehensively
address the issues related to NoC in Chapter

multi-processor: This refers to the class of components termed intellectual
property (IP); such as the computation and the memory units, that com-
prise the architecture. It includes the hardware (ASIC, FPGA, ASIPs,
general purpose processors (GPP)) and the software layers (operating sys-
tem and application) stacked on top of the hardware (where applicable).
Over the last two decades, it is not as much their design, but the way
these components are modeled and used that has changed. The empha-
sis is on re-use; wherein, the interface of these component are now well
defined sockets [I8]. Further, traditionally they were generally available
only as RTL entities, while now they are described in a range of abstrac-
tions from un-timed functional to transaction to cycle-true and including
RTL. Thereby, expanding their availability for performance evaluation at
different stages of the design.

system-on-chip: This refers to the deployment of entire systems on a single
chip in a predictable and timely fashion. Generally, it can be viewed as
concurrent activity on two axis: horizontal, where hardware component
are assembled (processors, ASIC, etc connected via the interconnect) and
vertical, where the software components are compiled (application soft-
ware, device drivers and operating system (OS)).

The basic premisses of the networked MpSoC design paradigm is component-
based design practice with emphasis on the separation of computation and com-
munication concerns. This premisses, has created a gap between the existing
design and modeling framework which emphasis top-down step-wise design re-
finement, and the required frameworks that can undertake a mixed abstraction

1.1 Gist of the Published Work 5

design exploration. The goal of the new frameworks must be to provide model-
ing primitives that can realistically capture the application behaviour and the
architectural properties including the assessment of the impact of interconnect
performance. For example, in a networked MpSoC, context switching and cache
refills will be critically affected by the network latency, and thus impact the
processor’s ability to execute the application.

In this thesis, we identify the MpSoC properties affected by the interconnect,
and suggest ways to model them at various levels of abstraction. To assess the
impact of different applications and architectural changes on the performance
of an instance of a networked MpSoC design, we provide two simulation-based
modeling environments: ARTS (at system-level), and RIPE (closer to cycle-true
abstraction). As will be detailed in the body of the thesis, the foundation of the
ARTS framework are abstract tasks, while the foundation of the RIPE frame-
work is cycle-count. In both cases, the execution of the application is abstracted
away into “time-slices”, albeit at different granularity i.e. at functional-block
level in ARTS and at instruction level in RIPE. Using experiments and by val-
idation with other reference systems, we show the potential of our modeling
environments to handle many classes of applications seen in real-life. These
applications are from different domains, showing real-time constraints require-
ments, employing different synchronization schemes, and containing multiple
threads susceptible to interrupts and OS-dependent context switching. The in-
vestigation of such a broad class of application could produce general guidelines
and recommendations to address many issues in the design of MpSoC systems.

The thesis is organized as a collection of published or submitted manuscripts. In
the reminder of this chapter, we attempt to identify a common theme through
these manuscripts. To do this, we first provide the gist of the concepts and
techniques detailed in the manuscripts. This is followed by a discussion on the
scope of this body of work, where we also fill some gaps in the evolution of the
work. Finally we present an outline of the thesis and some notes for the reader
to keep in mind during the reading of the remainder of the thesis.

1.1 Gist of the Published Work

In this section, we present the gist of the published papers that is part of this
thesis. In this process we also categorize the work. Broadly, the papers can be
collected into three groups (seven papers) as follows:

I. A Survey of Networked MpSoC

Introduction

I1.

#1: A Survey of Research and Practices of Network-on-Chip
(Accepted Journal Publication)

This work highlights many of the challenges in designing and modeling
networked MpSoC. Specifically for this thesis, the motivation and refer-
ence to a large amount of related work can be found in this paper. Overall,
NoC can be application-specific or a generic interconnect which can ac-
commodate several applications. Generally, one can avoid over-design of
the NoC architecture by studying the traffic requirements for a given prob-
lem. The traffic types (latency critical, individual or burst transactions)
generated by the system can vary greatly depending on the application
characteristics and architectural choices. Primarily one can conclude that
these traffic types are the property of the hardware and the software layers
stacked on top of the IP core.

The ARTS Modeling Environment

#2: Network-on-Chip Modeling for System-Level Multiproces-
sor Simulation (Conference Publication)

#3: Network-Centric System-Level Model for MpSoC Simula-
tion (Book Chapter)

#4: ARTS: A System-Level Framework for Modeling MpSoC
Components and Analysis of their Causality (Conference Pub-
lication)

This work highlights the requirements to model the application and the
architecture at the system-level while giving a central role to the effects
of the NoC. Overall, the ARTS framework described here is designed to
meet the need for early exploration and understanding of architectural
choices and application mapping in MpSoC designs. It is unlike some of
the previous work at system-level exploration, wherein the frameworks
are limited to exploration of causality between few classes of processors,
memory or interconnect. The ARTS framework is not developed with any
specific problem in mind, but is modularized and extendable in terms of
modeling the different hardware and software layers observed in MpSoC
systems. Further, it allows mixed (in terms of abstraction) instantiation
for complex problems. From this thesis perspective, the modeling of the
NoC in a detailed system-level framework as ARTS, allows us to assess
the impacts of OS dynamics, selection of the hardware components, and
mapping of the software tasks, on the system performance early in the
design phase. A case-study with applications (MP3 decoder, GSM en-
coder/decoder, MPEG encoder/decoder) from the real-time multimedia
application domain consisting of 114 tasks on a 6-processor platform for
a hand-held terminal shows the co-exploration capabilities of ARTS. The

1.2 Discussion 7

case study highlights the impact of changing the underlying processing
element (between ASIC, FPGA and general purpose processor), commu-
nication fabric (bus, mesh and torus) and OS scheduling policy on the
processor utilization, the communication contention and the memory us-
age.

III. The RIPE Modeling Environment

#5: A Network Traffic Generator Model for Fast Network-on-
Chip Simulation (Conference Publication)

#6: Realistically Rendering SoC Traffic Patterns with Interrupt
Awareness (Conference Publication)

#7: A Reactive IP Emulator for Multiprocessor System-on-Chip
Exploration (Submitted for Journal Publication)

This work highlights the requirements to model the application and the
architecture in an environment closer to cycle-true abstraction. The reac-
tive IP emulator (RIPE) described here can model computation behavior
independent of the NoC properties, yet be reactive to changes in NoC ar-
chitecture. Thereby, it effectively decoupled the simulation of the IP cores
from the NoC. Originally deviced to merely mimic processor’s behavior for
NoC exploration, the reactiveness properties identified for emulation has
opened opportunities for alternate uses and are explored in a case study
documented in the above papers. The hardware and software properties
captured in this framework are derived from execution of complex real-
life application templates showcasing semaphore-based synchronization,
OS scheduling based on time-slicing (multi-tasking), pipeline multimedia
data processing, and I/O operations. Further we have validated the ap-
proach with a reference cycle-true framework and have determined that
great accuracy (over 99%) and notable speedup can be achieved with our
RIPE framework.

As will be outlined later, this grouping of the papers not only serves the purpose
of categorizing the work covered in this thesis, but also as chapters of this thesis.

1.2 Discussion

The categorization of the work presented above, may at first glance appear to
have a seemingly diverse focus. Therefore, in this section we attempt to identify
a common theme across the work.

8 Introduction

Abstractions | Foundation | Framework | Papers
System-level View Tasks Paper #2
ARTS Paper #3
Programmer’s View | Memory Map Paper #4
with/without timing Paper #5
Cycle Accurate Clock Cycles RIPE Paper #6
Paper #7

Table 1.1: Abstractions of the Networked MpSoC Addressed in the Thesis.

1.2.1 Modeling Scope

The MpSoC design-related problems can be explored either in the analytical or
the simulation domain. The scope, i.e., the problem representation and analysis
style, of the ARTS and the RIPE modeling framework, falls into the simulation
domain. Analytical approaches to solving MpSoC problems also exists and are
well documented in [22, 2T}, T2, [T6] 24]. However, as is also observed in [28§], the
performance of complex systems such as NoC is not easily expressed analytically.
The simulation-based approach on the other hand addresses only the average-
case behaviour. We have developed the ARTS and the RIPE framework with the
view that one can easily formulate the problem and compare the results across
different platforms and implementations. The frameworks are not developed to
address any specific design problem, but to provide a necessary set of primitives
to model all the required hardware and software components to instantiate the
given design problem and evaluate it effectively in different abstractions. In
order to take advantage of analytical approaches such as guarantees on best-
case and/or worst-case behaviour, we propose a hybrid simulation/analytical
approach as is done in [I4] and [3]. Here, a limited part of the system (shared
resource constraints in [I4] and performance analysis in [3]) is described formally
within a larger simulation-based setup. Such a design exploration approach can
also be accomplished in our frameworks.

1.2.2 Modeling Abstractions

The MpSoC design-related problems can also be analyzed at many abstraction
levels, with varying detail of the MpSoC layers (i.e. application, operating sys-
tem and hardware). Table [l adapted from [5], shows a subdivisioning of
various abstractions employed during the MpSoC design. These can be used
system-wide, meaning any component be it the NoC or the IP cores can be de-
scribed at any level of abstraction and then be integrated with other components

1.2 Discussion 9

IP core
Cycle
Accurate
ARTS P
Simulator
NI ocP
””””””””””””””””””””””””””” . “Tnterface

Figure 1.1: System-wide Abstraction for Modeling MpSoC Components.

via suitable interfaces for performance analysis. Such a system using compo-
nents from ARTS, RIPE and cycle accurate (CA) framework is illustrated in
Figure [[Jl Here, the components use standard sockets at the network interface
(NI), which in the case of our frameworks is compatible with open core protocol

(OCP) 2.

In the system-level view (SV), instead of the actual functionality, the execu-
tion time of the task representing the functionality is used to model the applica-
tion’s behavior. In this case, the interdependencies between the tasks translates
into communication carried over the NoC. Taskgraphs are a well-known way to
represent and structure such coarse-grain application behavior at this abstrac-
tion. To associate architecture properties into the application behavior, the
task properties (execution time, memory requirement, power consumption, etc)
are characterized on various IP cores. However, the impact of cache behavior,
consequences of data dependencies, contention over shared resources, and so on,
are difficult to predict at this abstraction, and hence, a degree of tolerance is in-
troduced while assessing these properties. This observation leads to a spectrum
of behaviors from best-case to worst-case scenarios.

Keeping this mind, a range of frameworks have been proposed in the litera-
ture |9, [, M0, 03, 27]. They investigate the impact of OS scheduling, and limita-
tions posed by the processor and the interconnect architectures such as memory
and bandwidth, for a given application domain. Our ARTS model is inspired
by the desire to undertake similar investigation. However, as is distinguished
in the papers, we also attempt to modularize the framework to include a range
of IP cores e.g. ASIC, GPP and FPGA, and a range of OS scheduling policies
such as earliest-deadline-first (EDF) and rate-monotonic (RM), with support for
preemption. Via the framework’s comprehensive support for both hardware and
software layers, i.e. application, OS and the platform architecture, the design-
ers can investigate problems both in the general and the real-time application
domains.

10 Introduction

To do this investigation, the ARTS framework utilizes three basic blocks: the
allocator, the scheduler and the synchronizer. The allocator controls the owner-
ship of resources: be it execution engine of the processor, or the routers/links of
the NoC. The scheduler controls the order in which the task execute on the re-
source: be it application task on the PE or communication tasks in the NoC, and
the synchronization controls the interdependencies: be it precedence constraint
in application tasks or priortization of communication tasks. The ARTS model-
ing primitive is based on the principle of composition outlined in [26]. As a way
of preserving composition, the above described blocks handle its relevant data
independently of the other. The communication between the application task
and the RTOS blocks is handled by message exchanges. This way the MpSoC
designer can easily combine alternate allocation, scheduling and synchronization
policies without cumbersome recoding of the entire RTOS or compiling of the
framework. This is the motivation for selecting composition based modeling.
Additionally, we have found common characteristics to model both a diverse
range of IP and interconnect behaviors using these three blocks.

The potential of the ARTS modeling framework has been demonstrated via
case studies of a mobile multimedia terminal where the advantages of introduc-
ing NoC has to be traded-off against performance parameters such as memory,
power and program completion time. In some cases even correct operation of
the system cannot be guaranteed. For example, we show (in Paper #3) that
even a small MpSoC system with three processors connected via a torus NoC
(using wormhole routing protocol) could potentially cause system-deadlock due
to OS preemption of the communicating tasks.

In the programmer’s view (PV) of system design, parts of the architecture
is exposed to the application, thereby introducing a degree of accuracy in the
modeling and performance evaluation. As is discussed in [B], in the untimed
PV the absolute behavior is not guaranteed, but the degree of accuracy can
be postulated based on the description of the IP model such as pessimistic,
optimistic, random, typical or a combination of models in these circumstances.
Communication is point-to-point and based on a common, highly efficient trans-
port mechanism. In the timed PV the request and response are completed in a
single transaction and time is indicated as ‘time-passed’ rather that event-per-
clock-tick. This view is analogous to a range of models also described under
transaction-level models (TLM) M, [, [I11, 19, 20, 23] 25].

By sacrificing simulation speed, the models at this level extract additional accu-
racy for performance evaluation. The goal of such analysis is the same as for SV
i.e. investigating and extracting as much performance as possible out of given
processor and interconnect for a given application. Parts of both the ARTS and
RIPE frameworks straddle this level of abstraction. In the ARTS, the commu-
nication interdependencies are triggered by writing to specific address in the IP

1.2 Discussion 11

cores. In the RIPE, except for a few special purpose registers, the complete
program, data and register files are addressable. Overall, in either frameworks,
the presence of OCP [I7] inherently allows to access the public memory of the
IP cores.

The RIPE framework was originally devised to optimize the interconnect perfor-
mance at the cycle-true abstraction. To do this it has to be reactive to the NoC
architectural changes. For example, network latency could have different out-
comes on the system performance in cases where synchronization occurs over
the interconnect and OS-dependent context-switching is involved. The RIPE
can be programmed to account for the impact of communication latency on the
application execution. Via a simple non-pipelined instruction set architecture,
implementing basic flow-control instructions, it can be configured to initiate a
range of communication transactions (single read/write, burst read/write, inter-
rupts) separated by idle waits. Thereby, it can mimic the externally observable
behaviour of an IP core executing an application for the rest of the MpSoC.
By introducing a programmable paradigm, the RIPE can be used in association
with manually written programs to generate traffic patterns typical of IPs still
in the design phase, helping in the tuning of the communication performance
or understanding the causality relationship with other IPs in the MpSoC. This
choice allows us to describe reactiveness characteristics of a wide range of IP
cores at different levels of abstraction. Additionally, this choice allows future
deployment as a hardware device in test chips containing interconnect proto-
types. Through case studies based on real-life applications, such as multimedia
data processing, input/output operation, and OS-aware multi-tasking, we have
demonstrated that the RIPE can handle and emulate a wide class of application
behaviours independent of interconnect aspects.

In the cycle accurate (CA) view of the system design, nearly all aspects of
the architecture are described. The pipelined behavior, the address and data
encoding/decoding and every other atomic (non-interruptible) action sequence
can be tracked at every clock cycle at this abstraction. The work presented in [8|,
T5] models this abstraction. Such models provide a high degree of accuracy for
investigating both the interconnect and the processor performance. This affords
us the mechanism to validate the proposed frameworks (ARTS and RIPE). As is
outlined in papers in Group III, this thesis covers the work done to validate the
RIPE against the MPARM proposed in [§]. The validation of ARTS framework
is left as future work.

From the above discussion, we can visualize a common theme, stretching from
work related to ARTS to work related to RIPE. The commonalty between the
two frameworks is that, their respective modeling primitives attempt to capture
the interaction among the same three entities i.e. the application, the OS and
the architecture. The difference is that they do so at different abstractions. As

12 Introduction

eluded to before, the presence of OCP at the interface of both the ARTS and
RIPE allows easy mixing of modules from one framework with other (Figure[LTl).
This would allow mixed abstraction design exploration. Though not addressed
in this thesis, a comprehensive framework that can operate at any mode of
abstraction is foreseeable. Instantiation of mixed-abstraction design is already
possible using the components from the ARTS and the RIPE frameworks, which
are the focus of this thesis.

1.3 Outline of the Thesis

The thesis is organized in three parts: Preamble, Body, and Appendix. The
current chapter (Chapter 1) and the following chapter acts as a preamble for
the rest of the thesis. As has been demonstrated in this chapter, the preamble
part sets the scene and draw a common theme for the main body of the thesis
which is a composition of various peer-reviewed published papers. Chapter
summarizes the contribution of the paper, and presents concluding remarks and
hints at future direction.

The body of the thesis has three chapters. In Chapter Bl we present the paper
(Paper #1) that provides an overview of issues relating to the NoC aspects and
its impact on MpSoC design and performance. This is followed by two papers
(Paper #3 and #4), which comprise Chapter Bl and detail the work related to
the ARTS framework. In Chapter Bl via the Paper #7, we detail the work related
to the RIPE framework.

Note that we have selectively combined the papers listed in Section [CIl Papers
#2, #5 and #6 are not part of the main body of the thesis but can be found
in the Appendix part. The reason is as follows. Paper #2 is limited version of
Paper #3, while Paper #5 and #6 are precursors to the Paper #7. Papers #2,
#5 and #6 can be found in Appendix Bl [d and B respectively. This is to ensure
a consistent reading of the thesis, and to avoid revisiting similar concepts spread
across different papers.

The various papers comprising the main body of the thesis have been published
over different stages of the development of the frameworks. Consequently, a
note on the nomenclature is suitable. With regards to the ARTS framework, in
Paper #2 and #3, it is referred to as ‘abstract system-level model’ or ‘system-
level RTOS modeling framework’. With regards to the RIPE framework, in
Paper #5 and #6, it is referred to as simply ‘traffic generator’ or ‘reactive
traffic generator’. The nomenclatures reflects the state of the framework at the
time of publication.

CHAPTER 2

Concluding Remarks

2.1

Contribution of this thesis

Here, we outline the specific ideas, concepts and techniques that have been
contributed by the author of this thesis. We refer to abstractions outlined in
Table [Tl (in Section [C2Z2) to structure the research work.

i.

ii.

A structured overview of the networked MpSoC research has been pre-
sented. There are many challenges and opportunities identified in this
overview, ranging from the design of individual NoC components, such
as routers and links, to higher-level architectural concerns. An outline of
modeling and design issues related to NoC in the wider MpSoC is also
presented.

At the system-level, the identification of modeling primitives to capture
the causality between the hardware and the software components, when
taking the behaviour of the NoC into account, has been the main contribu-
tion. The motivation here is to understand the cross-layer dependencies
of the architecture, the OS, the device drivers and the application lay-
ers. The causality is understood by modeling and implementing the NoC
topology and protocol aspects through the basic blocks of the ARTS model
namely: the allocator, the synchronizer and the schedular. Requirements

14 Concluding Remarks

and implementation of modeling primitives capturing memory dynamics
for abstract task execution and communication was also undertaken. We
have successfully modeled bus, mesh and torus architectures and then per-
formed a co-exploration to demonstrate the impact of these architectures
on the system performance under real-time constraints. The trade-off met-
rics that were monitored include processor utilization, memory usage and
communication contention.

iii. Near the cycle-true abstraction, the contribution of the thesis can be listed
as follows.

e We have identified, the so called reactive behaviour essential to un-
dertake exploration of alternate NoC architectures and features un-
der realistic application behaviour. The idea is to abstract away
the computation time while maintaining data and interrupt depen-
dent communication sensitivity in the application behaviours. The
reactive behaviours include complex synchronization schemes (as is
observed in multimedia data processing) and OS interaction (as in
multi-tasking and input/output operations).

o We have developed a simple instruction set architecture based model
namely, the reactive IP emulator (RIPE), to mimic the IP core’s re-
activeness at its interface with the NoC. This model has three basic
flow-control instructions (IF, JUMP and Set Register) which, we have
found to be sufficient to model the wide class of reactive behaviour
mentioned above. Additional instructions support the range of com-
munication transactions, and parameterized computation time (via
idle waits or cycle-count).

o We have successfully validated our RIPE approach with a cycle-true
reference system via executing templates of applications possessing
these reactiveness properties in a multithreaded environment.

e Finally, we have developed a case study to show the potential of
such abstraction of computation time (into cycle-count) in a design
space exploration for reducing communication latency and therefore
execution time.

2.2 Suggested Future Direction

In Paper #7 we have validated RIPE framework against a cycle-true reference
system. In the near term future, the validation of the ARTS framework against
RIPE or a cycle-true framework is desirable. This step would allow for a seamless
component-based design flow from abstract to cycle-true environment.

2.2 Suggested Future Direction 15

In the long term, the complexity of the MpSoC architecture and applications
can only be expected to grow. Due to modularity, the challenge in designing
individual components would diminish, however the challenge of integrating and
understanding the impact a collection of these components into a MpSoC will
grow. Overall frameworks that support mixed abstraction study in a predictable
and scalable fashion is required.

Given the experience during this thesis work, considerable research potential in
following two fields have been identified:

e Mechanisms and interfaces to complement the simulation-based frame-
works with some analytical models would enhance the solution space cov-
ered during the MpSoC design space exploration.

e A flexible techniques to partition and apply parts of an application in
abstract “task” form and other parts in different (possibly C/C++ code
or cycle-count) form would be very useful during the study of a mixed
abstraction design.

Realization of these goals is not easy by any means. As eluded to in Sec-
tion [CZ], work presented in [I4] and [3] is already addressing preliminary con-
cerns in mixed simulation/analytical frameworks. For mixed abstraction instan-
tiation, considerable understanding of the application behaviour and structure
(e.g. functional blocks, OS access, etc) and underlying architecture (cache con-
figuration, synchronization means, etc) is needed. The literature in Chapter
mentions many efforts to address this issue.

The practical uses of instantiating designs in any and mixed levels of abstraction
are many. First, for design from start, it can take advantage of availability (in
terms of the same entity described in multiple abstraction) and selection of IP
cores for performance evaluation at different stages of the design abstraction.
With insight and moderation, this will allow investigation of a greater number
of design instances much earlier in the design phase. For simpler MpSoC design
problems, one could even envision developing a automated computer-aided tool
for taking the design problem from specification to candidate solution, in a
fast and rigorous manner. Second, for design re-use, it can allows us to access
the impact of replacement of select parts of design without excessive modeling
and time spent on integration and debugging. However, until mechanisms to
accomplish this type of easy mixing of abstraction with detailed description of
both hardware and software components are available, the separation of the
IP and the NoC related concerns, as is prescribed in our work can assist the
networked MpSoC designer to optimize the individual components or the system
as a whole.

16 Concluding Remarks

2.3 Summary and Conclusion

The contribution of this thesis are two simulation-based frameworks, ARTS
and RIPE, that cover a range of abstractions in modeling networked MpSoC.
Crucially, via these frameworks we have attempted to fill the gaps between
the existing design and modeling frameworks, and the required framework for
realistically capturing hardware and software behaviours. Unlike typical MpSoC
frameworks, which operate in one abstraction, these two frameworks can operate
in a mixed abstraction environment. Additionally, they capture many details
of a true MpSoC device, specifically relating to the application behavior in
the presence of interconnect and, when taking into account the IPs’ hardware
characteristics and OS properties.

In the ARTS framework, we have focused on understanding the impact of NoC
in conjunction with IP selection, application mapping and OS dynamics on
system performance (memory peaks, PE utilization, etc). Initial results show
the potential of the framework in providing a flexible and fast way to instantiate
these different components. Via case studies we have attempted to investigate
a couple of design problem associated with mobile multimedia terminal.

In the RIPE framework, we have provided an accurate IP emulation device for
performance evaluation NoC and prototyping IPs under design. A thorough
validation of the framework under diverse conditions in terms of context switch-
ing, synchronization and architecture instances has proven the applicability of
the design methodology.

Overall, the body of work presented in this thesis, can address a class of prob-
lems associated with network MpSoC in a mixed abstraction environment, such
as: impact of NoC topology and protocol on the application flow, impact of
OS scheduling on NoC traffic density, etc. The two frameworks, presented here
allow extensive design space exploration capabilities in their respective abstrac-
tion. More importantly, their concepts and the implementation could allow the
understanding of the percolation of design decisions made at higher abstraction,
to lower levels of abstraction in a predictable and timely fashion.

Part 11

Body

CHAPTER 3

Overview of Networked
MPSoC

This chapter consists of the following papers.

#1. Tobais Bjerregaard, and Shankar Mahadevan. “A Survey of Research
and Practices of Network-on-Chip.” To appear in the Journal of ACM
Computing Surveys. ACM, 2006.

20

Overview of Networked MPSoC

Paper #1: A Survey of Research and Practices of NoC 21

A Survey of Research and Practices of
Network-on-Chip

TOBIAS BJERREGAARD

and

SHANKAR MAHADEVAN
Technical University of Denmark

The scaling of microchip technologies has enabled large scale systems-on-chip (SoC). Network-
on-chip (NoC) research addresses global communication in SoC, involving: (i) a move from
computation-centric to communication-centric design and (ii) the implementation of scalable
communication structures. This survey presents a perspective on existing NoC research. We
define the following abstractions: system, network adapter, network and link; to explain and
structure the fundamental concepts. First, research relating to the actual network design is
reviewed. Then system level design and modeling are discussed. We also evaluate performance
analysis techniques. The research shows that NoC constitutes a unification of current trends of
intra-chip communication, rather than an explicit new alternative.

Categories and Subject Descriptors: A.l1 [Introductory and Survey]: ; B.4.3 [Input/Output and Data-
Communications]: Interconnections; B.7.1 [Integrated Circuits]: Types and Design Styles; C.5.4 [Computer
System Implementation]: VLSI Systems; C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design; C.0 [General]: —System Architectures

General Terms: Design

Additional Key Words and Phrases: chip-area networks, communication-centric design, GALS,
GSI design, interconnects, network-on-chip, NoC, OCP, on-chip communication, SoC, sockets,
system-on-chip, ULSI design

1. INTRODUCTION

Chip design has four distinct aspects: computation, memory, communication and I/0. As
processing power has increased and data intensive applications have emerged, the chal-
lenge of the communication aspect in single-chip systems, Systems-on-Chip (SoC), has
had increasing attention. This survey treats a prominent concept for communication in
SoC known as Network-on-Chip (NoC). As will become clear in the following, NoC does
not constitute an explicit new alternative for intra-chip communication, but is rather a con-
cept which presents a unification of on-chip communication solutions.

This paper is a joint first author effort, authors in alfabetical order.

S. Mahadevan was funded partly by SoOC-MOBINET (IST-2000-30094) and Nokia.

Authors’ address: Technical University of Denmark, Informatics and Mathematical Modelling, Richard Petersens
Plads, Building 321, DK-2800 Lyngby, Denmark; email: {tob,sm} @imm.dtu.dk

This work is under review with ACM Computing Surveys.

Permission to make digital/hard copy of all or part of this material for personal or classroom use must be cleared
with the copyright holder.

© 2004, 2005 Technical University of Denmark

22 Overview of Networked MPSoC

2 . T. Bjerregaard and S. Mahadevan

I
- RNEE

L —

LSI VLSI ULsl

Fig. 1. When a technology matures, it leads to a paradigm shift in system scope. Shown here is the chip scope in
LSI, VLSI and ULSI, the sequence of technologies leading to the enabling of SoC designs.

In this section we shall first briefly review the history of microchip technology that has
led to a call for NoC based designs. With our minds on intra-chip communication, we
will then look at a number of key issues of large-scale chip design, and finally show how
the NoC concept provides a viable solution space to the problems presently faced by chip
designers.

1.1 Intra-SoC Communication

The scaling of microchip technologies has lead to a doubling of available processing re-
sources on a single chip every second year. Even though this is projected to slow down to
a doubling every three years in the next few years for fixed chip sizes [ITRS 2003], the ex-
ponential trend is still in force. Though the evolution is continuous, the system level focus,
or system scope, moves in steps. When a technology matures for a given implementation
style, it leads to a paradigm shift. Examples of such shifts are moving from room- to rack-
level systems (LSI - 1970s) and later from rack- to board-level systems (VLSI - 1980s).
Recent technological advances allowing multi million transistor chips (currently well be-
yond 100M) have lead to a similar paradigm shift from board- to chip-level systems (ULSI
- 1990s). The scope of a single chip has changed accordingly, as illustrated in Figure 1. In
LSI systems a chip was a component of a system module (e.g. a bitslice in a bitslice pro-
cessor), in VLSI systems a chip was a system level module (e.g. a processor or a memory),
and in ULSI systems a chip constitutes an entire system (hence the term System-on-Chip
or SoC). SoC opens up to the feasibility of a wide range of applications making use of mas-
sive parallel processing and tightly interdependent processes, some adhering to real-time
requirements, bringing into focus new complex aspects of the underlying communication
structure. Many of these aspects are addressed by NoC.

There are multiple ways to approach an understanding of NoC. Readers well versed
in macro network theory may approach the concept by adapting proven techniques from
multicomputer networks. Much work done in this area during the 80s and 90s can readily
be built upon. Layered communication abstraction models, and decoupling of computation
and communication are relevant issues. There are however, a number of basic differences
between on- and off-chip communication. These generally reflect the difference in the cost
ratio between wiring and processing resources.

Historically, computation has been expensive and communication cheap. With scaling
microchip technologies this changed. Computation is becoming ever cheaper, while com-
munication encounters fundamental physical limitations such as time-of-flight of electrical
signals, power-use in driving long wires/cables, etc. In comparison with off-chip, on-chip
communication is significantly cheaper. There is room for lots of wires on a chip. Thus

Paper #1: A Survey of Research and Practices of NoC 23

A Survey of Research and Practices of Network-on-Chip . 3

the shift to single-chip systems has relaxed system communication problems. However on-
chip wires do not scale in the same manner as does transistors, and as we shall see in the
following, the cost gap between computation and communication is widening. Meanwhile
the differences between on- and off-chip wires make the direct scaling down of traditional
multicomputer-networks sub-optimal for on-chip use.

In this survey we attempt to incorporate the whole range of design abstractions while
relating to the current trends of intra-chip communication. With the Giga Transistor Chip
era close at hand, the solution space of intra-chip communication is far from trivial. Below
we have summarized a number of relevant key issues. Though not new, we find it worth-
while to go through them, as the NoC concept presents a possible unification of solutions
for these. In Section 3 and 4, we will look into the details of research being done in relation
to these issues, and their relevance for NoC.

—Electrical wires. Even though on-chip wires are cheap in comparison with off-chip
wires, on-chip communication is becoming still more costly, in terms of both power and
speed. As fabrication technologies scale down, wire resistance per mm is increasing
while wire capacitance does not change much, the major part of the wire capacitance
being due to edge capacitance [Ho et al. 2001]. For CMOS, the approximate point at
which wire delays begin to dominate gate delays, was the 0.25um generation for alu-
minum, and 0.18um for copper interconnects, as first projected in [SIA 1997]. Shrinking
metal pitches, in order to maintain sufficient routing densities, is appropriate at the lo-
cal level where wire lengths also decrease with scaling. But global wire lengths do not
decrease, and as local processing cycle times decrease, the time spend on global com-
munication, relative to the time spend on local processing, increases drastically. Thus in
future deep submicron (DSM) designs the interconnect effect will definitely dominate
performance [Sylvester and Keutzer 2000]. Figure 2 taken from the International Tech-
nology Roadmap for Semiconductors [ITRS 2001] shows the projected relative delay
for local wires, global wires and logic gates of the near future. Another issue of pressing
importance concerns signal integrity. In DSM technologies, the wire models are unreli-
able, due to issues like fabrication uncertainties, crosstalk, noise sensitivity etc. These
issues are especially applicable to long wires.

Due to these effects of scaling, it has become necessary to differentiate between local
and global communication, and as transistors shrink the gap is increasing. The need for
global communication schemes supporting single-chip systems has emerged.

—System synchronization. As chip technologies scale and chip speeds increase, it is
becoming harder to achieve global synchronization. The drawbacks of the predominant
design style of digital integrated circuits, strict global synchrony, are growing relative
to the advantages. The clocktree needed to implement a globally synchronized clock
is demanding increasing portions of the power and area budget, and even so the clock
skew is claiming an ever larger relative part of the total cycle time available [Oklobdzija
and Sparsg 2002][Oberg 2003]. This has triggered work on skew tolerant circuit design
[Nedovic et al. 2003], which deals with clockskew by relaxing the need for timing
margins, and on the use of optical waveguides for on-chip clock distribution [Piguet
et al. 2004], the main purpose being to minimize power usage. Still power hungry skew
adjustment techniques such as phase locked loops (PLL) and delay locked loops (DLL),
traditionally used for chip-to-chip synchronization, are finding their way into single-chip
systems [Kurd et al. 2001][Xanthopoulos et al. 2001].

24

Overview of Networked MPSoC

T. Bjerregaard and S. Mahadevan

100

—— Gate Delay
(Fan out 4)

—=— Local Wire
(Scaled)

10 [—4— Global Wire
with Repeaters

= Global Wire
w/o Reapeaters

Relative Delay

#/"—_‘/‘/‘/“

0.1
250 180 130 90 65 45 32

Process Technology Node (nm)

Fig. 2. Projected relative delay for local and global wires and for logic gates of near future technologies [ITRS
2001].

As a reaction to the inherent limitations of global synchrony, alternative concepts such
as GALS (Globally Asynchronous Locally Synchronous systems) are being introduced.
A GALS chip is made up of patches of locally synchronous islands which communi-
cate asynchronously [Chapiro 1984][Meincke et al. 1999][Muttersbach et al. 2000].
There are two main advantageous aspects of this method. One is the reducing of the
synchronization problem to a number of smaller subproblems. The other relates to the
integration of different IP (Intellectual Property) cores, easing the building of larger sys-
tems from individual blocks with different timing characteristics.

—Design productivity. The exploding amount of processing resources available in chip

design together with a requirement for shortened design cycles have pushed the pro-
ductivity requirements on chip designers. Between 1997 and 2002 the market demand
reduced the typical design cycle by 50%. As a result of increased chip sizes, shrinking
geometries and the availability of more metal layers, the design complexity increased
50 times in the same period [OCPIP 2003a]. To keep up with these requirements, IP
reuse is pertinent. A new paradigm for design methodology is needed, which allows the
design effort to scale linearly with system complexity.

Abstraction at register transfer level (RTL) was introduced with the ASIC design flow
during the 90s, allowing synthesized standard cell design. This made it possible to de-
sign large chips within short design cycles, and synthesized RTL design is at present the
defacto standard for making large chips quickly. But the availability of on-chip resources
is outgrowing the productivity potential of even the ASIC design style. In order to utilize
the exponential growth in number of transistors on each chip, even higher levels of ab-
straction must be applied. This can be done by introducing higher level communication
abstractions, making for a layered design methodology enabling a partitioning of the de-
sign effort into minimally interdependent subtasks. Support for this at the hardware level
includes standard communication sockets, allowing IP cores from different vendors to
be plugged effortlessly together. Also, the development of design techniques to further
increase the productivity of designers, is important. New electronic design automation

Paper #1: A Survey of Research and Practices of NoC 25

A Survey of Research and Practices of Network-on-Chip . 5

AP RF i RF
Keypad DSP Keypad DSP

a) bus b) point-to-point c) network

Fig. 3. Examples of communication structures in Systems-on-Chip. a) traditional bus-based communication, b)
dedicated point-to-point links, ¢) a chip area network.

(EDA) tools are necessary for supporting a design flow which make efficient use of
such communication abstraction and design automation techniques, and which make for
seamless iterations across all abstraction levels. Pertaining to this, the complex, dynamic
interdependency of data — arising when using a shared media for data traffic — threat-
ens to foil the efforts of obtaining minimal interdependence between IP cores. Without
special quality-of-service (QoS) support, the performance of data communication may
become unwarrantly arbitrary [Goossens et al. 2005].

To ensure the effective exploitation of technology scaling, intelligent use of the available
chip design resources is necessary, at the physical as well as at the logical design level.
Enabling means are the development of effective and structured design methods and
EDA tools.

As seen above, the major driving factors for the development of global communication
schemes are the ever increasing density of on-chip resources, and the drive to utilize these
resources with a minimum of effort, as well as the need to counteract physical effects of
DSM technologies. The trend is towards a subdivision of processing resources into man-
ageable pieces. This helps reduce design cycle time since the entire chip design process
can be divided into minimally interdependent subproblems. Such a modular structure also
allows the use of modular verification methodologies, i.e. verification at low abstraction
level of cores (and communication network) individually, and at high abstraction level of
the system as a whole. Working at a high abstraction level allows a great degree of freedom
from lower level issues. It also lends towards a differentiation of local and global commu-
nication. As inter-core communication is becoming the performance bottleneck in many
multicore applications, the shift in design focus is from a traditional processing-centric to
a communication-centric one. One top level aspect of this involves the possibility to save
on global communication resources at the application level by introducing communication
aware optimization algorithms in compilers [Guo et al. 2000]. System level effects of
technology scaling are further discussed in [Catthoor et al. 2004].

A standardized global communication scheme, together with standard communication
sockets for IP cores, would make Lego-brick-like plug-and-play design styles possible,
allowing good use of the available resources and fast product design cycles.

1.2 NoCin SoC

Figure 3 show some examples of basic communication structures in a sample SoC, e.g.
a mobile phone. Since the introduction of the SoC concept in the 90s, the solutions for

26 Overview of Networked MPSoC

6 . T. Bjerregaard and S. Mahadevan

Table I. Bus-versus-network arguments (adapted from [Guerrier and Greiner 2000]).

Bus Pros & Cons Network Pros & Cons

Every unit attached adds parasitic capaci- | - | + | Only point-to-point one-way wires are used,

tance, therefore electrical performance de- for all network sizes, thus local performance

grades with growth. is not degraded when scaling.

Bus timing is difficult in a deep submicron | - | + | Network wires can be pipelined because

process. links are point-to-point.

Bus arbitration can become a bottleneck. | - | + | Routing decisions are distributed, if the net-

The arbitration delay grows with the number work protocol is made non-central.

of masters.

The bus arbiter is instance-specific. - | + | The same router may be reinstantiated, for
all network sizes.

Bus testability is problematic and slow. - | + | Locally placed dedicated BIST is fast and of-
fers good test coverage.

Bandwidth is limited and shared by all units | - | + | Aggregated bandwidth scales with the net-

attached. work size.

Bus latency is wire-speed once arbiter has | + | - | Internal network contention may cause a la-

granted control. tency.

Any bus is almost directly compatible with | + | - | Bus-oriented IPs need smart wrappers. Soft-

most available IPs, including software run- ware needs clean synchronization in multi-

ning on CPUs. processor systems.

The concepts are simple and well under- | + | - | System designers need reeducation for new

stood. concepts.

SoC communication structures have generally been characterized by custom designed ad
hoc mixes of buses and point-to-point links [Lahiri et al. 2001]. The bus builds on well
understood concepts and is easy to model. In a highly interconnected multicore system
however, it can quickly become a communication bottleneck. As more units are added to
it, the power usage per communication event grows as well, due to more attached units
leading to higher capacitive load. For multi-master busses, the problem of arbitration is
also not trivial. Table I summarizes the pros and cons of buses and networks. A crossbar
overcomes some of the limitations of the buses. However, it is not ultimately scalable and
as such an intermediate solution. Dedicated point-to-point links are optimal in terms of
bandwidth availability, latency and power usage, as they are designed especially for the
given purpose. Also, they are simple to design and verify, and easy to model. But the
number of links needed increases exponentially as the number of cores increases. Thus an
area and possibly a routing problem develops.

From the point of view of design-effort one may argue that in small systems of less
than 20 cores a custom designed communication structure is viable. But as the systems
grow and the design cycle time requirements decrease, the need for more generalized so-
lutions becomes pressing. For maximum flexibility and scalability, it is generally accepted
that a move towards a shared, segmented global communication structure is needed. This
notion translates into a data-routing network consisting of communication links and rout-
ing nodes, being implemented on the chip. In contrast to traditional SoC communication
methods outlined above, such a distributed communication media scales well with chip
size and complexity. Additional advantages include increased aggregated performance by
exploiting parallel operation.

From a technological perspective, a similar solution is reached: in DSM chips, long
wires must be segmented in order to avoid signal degradation, and busses are implemented

Paper #1: A Survey of Research and Practices of NoC 27

A Survey of Research and Practices of Network-on-Chip . 7

as multiplexed structures in order to reduce power and increase responsiveness. Hierar-
chical bus structures are also common, as a means to adhere to the given communication
requirements. The next natural step is to increase throughput by pipelining these structures.
Wires become pipelines and bus-bridges become routing nodes. Expanding on a structure
using these elements, one gets a simple network.

A common concept for segmented SoC communication structures is based on networks.
This is what is known as Network-on-Chip (NoC) [Agarwal 1999][Guerrier and Greiner
2000][Dally and Towles 2001][Benini and Micheli 2002][Jantsch and Tenhunen 2003].
As seen above, the distinction between different communication solutions is fading. NoC
is seen to be a unifying concept rather than an explicit new alternative. In the research
community, there are two widely held perceptions of NoC: (i) NoC as a subset of SoC,
and (ii) NoC as an extension of SoC. In the first view, NoC is defined strictly as the data-
forwarding communication fabric, i.e. the network and methods and modules used in
accessing the network. In the second view NoC is defined more broadly, also to encompass
issues dealing with the application, system architecture, and its impact on communication
or vice versa.

1.3 Outline

The purpose of this survey is to clarify the NoC concept and to map the scientific efforts
made into the area of NoC research. We will identify general trends, and explain a range of
issues which are important for state-of-the-art global chip-level communication. In doing
so we primarily take the first view of NoC, i.e. it being a subset of SoC, to focus and
structure the diverse discussion. From our perspective, the view of NoC as an extension of
SoC muddles the discussion with topics common to any large-scale IC design effort such
as: partitioning and mapping application, co-design, compiler choice, etc.

The rest of the survey is organized as follows. In Section 2 we will discuss the basics
of NoC. We will give a simple NoC example, address some relevant system level architec-
tural issues, and relate the basic building blocks of NoC to abstract network layers, and to
research areas. In Section 3 we will go into more details of existing NoC research. This
section is partitioned according to the research areas defined in Section 2. In Section 4 we
discuss high abstraction level issues such as design space exploration and modeling. These
are issues often applicable to NoC only in the view of it being an extension of SoC, but
we treat specifically issues of relevance to NoC-based designs and not to large scale IC
designs in general. In Section 5 performance analysis is addressed. Section 6 presents a
set of case studies, describing a number of specific NoC implementations, and Section 7
summarizes the survey.

2. NOC BASICS

In this section the basics of NoC are uncovered. First a component based view will be
presented, introducing the basic building blocks of a typical NoC. Then we shall look at
system level architectural issues relevant to NoC-based SoC designs. After this, a layered
abstraction based view will be presented, looking at network abstraction models, in par-
ticular OSI, and the adaption of such for NoC. Using the foundations established in this
section, we will go into further details of specific NoC research in Section 3.

28 Overview of Networked MPSoC

8 . T. Bjerregaard and S. Mahadevan

[e—— Core

% Network Adapter
Routing Node

[¢— Link

X

%
%
%

e —°

X

S

B0 %

Fig. 4. Topological illustration of a 4-by-4 grid structured NoC, indicating the fundamental components.

2.1 A Simple NoC Example

Figure 4 shows a sample NoC structured as a 4-by-4 grid, which provides global chip-
level communication. Instead of busses and dedicated point-to-point links, a more general
scheme is adapted, employing a grid of routing nodes spread out across the chip, connected
by communication links. For now we will adapt a simplified perspective in which the NoC
contains the following fundamental components:

—Network Adapters implement the interface by which cores (IP blocks) connect to the
NoC. Their function is to decouple computation (the cores) from communication (the
network).

—Routing Nodes route the data according to chosen protocols. They implement the rout-
ing strategy.

—ULinks connect the nodes, providing the raw bandwidth. They may consist of one or
more logical or physical channels.

Figure 4 covers only the topological aspects of the NoC. The NoC in the figure could thus
employ packet or circuit switching or something entirely different, and be implemented
using asynchronous, synchronous or other logic. In Section 3 we will go into details of
specific issues with an impact on the network performance.

2.2 Architectural Issues

The diversity of communication in the network is affected by architectural issues such as
system composition and clustering. These are general properties of SoC, but since they
have direct influence on the design of the system level communication infrastructure we
find it worthwhile to go through them here.

Figure 5 illustrates how system composition may be categorized along the axes of ho-
mogenity and granularity of system cores. The figure also clarifies a basic difference be-
tween NoC and networks for more traditional parallel computers; the latter have generally

Paper #1: A Survey of Research and Practices of NoC 29

A Survey of Research and Practices of Network-on-Chip . 9
] | (|
fine grained |:||:| S [
'y D — =0 [}
|:l|: 5 000000
SHeT |
mnlsisl 0000000
=]
coarse grained |:| |:|
hetero:geneous homoge:eous

Fig. 5. System composition may be categorized along the axes of homogenity and granularity of system compo-
nents.

been homogeneous and coarse grained, where as NoC-based systems implement a much
higher degree of variety in composition, and in traffic diversity.

Clustering deals with the localization of portions of the system. Such localization may
be logical or physical. Logical clustering can be a valuable programming tool. It can
be supported by the implementation of hardware primitives in the network, e.g. flexi-
ble addressing schemes or virtual connections. Physical clustering, based on pre-existing
knowledge of traffic patterns in the system, can be used to minimize global communication,
thereby minimizing the total cost of communicating, power- and performance-wise.

Generally speaking, reconfigurability deals with the ability to allocate available re-
sources for specific purposes. In relation to NoC-based systems, reconfigurability concerns
how the NoC, a flexible communication structure, can be used to make the system recon-
figurable from an application point of view. A configuration can be established e.g. by
programming connections into the NoC. This resembles the reconfigurability of an FPGA,
though NoC-based reconfigurability is most often of coarser granularity. In NoC, the re-
configurable resources are the routing nodes and links rather than wires.

Much research work has been done on architecturally oriented projects, in relation to
NoC-based systems. Such work is important in that it provides motivation for the intro-
duction of NoC. The main issue in architectural decisions is the balancing of flexibility,
performance and hardware costs of the system as a whole. As the underlying technol-
ogy advances, the trade-off spectrum is continually shifted, and the viability of the NoC
concept has opened up to a communication-centric solution space, which is what current
system level research explores.

At one corner of the architecural space outlined in Figure 5, is the Pleiades architec-
ture [Zhang et al. 2000] and its instantiation the Maia processor. A microprocessor is
combined with a relatively fine grained heterogeneous collection of ALUs, memories, FP-
GAs, etc. An interconnection network allows arbitrary communication between modules
of the system. The network is hierarchical and employs clustering in order to provide the

30 Overview of Networked MPSoC

10 . T. Bjerregaard and S. Mahadevan
OSl layer Research area
Application/ Destination
Presentation messages/ Core System
______________________________________ transactions ——— a4 .
Transport packets / streams \Aﬂater Adapter
Network Network
Link/Data Link Link

flits/phits

Fig. 6. The fbw of data from source to sink, through the NoC components, with an indication of the types of
datagrams and research area.

required communication flexibility while maintaining good energy-efficiency.

At the opposite corner are a number of works, implementing homogeneous, coarse
grained multiprocessors. In the Smart Memories [Mai et al. 2000] a hierarchical network
is used, with physical clustering of four processors. The flexibility of the local cluster
network is used as a means for reconfigurability, and the effectiveness of the platform is
demonstrated by mimicking two machines on far ends of the architectural spectrum, the
Imagine streaming processor and Hydra multiprocessor, with modest performance degra-
dation. The global NoC is not described however. In the RAW architecture [Taylor et al.
2002] on the other hand, the NoC which interconnects the processor tiles is described
in detail. It consists of a static network, in which the communication is preprogrammed
cycle by cycle, and a dynamic network. The reason for implementing two physically sepa-
rate networks is to accommodate different types of traffic in general purpose systems (see
Section 4.3 concerning traffic characterization). The Eclipse [Forsell 2002] is another sim-
ilarly distributed multiprocessor architecture, in which the interconnection network plays
an important role. Here, the NoC is a key element in supporting a sofisticated parallel
programming model.

2.3 Network Abstraction

The term NoC is used in research today in a very broad sense ranging from gate-level
physical implementation, across system layout aspects and applications, to design method-
ologies and tools. A major reason for the wide-spread adaptation of network terminology
lies in the readily available and widely accepted abstraction models for networked com-
munication. The OSI model of layered network communication can easily be adapted for
NoC usage, as done in [Benini and Micheli 2001] and [Arteris 2005]. In the following we
will look at network abstraction, and make some definitions to be used later in the survey.

To better understand the approaches of different groups involved in NoC, we have par-
titioned the spectrum of NoC research into four areas: 1) System, 2) Network Adapter,
3) Network and 4) Link research. Figure 6 shows the flow of data through the network,

Paper #1: A Survey of Research and Practices of NoC 31

A Survey of Research and Practices of Network-on-Chip . 11

indicating the relation between these research areas, the fundamental components of NoC
and the OSI layers. Also indicated is the basic datagram terminology.

The System encompasses applications (processes) and architecture (cores and network).
At this level, most of the network implementation details may still be hidden. Much re-
search done at this level is applicable to large scale SoC design in general. The Network
Adapter (NA) decouples the cores from the network. It handles the end-to-end flow control,
encapsulating the messages or transactions generated by the cores for the routing strategy
of the Network. These are broken into packets which contain information about their des-
tination, or connection-oriented streams which do not, but have had a path setup prior to
transmission. The NA is the first level which is 'network aware’. The Network consists
of the routing nodes, links, etc, defining the topology and implementing the protocol and
the node-to-node flow control. The lowest level is the Link level. At this level, the basic
datagram are flits (flow control units), node level atomic units from which packets and
streams are made up. Some researchers operate with yet another subdivision, namely phits
(physical units), which are the minimum size datagram that can be transmitted in one link
transaction. Most commonly flits and phits are equivalent, though in a network employ-
ing highly serialized links, each flit could be made up of a sequence of phits. Link level
research deals mostly with encoding and synchronization issues. The presented datagram
terminology seems to be generally accepted, though no standard exists.

In a NoC, the layers are generally more closely bound than in a macro network. Issues
arising often have a more physically related flavor, even at the higher abstraction levels.
OSI specifies a protocol stack for multicomputer networks. Its aim is to shield higher
levels of the network from issues of lower levels, in order to allow communication between
independently developed systems, e.g. of different manufacturers, and to allow on-going
expansion of systems. In comparison with macro networks, NoC benefits from the system
composition being completely static. The network can be designed based on knowledge
of the cores to be connected, and possibly also on knowledge of the characteristics of the
traffic to be handled, as demonstrated in e.g. [Bolotin et al. 2004] and [Goossens et al.
2005]. Awareness of lower levels can be beneficial, as it can lead to higher performance.
The OSI layers, which are defined mainly on a basis of pure abstraction of communication
protocols, thus cannot be directly translated into the research areas defined here. With this
in mind, the relation established in Figure 6 is to be taken as a conceptual guideline.

3. NOC RESEARCH

In this section we provide a review of the approaches of various research groups. Figure 7
illustrates a simplified classification of this research. The text is structured based on the
layers defined in Section 2.3. Since we consider NoC as a subset of SoC, system level
research is dealt with separately in Section 4.

3.1 Network Adapter

The purpose of the Network Adapter (NA) is to interface the core to the network, and make
communication services transparently available with a minimum of effort from the core.
At this point, the boundary between computation and communication is specified.

As illustrated in Figure 8, the NA component implements a Core Interface (CI) at the
core side and a Network Interface (NI) at the network side. The function of the NA is
to provide high-level communication services to the core by utilizing primitive services
provided by the network hardware. Thus the NA decouples the core from the network,

32 Overview of Networked MPSoC

12 . T. Bjerregaard and S. Mahadevan

NoC Research
— System Level

I Design Methodology and Abstraction: co-exploration, modeling.

— Architecture Domain: system composition, clustering, reconfigurability.
—— Traffic Characterization: latency-critical, data-streams and best-effort.
— Network Adapters

Functionality: encapsulation, service managment.

Sockets: plug and play, IP reuse.
— Network

— Topology: regular vs. irregular topologies, switch layout.

Protocol: routing, switching, control schemes.
—— Flow control: deadlock avoidance, virtual channels, buffering.
Quality-of-Service: service classification and negotiation.

Features: error-correction, broadcast/multicast/narrowcast, virtual wires.

— Link Level
L synchronization, reliability, encoding.

Fig. 7. NoC Research Area Classification. This classification, which also forms the structure of this section, is
meant as a guideline to evaluate NoC research, and not as a technical categorization.

implementing the network end-to-end flow control, facilitating a layered system design
approach. The level of decoupling may vary. A high level of decoupling allows for easy
reuse of cores. This makes possible a utilization of the exploding resources available to
chip designers, and greater design productivity is achieved. On the other hand, a lower
level of decoupling (a more network aware core) has the potential to make more optimal
use of the network resources.

In this section, we first address the use of standard sockets. We then discuss the abstract
functionality of the NA. Finally, we talk about some actual NA implementations, which
also address issues related to timing and synchronization.

3.1.1 Sockets. The CI of the NA may be implemented to adhere to a SoC socket stan-
dard. The purpose of a socket is to orthogonalize computation and communication. Ideally
a socket should be completely NoC implementation agnostic. This will facilitate the great-
est degree of reusability, because the core adheres to the specification of the socket alone,
independently of the underlying network hardware. One commonly used socket is the
Open Core Protocol (OCP) [OCPIP 2003b][Haverinen et al. 2002]. The OCP specifica-
tion defines a flexible family of core-centric protocols for use as native core interface in
on-chip systems. The three primary properties envisioned in OCP include: (i) architecture
independent design reuse, (ii) feature specific socket implementation, and (iii) simplifica-
tion of system verification and testing. OCP addresses not only data-flow signaling, but
also uses related to errors, interrupts, flags and software flow control, control and status,
and test. Another previously proposed standard is the Virtual Component Interface (VCI)
[VSI Alliance 2000] used in the SPIN [Guerrier and Greiner 2000] and Proteo [Siguenza-
Tortosa et al. 2004] NoCs. In [Radulescu et al. 2004] support for the Advanced eXtensible
Interface (AXI) [ARM 2004] and Device Transaction Level (DTL) [Philips Semiconduc-
tors 2002] protocols was also implemented in an NA design.

Paper #1: A Survey of Research and Practices of NoC 33

A Survey of Research and Practices of Network-on-Chip . 13

Core Core Interface (Cl)

high-level services

Network Adapter

\

Network Network Interface (NI)

communication
primitives

Fig. 8. The Network Adapter (NA) implements two interfaces, the Core Interface (CI) and the Network Interface
(NI). The CI provides high-level communication services to the core, based on primitive services provided by the
network through the NI.

3.1.2 NA Services. Basically, the NA provides encapsulation of the traffic for the un-
derlying communication media and management of services provided by the network. En-
capsulation involves handling of end-to-end flow control in the network. This may include
global addressing and routing tasks, re-order buffering and data acknowledgement, buffer
management to prevent network congestion, e.g. based on credits, packet creation in a
packet-switched network, etc.

Cores will content for network resources. These may be provided in terms of service
quantification as e.g. bandwidth and/or latency guarantees (see also Sections 3.2.4 and 5).
Service management concerns setting up circuits in a circuit-switched network, book keep-
ing tasks such as keeping track of connections, and matching responses to requests. An-
other task of the NA could be to negotiate the service needs between the core and the
network.

3.1.3 NA Implementations. Many researchers have realized that the NA holds the key
to unlocking the potential of a NoC. A clear understanding of its role is essential to suc-
cessful NoC design. Muttersbach, Villiger and Fichtner [Muttersbach et al. 2000] address
synchronization issues, proposing a design of an asynchronous wrapper for use in a prac-
tical GALS design. Here the synchronous modules are equipped with asynchronous wrap-
pers which adapt their interfaces to the self-timed environment. The packetization occurs
within the synchronous module. The wrappers are assembled from a concise library of pre-
designed technology-independent elements and provide high speed data transfer. Another
mixed asynchronous/synchronous NA architecture is proposed in [Bjerregaard et al. 2005].
Here, a synchronous OCP interface connects to an asynchronous, message-passing NoC.
Packetization is performed in the synchronous domain, while sequencing of flits is done
in the asynchronous domain. This makes the sequencing independent of the speed of the
OCP interface, while still taking advantage of synthesized synchronous design, for main-
taining a flexible packet format. Thus the NA leverages the advantages particular to either
circuit design style. In [Radulescu et al. 2004] a complete NA design for the ZTHEREAL
NoC is presented, which also offers a shared-memory abstraction to the cores. It provides

34 Overview of Networked MPSoC

14 . T. Bjerregaard and S. Mahadevan

(b) Torus (c) Binary Tree

Fig. 9. Regular forms of topologies scale predictably with regards to area and power. Examples are (a) 4-ary
2-cube mesh, (b) 4-ary 2-cube torus and (c) binary (2-ary) tree.

(a) Irregular Connectivity (b) Mixed Topology

Fig. 10. Irregular forms of topologies are derived by altering the connectivity of a regular structure such as shown
in (a) where certain links from a mesh have been removed, or by mixing different topologies such as in (b) where
aring co-exists with a mesh.

compatibility to existing on-chip protocols such as AXI, DTL and OCP, and allows easy
extension to other future protocols as well.

However, the cost of using standard sockets is not trivial. As demonstrated in the HER-
MES NoC [Ost et al. 2005], the introduction of OCP makes the transactions upto 50%
slower compared to the native core interface. An interesting design trade-off issue is the
partitioning of the NA functions between software (possibly in the core) and hardware
(most often in the NA). In [Bhojwani and Mahapatra 2003] a comparison of software and
hardware implementations of the packetization task was undertaken, the software taking
47 cycles to complete, while the hardware version taking only 2 cycles. In [Radulescu
et al. 2004] a hardware implementation of the entire NA introduces a latency overhead of
between 4 and 10 cycles, pipelined to maximize throughput. The NA in [Bjerregaard et al.
2005] takes advantage of the low forward latency of clockless circuit techniques, introduc-
ing an end-to-end latency overhead of only 3 to 5 cycles for writes and 6 to 8 cycles for
reads, which include data return.

3.2 Network Level

The job of the network is to deliver messages from their source to their designated destina-
tion. This is done by providing the hardware support for basic communication primitives.
A well-built network, as noted by Dally and Towles [Dally and Towles 2001], should ap-
pear as a logical wire to its clients. An on-chip network is defined mainly by its topology
and the protocol implemented by it. Topology concerns the layout and connectivity of the
nodes and links on the chip. Protocol dictates how these nodes and links are used.

Paper #1: A Survey of Research and Practices of NoC 35

A Survey of Research and Practices of Network-on-Chip . 15

3.2.1 Topology. One simple way to distinguish different regular topologies is in terms
of k-ary n-cube (grid-type), where k is the degree of each dimension (i.e. number of nodes)
and n is the dimensions (Figure 9), first described by Dally [Dally 1990] for multicomputer
networks. The k-ary tree and the k-ary n-dimensional fat tree are two alternate regular
forms of networks explored for NoC. The network area and power consumption scales
predictably for increasing size of regular forms of topology. Most NoCs implement reg-
ular forms of network topology, that can be laid out on a chip surface (a 2-dimensional
plane) e.g. k-ary 2-cube, commonly known as grid-based topologies. The Octagon NoC
demonstrated in [Karim et al. 2001][Karim et al. 2002] is an example of a novel regular
NoC topology. Its basic configuration is a ring of 8 nodes connected by 12 bi-directional
links, which provides two-hop communication between any pair of nodes in the ring, and
a simple, shortest-path routing algorithm. Such rings are then connected edge to edge, to
form a larger, scalable network. For more complex structures such as trees, finding the
optimal layout is a challenge in its own right.

Besides the form, the nature of links adds an additional aspect to the topology. In k-ary
2-cube networks, popular NoC topologies based on the nature of link are: the mesh which
uses bidirectional links, and torus using unidirectional links. For a torus, a folding can be
employed to reduce long wires. In the NOSTRUM NoC presented in [Millberg et al. 2004]
a folded torus is discarded in favor of a mesh, with the argument that it has longer delays
between routing nodes. Figure 9 shows examples of regular forms of topology. Generally,
mesh topology makes better use of links (utilization) while tree-based topologies are useful
for exploiting locality of traffic.

Irregular forms of topologies are derived by mixing different forms, in a hierarchical,
hybrid or asymmetric fashion, as seen in Figure 10. Irregular forms of topologies scale
non-linearly with regards to area and power. These are usually based on the concept of
clustering. A small private/local network often implemented as a bus, [Mai et al. 2000]
and [Wielage and Goossens 2002], for local communication with k-ary 2-cube global com-
munication is a favored solution. In [Pande et al. 2005], the impact of clustering on five
NoC topologies is presented. It shows 20% to 40% reduction in bit-energy for the same
amount of throughput, due to traffic localization.

With regards to the presence of a local traffic source or sink connected to the node, direct
networks are those that have at least one core attached to each node, indirect networks on
the other hand have a subset of nodes not connected to any core, performing only network
operations; as is generally seen in tree-based topology where cores are connected at the
leaf nodes. The examples of indirect tree-based networks are fat-tree in SPIN [Guerrier
and Greiner 2000] and butterfly in [Pande et al. 2003]. The fat-tree used in SPIN is proven
in [Leiserson 1985] to be most hardware efficient compared to any other network.

For alternate classifications of topology the reader is referred to [Aggarwal and Franklin
2002], [Jantsch 2003] and [Culler et al. 1998]. Culler in [Culler et al. 1998] combines pro-
tocol and geometry, to bring out a new type of classification which is defined as topology.

With regards to the routing nodes, a layout trade-off is the thin switch vs square switch
presented by Kumar et al [Kumar et al. 2002]. Figure 11 illustrates the difference between
these two layout concepts. A thin switch is distributed around the cores and wires are
routed across them. A square switch is placed on the crossings of dedicated wiring chan-
nels between the cores. It was found that the square switch is better for performance and
bandwidth while the thin switch requires relatively low area. The area overhead required to

36 Overview of Networked MPSoC

16 . T. Bjerregaard and S. Mahadevan

node

= core

node node

Thin Switch Square Switch

Fig. 11. Two layout concepts. The thin switch is distributed around the cores and wires are routed across it. The
square switch is placed on the crossings in dedicated channels between the cores.

implement a NoC is in any case expected to be modest. The processing logic of the router,
for a packet switched network, is estimated to be approximately between 2.0% [Pande et al.
2003] to 6.6% [Dally and Towles 2001] of the total chip area. In addition to this, the wiring
uses a portion of the upper two wiring layers.

3.2.2 Protocol. The protocol concerns the strategy of moving data through the NoC.
We define switching as the mere transport of data, while routing is the intelligence behind,
i.e. it determines the path of the data transport. This is in accordance with Culler et
al [Culler et al. 1998]. In the following these and other aspects of protocol commonly
addressed in NoC research, are discussed:

—Circuit vs packet switching: Circuit switching involves the circuit from source to des-
tination being setup and reserved until the transport of data is complete. Packet switched
traffic on the other hand is forwarded on a per-hop basis, each packet containing routing
information as well as data.

—Connection-oriented vs connection-less: Connection-oriented mechanisms involve a
dedicated (logical) connection path being established prior to data transport. The con-
nection is then terminated upon completion of communication. In connection-less
mechanisms the communication occurs in a dynamic manner, with no prior arrange-
ment between the sender and the receiver. Thus circuit switched communication is
always connection-oriented, whereas packet switched communication may be either
connection-oriented or connection-less.

—Deterministic vs adaptive routing: In a deterministic routing strategy, the traversal
path is determined by its source and destination alone. Popular deterministic routing
schemes for NoC are source routing and X-Y routing (2-d dimension order routing). In
source routing, the source core specifies the route to the destination. In X-Y routing the
packet follow the rows first then along the columns toward destination or vice versa. In
an adaptive routing strategy the routing path is decided on a per-hop basis. Adaptive
schemes involve dynamic arbitration mechanisms, e.g. based on local link congestion.
This results in more complex node implementations, but offers benefits like dynamic
load balancing.

Paper #1: A Survey of Research and Practices of NoC 37

A Survey of Research and Practices of Network-on-Chip . 17
Injection Ejection
Channel Channel
Y

]
L
L
L] |
2 T Q
g .
k= g
. 0
© Switch g
i -
= e
%]
A -

Routing and
Arbitration

Fig. 12. Generic router model. LC = link controller ([Duato et al. 2003], fig. 2.1)

—Minimal vs non-minimal routing: A routing algorithm is minimal if it always chooses
among shortest paths toward the destination; otherwise it is non-minimal.

—Delay vs loss: In the delay model datagrams are never dropped. This means that the
worst that can happen is the data being delayed. In the loss model datagrams can be
dropped. In this case the data needs to be retransmitted. The loss model introduces
some overhead in that the state of the transmission, successful or failed, must somehow
be communicated back to the source. There are however some advantages involved in
dropping datagrams, e.g. as a means of resolving network congestion.

—Central vs distributed control: In centralized control mechanisms, routing decisions
are made globally, e.g. bus arbitration. In distributed control, most common for seg-
mented interconnection networks, the routing decisions are made locally.

The protocol defines the use of the available resources, and thus the node implementation
reflects design choices based on the above listed terms. In Figure 12, taken from [Duato
et al. 2003], Duato et al. have clearly identified the major components of any routing node
i.e.: buffers, switch, routing and arbitration unit and link controller. The switch connects
the input buffers to the output buffers, while the routing and arbitration unit implements
the algorithm that dictates these connections. In a centrally controlled system, the routing
control would be common for all nodes, and a strategy might be chosen which guarantees
no traffic contention. Thus no arbitration unit would be necessary. Such a scheme can be
employed in a NoC in which all nodes have a common sense of time, as done in [Millberg
et al. 2004]. Here the NOSTRUM NoC implements an explicit time division multiplexing
mechanism which the authors call Temporally Disjoint Networks (TDN). Packets cannot
collide, if they are in different TDNs. This is similar to the slot allocation mechanism in
the ETHEREAL NoC [Goossens et al. 2005].

38 Overview of Networked MPSoC

18 . T. Bjerregaard and S. Mahadevan

The optimal design of the switching fabric itself relates to the services offered by the
router. In [Kim et al. 2005] a crossbar switch is proposed, which offers adaptive bandwidth
control. This is facilitated by adding an additional bus, allowing the crossbar to be bypassed
during periods of congestion. Thus, the switch is shown to improve the throughput and
latency of the router by up to 27% and 41% respectively, at a modest area and power
overhead of 21% and 15% respectively. In [Bjerregaard and Sparsg 2005a] on the other
hand, a non-blocking switch is proposed, which allows for hard performance guarantees,
when switching connections within the router (more details in Section 3.2.4). By utilizing
the knowledge that only a limited number of flits can enter the router through each input
port, the switch can be made to scale linearly rather than exponentially, with the number
of connections on each port. In [Leroy et al. 2005] a switch similarly provides guaranteed
services. This switch however switches individual wires on each port, rather than virtual
connections.

A quantitative comparison of connection-oriented and connection-less scheme for
MPEG-2 Video Decoder is presented in [Harmanci et al. 2005]. The connection-oriented
scheme is based on ATHEREAL, while the connection-less scheme is based on DiffServ
- a priority based packet scheduling NoC. The conclusions of tests, conducted in the pres-
ence of background traffic noise, show that (i) the individual end-to-end delay is lower in
connection-less than in connection-oriented one, due to better adaptation of the first ap-
proach to variable bit-rates of the MPEG video flows, and (ii) the connection-less schemes
present a higher stability towards a wrong decision in the type of service to be assigned to
a flow.

Concerning the merits of adaptive routing, versus deterministic, there are different opin-
ions. In [Neeb et al. 2005] a comparison of deterministic (dimension-order) and adaptive
(negative first and planar-adaptive) routing, applied to mesh, torus and cube networks, was
made. For chips performing interleaving in high throughput channel decoder wireless ap-
plications, dimension-order routing scheme was found to be inferior compared to adaptive
schemes, when using lower dimension NoCs topologies. However, it was shown to be the
best-choice, due to low area and high thoughput characteristics, for higher dimension NoC
topologies. The impact on area and throughput, of input and output buffer queues in the
router, was also discussed. In [de Mello et al. 2004], the performance of minimal routing
protocols in the HERMES [Moraes et al. 2004] NoC were investigated: one determinis-
tic protocol (XY-routing) and three partially adaptive protocols (west-first, north-last and
negative-first routing). While the adaptive protocols can potentially speed up the deliv-
ery of individual packets, it was shown that the deterministic protocol was superior to the
adaptive ones from a global point. The reason is that adaptive protocols tend to concentrate
the traffic in the center of the network, resulting in increased congestion here.

The wide majority of NoC research is based on packet switching networks. In addition,
most are delay-based since the overhead of keeping account of packets being transmitted,
and of retransmitting dropped packets is high. Most often connection-less routing is em-
ployed for best-effort (BE) traffic (Section 4.3), while connection-oriented routing is used
to provide service guarantees (Section 3.2.4). In SoCBUS [Sathe et al. 2003] a different
approach is taken, in that a connection-oriented strategy is used to provide BE traffic rout-
ing. Very simple routers establish short lived connections, setup using BE routed control
packets, which provide a very high throughput of 1.2GHz in a 0.18um CMOS process.
Drawbacks are the time spent during the setup phase, which requires a path acknowledge,

Paper #1: A Survey of Research and Practices of NoC 39

A Survey of Research and Practices of Network-on-Chip . 19

Table II. Protocol-Datagram Table.

Protocol Router Stalling
Latency | Storage
store-and-forward packet packet at two nodes and the link be-
tween them
wormhole header header | atall nodes and links
spanned by the packet
virtual cut-through header packet at the local node

and the fact that only a single connection can be active on each link at any given time. A
similarly connection-oriented NoC is aSoC [Liang et al. 2000], which implements a small
reconfigurable communication processor in each node. This processor has interconnect
memory that programs the crossbar for data transfer from different sources across the node
on each communication cycle.

The most common forwarding strategies are store-and-forward, wormhole and virtual
cut-through. These will be explained below. Table II summarizes the latency penalty and
storage cost in each node for each of these schemes.

Store-and-forward. Store-and-forward routing is a packet switched protocol, in which
the node stores the complete packet and forwards it based on the information within its
header. Thus the packet may stall if the router in the forwarding path does not have suffi-
cient buffer space. The CLICHE [Kumar et al. 2002] is an example of a store-and-forward
NoC.

Wormbhole. Wormhole routing combines packet switching with the data streaming qual-
ity of circuit switching, to attain a minimal packet latency. The node looks at the header
of the packet to determine its next hop and immediately forwards it. The subsequent flits
are forwarded as they arrive. This causes the packet to worm its way through the network,
possibly spanning a number of nodes, hence the name. The latency within the router is not
that of the whole packet. A stalling packet however has the unpleasantly expensive side
effect of occupying all the links that the worm spans. In Section 3.2.3 we shall see how vir-
tual channels can relieve this side effect at a marginal cost. In [Al-Tawil et al. 1997] a well
structured survey of wormhole routing techniques is provided and a comparison between
a number of schemes is made.

Virtual cut-through. Virtual cut-through routing has a forwarding mechanism similar
to that of wormhole routing. But before forwarding the first flit of the packet, the node
waits for a guarantee that the next node in the path will accept the entire packet. Thus if
the packet stalls, it aggregates in the current node without blocking any links.

While macro networks usually employ store-and-forward routing, the prevailing scheme
for NoC is wormhole routing. Advantages are low latency and the avoidance of area costly
buffering queues. A special case of employing single flit packets is explored in [Dally
and Towles 2001]. Here the data and header bits of the packets are transmitted separately
and in parallel across a link, and the data path is quite wide (256 bits). Each flit is thus a
packet in its own right, holding information about its destination. Hence, unlike wormhole
routing, the stream of flits may be interlaced with other streams and stalling is restricted to
the local node. Still single flit latency is achieved. The cost is a higher header-to-payload
ratio, resulting in larger bandwidth overhead.

40 Overview of Networked MPSoC

20 . T. Bjerregaard and S. Mahadevan

Il buffer occupied by A
buffer occupied by B

[] empty buffer
A
stalled A destination B stalled A destination B
Incomming data stream B is stalled by stream A Virtual channels allow stream B to pass stalled stream A

Fig. 13. Using virtual channels, independently buffered logical channels sharing a physical link, to prevent stalls
in the network. Streams on different VCs can pass each other, while streams sharing buffer queues may stall.

3.2.3 Flow Control. Peh and Dally have defined flow control as the mechanism that
determines the packet movement along the network path [Peh and Dally 2001]. Thus it
encompasses both global and local issues. Flow control mainly addresses the issue of
ensuring correct operation of the network. In addition, it can be extended to include also
issues on utilizing network resources optimally and providing predictable performance of
communication services. Flow control primitives thus also form the basis of differentiated
communication services. This will be discussed further in Section 3.2.4

In the following, we first discuss the concept of virtual channels and their use in flow
control. We then discuss a number of works in the area, and finally we address buffering
issues.

Virtual channels (VCs): VCs is the sharing of a physical channel by several logically
separate channels with individual and independent buffer queues. Generally, between 2 and
16 VCs per physical channel have been proposed for NoC. Their implementation results in
an area and possibly also power, and latency overhead, due to the cost of control and buffer
implementation. There are however a number of advantageous uses. Among these are:

—Avoiding deadlocks. Since VCs are not mutually dependent on each other, adding VCs
to links, and choosing the routing scheme properly, one may break cycles in the resource
dependency graph (see below) [Dally and Seitz 1987].

—Optimizing wire utilization. In future technologies, wire costs are projected to domi-
nate over transistor costs [ITRS 2003]. Letting several logical channels share the phys-
ical wires, the wire utilization can be greatly increased. Advantages include reduced
leakage power and wire routing congestion.

—Improving performance. VCs can generally be used to relax the inter-resource depen-
dencies in the network, thus minimizing the frequency of stalls. In [Dally 1992] it is
shown that dividing a fixed buffer size across a number of VCs improve the network
performance at high loads. In [Duato and Pinkston 2001] the use of VCs to implement
adaptive routing protocols is presented. [Vaidya et al. 2001] and [Cole et al. 2001]
discusses the impact and benefit of supporting VCs.

—Providing diffentiated services. Quality-of-service (QoS, see Section 3.2.4) can be
used as a tool to optimize application performance. VCs can be used to implement such
services, by allowing high priority data streams to over take those of lower priority [Fe-
licijan and Furber 2004][Rostislav et al. 2005][Beigne et al. 2005], or by providing
guaranteed service levels on dedicated connections [Bjerregaard and Sparsg 2005a].

Paper #1: A Survey of Research and Practices of NoC 41

A Survey of Research and Practices of Network-on-Chip . 21

To ensure correct operation, the flow control of the network must first and foremost avoid
deadlock and livelock. Deadlock occurs when network resources (e.g. link bandwidth or
buffer space) are suspended waiting for each other to be released, i.e. where one path is
blocked leading to other being blocked in a cyclic fashion [Dally and Seitz 1987]. It can
be avoided by breaking cyclic dependencies in the resource dependency graph. Figure 13
illustrates how VCs can be used to prevent stalls due to dependencies on shared network
resources. It is seen how in a network without VCs, stream B is stalled by stream A. In a
network with VCs however, stream B is assigned to a different VC with a separate buffer
queue. Thus even though stream A is stalled stream B is enabled to pass.

Livelock occurs when resources constantly change state waiting for other to finish. Live-
lock is less common but may be expected in networks where packets are reinjected into the
network, or where back-stepping is allowed, e.g. during non-minimal adaptive routing.

Methods to avoid deadlock and livelock can be applied either locally at the nodes with
support from service primitives e.g. implemented in hardware, or globally by ensuring
logical separation of data streams by applying end-to-end control mechanisms. While local
control is most widespread, the latter was done in [Millberg et al. 2004] using the concept
of Temporally Disjoint Networks which was described in Section 3.2.2. As mentioned
above, dimension-ordered routing is a popular choice for NoC, because it provides freedom
from deadlock, without the need to introduce VCs. The turn model |Glass and Ni 1994]
also does this, but allows more flexibility in routing. A related approach is the odd-even
turn model [Chiu 2000] for designing partially adaptive deadlock-free routing algorithms.
Unlike the turn model, which relies on prohibiting certain turns in order to achieve freedom
from deadlock, this model restricts the locations where some types of turns can be taken.
As a result, the degree of routing adaptiveness provided is more even for different source-
destination pairs. The ANoC [Beigne et al. 2005] implements this routing scheme.

The work of José Duato has addressed the mathematical foundations of routing al-
gorithms. His main interests have been in the area of adaptive routing algorithms for
multicomputer networks. Most of the concepts are directly applicable to NoC. In [Duato
1993] the theoretical foundation for deadlock-free adaptive routing in wormhole networks
is given. This builds on early work by Dally, which showed that avoiding cyclic depen-
dencies in the channel dependency graph of a network, deadlock-free operation is assured.
Duato expands the theory to allow adaptive routing, and furthermore shows that the ab-
sence of cyclic dependencies is too restrictive. It is enough to require the existence of
a channel subset which defines a connected routing subfunction with no cycles in its ex-
tended channel dependency graph. The extended channel dependency graph is defined in
[Duato 1993] as a graph for which the arcs are not only pairs of channels for which there is
a direct dependency, but also pairs of channels for which there is an indirect dependency.
In [Duato 1995] and [Duato 1996] this theory is refined and extended to cover also cut-
through and store-and-forward routing. In [Duato and Pinkston 2001] a general theory is
presented, which glues together several of the previously proposed theories into a single
theoretical framework.

In [Dally and Aoki 1993] Dally has investigated a hybrid of adaptive and deterministic
routing algorithms using VCs. Packets are routed adaptively until a certain number of
hops have been made in a direction away from the destination. There after, the packets
are routed deterministically, in order to be able to guarantee deadlock-free operation. Thus
the benefits of adaptive routing schemes are approached, while keeping the simplicity and

42 Overview of Networked MPSoC

22 . T. Bjerregaard and S. Mahadevan

predictability of deterministic schemes.

Other research has addressed flow control approaches purely for improving perfor-
mance. In [Peh and Dally 1999] and [Kim et al. 2005] look-ahead arbitration schemes
are used to allocate link and buffer access ahead of data arrival, thus reducing the end-to-
end latency. This results in increased bandwidth utilization as well. Peh and Dally use
virtual channels, and their approach is compared with simple virtual-channel flow control,
as described in [Dally 1992]. It shows an improvement in latency of about 15%, across
the entire spectrum of background traffic load, and network saturation occurs at a load
20% higher. Kim et al do not use virtual channels. Their approach is shown to improve la-
tency considerably (by 42%) when network load is low (10%) with much less improvement
(13%) when network load is high (50%). In [Mullins and Moore 2004] a virtual-channel
router architecture for NoC is presented, which optimizes routing latency by hiding control
overheads, in a single cycle implementation.

Buffering: Buffers are an integral part of any network router. In by far the most NoC
architectures, buffers account for the main part of the router area. As such, it is a major
concern to minimize the amount of buffering necessary, under given performance require-
ments. There are two main aspects of buffers: (i) their size and (ii) their location within the
router. In [Kumar et al. 2002] it is shown that increasing the buffer size is not a solution
towards avoiding congestion. At best, it delays the onset of congestion, since the through-
put is not increased. The performance improved marginally in relation to the power and
area overhead. On the other hand, buffers are useful to absorb bursty traffic, thus leveling
the bursts.

Tamir and Frazier [Tamir and Frazier 1988] have provided an comprehensive overview
of advantages and disadvantages of different buffer configurations (size and location)
and additionally proposed a buffering strategy called dynamically allocated multi-queue
(DAMQ) buffer. In the argument of input vs. output buffers, for equal performance the
queue length in a system with output port buffering is always found to be shorter than the
queue length in an equivalent system with input port buffering. This is so, since in a routing
node with input buffers, a packet is blocked if it is queued behind a packet whose output
port is busy (head-of-the-line-blocking). With regards to centralized buffer pools shared
between multiple input and output ports vs distributed dedicated FIFOs, the centralized
buffer implementations are found to be expensive in area due to overhead in control imple-
mentation, and become bottlenecks during periods of congestion. The DAMQ buffering
scheme allows independent access to the packets destined for each output port, while ap-
plying its free space to any incoming packet. DAMQ shows better performance than FIFO
or statically-allocated shared buffer space per input-output port due to better utilization of
the available buffer space especially for non-uniform traffic. In [Rijpkema et al. 2001] a
somewhat similar concept called virtual output queuing is explored. It combines moderate
cost with high performance at the output queues. Here independent queues are designated
to the output channels thus enhancing the link utilization by bypassing blocked packets.

In [Hu and Marculescu 2004a] the authors present an algorithm which sizes the (input)
buffers in a mesh-type NoC, on basis of the traffic characteristics of a given application.
In all evaluated benchmarks, it was shown how such intelligent buffer allocation resulted
in about 85% savings in buffering resources, in comparison with uniform buffer sizes,
without any reduction in performance.

Paper #1: A Survey of Research and Practices of NoC 43

A Survey of Research and Practices of Network-on-Chip . 23

3.2.4 Quality of Service (QoS). QoS is defined as service quantification that is pro-
vided by the network to the demanding core. Thus it involves two aspects: (i) defining
the services represented by a certain quantification and (ii) negotiating the services. The
services could be low latency, high through-put, low power, bounds on jitter, etc. Nego-
tiating implies balancing the service demands of the core with the services available from
the network.

In [Jantsch and Tenhunen 2003](pgs: 61-82), Goossens et al characterize the nature of
QoS in relation to NoC. They identify two basic QoS classes, best-effort services (BE)
which offer no commitment, and guaranteed services (GS) which do. They also present
different levels of commitment, and discuss their effect on predictability of the communi-
cation behavior: 1) correctness of the result, 2) completion of the transaction, 3) bounds on
the performance. In [Rijpkema et al. 2001] argumentation for the necessity of a combina-
tion of BE and GS in NoC is provided. Basically, GS incur predictability, a quality which
is often desirable e.g. in real-time systems, while BE improves the average resource uti-
lization [Jantsch and Tenhunen 2003](pgs: 61-82)[Goossens et al. 2002][Rijpkema et al.
2003]. More details of the advantages of GS from a design flow and system verification
perspective are given in [Goossens et al. 2005], in which a framework for the development
of NoC-based SoC, using the ZTHEREAL NoC, is described.

Strictly speaking, BE refers to communication for which no commitment can be given,
whatsoever. In most NoC related works however, BE covers the traffic for which only cor-
rectness and completion are guaranteed while GS is traffic for which additional guarantees
are given, i.e. on the performance of a transaction. In macro networks, service guarantees
are often of a statistical nature. In tightly bound systems such as SoC, hard guarantees
are often preferred. GS allows analytical system verification, and hence a true decoupling
of sub-systems. In order to give hard guarantees, GS communication must be logically
independent of other traffic in the system. This requires connection-oriented routing. Con-
nections are instantiated as virtual circuits which use logically independent resources, thus
avoiding contention. The virtual circuits can be implemented by either virtual channels,
time-slots, parallel switch fabric, etc. As the complexity of the system increases and as GS
requirements grow, so does the number of virtual circuits and resources (buffers, arbitration
logic, etc) needed to sustain them.

‘While hard service guarantees provide an ultimate level of predictability, soft (statistical)
GS or GS/BE hybrids have also been the focus of some research. In [Bolotin et al. 2004],
[Felicijan and Furber 2004], [Beigne et al. 2005] and [Rostislav et al. 2005] NoCs pro-
viding prioritized BE traffic classes are presented. SoCBUS [Sathe et al. 2003] provides
hard, short-lived GS connections, however since these are setup using BE routed packets,
and torn down once used, this can also be categorized as soft GS.

ATHEREAL [Goossens et al. 2005], NOSTRUM [Millberg et al. 2004], MANGO
[Bjerregaard and Sparsg 2005a], SONICS [Weber et al. 2005], aSOC [Liang et al. 2004],
and also the NoCs presented in [Liu et al. 2004], in [Leroy et al. 2005], and the static
NoC used in the RAW multiprocessor architecture [Taylor et al. 2002], are examples of
NoCs implementing hard GS. While most NoCs that implement hard GS use variants of
time division multiplexing (TDM) to implement connection-oriented packet routing, thus
guaranteeing bandwidth on connections, the clockless NoC MANGO uses sequences of
virtual channels to establish virtual end-to-end connections. Hence limitations of TDM,
such as bandwidth and latency guarantees being inversely proportional, can be overcome

44 Overview of Networked MPSoC

24 . T. Bjerregaard and S. Mahadevan

by appropriate scheduling. In [Bjerregaard and Sparsg 2005b] a scheme for guaranteeing
latency, independently of bandwidth, is presented. In [Leroy et al. 2005] an approach for
allocating individual wires on the link for different connections, is proposed. The authors
call this spatial division multiplexing, as opposed to TDM.

For readers interested in exploitation of GS (in terms of throughput) virtual circuits
during idle times, in [Andreasson and Kumar 2005] and [Andreasson and Kumar 2004]
the concept of slack-time aware routing is introduced. A producer manages injection of
BE packets during the slacks in time-slots reserved for GS packets, thereby mixing GS
and BE traffic at the source which is unlike in other scheme discussed so far where it is
done in the routers. In [Andreasson and Kumar 2005] the impact of variation of output
buffer on BE latency is investigated, while in [Andreasson and Kumar 2004] the change of
injection control mechanism for fixed buffer size is documented. QoS can also be handled
by controlling the injection of packets into a BE network. In [Tortosa and Nurmi 2004]
scheduling schemes for packet injection in a NoC with a ring topology were investigated.
While a basic scheduling, which always farvors traffic already in the ring, provided the
highest total bandwidth, weighted scheduling schemes were much more fair in their serving
of different cores in the system.

In addition to the above, QoS may also cover special services such as:

—Broadcast, multicast, narrowcast: These features allow simultaneous communication
from one source to all, i.e. broadcast, or select destinations, as is shown in ATHE-
REAL [Jantsch and Tenhunen 2003](pgs: 61-82), where a master can perform read or
write operations on an address-space distributed among many slaves. In a connection
oriented environment, the master request is channeled to a single slave for execution in
narrowcast, while the master request is replicated for execution at all slaves in multicast.
APIs are available within the NA to realize these types of transactions [Radulescu et al.
2004]. An alternate mulitcast implementation is discussed in [Millberg et al. 2004],
where a virtual circuit meanders through all the destinations.

—Virtual wires: This refers to the use of network message-passing services to emulate
direct pin-to-pin connection. In [Bjerregaard et al. 2005] such techniques are used
to support a flexible interrupt scheme, in which the interrupt of a slave core can be
programmed to trigger any master attached to the network, by sending a trigger packet.

—Complex operations: Complex functionality such as test-and-set, issued by a single
command across the network, can be used to provide support for e.g. semaphores.

3.3 Link Level

Link level research regards the node-to-node links. These links consist of one or more
channels, which can be either virtual or physical. In this section, we present a number of
areas of interest for link level research: synchronization, implementation, reliability and
encoding.

3.3.1 Synchronization. For link level synchronization in a multi clock domain SoC,
Chelcea and Nowick have presented a mixed-time FIFO design [Chelcea and Nowick
2001]. The FIFO employs a ring of storage elements in which tokens are used to indi-
cate full or empty state. This simplifies detection of the state of the FIFO (full or empty)
and thus makes synchronization robust. In addition, the definitions of full and empty are
extended so that full means O or 1 cell being unused, while empty means only O or 1 cells

Paper #1: A Survey of Research and Practices of NoC 45

A Survey of Research and Practices of Network-on-Chip . 25

being used. This helps in hiding the synchronization delay introduced between the state
detection and the input/output handshaking. The FIFO design introduced can be made ar-
bitrarily robust, with regards to metastability, as settling time and latency can be traded-off.

With the emerging of the GALS concept of globally asynchronous locally synchronous
systems [Chapiro 1984][Meincke et al. 1999], implementing links using asynchronous cir-
cuit techniques [Sparsg and Furber 2001][Hauck 1995] is an obvious possibility. A major
advantage of asynchronous design styles, relevant for NoC, is the fact that apart from leak-
age, no power is consumed when the links are idle. Thus, the design style addresses also the
problematic issue of increasing power usage by large chips. Another advantage is the po-
tentially very low forward latency, in uncongested data paths, leading to direct performance
benefits. Examples of NoCs based on asynchronous circuit techniques are CHAIN [Bain-
bridge and Furber 2002][Amde et al. 2005], MANGO [Bjerregaard and Sparsg 2005a],
ANoC [Beigne et al. 2005], and QNoC [Rostislav et al. 2005]. Asynchronous logic incor-
porates some area and dynamic power overhead compared with synchronous logic, due to
local handshake control. The 1-of-4 encodings discussed in Section 3.3.4 below, general-
ized to 1-of-N, is much used in asynchronous links [Bainbridge and Furber 2001].

On the other hand, resynchronization of an incoming asynchronous transmission is also
not trivial. It costs both time and power, and bit errors may be introduced. In [Dobkin
et al. 2004], resynchronization techniques are described, and a method for achieving high
throughput across an asynchronous to synchronous boundary is proposed. The work is
based on the use of stoppable clocks, a scheme in which the clock of a core is stopped
while receiving data on an asynchronous input port. Limitations to this technique are
discussed, and the proposed method involves only the clock on the input register being
controlled. In [Ginosaur 2003] a number of synchronization techniques are reviewed, and
the pitfalls of the topic are addressed.

The trade-offs in the choice of synchronization scheme in a globally asynchronous or
multiclocked system, is sensitive to the latency requirements of the system, the expected
network load during normal usage, the node complexity, etc.

3.3.2 Implementation issues. As chip technologies scale into the DSM domain, the
effect of wires on link delays and power consumption increase. Aspects and effects on
wires of technology scaling are presented in [Ho et al. 2001], [Lee 1998], [Havemann and
Hutchby 2001] and [Sylvester and Keutzer 2000]. In [Liu et al. 2004] these issues are cov-
ered specifically from a NoC point-of-view, projecting the operating frequency and size of
IP cores in NoC-based SoC designs for future CMOS technologies, down to 0.05 ym. In
the following, we will discuss a number of physical level issues relevant to the implemen-
tation of on-chip links.

Wire segmentation. At the physical level, the challenge lies in designing fast, reliable
and low power point-to-point interconnects, ranging across long distances. Since the delay
of long on-chip wires is characterized by distributed RC charging, it has been standard
procedure for some time to apply segmentation of long wires by inserting repeater buffers
at regular intervals, in order to keep the delay linearly dependent on the length of the wire.
In [Dobbelaere et al. 1995] an alternative type of repeater is proposed. Rather than splitting
and inserting a buffer in the path of the wire, it is based on a scheme of sensing and pulling
the wire using a keeper device attached to the wire. The method is shown to improve the
delay of global wires by up to 2 times compared with conventional repeaters.

Pipelining. Partitioning long interconnects into pipeline stages, as an alternative to wire

46 Overview of Networked MPSoC

26 . T. Bjerregaard and S. Mahadevan

x 10

Power (W)

0 0.2 0.4 0.6 0.8
Voltage swing (volts)

Fig. 14. Total power versus voltage swing for long (5-10mm) on-chip interconnect. Solid line case 1: power
supply generated off-chip by high efficiency DC-DC converter. Dashed line case 2: power supply generated
internally on-chip. Upper curves for data activity of 0.25, lower curves 0.05 [Svensson 2001] fig 2.

segmentation, is an effective way of increasing throughput. The flow control handshake
loop is shorter in a pipelined link, making the critical loop faster. This is at the expense of
latency of the link and circuit area, since pipeline stages are more complex than repeater
buffers. But the forward latency in an asynchronous pipeline handshake cycle can be min-
imized to a few gate delays, so as wire effects begin to dominate performance in DSM
technologies, the overhead of pipelining as opposed to buffering will dwindle. In [Singh
and Nowick 2000] several high-throughput clockless pipeline designs were implemented
using dynamic logic. Completion detection was employed at each stage to generate ac-
knowledge signals, which were then used to control the precharging and evaluation of the
dynamic nodes. The result was a very high throughput of up to 1.2GDI/s for single rail
designs, in a 0.6¢m CMOS technology. In [Mizuno et al. 2001] a hybrid of wire segmen-
tation and pipelining was shown, in that a channel was made with segmentation buffers
implemented as latches. A congestion signal traveling backwards through the channel
compresses the data in the channel, storing it in the latches, until the congestion is re-
solved. Thus a back pressure flow control scheme was employed, without the cost of full
pipeline elements.

Low swing drivers. In an RC charging system, the power consumption is proportional
to the voltage shift squared. One way of lowering the power consumption for long on-
chip interconnects is by applying low-swing signaling techniques, which are also widely
used for off-chip communication lines. Such are presented and analyzed in [Zhang et al.
1999]. Basically the power usage is lowered at the cost of the noise margin. However, a
differential transmission line (2 wires), on which the voltage swing is half that of a given
single-ended transmission line, has differential mode noise characteristics comparable to
the single-ended version. This is so, because the voltage difference between the two wires
is the same as that between the single-ended wire and a mid-point between supply and
ground. As an approximation, it uses only half the power however, since the two wires
working at half the swing each consume one-fourth the power. The common mode noise
immunity of the differential version is also greatly improved, and it is thus less sensitive
to crosstalk and ground bounces, important sources of noise in on-chip environments as

Paper #1: A Survey of Research and Practices of NoC 47

A Survey of Research and Practices of Network-on-Chip . 27

detector

wave guide

electrical

electrical
i output

inpu!

Optical communication system with wave guide

electrical electrical
input output

Electrical communication system with repeaters

Fig. 15. Model of electrical and optical signaling systems for on-chip communication, showing the basic differ-
ences.

discussed in the reliability section below. In [Ho et al. 2003] the design of a low-swing,
differential on-chip interconnect for the Smart Memories [Mai et al. 2000] is presented
and validated with a test chip.

In [Svensson 2001] Svensson demonstrated how an optimum voltage swing for mini-
mum power consumption in on- and off-chip interconnects can be found for a given data
activity rate. The work takes into account dynamic and static power consumption of driv-
ing the wire, as well as in the receiver, which needs to amplify the signal back to full logic
level. Calculations are presented for a 0.18um CMOS technology. Figure 14 displays the
power consumption versus voltage swing for a global on-chip wire of 5-10mm, a power
supply of 1.3V, and a clock frequency of 1GHz. For a data activity rate of 0.25 (random
data) it is seen that there is a minimum at 0.12V. This minimum occurs for a two stage
receiver amplifier and corresponds to a power saving of 17x. Using a single stage amplifier
in the receiver, there is a minimum at 0.26V, corresponding to a power saving of 14x.

Future issues. In [Heiliger et al. 1997] the use of microstrip transmission lines
as waveguides for sub-mm wave on-chip interconnects is analyzed. It is shown that
using SiO; as dielectric exhibit prohibitively large attenuation. However the use of
bisbenzocyclobutene-polymer offers favorable line-parameters, with an almost dispersion
free behavior at moderate attenuation (=< 1 dB/mm at 100GHz). In [Kapur and Saraswat
2003] a comparison between electrical and optical interconnects for on-chip signaling and
clock distribution is presented. Figure 15 shows the models used in evaluating optical and
electrical communication. The delay vs. power and delay vs. interconnect length tradeoffs
are analyzed for the two types of signaling. As seen in Figure 16, it is shown that the criti-
cal length above which the optical system is faster than the electrical is approximately 3-5
mm, projected for a 50nm CMOS fabrication technology with copper wiring. The work
also shows that for long interconnects (defined as 10mm and above) the optical communi-
cation has a great potential for low power operation. Thus it is projected to be of great use
in future clock distribution and global signaling.

3.3.3 Reliability. Designing global interconnects in DSM technologies, a number of
communication reliability issues become relevant. Noise sources which can have an influ-
ence on this are mainly crosstalk, power supply noise such as ground bounce, electromag-
netic interference (EMI), and intersymbol interference.

48 Overview of Networked MPSoC

28 . T. Bjerregaard and S. Mahadevan

IOP: Incident Optical Power at the receiver
Practical CU : ALD Barrier, Barrier Thickness=10nm,
temperature=100 C, Surface Scattering parameter (P)=0.5

2000

Electrical (Cu) _ Electrical (Cu) Delay with
1800 |-Delay W/O g Optimized Repeaters 1
Repeaters &
1600 [° < 1
15 QQ@
1400 f = "o]
@C}\o e
1200 f & b K 4
— g &2
& 1000} S p 1
> T
i) Ké;
2 800 g b
Q W
600 | op-340 W
rpD=1.8mW. |
400 F 5-230 W -
RPD=7Y\'\Wr 10
200 F Total Optical 1
System Delay, C,=250fF

0
% 5 10 15 20 25 30
Optical Interconnect Length (mm)

Critical length
above which optical System is
faster than even the electrical (Cu) repeatered wires

Fig. 16. Delay comparison of optical and electrical interconnect (with and without repeaters) in a projected 50
nm technology [Kapur and Saraswat 2003] fig 13.

Crosstalk is becoming a serious issue due to decreasing supply voltage, increasing wire
to wire capacitance, increasing wire inductance (e.g. in power supply lines), and increas-
ing rise times of signaling wires. The wire length at which the peak crosstalk voltage is
10% of the supply voltage, decreases drastically with technology scaling [Jantsch and Ten-
hunen 2003](chapter 6), and since the length of global interconnects does not scale with
technology scaling, this issue is especially relevant to the implementation of NoC links.
Power supply noise is worsened by the inductance in the package bonding wires, and the
insufficient capacitance in the on-chip power grid. The effect of EMI is worsening as the
electric charges moved by each operation in the circuit is getting smaller, making it more
susceptible to external influence. Intersymbol interference, i.e. the interference of one
symbol on the following symbol on the same wire, is increasing as circuit speeds go up.

In [Jantsch and Tenhunen 2003](chapter 6), the Bertozzi and Benini present and analyze
a number of error detecting/correcting encoding schemes in relation to NoC link imple-
mentation. Error recovery is a very important issue, since an error in i.e. the header of a
packet, may lead to deadlock in the NoC, blocking the operation of the entire chip. This is
also recognized in [Zimmer and Jantsch 2003] in which a fault model notation is proposed
which can represent multi-wire and multi-cycle faults. This is interesting due to the fact
that crosstalk in DSM busses can cause errors across a range of adjacent bits. It is shown

that by splitting a wide bus into separate error detection bundles, and interleaving these,
the error rate after using single-error correcting and double-error detecting codes can be
reduced by several orders of a magnitude. This is because these error-correction schemes
function properly when only respectively one or two errors occur in each bundle. When the
bundles are interleaved, the probability of multiple errors within the same bundle is greatly

reduced.
In [Gaughan et al. 1996] Gaughan et al deal with dynamically occurring errors in net-

Paper #1: A Survey of Research and Practices of NoC 49

A Survey of Research and Practices of Network-on-Chip . 29

works with faulty links. Their focus is on routing algorithms that can accommodate such
errors, assuming that support for the detection of the errors is implemented. For wormhole
routing, they present a scheme in which a data transmission is terminated upon detection
of an error. A kill flit is transmitted backwards, deleting the worm and telling the sender to
retransmit it. This naturally presents an overhead, and is not generally representative for
excising NoC implementations. It can however prove necessary in mission critical systems.
The paper provides formal mathematical proofs of deadlock-freedom.

Another issue with new CMOS technologies is the fact that the delay distribution — due
to process variations — flattens with each new generation. While typical delay improves,
worst-case delay barely changes. This presents a major problem in todays design method-
ologies, as these are mostly based on worst-case assumptions. Self-calibrating methods,
as used in [Worm et al. 2005], are a way of dealing with unreliability issues of this char-
acter. The paper presents a self-calibrating link, and the problem of adaptively controlling
its voltage and frequency. The object is to maintain acceptable design trade-offs between
power consumption, performance and reliability, when designing on-chip communication
systems using DSM technologies.

Redundant transmission of messages in the network is also a way of dealing with fabri-
cation faults. In [Pirretti et al. 2004], two different flooding algorithms and a random walk
algorithm are compared. It is shown that the flooding algorithms have an exceedingly large
communication overhead, while the random walk offers reduced overhead while maintain-
ing useful levels of fault tolerance.

With the aim of improving fabrication yield, Dally and Towles propose extra wires be-
tween nodes, so that defective wires found during post production tests or during self-test
at start-up can be bypassed [Dally and Towles 2001]. Another potential advantage of a
distributed shared communication structure is the possibility of bypassing entire regions of
a chip, if fabrication faults are found.

Dynamic errors are more likely in long wires, and segmenting links into pipeline stages
helps keeping the error rate down and the transmission speed up. Since segmentation of
the communication infrastructure is one of the core concepts of NoC, it inherently provides
solutions to the reliability problems. The segmentation is made possible because NoC-
based systems generally imply the use of programming models allowing some degree of
latency insensitive communication. Thus it is seen how the issues and solutions at the
physical level relate directly to issues and solutions at system level, and vice versa. Another
solution towards avoiding dynamic errors is the shielding of signal wires, e.g. by ground
wires. This helps to minimize crosstalk from locally interfering wires, at the expense of
wiring area.

3.3.4 Encoding. Using encoding for on-chip communication has been proposed, the
most common objective being to reduce power usage per communicated bit, while main-
taining high speed and good noise margin. In [Bogliolo 2001] the proposed encoding
techniques are categorized as speed-enhancing or low-power encodings, and it is shown
how different schemes in these two categories can be combined to gain the benefits of
both. In [Nakamura and Horowitz 1996] a very simple low-weight coding technique was
used to reduce dI/dt noise due to simultaneous switching of off-chip I/O drivers. An 8-
bit signal was simply converted to a 9-bit signal, the 9th bit indicating whether the other
8 bits should be inverted. The density of 1’s was thus reduced, resulting in a reduction
of switching noise by 50% and of power consumption by 18%. Similar techniques could

50 Overview of Networked MPSoC

30 . T. Bjerregaard and S. Mahadevan

prove useful in relation to long on-chip interconnects. The abundant wire resources avail-
able on-chip can also be used to implement more complex M-of-N encodings, thus trading
wires for power. A widely used technique, especially in asynchronous implementations,
is 1-of-4 encoding. This results in a good power/area tradeoff and low encoding/decoding
overhead [Bainbridge and Furber 2001][Bainbridge and Furber 2002].

Another area of encoding, also discussed in Section 3.3.3, relates to error management.
This involves the detection and correction of errors that may occur in the network. The
mechanism may be observed at different layers of the network, and thus be applicable to
either phits, flits, packets or messages. With regards to NoC, the interesting issues involve
errors in the links connecting the nodes, since long wires of deep submicron technologies
may exhibit unreliable behavior (see Section 3.3.3). xpipes [Osso et al. 2003] implements
flit-level CRC mechanism running in parallel with switching (thus masking its delay) to
detect errors. Another common technique is parity-checks. The need here is to balance
complexity of error-correction circuits to the urgency of such mechanism.

An interesting result is obtained in [Jantsch and Vitkowski 2005], wherein the authors
investigate power consumption in the NOSTRUM NoC. Results are based on a 0.18um
implementation, and scaled down to 65 nm. The paper concludes that the major part of
the power is spent in the link wires. Power saving encoding however results in reduced
performance, and simply scaling the supply voltage to normalize performance — in non-
encoded links — actually results in better power figures than any of the encoding schemes
investigated. Subsequently, the authors propose the use of end-to-end data protection,
through error correction methods, which allows voltage scaling while maintaining the
fault probability without lowering the link speed. In effect this results in better power
figures. These claims are supported by simulations showing promising results.

In this section we have discussed issues relevant to the lowest level of the NoC, the link
level. This concludes the discussion of network design and implementation topics. In the
following section we discuss NoC from the view of design approach, modeling, and in
relation to SoC.

4. NOC MODELING

NoC, described as a subset of SoC, is an integral part of SoC design methodology and
architecture. Given the vast design space and implementation decisions involved in NoC
design, modeling and simulation is important to design flow, integration and verification
of NoC concepts. In this section, first we discuss issues related to NoC modeling and then
we explore design methodology used to study the system-level impact of the NoC. Finally
traffic characterization, which bridges system-level dynamics with NoC requirements is
discussed.

4.1 Modeling

Modeling the NoC in abstract software models is the first means to approach and under-
stand the required NoC architecture and the traffic within it. Conceptually the purpose of
NoC modeling is (i) to explore the vast design and feature space, and (ii) to evaluate trade-
offs between power, area, design-time, etc; while adhering to application requirement on
one side and technology constraints on the other side. Modeling NoC has three intertwined
aspects: modeling environment, abstraction levels, and result analysis. In the modeling en-
vironment section, we present three frameworks to describe NoC. Section 4.1.2 discusses

Paper #1: A Survey of Research and Practices of NoC 51

A Survey of Research and Practices of Network-on-Chip . 31

work done across different levels of NoC abstraction. The result analysis deals with a wide
range of issues and is hence dealt with separately in Section 5.

4.1.1 Modeling Environment. The NoC models are either analytical or simulation
based and can model communication across abstractions.

In a purely abstract framework, a NoC model using allocators, scheduler, and synchro-
nizer is presented in [Madsen et al. 2003] and [Mahadevan et al. 2005]. The allocator
translates the path traversal requirements of the message in terms of its resource require-
ments such as bandwidth, buffers, etc. It attempts to minimize resource conflicts. The
scheduler executes the message transfer according to the particular network service re-
quirements. It attempts to minimize resource occupancy. A synchronizer models the de-
pendencies among communicating messages allowing concurrency. Thus these three com-
ponents are well suited to describe a wide variety of NoC architecture and can be simulated
in a multi-processor real-time environment.

OPNET, a commercial network simulator originally developed for macro-networks, is
used as NoC simulator in [Bolotin et al. 2004][Xu et al. 2004][Xu et al. 2005]. OPNET
provides a convenient tool for hierarchical modeling of a network, including processes
(state machines), network topology description and simulation of different traffic scenarios.
However, as noted in [Xu et al. 2004] and [Xu et al. 2005], it needs to be adapted for
synchronous environments, requiring explicit design of clocking scheme and a distribution
network. [Bolotin et al. 2004] uses OPNET to model a QoS-based NoC architecture and
design with irregular network topology.

A VHDL based cycle accurate RTL model for evaluating power and performance of
NoC architecture is presented in [Banerjee et al. 2004]. The power and delay are eval-
uated for fine-grain components of the routers and links using SPICE simulations for a
0.18m technology and incorporated into the architectural-level blocks. Such modeling
enables easy evaluation of dynamic vs leakage power at system-level. As expected, at high
injection rate (packets/cycle/node) it was found that dynamic power dominates over leak-
age power. The Orion power-performance simulator proposed by Wang et al. [Wang et al.
2002], modeled only dynamic power consumption.

Recently, due to increasing size of applications, NoC emulation [Genko et al. 2005]
has been proposed as alternative to simulation-based NoC models. It has been shown that
FPGA based emulation can take few seconds compared to simulation-based approaches
which can take hours to process through many millions of cycles, as would be necessary
in any thorough communication co-exploration.

4.1.2 Noc Modeling at Different Abstraction Levels. New hardware description lan-
guages are emerging, such as SystemC [SystemC 2002], a library of C++, and SystemVer-
ilog [Fitzpatrick 2004], which make simulations at a broad range of abstraction levels
readily available, and thus support the full range of abstractions needed in a modular NoC-
based SoC design. In [Bjerregaard et al. 2004] mixed-mode asynchronous handshake
channels were developed in SystemC, and a mixed abstraction level design flow was used
to design two different NoC topologies.

From an architectural point of view, the network topology generally incur the use of
a segmented (multi-hop) communication structure, however some researchers working at
the highest levels of abstraction, define NoC merely as a multiport blackbox communica-
tion structure or core, presenting a number of ports for communication. A message can

52

Overview of Networked MPSoC

32 . T. Bjerregaard and S. Mahadevan
Table ITI. Communication semantics and abstraction for NoC.

Layer Interface semantics Communication

Application/ | IP-to-IP messaging Message

Presentation | sys.send (struct myData) passing
sys.receive (struct myData)

Session/ IP-to-IP port-oriented messaging Message

Transport nwk.read (messagepointer*, unsigned len) passing or
nwk.write (int addr, msgptr*, unsigned len) shared memory

Network NA-to-NA packet streams Message
ctrl.send(), ctrl.receive() passing or
link.read(bit[] path, bit[] data_packet) shared memory
link.write (bit[] path, bit[] data_packet)

Link Node-to-Node logical links and shared byte streams Message
ctrl.send(), ctrl.receive() passing
channel.transmit (bit[] link, bit[] data_flit)
channel.receive (bit[] link, bit[] data_flit)

Physical Pins and wires Interconnect
A.drive (0), D.sample(), clk.tick()

be transmitted from an arbitrary port to any other, allowing maximum flexibility of system
communication. At this level, the actual implementation of the NoC is often not consid-
ered. Working at this high abstraction level allows a great degree of freedom from lower
level issues. Table III adapted from Gerstlauer [Gerstlauer 2003] summarizes, in general,
the communication primitives at different levels of abstraction.

At system level, transaction level models (TLM) are typically used for modeling com-
munication behavior. This takes the form of either synchronous or asynchronous send()/
receive() message passing semantics, which use unique channels for communication be-
tween the source and the destination. One level below this abstraction, for NoCs, additional
identifiers such as addressing may be needed to uniquely identify the traversal path or for
providing services for end-to-end communication. Control primitives at network and link
level, which are representative of actual hardware implementation, model the NoC flow-
control mechanisms. In [Gerstlauer 2003], a JPEG encoder and voice encoder/decoder run-
ning concurrently were modeled for each and for mixed-levels of abstraction. As expected
the results show that the model complexity generally grows exponentially with lower level
of abstraction. By extrapolating the result from bus to NoC, interestingly, model complex-
ity at NA level can be found to be higher than at other levels due to slicing of message,
connection management, buffer management, and others.

Working between session to network layer, Juurlink and Wijshoff [Juurlink and Wijshoff
1998] have made a comparison of three communication models used in parallel computa-
tion; (i) asynchronous communication with fixed message size, (ii) synchronous commu-
nication which rewards burst-mode message transfers, and (iii) asynchronous with variable
message size communication while also accounting for network load. Cost-benefit analy-
sis shows that, though the software-based messaging layers serve as a very useful function
of delinking computation and communication, it creates anywhere between 25% to 200%
overhead, as opposed to optimized hardware implementation.

A similar study of parallel computation applications, but with more detailed network
model, was undertaken by Vaidya et al. [Vaidya et al. 2001]. Here the network was imple-

Paper #1: A Survey of Research and Practices of NoC 53

A Survey of Research and Practices of Network-on-Chip . 33

mented to use adaptive routing with virtual channels. The applications, running on power-
of-two number of processors using grid based network topologies, used shared-memory or
message passing for communication thus generating wide range of traffic patterns. They
have found that increasing the number of VCs and routing adaptively offer little perfor-
mance improvement for scalable shared-memory applications. Their observation holds
true over a range of systems and problem sizes. The results show that the single most im-
portant factor for improving performance in such applications is the router speed, which
is likely to provide lasting payoffs. The benefits of a faster router are visible across all
applications in a consistent and predictable fashion.

Ahonen et al. [Ahonen et al. 2004] and Lahiri et al. [Lahiri et al. 2001] have associated
high level modeling aspects with actual design choices such as: selection of an appropriate
topology, selection of communication protocols, specification of architectural parameters
(such as bus widths, burst transfer size, priorities, etc), and mapping communications onto
the architecture, as requirements to optimize the on-chip communication for application-
specific needs. Using a tool called OIDIPUS, Ahonen et al. compare (IP) block place-
ment of twelve processors restricted to a ring-based topology. It is found that OIDIPUS,
which uses physical path taken by the communication channels as cost function, generated
topologies are only marginally inferior to human design. Without being restricting to any
one topology, Lahiri et al. have evaluated traffic characteristics in a static priority based
shared bus, hierarchical bus, two-level time division multiplexed access (TDMA), and ring
based communication architecture. It was found that no single architecture uniformly out-
performs other.

Wieferink [Wieferink et al. 2004] have demonstrated a processor/communication co-
exploration methodology which works cross-abstraction and in a co-simulation platform.
Here LISA based IP core descriptions have been integrated with SystemC based bus based
transaction level models. A wide range of APIs are then provided to allow modeling be-
tween LISA and SystemC models, to allow instruction accurate model to co-exist with
cycle accurate model, and TLM with RTL models. MPARM [Loghi et al. 2004] is a sim-
ilar cycle-accurate and SystemC co-exploration platform, used in exploration of AMBA,
STBus and xpipes NoC evaluation.

4.2 Design and Co-Exploration Methodology

The NoC components, as described in Section 2.1, lends itself to flexible NoC designs
such as parameterizable singular IP core, or malleable building-blocks, customizable at the
network-layer, for design and reuse into application-specific NoC. A SoC design method-
ology requiring a communication infrastructure, can exploit either characteristics to suit
the application’s needs. Keeping this in mind, different NoC researchers have uniquely
tailored their NoC architectures. Figure 17 shows our assessment of instance-specific ca-
pability of these NoC architectures. The two axis are explained as follows.

—Parametrizability at system-level: By this, we mean the ease with which a system-
level NoC characteristic can be changed at instantiation time. The NoC description may
encompass a wide range of parameters, such as: number of slots in the switch, pipeline-
stages in the links, number of ports of the network and others. This is very useful for
co-exploration directly with IP cores of the SoC.

—Granularity of NoC: By granularity, we mean at what level the NoC or NoC compo-
nents is described. At the coarser end, the NoC may described as a single core, while at

54 Overview of Networked MPSoC

34 . T. Bjerregaard and S. Mahadevan
e | CHAIN
@)
2
o
= XPIPES, Proteo
S soCBUS O mANGO
) @) @)
OaSoC OFETHEREAL
O
coase | SPIN - THERMES
\4 O
Least Highly
flexible flexible

Parametrizability

Fig. 17. NoC Instantiation Space

other end of the spectrum, the NoC may be assembled from lower-level blocks.

Consider the example of CHAIN [Bainbridge and Furber 2002]. It provides a library of
fine-grained NoC components. Using these components, a NoC designer can use Lego-
brick approach to build the desired NoC topology, though as system-level block such a
NoC has low flexibility. Thus it may be disadvantageous, when trying to find the optimum
SoC communication architecture in a recursive design space exploration process. The
ATHEREAL [Goossens et al. 2002], SoCBUS [Sathe et al. 2003], and aSoC [Liang et al.
2000] networks describe the NoC as a relatively coarse grain system-level module but with
widely different characteristics. The ZTHEREAL is highly flexible in terms of adjusting
the available slots, number of ports, etc which is useful for NoC exploration; where as aSoC
and SoCBUS do not expose many parameters for change (though aSoC supports flexible
programming of connections after instantiation). The SPIN NoC [Guerrier and Greiner
2000], designed as a single IP core, is least parameterizable with its fixed topology and
protocol. Interestingly, the xpipes [Osso et al. 2003] provides not merely a set of relatively
fine-grain soft-macros of switches and pipelined links, which the xpipesCompiler [Jalabert
et al. 2004] uses to automatically instantiate an application specific network, but also
enables optimization of system-level parameters such as removing redundant buffers from
output ports of switches, sharing signals common to objects, etc. This lends itself to both
high flexibility for co-exploration and easy architectural changes when needed. Similarly,
conclusions can be drawn of Proteo [Siguenza-Tortosa et al. 2004], HERMES [Moraes
et al. 2004] and MANGO [Bjerregaard and Sparsg 2005a] NoCs. A detailed comparison
of different features of most of the above listed NoCs is tabulated in [Moraes et al. 2004].

Paper #1: A Survey of Research and Practices of NoC 55

A Survey of Research and Practices of Network-on-Chip . 35

The impact on SoC design time and co-exploration, of different NoC design styles listed
above is considerable. For example in [Jalabert et al. 2004], during design space explo-
ration, to find an optimum NoC for three video applications: video object plane decoder,
MPEGH4 decoder and multi-window displayer; the xpipesCompiler found that irregular net-
works with large switches may be more advantageous than regular networks. This is easier
to realize in macro-block NoC such as CHAIN or xpipes, than it is in NoC designed as
a single (system-level) IP core such as SPIN. The basis for the compiler’s decision is the
pattern of traffic generated by the application. This is the focus of the next section. For fur-
ther understanding of trade-offs in using a flexible instantiation-specific NoC can be found
in [Pestana et al. 2004], where different NoC topologies and each topology with different
router and NA configuration is explored.

4.3 Traffic Characterization

The communication types expected in a NoC range across virtual wires, memory access,
audio/video stream, interrupts, and others. Many combinations of topology, protocol,
packet sizes and flow control mechanisms exist for the efficient communication of one
or more predominant traffic patterns. For example, in [Kumar et al. 2002] packet-switched
NoC concepts have been applied to a 2D mesh network topology, whereas in [Guerrier and
Greiner 2000] such concepts have been applied to a butterfly fat-tree topology. The design
decisions were based on the traffic expected in the respective systems. Characterizing the
expected traffic is an important first step towards making sound design decisions.

A NoC must accommodate different types of communication. We have realized that
regardless of the system composition, clustering, topology and protocol, the traffic within
a system will fall in one of three categories:

(1) Latency-critical: Latency-critical traffic is traffic with stringent latency demands such
as for critical interrupts, memory access, etc. These often have low payload,

(2) Data-streams: Data streaming traffic have high payload and demand QoS in terms of
bandwidth. Most often it is large, mostly fixed bandwidth which may be jitter critical.
Examples are MPEG data, DMA access, etc.

(3) Best-effort: The best-effort traffic, as explained in Section 3.2.4, is traffic with no
specific requirements of commitment from the network.

The categorization above is a guideline, rather than a hard specification and is presented
as a superset of possible traffic types. Bolotin et al. [Bolotin et al. 2004] provide a
more refined traffic categorization, combining the transactions at the network boundary
with service requirements, namely: signaling, real-time, read/write (RD/WR) and block-
transfer. In relation to the above categorization; signaling is latency-critical, real-time is
data-streaming, and RD/WR and block-transfer are both best-effort with distinguishing
factor being the message size. Though one or more of the traffic patterns may be pre-
dominant in the SoC, it is important to understand that a realistic NoC design should be
optimized for a mix of above traffic patterns. The conclusions of a case-study of NoC
routing mechanism for three traffic conditions with fixed number of flits per packet as pre-
sented in [Ost et al. 2005], can thus be enriched by using non-uniform packet size and
relating them to the above traffic categories.

It is important to understand the bandwidth requirements of the listed traffic types for a
given application, and accordingly map the IP cores on the choosen NoC topology. Such

56 Overview of Networked MPSoC

36 . T. Bjerregaard and S. Mahadevan

a study is done in [Murali and Micheli 2004a]. NMAP (now called SUNMAP [Murali
and Micheli 2004b]), a fast mapping algorithm that minimizes the average communication
delay with minimal-path and split-traffic routing in 2D mesh, is compared with greedy and
partial branch-and-bound algorithms. It is shown to produce results of higher merit (re-
duced packet latency) for DSP benchmarks. Another dimension in the mapping task is that
of allocating guaranteed communication resources. In [Goossens et al. 2005] and [Hansson
et al. 2005], approaches to this task are explored for the ZFTHEREAL NoC.

Specific to data-stream type traffic described above, Rixner et al. [Rixner et al. 1998]
have identified unique qualities relating to the inter-dependencies between the media
streams and frequency of such streams in the system. It is called the streaming program-
ming model. The basic premises of such programming is static analysis of the application
to optimize the mapping effort, based on prior knowledge of the traffic pattern, so as to min-
imize communication. The communication architecture tuner (CAT) proposed by Lahiri et
al. [Lahiri et al. 2000] is a hardware-based approach that does runtime analysis of traffic
and manipulates the underlying NoC protocol. It does this by monitoring the internal state
and communication transactions of each core, and then predicts the relative importance
of each communication event in terms of its potential impact on different system-level
performance metrics such as number of deadline misses, average processing time, etc.

The various blocks of NoC can be tuned for optimum performance with regard to a spe-
cific traffic characteristic, or the aim can be more general, towards a one-fits-all network,
for greater flexibility and versatility.

5. NETWORK ANALYSIS

The most interesting and universally applicable parameters of NoC are latency, bandwidth,
Jjitter, power consumption and area usage. Latency, bandwidth and jitter can be classified
as performance parameters, while power consumption and area usage are the cost factors.
In this section we will discuss the analysis and presentation of results in relation to these
parameters.

5.1 Performance Parameters and Benchmarks

Specifying a single of the performance parameters introduced above is not sufficient to
confer a properly constrained NoC behavior. At least two must be defined. The following
example illustrates this:

Given a network during normal operation, it is assumed that the network is not over-
loaded. For such a network, all data is guaranteed to reach its destination, when employing
a routing scheme in which no data is dropped (see Section 3.2.2, delay routing model).
This means that as long as the capacity of the network is not exceeded, any transmission is
guaranteed to succeed (any required bandwidth is guaranteed). However, nothing is stated
concerning the transmission latency, which may well be very high in a network operated
near full capacity. As seen in Figure 18, the exact meaning of which will be explained
later, the latency of packets rise in an exponential manner, as the network load increases.
The exact nature of the network load will be detailed later in this section. It is obvious that
such guarantees are not practically usable. We observe that the bandwidth specification is
worthless with out a bound on the latency as well. This might also be presented in terms of
a maximum time window, within which the specified bandwidth would always be reached,
i.e. the jitter of the data stream (the spread of the latencies). Jitter is often a more interest-
ing parameter in relation to bandwidth, than latency, as it describes the temporal evenness

Paper #1: A Survey of Research and Practices of NoC 57

A Survey of Research and Practices of Network-on-Chip . 37

of the data stream.

Likewise, a guaranteed bound on latency might be irrelevant, if the amount of data that
can be transmitted at this latency is extremely small. Thus latency, bandwidth and jitter are
closely related. Strictly speaking, one should not be specified without at least one of the
others.

At a higher abstraction level, performance parameters used in evaluating multicomputer
networks in general have been adopted by NoC researchers. These include aggregated
bandwidth, bisection bandwidth, link utilization, network load, etc. The aggregate band-
width is the accumulated bandwidth of all links, and the bisection bandwidth is the mini-
mum collective bandwidth across links that when cut, separate the network into two equal
set of nodes. Link utilization is the load on the link, compared with the total bandwidth
available. The network load can be measured as a fraction of the network capacity, as nor-
malized bandwidth. The network capacity is the maximum capacity of the network for a
uniform traffic distribution, assuming that the most heavily loaded links are located in the
network bisection. These and other aspects of network performance metrics are discussed
in detail in Chapter 9 of [Duato et al. 2003].

For highly complex systems, such as full-fledged computer systems including proces-
sor(s), memory and peripherals, the individual parameters may say little about the overall
functionality and performance of the system. In such cases, it is customary to make use of
benchmarks. NoC-based systems represents such complexity, and benchmarks would be
natural to use in its evaluating. Presenting performance in the form of benchmark results
would help clarify the effect of implemented features, in terms of both performance bene-
fits (latency, jitter and bandwidth) and implementation and operation costs (area usage and
power consumption). Benchmarks would thus provide a uniform plane of reference from
which to evaluate different NoC architectures. At present, no benchmark system exists
explicitly for NoC, but its development is an exciting prospect. In [Vaidya et al. 2001]
examples from the NAS benchmarks [Bailey et al. 1994] were used, in particular Class-A
NAS-2. This is a set of benchmarks that has been developed for the performance evalua-
tion of highly parallel supercomputers, which mimic the computation and data movement
characteristics of large scale computational fluid dynamics applications. It is questionable
however, how such parallel computer benchmarks can find use in NoC, as the applications
in SoCs are very different. In particular, SoC applications are generally highly heteroge-
neous, and the traffic patterns therein likewise. Another set of benchmarks, used as basis
of NoC evaluation in [Hu and Marculescu 2004a], are the embedded system synthesis
benchmark suites [Dick].

5.2 Presenting Results

Generally it is necessary to simplify the multidimensional performance space. One com-
mon approach is to adjust a single aspect of the design, while tracking the effect on the
performance parameters. An example is tracking the latency of packets, while adjusting
the bandwidth capabilities of a certain link within the network, or the amount of back-
ground traffic generated by the test environment. In Section 5.2.1 we will give specific
examples of simple yet informative ways of communicating results of NoC performance
measurements.

Since the NoC is a shared, segmented communication structure, wherein many individ-
ual data transfer sessions can take place in parallel, the performance measurements depend
not only on the traffic being measured upon, but also on the other traffic in the network, the

58 Overview of Networked MPSoC

38 . T. Bjerregaard and S. Mahadevan

background traffic. The degree of background traffic is often being indicated by the net-
work load, as described above. Though very simple, this definition makes valuable sense
in considering a homogeneous, uniformly loaded network. One generally applicable prac-
tical method for performance evaluation is thus generating a uniform randomly distributed
background traffic so that the network load reaches a specified point. Test packets can then
be sent from one node to another, according to the situation that one desires to investigate,
and the latencies of these packets can be recorded (see example (i) in Section 5.2.1 below).

Evenly distributed traffic however, may cloud important issues of the network perfor-
mance. In [Dally and Aoki 1993] the degree of symmetry of the traffic distribution in the
network was used to illustrate aspects of different types of routing protocols; adaptive and
deterministic. The adaptive protocol resulted in a significant improvement of throughput
over the deterministic one, for non-uniform traffic, but had little effect on performance
with uniformly distributed traffic. The reason for this is that the effect of adaptive pro-
tocols is to even out the load, to avoid hotspots, thus making better use of the available
network resources. If the bulk load is already evenly distributed, there is no advantage.
Also traffic parameters like number of packets and packet size, can have a great influence
on performance, e.g. in relation to queueing strategies in nodes.

There are many ways to approach the task of presenting test results. The performance
space is a complex, multidimensional one, and there are many pitfalls to be avoided, in
order to display intelligible and valuable information about the performance of a network.
Often the presented results fail to show the interesting aspects of the network. It is easy
to get lost in the multitude of possible combinations of test parameters. This may lead
to clouding, or at worst failure to properly communicate, the relevant aspects of the re-
search. Though the basis for performance evaluation may vary greatly, it is important
for researchers to be clear about the evaluation conditions, allowing others to readily and
intuitively grasp the potential of a newly developed idea, and the value of its usage in NoC.

5.2.1 Examples. Below we will give some specific examples that we find clearly com-
municate the performance of the networks being analyzed. What makes these examples
good are their simplicity in providing a clear picture of some very fundamental properties
of the involved designs.

(i) Average latency vs. network load. In [Dally and Aoki 1993] this is used to illustrate
the effect of different routing schemes. Figure 18 is a sample figure from the article, show-
ing how the average latency of the test data grows exponentially as the background traffic
load of the network is increased. In the presented case, the throughput saturation point, the
point at which the latency curve bends sharply upwards, is shifted right as more complex
routing schemes are applied. This corresponds to a better utilization of available routing
resources. The article does not address the question of cost factors of the implementation.

(ii) Frequency of occurrence vs. latency of packet. Displaying the average latency
of packets in the network may work well for establishing a qualitative notion of network
performance. Where more detail is needed, a histogram, or similar graph, showing the
distribution of latencies, across the delay spectrum is often used with great effect. This
form of presentation is used in [Dally 1992] to illustrate the effect of routing prioritization
schemes on the latency distribution. Figure 19, taken from the article, shows the effect of
random scheduling and deadline scheduling. Random scheduling schedules the packets
for transmission in a random fashion, while deadline scheduling prioritize packets accord-
ing to how long they have been waiting (oldest-packet-first). It is seen how the choice

Paper #1: A Survey of Research and Practices of NoC 59

A Survey of Research and Practices of Network-on-Chip . 39

= 4007 i
§)
1
.§ 350 i
g 1
1
o '
i
1]
250 i
]
]
200 !
*
150
Domeem0 Determinkstic
100 ¥~ = =% Static Adapilve
o e 1, Dymiiimic: Adaptive
s0
> 1 | I I I | L | I |
‘@0 @1 oz o3 04 05 08 07 08 08 1.0
Traffic(fraction of capacity)

Fig. 18. Latency vs. network load for different routing schemes. The figure shows how the employment of more
complex routing schemes move the point at which the network saturates [Dally and Aoki 1993] fig 5.

800

== Rardom Scheduling
o —— Dasdine Scheduing

1200 1

Frequency (Numbat of Massages)

| - o ?
20 40 B0 BO 100 120 140
Latency {Cycles)
Latency Histogram

Fig. 19. Number of messages as a function of latency of message (latency distribution), for two scheduling
schemes [Dally 1992] fig 17.

of scheduling affect the distribution of latencies of messages. In [Bjerregaard and Sparsg
2005b] such a latency distribution graph is also used, to display how a scheduling scheme
provides hard latency bounds, in that the graph is completely empty beyond a certain la-
tency.

(iii) Jitter vs. network load. The jitter of a sequence of packets is important when
dimensioning buffers in the network nodes. High jitter (bursty traffic) needs large buffers
to compensate, in order to avoid congestion resulting in suboptimal utilization of routing
resources. This issue is especially relevant in multimedia application systems with large
continuous streams of data, such as that presented in [Varatkar and Marculescu 2002]. In
this work statistical mathematical methods are used to analyze the traffic distribution. Fig-

60 Overview of Networked MPSoC

40 . T. Bjerregaard and S. Mahadevan
F_:U — » —
: — Botm i

] j i |1 S . -
"W n tom 2000 w0 4000 G000 OO0 70CO 000 9000 10000
Queve Length « in bits

Fig. 20. The probability of queue length exceeding buffer size. The results for two models based on stochastic
processes, LRD (Long Range Dependent) and SRD (Short Range Dependent), are plotted along with simulation
results for comparison [Varatkar and Marculescu 2002] fig 6.

ure 20, taken from the article, explores the use of two different models based on stochastic
processes, for predicting the probability that the queue length needed to avoid congestion
exceeds the actual buffer size, in the given situation. The models displayed in the figure
are LRD (Long Range Dependent) or self-similar, and SRD (Short Range Dependent) or
Markovian stochastic processes. In the figure, these models are compared with simulation
results. The contributions of the paper include showing that LRD processes can be used
effectively to model the bursty traffic behavior at chip-level, and the figure shows how in-
deed the predictions of the LRD model comes closer to the simulation results than those of
the SRD model.

5.3 Cost Factors

The cost factors are basically power consumption and area usage. A comparative analysis
of cost of NoC is difficult to make. As is the case for performance evaluation, no common
ground for comparison exists. This would require different NoC being demonstrated for
the same application, which is most often not the case. Hence a somewhat broad discussion
of cost in terms of area and power cost is presented in this section.

The power consumption of the communication structure in large single-chip systems is a
major concern, especially for mobile applications. As discussed earlier, the power used for
global communication does not scale with technology scaling, leading to increased power
use by communication relative to power use by processing. In calculating the power con-
sumption of a system, there are two main terms: (i) power per communicated bit and (ii)
idle power. Depending on the traffic characteristics in the network, different implemen-
tation styles will be more beneficial with regards to power usage. In [Nielsen and Sparsg
2001] a power analysis of different low-power implementations of on-chip communica-
tion structures was made. The effects on power consumption of scaling a design were
seen and a bus design was compared with torus connected grid design (both synchronous
and asynchronous implementations). Asynchronous implementation styles (discussed in
Section 3.3.1), are beneficial for low network usage, since they have very limited power

Paper #1: A Survey of Research and Practices of NoC 61

A Survey of Research and Practices of Network-on-Chip . 41

consumption when idle, but use more power per communicated bit, due to local control
overhead. Technology scaling however leads to increased leakage current, resulting in an
increasing static power use in transistors. Thus the benefit of low idle power in asyn-
chronous circuits may dwindle.

From a system-level perspective, knowledge of network traffic can be used to control
the power use of the cores. Interest has been in investigating centralized versus distributed
power management schemes. Centralized power managers (PM) are a legacy in bus-based
systems. Since NoC is most often characterized by distributed routing control, naturally
distributed PMs such as those proposed in [Benini and Micheli 2001] and [Simunic and
Boyd 2002], would be useful. In both of these studies, conceptually there is a node-centric
and network-centric PM. The node-centric PM controls the powering up or down of the
core. The network-centric PM is used to for overall load-balancing and to provide some
estimations to the node-centric PM of incoming requests, thus masking the core’s wake-up
cost by precognition of traffic. This type of power management is expected to be favored
to reduce power consumption in future NoCs. The results, presented in [Simunic and
Boyd 2002] show that with only node PM, the power saving range from factor of 1.5 to
3 compare to no power managers. Combining dynamic voltage scaling with DPM gives
overall saving of factor of 3.6. The combined implementation of node and network centric
management approaches shows energy savings of a factor of 4.1 with performance penalty
reduced by minimum 15% compared to node-only PM. Unlike these dynamic runtime
energy monitors, in [Hu and Marculescu 2004b] a system-level energy-aware mapping and
scheduling (EAS) algorithm is proposed, which statically schedules both communication
transactions and computation tasks. For experiments done on 2D mesh with minimal-
path routing, energy savings of 44% are reported, when executing complex multimedia
benchmarks.

A design constraint of NoC less applicable to traditional multicomputer networks, lies
in the area usage. A NoC is generally required to take up less than 5% of the total chip
area. For a 0.13um SoC with one network node per core, and an average core size of
2x2mm (app. 100 cores on a large chip), this corresponds to 0.2mm? per node. One must
also remember that the NA will use some area, depending of the complexity of the features
that it provides. Trade-off decisions which are applicable to chip design in general and
not particular to NoC are beyond the scope of this survey. At the network level, many
researchers have concluded that buffering accounts for the major portion of the node area,
hence wormhole routing has been a very popular choice in NoCs, see Section 3.2.2. As
examples of an area issue related to global wires can be mentioned that introducing fat
wires, i.e. the usage of wide and tall top level metal wires for global routing, the power
figures may improve, at the expense of area [Sylvester and Keutzer 2000].

6. NOC EXAMPLES

In this section we briefly recapitulate on a handful of specific NoC examples, describing
the design choices of actual implementations, and accompanying work by the research
groups behind. This is by no means to be seen as a complete compilation of existing
NoCs, there are many more, rather the purpose of this section is to address a representative
set: ATHEREAL, NOSTRUM, SPIN, CHAIN, MANGO, and xPIPES. In [Moraes et al.
2004] a list in tabular form is provided, which effectively characterizes many of the NoCs
not covered in the following.

62

Overview of Networked MPSoC

42

ii

T. Bjerregaard and S. Mahadevan

ATHEREAL: The ATHEREAL, developed at Philips, is a NoC that pro-
vides guaranteed throughput (GT) along side best-effort (BE) service [Rijpkema
et al. 2001][Goossens et al. 2002][Wielage and Goossens 2002][Dielissen et al.
2003][Jantsch and Tenhunen 2003](pgs: 61-82)[Rijpkema et al. 2003][Radulescu
et al. 2004][Goossens et al. 2005]. In the ATHEREAL the guaranteed services
pervade as a requirement for hardware design and also as a foundation for software
programming. Here, the router’s primary function is to provide both GT and BE ser-
vices. All routers in the network have a common sense of time, and the routers forward
traffic based on slot allocation. Thus a sequence of slots implement a virtual circuit.
GT traffic is connection-oriented, and did in early router instantiations not have head-
ers, as the next hop was determined by a local slot table. In recent versions the slot
tables have been removed to save area, and the information is provided in a GT packet
header. The allocation of slots can be setup statically, during an initialization phase,
or dynamically during runtime. BE traffic makes use of non-reserved slots and of any
slots reserved but not used. BE packets are used to program the GT slots of the routers.
With regards to buffering, input queuing is implemented using custom-made hardware
fifos, to keep the area costs down. The ATHEREAL connections support a number of
different transaction types, such as read, write, acknowledged write, test and set, and
flush, and as such it is similar to existing bus protocols. In addition, it offers a number
of connection types: narrowcast, multicast, and simple.

In [Dielissen et al. 2003] an ATHEREAL router with 6 bidirectional ports of 32 bits
was synthesized in 0.13 gm CMOS technology. The router had custom made BE input
queues depth of 24 words per port. The total area was 0.175 mm?, and the bandwidth
was 500 MHz x 32 bits = 16 Gbit/s per port. A network adapter with 4 standard socket
interfaces (master and slave — OCP, DTL or AXI based) was also reported with an area
of 0.172 mm? implemented in the same technology.

In [Goossens et al. 2005] and [Pestana et al. 2004] an automated design flow for
instantiation of application specific ZATHEREAL is described. The flow uses XML
to input various parameters such as traffic characteristics, GT and BE requirements,
and topology. A case study of MPEG codec SoC is used to validate and verify the
optimizations undertaken during the automated flow.

NOSTRUM: The work of researchers at KTH in Stockholm has evolved from
a system-level chip design approach [Kumar et al. 2002][Jantsch and Tenhunen
2003][Zimmer and Jantsch 2003][Millberg et al. 2004]. Their emphasis has been
on architecture and platform-based design, targeted towards multiple application do-
mains. They have recognized the increasing complexity of working with high density
VLSI technologies and hence highlighted advantages of a grid-based, router-driven
communication media for on-chip communication.

Also the implementation of guaranteed services has also been a focus point of this
group. In the NOSTRUM NoC guaranteed services are provided by so called looped
containers. These are implemented by virtual circuits, using an explicit time division
multiplexing mechanism which they call Temporally Disjoint Networks (TDN) (refer
to Sections 3.2.2 and 3.2.3 for more details).

In [Jantsch and Vitkowski 2005], the group addressed encoding issues and showed
that lowering the voltage swing, then re-establishing reliability using error correction,
actually resulted in better power saving than a number of dedicated power saving al-

Paper #1: A Survey of Research and Practices of NoC 63

iii

iv

A Survey of Research and Practices of Network-on-Chip . 43

gorithms used for comparison.

SPIN: The SPIN network (Scalable Programmable Integrated Network) [Guerrier and
Greiner 2000][Andriahantenaina and Greiner 2003] implements a fat-tree topology
with two one-way 32bit datapaths at the link layer. The fat-tree is an interesting
choice of irregular network, claimed in [Leiserson 1985] to be nearly the best rout-
ing network for a given amount of hardware. It is proven that for any given amount
of hardware, a fat-tree can simulate any other network built from the same amount
of hardware, with only a polylogarithmic slowdown in latency. This is in contrast to
e.g. two-dimensional arrays or simple trees which exhibit polynomial slowdown when
simulating other networks, and as such do not have any advantage over a sequential
computer.

In SPIN, packets are sent via the network as a sequence of flits each of size 4 bytes.
Wormhole routing is used, with no limit on packet size. The first flit contains the
header, with one byte reserved for addressing, and the last byte of the packet contains
the payload checksum. There are three types of flits; first, data and last. Link-level
flow control is used to identify the flit type and act accordingly upon its content. The
additional bytes in the header can be used for packet tagging for special services, and
for special routing options. The performance of the network was evaluated primarily
based on uniform randomly distributed load (see Section 5). It was noted that random
hick-ups can be expected under high load. It was found that the protocol accounts
for about 31% of the total throughput, a relatively large overhead. In 2003, a 32-
port SPIN network was implemented in a 0.13m CMOS process, the total area was
4.6 mm? (0.144 mm? per port), for an accumulated bandwidth of about 100Gbits/s.

CHAIN: The CHAIN network (CHip Area INterconnect) [Bainbridge and Furber
2002], developed at the University of Manchester, is interesting in that it is imple-
mented entirely using asynchronous, or clockless, circuit techniques. It makes use
of delay insensitive 1-of-4 encoding, and source routes BE packets. An easy adaption
along a path consisting of links of different bit widths is supported. CHAIN is targeted
for heterogeneous low power systems, in which the network is system specific. It has
been implemented in a smart card, which benefits from the low idle power capabilities
of asynchronous circuits. Work from the group involved with CHAIN concerns pri-
oritization in asynchronous networks. In [Felicijan et al. 2003] an asynchronous low
latency arbiter was presented, and its use in providing differentiated communication
services in SoC was discussed, and in [Felicijan and Furber 2004] a router implement-
ing the scheme was described.

MANGO: The MANGO network (Message-passing Asynchronous Network-on-chip
providing Guaranteed services over OCP interfaces), developed at the Technical Uni-
versity of Denmark, is another clockless NoC, targeted for coarse-grained GALS-type
SoC. MANGO provides connection-less BE routing as well as connection-oriented
guaranteed services (GS) [Bjerregaard and Sparsg 2005a]. In order to make for a sim-
ple design, the routers implement virtual channels (VCs) as separate physical buffers.
GS connections are established by allocating a sequence of VCs through the network.
While the routers themselves are implemented using area efficient bundled-data cir-
cuits, the links implement delay insensitive signal encoding. This makes global tim-
ing robust, because no timing assumptions are necessary between routers. A schedul-
ing scheme called ALG (Asynchronous Latency Guarantees) |Bjerregaard and Sparsg

64

Overview of Networked MPSoC

44

vi

7.

T. Bjerregaard and S. Mahadevan

2005b], schedules access to the links, allowing latency guarantees to be made, which
are not inversely dependent on the bandwidth guarantees, as is the case in TDM-based
scheduling schemes. Network adapters provide OCP-based standard socket interfaces,
based on the primitive routing services of the network [Bjerregaard et al. 2005]. This
includes support for interrupts, based on virtual wires. The adapters also synchronize
the clocked OCP interfaces to the clockless network.

xPIPES: xpipes [Osso et al. 2003] and the accompanying NetChip compiler (a com-
bination of xpipesCompiler [Jalabert et al. 2004] and SUNMAP [Murali and Micheli
2004b]) are developed by University of Bologna and Stanford University. Xpipes con-
sists of soft macros of switches and links that can be turned into instance-specific
network components at instantiation time. It promotes the idea of pipelined links
with a flexible number of stages to increase throughput. A go-back-N retransmission
strategy is implemented as part of link-level error control, which reduces switch com-
plexity, though at considerable delay since each flit is not acknowledged until it has
been transmitted across the destination switch. The error is indicated by a CRC block
running concurrently with switch operation. Thus the xpipes architecture lends itself
to be robust to interconnect errors. Overall, delay for a flit to traverse from across one
link and node is 2N+M cycles where N is number of pipeline stages and M is switch
stages. The xpipesCompiler is a tool to automatically instantiate an application spe-
cific custom communication infrastructure using xpipes components. It can tune flit
size, degree of redundancy of the CRC error-detection, address space of cores, number
of bits used for packet sequence count, maximum number of hops between any two
network nodes, number of flit size, etc.

In a top-down design methodology, once the SoC floorplan is decided, the required
network architecture is fed into the xpipesCompiler. Examples of compiler optimiza-
tion include removing redundant buffers from missing output ports of switches, shar-
ing signals common to objects, etc. Via case studies presented in [Bertozzi et al. 2005],
the NetChip compiler has been validated for mesh, torus, hypercube, Clos and butter-
fly NoC topologies for four video processing applications. Four routing algorithms:
dimension-ordered, minimum-path, traffic splitting across minimum-path, and traffic
splitting across all paths, is also part of the case study experiments. The floorplan
of switches and links of NoC takes the IP block size into consideration. Results are
available for average hop delay, area and power for mapping of each of the video
application on the topologies. A light-weight implementation, named xpipes-lite, pre-
sented in [Stergiou et al. 2005], is similar in to Xpipes in concept, but is however
optimized for link latency, area and power, and provides direct synthesis path from
SystemC description.

SUMMARY

NoC encompasses a wide spectrum of research, ranging from highly abstract software
related issues, across system topology to physical level implementation. In this survey we
have given an overview of current activities in the field. We have first stated the motivation
for NoC and given an introduction of the basic concepts. In order to avoid the wide range

of

topics relevant to large scale IC design in general, we have assumed a view of NoC as a

subset of SoC.

From a system level perspective, NoC is motivated by the demand for a well structured

Paper #1: A Survey of Research and Practices of NoC 65

A Survey of Research and Practices of Network-on-Chip . 45

design approach in large scale SoCs. A modularized design methodology is needed, in
order to make efficient use of the ever increasing availability of on-chip resources in terms
of number of transistors and routing layers. Like-wise, programming these systems ne-
cessitates clear programming models and predictable behavior. NoC has the potential to
provide modularity through the use of standard sockets such as OCP, and predictability
through the implementation of guaranteed communication services. From a physical level
perspective, with scaling of technologies into the DSM region, the increasing impact of
wires on performance forces a differentiation between local and global communication.
In order for global communication structures to exhibit scalability and high performance,
segmentation, wire sharing and distributed control is employed.

In structuring our work, we have adopted a layered approach similar to OS], and divided
NoC research into four areas: System, Network Adapter, Network and Link research. In
accordance with the view of NoC as a subset of SoC, we dealt first with the latter three
areas of research, which relate directly to the NoC implementation.

The network adapter orthogonalizes communication and computation, enabling
communication-centric design. It is thus the entity which enables a modularized design
approach. Its main task is to decouple the core from the network, the purpose being to pro-
vide high-level network-agnostic communication services based on the low-level routing
primitives provided by the network hardware. In implementing standard sockets, IP reuse
becomes feasible, and the network adapter may thus hold the key to commercial success
of NoC.

At the network level, issues such as network topology, routing protocols, flow control,
and quality-of-service are dominant. With regards to topology, NoC is restricted by a
2D layout. This has made the grid a wide-spread topological choice. We have reviewed
the most common routing schemes, store-and-forward, wormhole and virtual cut-through
routing, and concluded that wormhole routing is by far the most common choice for NoC
designs. The use of virtual channels in avoiding deadlocks and providing guaranteed ser-
vices was illustrated and the motivation for guaranteed services was discussed. The pre-
dictability that such services incur facilitates easy system integration and analytical system
verification, particularly relevant for real-time systems.

Unlike in macro networks, in NoC network adapter and network functionality is often
implemented in hardware rather than in software. This is so, since NoC-based systems are
more tightly bound, and simple, fast, power efficient solutions are required.

Link level research is much more hardware oriented. We have covered topics like syn-
chronization, i.e. between clock domains, segmentation and pipelining of links in order
to increase bandwidth and counteract physical limitations of DSM technologies, on-chip
signaling such as low-swing drivers used to decrease the power usage in links, and future
technologies such as on-chip wave guides and optical interconnects. Also we have dis-
cussed the reliability of long links, which are susceptible to a number of noise sources:
crosstalk, ground bounce, EMI and inter-symbol interference. Segmentation helps keep
the effect of these at bay, since the shorter a wire is the less influence they will have. Error
detection and correction in on-chip interconnects was discussed, but this is not a dominat-
ing area of research. Different encoding schemes were discussed in relation to increasing
bandwidth as well as reducing power consumption.

NoC facilitates communication-centric design, as opposed to traditional computation-
centric design. From a system level perspective, topics relate to the role of NoC in future

66 Overview of Networked MPSoC

46 . T. Bjerregaard and S. Mahadevan

design flows. Key issues are modeling, design methodology and traffic characterization.
The purpose of modeling is to evaluate trade-offs with regard to global traffic, in terms
of power, area, design time, etc., while adhering to application requirements. With regard
to design methodology, we identify two important characteristics of NoC, by which we
classify a number of existing NoC solutions: (i) parametrizability of the NoC as a system
level block and (ii) granularity of the NoC components by which the NoC is assembled.
These characteristics greatly influence the nature of the design flow enabled by the partic-
ular NoC. As a tool towards identifying general requirements of a NoC, we have identified
a set of traffic types, latency-critical, data-streams and best-effort traffic, which span the
spectrum of possible traffic in a NoC-based system.

The basic performance parameters of NoC are latency, bandwidth and jitter. The ba-
sic cost factors are power consumption and area usage. At a higher level of abstraction,
terms like aggregate bandwidth, bisection bandwidth, link utilization and network load
can be used. These originate in multicomputer network theory and relate to data move-
ment in general. Stepping up yet another abstraction level, benchmarks can be used for
performance analysis. Currently no benchmarks exist specifically for NoC, but the use of
benchmarks for parallel computers, as well as embedded systems benchmarks, has been
reported.

Six case studies are conducted, explaining the design choices of the £ZTHEREAL, NOS-
TRUM, SPIN, CHAIN, MANGO and xPIPES NoC implementations. CHAIN and xPIPES
target a platform-based design methodology, in which a heterogeneous network can be
instantiated for a particular application. ATHEREAL, NOSTRUM and MANGO imple-
ment more complex features such as guaranteed services, and target a methodology which
draws closer to backbone-based design. SPIN differs from the others in that it implements
a fat-tree, rather than a grid-type topology. CHAIN and MANGO also differ in that they
are implemented entirely using clockless circuit techniques, and as such inherently support
globally asynchronous and locally synchronous (GALS) systems.

Continued technology scaling enables large scale SoC. NoCs facilitate a modular, scal-
able design approach that overcomes both system and physical level issues. The main job
of the NoC designer of the future will be to dimension and structure the network, accord-
ing to the communication needs of the SoC. At present, an interesting challenge lies in
specifying ways to define these needs.

8. ACKNOWLEDGEMENTS

We would like to thank professors Jens Sparsg and Jan Madsen of the Department for
Informatics and Mathematical Modelling (IMM) at the Technical University of Denmark
(DTU) for their tireless effort in helping us review, iterate and structure this survey. Also
our grateful thanks to professor Axel Jantsch (KTH - Stockholm, Sweden) and Andrei
Radulescu (Phillips - Eindhoven, Netherlands) for their valuable review of the survey as it
was closing in on its final form, and to Mihai Budiu (Carnegie Melon - Pittsburgh, USA) for
comments and suggestions. Finally, the extensive comments of the anonymous reviewers
have helped in taking the survey to its final form.

REFERENCES

AGARWAL, A. 1999. The Oxygen project - Raw computation. Scientific American, (August), 44—47.
AGGARWAL, A. AND FRANKLIN, M. 2002. Hierarchical Interconnects for On-chip Clustering. In Proceed-

Paper #1: A Survey of Research and Practices of NoC 67

A Survey of Research and Practices of Network-on-Chip . 47

ings of the 16th International Parallel and Distributed Processing Symposium (IPDPS) (April 2002). IEEE
Computer Society, 602—609.

AHONEN, T., SIGUENZA-TORTOSA, D. A., BIN, H., AND NURMI, J. 2004. Topology optimization for
application-specific networks-on-chip. In International Workshop on System Level Interconnect Prediction
(SLIP) (February 2004). ACM, 53-60.

AL-TAWIL, K. M., ABD-EL-BARR, M., AND ASHRAF, F. 1997. A survey and comparison of wormhole routing
techniques in a mesh networks. IEEE Network 11, 38-45.

AMDE, M., FELICIJAN, T., EDWARDS, A. E. D., AND LAVAGNO, L. 2005. Asynchronous on-chip networks.
IEE Proceedings of Computers and Digital Techniques 152, 273-283.

ANDREASSON, D. AND KUMAR, S. 2004. On improving best-effort throughput by better utilization of
guaranteed-throughput channels in an on-chip communication system. In Proceeding of 22th IEEE Norchip
Conference (Nov 2004). IEEE.

ANDREASSON, D. AND KUMAR, S. 2005. Slack-time aware routing in NoC systems. In International Sympo-
sium on Circuits and Systems (ISCAS) (May 2005). IEEE, 2353-2356.

ANDRIAHANTENAINA, A. AND GREINER, A. 2003. Micro-network for SoC : Implementation of a 32-port spin
network. In Proceedings of Design, Automation and Test in Europe Conference and Exhibition (2003). IEEE,
1128-1129.

ARM. 2004. AMBA Advanced eXtensible Interface (AXI) Protocol Specification, Version 1.0.
http://www.arm.com.

ARTERIS. 2005. A comparison of network-on-chip and busses. = White paper downloadable from
http://www.arteris.com/noc_whitepaper.pdf.

BAILEY, D., BARSZCZ, E., BARTON, J., BROWNING, D., CARTER, R., DAGUM, L., FATOOHI, R., FINEBERG,
S., FREDERICKSON, P., LASINSKI, T., SCHREIBER, R., SIMON, H., VENKATAKRISHNAN, V., AND WEER-
ATUNGA, S. 1994. RNR technical report RNR-94-007. Technical report, NASA Ames Research Center.

BAINBRIDGE, J. AND FURBER, S. 2002. CHAIN: A delay-insensitive chip area interconnect. IEEE Micro 22,
5 (October), 16-23.

BAINBRIDGE, W. AND FURBER, S. 2001. Delay insensitive system-on-chip interconnect using 1-of-4 data en-
coding. In Proceedings of the 7th International Symposium on Asynchronous Circuits and Systems (ASYNC)
(March 2001). 118 — 126.

BANERIJEE, N., VELLANKI, P., AND CHATHA, K. S. 2004. A power and performance model for network-on-
chip architectures. In Proceedings of Design, Automation and Testing in Europe Conference (DATE) (Febuary
2004). IEEE, 1250-1255.

BEIGNE, E., CLERMIDY, F., VIVET, P, CLOUARD, A., AND RENAUDIN, M. 2005. An asynchronous NOC
architecture providing low latency service and its multi-level design framework. In Proceedings of the 11th
International Symposium on Asynchronous Circuits and Systems (ASYNC) (2005). IEEE, 54—-63.

BENINI, L. AND MICHELI, G. D. 2001. Powering network-on-chips. In The 14th International Symposium on
System Synthesis (ISSS) (October 2001). IEEE, 33-38.

BENINI, L. AND MICHELI, G. D. 2002. Networks on chips: A new SoC paradigm. IEEE Computer 35, 1
(January), 70-78.

BERTOZZI, D., JALABERT, A., MURALI, S., TAMHANKAR, R., STERGIOU, S., BENINI, L., AND
DE MICHELI, G. 2005. NoC synthesis fobw for customized domain specific multiprocessor Systems-on-Chip.
In Transactions on Parallel and Distributed Systems (February 2005). IEEE, 113—-129.

BHOJWANI, P. AND MAHAPATRA, R. 2003. Interfacing cores with on-chip packet-switched networks. In
Proceedings of the Sixteenth International Conference on VLSI Design. (2003). 382-387.

BJERREGAARD, T., MAHADEVAN, S., OLSEN, R. G., AND SPARS®, J. 2005. An OCP compliant network
adapter for gals-based soc design using the MANGO network-on-chip. In Proceedings of International Sym-
posium on System-on-Chip (ISSoC) (2005). IEEE.

BIJERREGAARD, T., MAHADEVAN, S., AND SPARS®, J. 2004. A channel library for asynchronous circuit design
supporting mixed-mode modeling. In Proceedings of the Fourteenth International Workshop on Power and
Timing Modeling, Optimization and Simulation (PATMOS) (2004). Springer, 301-310.

BIERREGAARD, T. AND SPARS@, J. 2005a. A router architecture for connection-oriented service guarantees
in the MANGO clockless network-on-chip. In Proceedings of Design, Automation and Testing in Europe
Conference (DATE) (March 2005). IEEE, 1226-1231.

68 Overview of Networked MPSoC

48 . T. Bjerregaard and S. Mahadevan

BIJERREGAARD, T. AND SPARS®, J. 2005b. A scheduling discipline for latency and bandwidth guarantees in
asynchronous network-on-chip. In Proceedings of the 11th International Symposium on Advanced Research
in Asynchronous Circuits and Systems (March 2005). IEEE, 34-43.

BoOGLIOLO, A. 2001. Encodings for high-performance energy-efficient signaling. In Proceedings of the Inter-
national Symposium on Low Power Electronics and Design (ISLPED) (August 2001). 170-175.

BOLOTIN, E., CIDON, I., GINOSAUR, R., AND KOLODNY, A. 2004. QNoC: QoS architecture and design
process for network-on-chip. vol. 50 (2004). Elsevier North-Holland, Inc., 105-128.

CATTHOOR, F., CUOMO, A., MARTIN, G., GROENEVELD, P., RUDY, L., MAEX, K., DE STEEG, P. V., AND
WILSON, R. 2004. How can system level design solve the interconnect technology scaling problem. In
Proceedings of Design, Automation and Testing in Europe Conference (DATE) (Febuary 2004). IEEE, 332-
337.

CHAPIRO, D. 1984. Globally-Asynchronous Locally-Synchronous Systems. Ph. D. thesis, Stanford University.
Report No. STAN-CS-84-1026.

CHELCEA, T. AND NOWICK, S. M. 2001. Robust interfaces for mixed-timing systems with application to
latency-insensitive protocols. In Proceedings of the 38th Design Automation Conference (DAC) (June 2001).
IEEE, 21-26.

CHIU, G.-M. 2000. The odd-even turn model for adaptive routing. IEEE Transactions on Parallel and Distributed
Systems 11, 729 —738.

COLE, R. J., MAGGS, B. M., AND SITARAMAN, R. K. 2001. On the benefit of supporting virtual channels in
wormbhole routers. Journal of Computer and System Sciences 62, 152—177.

CULLER, D. E,, SINGH, J. P, AND GUPTA, A. 1998. Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann. 1st Edition.

DALLY, W. J. 1990. Performance analysis of k-ary n-cube interconnection networks. IEEE Transactions on
Computer 39, 6 (June), 775 — 785.

DALLY, W. J. 1992. Virtual-channel fbw control. IEEE Transactions on Parallel and Distributed Systems 3, 2
(March), 194 — 205.

DALLY, W. J. AND AOKI, H. 1993. Deadlock-free adaptive routing in multicomputer networks using virtual
channels. IEEE Transactions on Parallel and Distributed Systems 4, 4 (April), 466 — 475.

DALLY, W. J. AND SEITZ, C. L. 1987. Deadlock-free message routing in multiprocessor interconnection net-
works. IEEE Transactions on Computers C-36, 5 (May), 547-553.

DALLY, W. J. AND TOWLES, B. 2001. Route packets, not wires: On-chip interconnection networks. In Pro-
ceedings of the 38th Design Automation Conference (DAC) (June 2001). IEEE, 684-689.

DE MELLO, A. V., OsT, L. C., MORAES, F. G., AND CALAZANS, N. L. V. 2004. Evaluation of routing
algorithms on mesh based nocs. Technical report (May), Faculdade de Informatica PUCRS - Brazil.

DicK, R. Embedded system synthesis benchmarks suite. http://www.ece.northwestern.edu/ dickrp/e3s/.

DIELISSEN, J., RADULESCU, A., GOOSSENS, K., AND RUUPKEMA, E. 2003. Concepts and implementation of
the phillips network-on-chip. In Proceedings of the IP based SOC (IPSOC) (November 2003). IFIP.

DOBBELAERE, 1., HOROWITZ, M., AND GAMAL, A. E. 1995. Regenerative feedback repeaters for pro-
grammable interconnections. IEEE Journal of Solid-State Circuits 30, 11 (November), 1246-1253.

DOBKIN, R., GINOSAUR, R., AND SOTIRIOU, C. P. 2004. Data synchronization issues in GALS SoCs. In
Proceedings of the 10th IEEE International Symposium on Asynchronous Circuits and Systems (2004). IEEE,
170-179.

DuATO, J. 1993. A new theory of deadlock-free adaptive routing in wormhole networks. IEEE Transactions on
Parallel and Distributed Systems 4, 12 (December), 1320-1331.

DuATO, J. 1995. A necessary and sufficient condition for deadlock-free adaptive routing in wormhole networks.
IEEE Transactions on Parallel and Distributed Systems 6, 10 (October), 1055-1067.

DUATO, J. 1996. A necessary and sufficient condition for deadlock-free routing in cut-through and store-and-
forward networks. IEEE Transactions on Parallel and Distributed Systems 7, 8 (August), 841-854.

DuATO, J. AND PINKSTON, T. M. 2001. A general theory for deadlock-free adaptive routing using a mixed set
of resources. IEEE Transactions on Parallel and Distributed Systems 12, 12 (December), 1219-1235.

DuATO, J., YALAMANCHILI, S., AND NI, L. 2003. Interconnection Networks: An Engineering Approach.
Morgan Kaufmann.

Paper #1: A Survey of Research and Practices of NoC 69

A Survey of Research and Practices of Network-on-Chip . 49

FELICUAN, T., BAINBRIDGE, J., AND FURBER, S. 2003. An asynchronous low latency arbiter for quality of
service (QoS) applications. In Proceedings of the 15th International Conference on Microelectronics (ICM)
(December 2003). IEEE, 123-126.

FELICIJAN, T. AND FURBER, S. B. 2004. An asynchronous on-chip network router with quality-of-service
(QoS) support. In Proceedings IEEE International SOC Conference (2004). IEEE, 274-277.

FITZPATRICK, T. 2004. System verilog for VHDL users. In Proceedings of Design, Automation and Testing in
Europe Conference (DATE) (Febuary 2004). IEEE Computer Society, 21334.

FORSELL, M. 2002. A scalable high-performance computing solution for networks on chips. IEEE Micro 22,
5, 46-55.

GAUGHAN, P. T., DAO, B. V., YALAMANCHILI, S., AND SCHIMMEL, D. E. 1996. Distributed, deadlock-free
routing in faulty, pipelined, direct interconnection networks. IEEE Transactions on Computers 45, 6 (June),
651-665.

GENKO, N., ATIENZA, D., DE MICHELI, G., BENINI, L., MENDIAS, J., HERMIDA, R., AND CATTHOOR, F.
2005. A novel approach for network on chip emulation. In International Symposium on Circuits and Systems
(ISCAS) (May 2005). IEEE, 2365-2368.

GERSTLAUER, A. 2003. Communication abstractions for system-level design and synthesis. Technical Report
TR-03-30 (October), Center for Embedded Computer Systems, University of California, Irvine, CA 92697-
3425, USA.

GINOSAUR, R. 2003. Fourteen ways to fool your synchrononizer. In Proceedings of the 9th International
Symposium on Asynchronous Circuits and Systems (2003). IEEE, 89-96.

GLAss, C. J. AND NI, L. M. 1994. The turn model for adaptive routing. Journal of the Association for
Computing Machinery 41, 874-902.

GOOSSENS, K., DIELISSEN, J., GANGWAL, O. P., PESTANA, S. G., RADULESCU, A., AND RIJPKEMA, E.
2005. A design fbw for application-specific networks on chip with guaranteed performance to accelerate SOC
design and verification. In Proceedings of Design, Automation and Testing in Europe Conference (DATE)
(March 2005). IEEE, 1182-1187.

GOOSSENS, K., DIELISSEN, J., AND RADULESCU, A. 2005. Ahereal network on chip: Concepts, architectures
and implementations. IEEE Design & Test of Computers 22, 5, 414—421.

GOOSSENS, K., MEERBERGEN, J. V., PEETERS, A., AND WIELAGE, P. 2002. Networks on silicon: Combining
best-effort and guaranteed services. In Proceedings of the Design, Automation and Test in Europe Conference
(DATE) (2002). IEEE, 196-200.

GUERRIER, P. AND GREINER, A. 2000. A generic architecture for on-chip packet-switched interconnections.
In Proceedings of the Design Automation and Test in Europe (DATE) (March 2000). IEEE, 250-256.

GUO, M., NAKATA, I., AND YAMASHITA, Y. 2000. Contention-free communication scheduling for array redis-
tribution. Parallel Computing 26, 1325-1343.

HANSSON, A., GOOSSENS, K., AND RADULESCU, A. 2005. A unified approach to constrained mapping and
routing on networks-on-chip architectures. In CODES/ISSS (2005). ACM/IEEE, 75-80.

HARMANCI, M., ESCUDERO, N., LEBLEBICI, Y., AND IENNE, P. 2005. Quantitative modelling and comparison
of communication schemes to guarantee quality-of-service in networks-on-chip. In International Symposium
on Circuits and Systems (ISCAS) (May 2005). IEEE, 1782-1785.

HAUCK, S. 1995. Asynchronous design methodologies: an overview. Proceedings of the IEEE 83, 1 (January),
69-93.

HAVEMANN, R. H. AND HUTCHBY, J. A. 2001. High-performance interconnects: An integration overview.
Proceedings of the IEEE 89, 5 (May), 586 — 601.

HAVERINEN, A., LECLERCQ, M., WEYRICH, N., AND WINGARD, D. 2002. SystemC based SoC communica-
tion modeling for the OCP protocol. White paper downloadable from http://www.ocpip.org.

HEILIGER, H.-M., NAGEL, M., Roskos, H. G., AND KURz, H. 1997. Thin-film microstrip lines for mm
and sub-mm-wave on-chip interconnects. In IEEE MTT-S International Microwave Symposium Digest, vol. 2
(June 1997). 421-424.

Ho, R., MAL K., AND HOrROWITZ, M. 2003. Efficient on-chip global interconnects. In Symposium on VLSI
Circuits. Digest of Technical Papers. (June 2003). IEEE, 271-274.

Ho, R.,MAL K. W., AND HOROWITZ, M. A.2001. The future of wires. Proceedings of the IEEE 89, 4 (April),
490 — 504.

70 Overview of Networked MPSoC

50 . T. Bjerregaard and S. Mahadevan

Hu, J. AND MARCULESCU, R. 2004a. Application-specific buffer space allocation for networks-on-chip router
design. In ICCAD (2004). IEEE Computer Society / ACM, 354-361.

HU, J. AND MARCULESCU, R. 2004b. Energy-aware communication and task scheduling for network-on-
chip architectures under real-time constraints. In Proceedings of Design, Automation and Testing in Europe
Conference (DATE) (Febuary 2004). IEEE, 10234—10240.

ITRS. 2001. International technology roadmap for semiconductors (ITRS) 2001. Technical report, International
Technology Roadmap for Semiconductors.

ITRS. 2003. International technology roadmap for semiconductors (ITRS) 2003. Technical report, International
Technology Roadmap for Semiconductors.

JALABERT, A., MURALI, S., BENINI, L., AND MICHELI, G. D. 2004. xpipesCompiler: A tool for instanti-
ating application specific networks-on-chip. In Proceedings of Design, Automation and Testing in Europe
Conference (DATE) (Febuary 2004). IEEE, 884—889.

JANTSCH, A. 2003. Communication performance in networks-on-chip. Slides downloadable from
http://www.ele.kth.se/ axel/presentations/2003/Stringent.pdf.

JANTSCH, A. AND TENHUNEN, H. 2003. Networks on Chip. Kluwer Academic Publishers.

JANTSCH, A. AND VITKOWSKI, R. L. A.2005. Power analysis of link level and end-to-end data protection in
networks-on-chip. In International Symposium on Circuits and Systems (ISCAS) (May 2005). IEEE, 1770—
1773.

JUURLINK, B. H. H. AND WISHOFF, H. A. G. 1998. A quantitative comparison of parrallel computation
models. ACM Transactions on Computer Systems 16, 3 (August), 271-318.

KAPUR, P. AND SARASWAT, K. C. 2003. Optical interconnects for future high performance intergrated circuits.
Physica E 16, Issue 3-4, 620-627.

KARIM, F., NGUYEN, A., AND DEY, S. 2002. An interconnect architecture for networking systems on chips.
1IEEE Micro 22, 36-45.

KARIM, F., NGUYEN, A., DEY, S., AND RAO, R. 2001. On-chip communication architecture for OC-768
network processors. In Proceedings of the 38th Design Automation Conference (DAC) (June 2001). ACM,
678-683.

Kim, D., LEE, K., JOONG LEE, S., AND YOO, H.-J. 2005. A reconfigurable crossbar switch with adaptive
bandwidth control for networks-on-chip. In International Symposium on Circuits and Systems (ISCAS) (May
2005). IEEE, 2369-2372.

Kim, K., LEE, S.-J., LEE, K., AND YOO, H.-J. 2005. An arbitration look-ahead scheme for reducing end-to-
end latency in networks-on-chip. In International Symposium on Circuits and Systems (ISCAS) (May 2005).
IEEE, 2357-2360.

KUMAR, S., JANTSCH, A., SOININEN, J.-P., FORSELL, M., MILLBERG, M., OBERG, J., TIENSYRJA, K.,
AND HEMANI, A. 2002. A network-on-chip architecture and design methodology. In Proceedings of the
Computer Society Annual Symposium on VLSI (ISVLSTI) (April 2002). IEEE Computer Society, 117—124.

KURD, N., BARKATULLAH, J., DiZON, R., FLETCHER, T., AND MADLAND, P. 2001. Multi-GHz clocking
scheme for Intel pentium 4 microprocessor. In Digest of Technical Papers. International Solid-State Circuits
Conference (ISSCC) (February 2001). IEEE, 404—405.

LAHIRI, K., RAGHUNATHAN, A., AND DEY, S. 2001. Evaluation of the traffic-performance characteristics of
system-on-chip communication architectures. In Proceedings of the 14th International Conference on VLSI
Design (2001). IEEE, 29-35.

LAHIRI, K., RAGHUNATHAN, A., LAKSHMINARAYANA, G., AND DEY, S. 2000. Communication architecture
tuners: A methodology for the design of high-performance communication architectures for system-on-chips.
In Proceedings of the Design Automation Conference, DAC (2000). IEEE, 513-518.

LEE, K. 1998. On-chip interconnects - gigahertz and beyond. Solid State Technology 41, 9 (September), 85-89.

LEISERSON, C. E. 1985. Fat-trees: Universal networks for hardware-efficient supercomputing. IEEE transac-
tions on Computers c-34, 10, 892-901.

LEROY, A., MARCHAL, P., SHICKOVA, A., CATTHOOR, F., ROBERT, F., AND VERKEST, D. 2005. Spatial divi-
sion multiplexing: a novel approach for guaranteed throughput on nocs. In CODES/ISSS (2005). ACM/IEEE,
81-86.

LIANG, J., LAFFELY, A., SRINIVASAN, S., AND TESSIER, R. 2004. An architecture and compiler for scalable
on-chip communication. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12,7, 711-726.

Paper #1: A Survey of Research and Practices of NoC 71

A Survey of Research and Practices of Network-on-Chip . 51

LIANG, J., SWAMINATHAN, S., AND TESSIER, R. 2000. ASOC: A scalable, single-chip communications archi-
tecture. In Proceedings of the International Conference on Parallel Architectures and Compilation Techniques
2000 (October 2000). 37-46.

Liu, J., ZHENG, L.-R., AND TENHUNEN, H. 2004. Interconnect intellectual property for network-on-chip
(NoC). Journal of Systems Architecture 50, 65-79.

LoGHI, M., ANGIOLINI, F., BERTOZZI, D., BENINI, L., AND ZAFALON, R. 2004. Analyzing on-chip commu-
nication in a MPSoC environment. In Proceedings of Design, Automation and Testing in Europe Conference
(DATE) (Febuary 2004). IEEE, 752-757.

MADSEN, J., MAHADEVAN, S., VIRK, K., AND GONZALEZ, M. 2003. Network-on-chip modeling for system-
level multiprocessor simulation. In Proceedings of the 24th IEEE International Real-Time Systems Sympo-
sium (RTSS) (Dec 2003). IEEE, 82-92.

MAHADEVAN, S., STORGAARD, M., MADSEN, J., AND VIRK, K. 2005. ARTS: A system-level framework for
modeling MPSoC components and analysis of their causality. In The 13th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS) (September
2005). IEEE Computer Society.

Mal, K., PAASKE, T., JAYASENA, N., HO, R., DALLY, W. J., AND HOROWITZ, M. 2000. Smart memories: A
modular reconfigurable architecture. In Proceedings of 27th International Symposium on Computer Architec-
ture (June 2000). 161-171.

MEINCKE, T., HEMANI, A., KUMAR, S., ELLERVEE, P., OBERG, J., OLSSON, T., NILSSON, P., LINDQVIST,
D., AND TENHUNEN, H. 1999. Globally asynchronous locally synchronous architecture for large high-
performance ASICs. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS),
vol. 2 (June 1999). 512 -515.

MILLBERG, M., NILSSON, E., THID, R., AND JANTSCH, A. 2004. Guaranteed bandwidth using looped con-
tainers in temporally disjoint networks within the nostrum network-on-chip. In Proceedings of Design, Au-
tomation and Testing in Europe Conference (DATE) (Febuary 2004). IEEE, 890-895.

MIzUNO, M., DALLY, W. J., AND ONIsHI, H. 2001. Elastic interconnects: Repeater-inserted long wiring
capable of compressing and decompressign data. In Proceedings of the International Solid-State Circuits
Conference (2001). IEEE, 346-347, 464.

MORAES, F., CALAZANS, N., MELLO, A., MOLLER, L., AND OST, L. 2004. HERMES: An infrastructure for
low area overhead packet-switching networks on chip. vol. 38 (2004). Elsevier, 69—93.

MULLINS, R. AND MOORE, A. W. S. 2004. Low-latency virtual-channel routers for on-chip networks. In
Proceedings of the 31st Annual International Symposium on Computer Architecture (2004). IEEE, 188-197.

MURALIL, S. AND MICHELI, G. D. 2004a. Bandwidth-constrained mapping of cores onto noc architectures.
In Proceedings of Design, Automation and Testing in Europe Conference (DATE) (Febuary 2004). IEEE,
20896-20902.

MURALI, S. AND MICHELI, G. D. 2004b. SUNMAP: A tool for automatic topology selection and generation
for NoCs. In In Proceedings of the 41st Design Automation Conference (DAC) (June 2004). IEEE, 914-919.

MUTTERSBACH, J., VILLIGER, T., AND FICHTNER, W. 2000. Practical design of globally-asynchronous
locally-synchronous systems. In Proceedings of the Sixth International Symposium on Advanced Research in
Asynchronous Circuits and Systems (ASYNC) (April 2000). IEEE Computer society, 52—59.

NAKAMURA, K. AND HOROWITZ, M. A. 1996. A 50% noise reduction interface using low-weight coding. In
Symposium on VLSI Circuits Digest of Technical Papers (June 1996). IEEE, 144—145.

NEDOVIC, N., OKLOBDZIJA, V. G., AND WALKER, W. W. 2003. A clock skew absorbing fip-fbp. In Pro-
ceedings of the International Solid-State Circuits Conference (2003). IEEE, 342-497.

NEEB, C., THUL, M., WEHN, N., NEEB, C., THUL, M., AND WEHN, N. 2005. Network-on-chip-centric
approach to interleaving in high throughput channel decoders. In International Symposium on Circuits and
Systems (ISCAS) (May 2005). IEEE, 1766—1769.

NIELSEN, S. F. AND SPARS@, J. 2001. Analysis of low-power SoC interconnection networks. In Proceedings
of Nordchip 2001 (2001). 77-86.

OBERG, J. 2003. Clocking Strategies for Networks-on-Chip. 153—172. Kluwer Academic Publishers.

OCPIP.2003a. The importance of sockets in SoC design. White paper downloadable from http://www.ocpip.org.

OCPIP. 2003b. Open Core Protocol (OCP) Specification, Release 2.0. http://www.ocpip.org.

72 Overview of Networked MPSoC

52 . T. Bjerregaard and S. Mahadevan

OKLOBDZUA, V. G. AND SPARS@, J. 2002. Future directions in clocking multi-GHz systems. In Proceedings
of the 2002 International Symposium on Low Power Electronics and Design, 2002 (ISLPED ’02) (August
2002). ACM, 219.

0ss0, M. D., BICCARI, G., GIOVANNINI, L., BERTOZZI, D., AND BENINI, L. 2003. xpipes: a latency insen-
sitive parameterized network-on-chip architecture for multi-processor SoCs. In Proceedings of 21st Interna-
tional Conference on Computer Design (ICCD) (2003). IEEE Computer Society, 536—-539.

OsT, L., MELLO, A., PALMA, J., MORAES, F., AND CALAZANS, N. 2005. MAIA - a framework for net-
works on chip generation and verification. In Proceedings of the Asia and South Pacific Design Automation
Conference (ASP-DAC) (January 2005). IEEE.

PANDE, P., GRECU, C., JONES, M., IVANOV, A., AND SALEH, R. 2005. Effect of traffic localization on energy
dissipation in NoC-based interconnect. In International Symposium on Circuits and Systems (ISCAS) (May
2005). IEEE, 1774-1777.

PANDE, P. P., GRECU, C., IVANOV, A., AND SALEH, R. 2003. Design of a switch for network-on-chip appli-
cations. IEEE International Symposium on Circuits and Systems (ISCAS) 5, 217-220.

PEH, L.-S. AND DALLY, W. J. 1999. Flit-reservation fbw control. In Proceedings of the 6th International
Symposium on High-Performance Computer Architecutre (HPCA) (1999). IEEE Computer Society, 73—84.

PEH, L.-S. AND DALLY, W. J. 2001. A delay model for router microarchitectures. IEEE Micro 21, 26-34.

PESTANA, S., RUPKEMA, E., RADULESCU, A., GOOSSENS, K., AND GANGWAL, O. 2004. Cost-performance
trade-offs in networks on chip: a simulation-based approach. In Proceedings of Design, Automation and
Testing in Europe Conference (DATE) (Febuary 2004). IEEE, 764—769.

PHILIPS SEMICONDUCTORS. 2002. Device Transaction Level (DTL) Protocol Specification, Version 2.2.

PIGUET, C., JACQUES, HEER, C., O’CONNOR, I., AND SCHLICHTMANN, U. 2004. Extremely low-power
logic. In Proceedings of Design, Automation and Testing in Europe Conference (DATE), C. Piguet, Ed.
(2004). IEEE, 1530-1591.

PIRRETTI, M., LINK, G., BROOKS, R. R., VIJAYKRISHNAN, N., KANDEMIR, M., AND IRWIN, M. 2004. Fault
tolerant algorithms for network-on-chip interconnect. In Proceedings of the IEEE Computer Society Annual
Symposium on VLSIL (2004). IEEE, 46-51.

RADULESCU, A., DIELISSEN, J., GOOSSENS, K., RIIPKEMA, E., AND WIELAGE, P. 2004. An efficient on-
chip network interface offering guaranteed services, shared-memory abstraction, and fexible network config-
uration. In Proceedings of Design, Automation and Testing in Europe Conference (DATE) (Febuary 2004).
IEEE, 878-883.

RIJPKEMA, E., GOOSSENS, K., AND WIELAGE, P. 2001. A router architecture for networks on silicon. In
Proceeding of the 2nd Workshop on Embedded Systems (2001). 181-188.

RIJPKEMA, E., GOOSSENS, K. G. W., RADULESCU, A., DIELISSEN, J., MEERBERGEN, J. V., WIELAGE,
P., AND WATERLANDER, E. 2003. Trade offs in the design of a router with both guaranteed and best-effort
services for networks-on-chip. In Proceedings of the Design, Automation and Test in Europe Conference
(DATE) (2003). IEEE, 350-355.

RIXNER, S., DALLY, W. J., KAPASI, U. J., KHAILANY, B., LOPEZ-LAGUNAS, A., MATTSON, P. R., AND
OWENS, J. D. 1998. A bandwidth-efficient architecture for media processing. In Proceedings of the 31st
Annual ACM/IEEE International Symposium on Microarchitecture (1998). 3—13.

ROSTISLAYV, D., VISHNYAKOV, V., FRIEDMAN, E., AND GINOSAUR, R. 2005. An asynchronous router for
multiple service levels networks on chip. In Proceedings of the 11th IEEE International Symposium on Asyn-
chronous Circuits and Systems (ASYNC). (2005). IEEE, 44-53.

SATHE, S., WIKLUND, D., AND LIU, D. 2003. Design of a switching node (router) for on-chip networks. In
Proceedings of the Fifth International Conference on ASIC (2003). IEEE, 75-78.

SIA. 1997. National technology roadmap for semiconductors 1997. Technical report, Semiconductor Industry
Association.

SIGUENZA-TORTOSA, D., AHONEN, T., AND NURMI, J. 2004. Issues in the development of a practical NoC:
the Proteo concept. In Integration, the VLSI Journal (2004). Elsevier, 95—105.

SIMUNIC, T. AND BOYD, S. 2002. Managing power consumption in networks-on-chips. In Proceedings of the
Design, Automation and Test in Europe Conference (DATE) (2002). IEEE Computer Society, 110-116.

SINGH, M. AND NOWICK, S. 2000. High-throughput asynchronous pipelines for fine-grain dynamic datapaths.
In Proceedings of the Sixth International Symposium on Advanced Research in Asynchronous Circuits and
Systems (ASYNC). (2000). IEEE Computer Society, 198-209.

Paper #1: A Survey of Research and Practices of NoC 73

A Survey of Research and Practices of Network-on-Chip . 53

SPARS®, J. AND FURBER, S. 2001. Principles of Asynchronous Circuit Design. Kluwer Academic Publishers,
Boston.

STERGIOU, S., ANGIOLINI, F., CARTA, S., RAFFO, L., BERTOZZI, D., AND MICHELI, G. D. 2005. xpipes
lite: A synthesis oriented design library for networks on chips. In Proceedings of Design, Automation and
Testing in Europe Conference (DATE) (March 2005). IEEE.

SVENSSON, C. 2001. Optimum voltage swing on on-chip and off-chip interconect. Manuscript available on
authors web page at http://www.ek.isy.liu.se/ christer/ManuscriptSwing.pdf.

SYLVESTER, D. AND KEUTZER, K. 2000. A global wiring paradigm for deep submicron design. IEEE Trans-
actions on Computer Aided Design of Integrated Circuits and Systems 19, 242-252.

SYSTEMC. 2002. The SystemC Version 2.0.1. Web Forum (www.systemc.org).

TAMIR, Y. AND FRAZIER, G. L. 1988. High-performance multiqueue buffers for VLSI communication
switches. In Proceedings of the 15th Annual International Symposium on Computer Architecture (1988).
IEEE Computer Society, 343—354.

TAYLOR, M. B., KiM, J., MILLER, J., WENTZLAFF, D., GHODRAT, F., GREENWALD, B., HOFFMAN, H.,
JOHNSON, P, LEE, J.-W., LEE, W., MA, A., SARAF, A., SENESKI, M., SHNIDMAN, N., STRUMPEN, V.,
FRANK, M., AMARASINGHE, S., AND AGARWAL, A. 2002. The RAW microprocessor: A computational
fabric for software circuits and general-purpose programs (2002).

TORTOSA,D. A. AND NURMLI, J. 2004. Packet scheduling in proteo network-on-chip. In Parallel and Distributed
Computing and Networks (2004). IASTED/ACTA Press, 116—121.

VAIDYA, R. S., SIVASUBRAMANIAM, A., AND DAS, C. R. 2001. Impact of virtual channels and adaptive
routing on application performance. IEEE Transactions on Parallel and Distributed Systems 12, 2 (February),
223 —237.

VARATKAR, G. AND MARCULESCU, R. 2002. Traffic analysis for on-chip networks design of multimedia
applications. In Proceedings of the 39th Design Automation Conference (DAC) (June 2002). ACM, 795-800.

VSI ALLIANCE. 2000. Virtual component interface standard Version 2. Available from VSI Alliance
(WWW.vsi.org).

WANG, H.-S., ZHu, X., PEH, L.-S., AND MALIK, S. 2002. Orion: a power-performance simulator for inter-
connection networks. In Proceedings of the 35th Annual ACM/IEEE International Symposium on Microar-
chitecture (November 2002). IEEE Computer Society Press, 294-305.

WEBER, W.-D., CHOU, J., SWARBRICK, I., AND WINGARD, D. 2005. A quality-of-service mechanism for
interconnection networks in system-on-chips. In Proceedings of Design, Automation and Testing in Europe
Conference (DATE) (March 2005). IEEE, 1232—-1237.

WIEFERINK, A., KOGEL, T., LEUPERS, R., ASCHEID, G., MEYR, H., BRAUN, G., AND NOHL, A. 2004. A
system level processor/communication co-exploration methodology for multi-processor system-on-chip plat-
forms. In Proceedings of Design, Automation and Testing in Europe Conference (DATE) (Febuary 2004).
IEEE Computer Society, 1256-1261.

WIELAGE, P. AND GOOSSENS, K. 2002. Networks on silicon: Blessing or nightmare? In Proceedings of the
Euromicro Symposium on Digital System Design (DSD) (September 2002). IEEE, 196-200.

WORM, F., THIRAN, P, MICHELI, G. D., AND IENNE, P. 2005. Self-calibrating networks-on-chip. In Interna-
tional Symposium on Circuits and Systems (ISCAS) (May 2005). IEEE, 2361-2364.

XANTHOPOULOS, T., BAILEY, D., GANGWAR, A., GOWAN, M., JAIN, A., AND PREWITT, B. 2001. The
design and analysis of the clock distribution network for a 1.2 GHz alpha microprocessor. In Digest of
Technical Papers, IEEE International Solid-State Circuits Conference, 2001 ISSCC. 2001. (2001). IEEE, 402
—403.

XU, J., WOLF, W., HENKEL, J., AND CHAKRADHAR, S. 2005. A methodology for design, modeling, and
analysis of networks-on-chip. In International Symposium on Circuits and Systems (ISCAS) (May 2005).
IEEE, 1778-1781.

XU, J., WOLF, W., HENKEL, J., CHAKRADHAR, S., AND Lv, T. 2004. A case study in networks-on-chip
design for embedded video. In Proceedings of Design, Automation and Testing in Europe Conference (DATE)
(Febuary 2004). IEEE, 770-775.

ZHANG, H., GEORGE, V., AND RABAEY, J. M. 1999. Low-swing on-chip signaling techniques: Effectiveness
and robustness. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 8, 3 (August), 264 — 272.

74 Overview of Networked MPSoC

54 . T. Bjerregaard and S. Mahadevan

ZHANG, H., PRABHU, V., GEORGE, V., WAN, M., BENES, M., ABNOUS, A., AND RABAEY, J. M. 2000. A 1
V heterogeneous reconfigurable processor IC for baseband wireless applications. In International Solid-State
Circuits Conference. Digest of Technical Papers (ISSCC) (2000). IEEE, 68-69.

ZIMMER, H. AND JANTSCH, A. 2003. A fault tolerant notation and error-control scheme for switch-to-switch
busses in a network-on-chip. In Proceedings of Conference on Hardware/Software Codesign and System
Synthesis Conference CODES ISSS (October 2003). ACM, 188-193.

CHAPTER 4

The ARTS Modeling
Environment

This chapter consists of the following papers.

#2: Jan Madsen, Shankar Mahadevan, Kashif Virk and Mercury Gonza-
lez. “Network-on-Chip Modeling for System-Level Multiprocessor Simula-
tion.” In Proceedings of the 24th Real-Time Systems Symposium (RTSS),
Cancun Mezico. TEEE, Dec. 2003: 265-274.

#3: Jan Madsen, Shankar Mahadevan, and Kashif Virk. “Network-Centric
System-Level Model for Multiprocessor System-on-Chip Simulation.”
Interconnect-Centric Design for Advanced SoC and NoC. Eds. Nurmi
J., Tenhunen H., Isoaho J., and Jantsch A. Dordrecht, The Netherlands.
Kluwer Publications, 2004: 341-365.

#4: Shankar Mahadevan, Michael Storgaard, Jan Madsen, and Kashif Virk.
“ARTS: A System-Level Framework for Modeling MPSoC Components
and Analysis of their Causality” Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), Atlanta USA.
IEEE, Sept. 2005: 480-483.

From this group only Paper #3 and Paper #4 are presented in this chapter.
Paper #3 covers the concepts and results presented in Paper #2 and therefore,

76 The ARTS Modeling Environment

Paper #2 is not presented here. We refer the interested readers to Appendix
for the full text of Paper #2. With regards to nomenclature, the ARTS frame-
work in Paper #2 and #3 is referred to as ‘abstract system-level model’ or
‘system-level RTOS modeling framework’.

4.1 Network-Centric System-Level Model for
Multiprocessor System-on-Chip Simulation

Paper #3: Network-Centric System-Level Model for MPSoC Simulation 77

Chapter 1

NETWORK-CENTRIC SYSTEM-LEVEL MODEL
FOR MULTIPROCESSOR SOC SIMULATION

Jan Madsen

Shankar Mahadevan

Kashif Virk

Informatics and Mathematical Modeling, Technical University of Denmark
Richard Petersens Plads, building 322, DK2800 Kgs. Lyngby, Denmark
{jan,sm,virk}@imm.dtu.dk

1. Introduction

In this chapter, we present a modelling environment which supports
design space exploration at the system-level for mapping an application
onto the architecture platform while giving a central role to the effects
of the network-on-chip (NoC). The primary goal of system-level mod-
elling is to formulate a model within which a broad class of designs can
be developed and explored. Ultimately, this allows designers to effi-
ciently implement instances of systems within a single modelling style
as supported by common design tools and methodologies. To support
the designers of single-chip based embedded systems, which includes
multiprocessor platforms running dedicated real-time operating systems
(RTOS’s) as well as the effects of on-chip interconnect network, a mod-
cling/simulation environment is required to support the analysis of:

m Network performance under different traffic and load conditions.

= Consequences of different mappings of tasks to processors (software
or hardware).

m Effects of RTOS selection, including scheduling, synchronization
and resource allocation policies.

An on-chip network model can provide provisions for run-time in-
spection and observation of the communication. Using this approach,

78 The ARTS Modeling Environment

2

implementations of the most promising network alternatives can be pro-
totyped and characterized in terms of performance and overhead. Tak-
ing communication into account during hardware/software mapping is
essential in order to obtain optimized solutions as emphasized in [13].
Also, [12] and [18] show the importance of evaluating the communication
media and how the choice of communication clearly impacts the overall
architecture of a SoC.

The rest of the chapter is organized as follows: In Section 2, we dis-
cuss various issues related to NoC modelling such as the requirements
for modelling general network structures, the interface between the pro-
cessing elements (PE’s) and the network, and the possible usages of a
NoC model. Section 3 gives an overview of our abstract SoC model with
emphasis on modelling the NoC, while Section 4 gives a detailed descrip-
tion of the implementation of the NoC model. In Section 5, we present a
simple example to illustrate the capabilities of our NoC model. Finally,
Section 6 gives a summary and concluding remarks.

2. Issues in NoC Modelling

Architecturally, an on-chip network is defined by its topology and
the protocol running on it. The topology concerns the geometry of the
communication links while the protocol dictates how these links are uti-
lized. Many combinations of topology and protocol exist for an efficient
communication of one or more predominant traffic patterns. For ex-
ample, in [14], packet-switched NoC concepts have been applied to a
2-D mesh network topology whereas in [10], such concepts have been
applied to a butterfly fat tree topology. While there are several mature
methodologies for modelling and evaluating the PE architectures, there
is relatively little research done to port the on-chip communication to
the system-level. In [20], attempts have been made to fill this gap by
proposing a NoC modelling methodology based upon ideas borrowed
from the object-oriented design domain and implementing those ideas
in Ptolemy II.

The performance of a network is closely connected to its architecture.
Network performance is measured in quantitative terms, such as latency,
bandwidth, power consumption, and area usage, as well as, in qualita-
tive terms, such as network configurability (static or dynamic), quality
of service (QoS), etc. Predictability of performance is necessary for NoC
designers to take early decisions based on the NoC performance before
actual implementation. Numerous studies have been done for deadlock,
livelock, congestion-avoidance, error-correction, connection setup/tear-
down, etc. to provide a certain predictable network behavior [6]. Even

Paper #3: Network-Centric System-Level Model for MPSoC Simulation 79

Network-Centric System-Level Model for Multiprocessor SoC Simulation 3

lower-level engineering techniques like low-swing drivers, signal encod-
ing, etc., have been proposed to overcome network communication un-
certainties [3, 4, 11]. Many of these network aspects are custom-tuned
to fit the requirements of the application running on top of it.

Throughout this chapter, we use latency as the primary metric to
ascertain the performance of a NoC. Network latency is defined as the
time taken to move data from the source PE to the destination PE. It
includes the message processing overhead, link delay, and the data pro-
cessing delay at the intermediate nodes. Network latency is a function of
the network topology (which determines the number of nodes and links
comprising a network) and the communication protocol (which deter-
mines the processing requirements for routing and flow control). If two
communicating tasks are allocated to different processors, data will have
to be transferred over a communication medium and the message trans-
fer time will depend on the message size and the state of the network.

The state of an on-chip network at any instant is given by the num-
ber of actively transmitting PE’s and the messages within its nodes and
links. The state of a network dictates which resources of the network
are currently in use and which ones can be available for future use.
This provides a measure of the network services available to the sys-
tem, which would affect its performance. We define network services as
the system-level characterization of the network resource allocation and
scheduling activities. For a given topology-protocol combination, the
effect of changes in network services changes the resources available for
a given communication event, thus, affecting its latency.

2.1 Network Aspects

Since most of the future embedded applications are likely to be real-
time applications running on multiprocessor SoC’s, the fundamental
properties required of future NoC’s to provide these services are: multi-
hop, concurrency, and sharing. Although different on-chip networks
manifest different subsets of the above-mentioned properties, a network
should contain all of them in order to be a successful NoC.

m Multi-hop implies segmented communication in which communi-
cation events (majority of messages) pass through intermediate
nodes while traversing from the source to the destination.

m Concurrency implies multiple simultaneous communications. It
represents the ability of the network to successfully carry out more
than one communication at the same time.

80 The ARTS Modeling Environment

m Sharing implies quasi-simultaneous resource usage. It, inherently,
allows many communication events to occupy some or all of the
resources in an interleaved fashion.

Though defined separately, these properties are closely related to
each other by the underlying topology and protocol implementations.
If no direct path exists between two communicating PE’s, then multi-
hop is required. In multi-hop networks, links are connected via nodes.
This, inherently, introduces sub-divisioning (segmentation) of the net-
work. Many communication events can, thus, occur in different seg-
ments of the network allowing concurrency. Concurrency, in essence,
allows co-existence of different communication events. Sharing requires
that links be connected to multiple source and destination pairs at the
same time. Sharing, essentially, allows the creation of multiple commu-
nication events in the network. Sharing can be either spatial (resource
sharing) or temporal (time sharing).

OO ONOLCETIO),

Task Decomposition

T T, T T, T, T,
PE, PE, PE_ PE, PE, PE,
L L
e HON
G, & ®

Architecture Mapping

r
PE, o)
R1
L‘
4 R,
» PE,| % L,
PE,| 7 bus R,
PE, T, . PE, T, . PE, 7 N

Task Scheduling
(@) | (b) (c)

Figure 1.1. Communication modelling.

Example 1: Consider three sample communication network topolo-
gies (see Figure 1.1): (a) fully-interconnected or point-to-point, (b) bus,

Paper #3: Network-Centric System-Level Model for MPSoC Simulation 81

Network-Centric System-Level Model for Multiprocessor SoC Simulation 5

and (c¢) mesh. When modelling a fully-interconnected network, illus-
trated in Figure 1.1(a), at the system level, the inter-task communication
can be assumed to be negligible. This type of network has no multi-hop
or sharing capability but it does allow concurrency. The reuse and scala-
bility potential of such a network is limited. In the case of a bus network,
as illustrated in Figure 1.1(b), the inter-task communication cannot be
neglected. Therefore, the task graph of an application can be extended
by the insertion of message tasks (7,,’s) which represent the transfer of
data between tasks. Such a network is shared but does not allow multi-
hop or concurrency. Since only one message transfer can take place at a
time, the bus quickly becomes a critical resource.

As the number of processors is increased, a careful selection of task
and communication scheduling policies is required when mapping tasks
onto processors and deciding upon the system implementation either in
software or in hardware. The fully-interconnected and the bus-based net-
work models can provide the best-case and the worst-case performance
limits, respectively, while carrying out an initial estimate of the com-
munication requirements of an application. However, a network-on-chip
solution requires more sophisticated modelling and design techniques in
order to handle muti-hop communication where the message transfer
time may depend upon the traffic and the actual routing path through
the network. In Figure 1.1(c), communication in a bi-directional mesh
is shown. It has all the requisite network properties listed above and,
therefore, it allows successful inter-task communication.

2.2 Network Boundary Issues

For modelling purposes, it is important to define a precise boundary
between the functionality of the NoC and the PE’s. For example, in Fig-
ure 1.1(b), if a PE is responsible for performing communication tasks as
well, then there is an overlap between the tasks running on the PE’s and
the NoC. Similarly, in Figure 1.1(c), it is possible to design the nodes
(R1, R2, and R3) to buffer messages before transmission. On the other
hand, referring back to Figure 1.1(b), if a provision exists for the PE’s
to "dump” their messages for communication to some temporary loca-
tion without actually performing the communication tasks, it effectively
decouples computation from communication. This temporary location
is called a network interface (NI).

The OSI [1] layered communication model is a convenient way to ex-
plain the complexity inherent in the inter-task communication. These
input and output buffers are jointly maintained by the transport layer
and the network layer protocols. The transport layer interfaces with

82 The ARTS Modeling Environment

6

the tasks and provides them with the message transport services. The
network layer interfaces with the medium-access control layer and pro-
vides network access and message transmission services to the transport
layer. When requested to send a message by a local task, the source
transport layer places the message in the output buffer. From there,
each outgoing message is delivered to the network under the control of
the source network layer. After the message has traversed the network,
the destination network layer places the message in the input buffer and
notifies the destination transport layer. The destination transport layer
then moves the message to the address space of the destination task and
notifies the task of the arrival of the message. The activities of sending
a message can be represented by a chain of tasks.

The source and the destination tasks are the predecessor and the
successor of this chain of tasks, respectively. At the beginning and the
end of the chain of tasks are the source and the destination transport
protocol processing tasks. In between them, each task that accesses the
network or transmits the message becomes ready for execution after its
immediate predecessor completes, possibly with some delay introduced
by the execution synchronization protocol used. In short, for modelling
purposes, the various options for implementing these layers determine
the NoC boundary [2]. In our model, these options boil down to two
types of transitions in the task model:

s Overlapped Model: In this model, a PE not only initiates com-
munication but also contributes to set it up. Thus, the computa-
tion capability of a PE is utilized to carry out the communication
processing functions like message encapsulation, header creation,
encoding, etc. In the OSI context, the PE implements all the lay-
ers upto the physical layer to handle communication. As a result,
an inter-task overlap occurs between the task generating a commu-
nication request on a PE and the communication task complying
to such a request.

s Triggered Model: In this model, a PE only triggers a commu-
nication event but communication is actually handled by the NI.
This frees up the computation capability of the PE for other tasks
scheduled on it. An NI takes data from a PE, encapsulates it, and
ensures its successful transmission through the NoC. In the OSI
context, the PE implements all the layers upto the transport layer,
while the NI implements the rest of the layers below it, including
the transport layer, to handle communication. As a result, there
is no overlap of PE tasks demanding communication services with
the communication task performing communication.

Paper #3: Network-Centric System-Level Model for MPSoC Simulation 83

Network-Centric System-Level Model for Multiprocessor SoC Simulation 7

Allocator, Allocator,

PE PE

2

i il

Figure 1.2. Network Interface.

From the above discussion, it is obvious that the choice of a NI can
have global consequences on system-level scheduling (especially for large
message sizes). When deciding the network boundary, it is important
to break down the inter-task communication process into a sub-process
that initiates communication and a sub-process that performs communi-
cation. Figure 1.2 illustrates this concept. For the overlapped model, the
NI will be part of PE while for the triggered model, the NI is a separate
entity as shown in the figure. The PE and the NoC models shown in this
figure will be discussed later in the Section 4 of this chapter. The imple-
mentation of these sub-processes, whether it is within the perimeter of
PE silicon or NoC silicon, only impacts power and area considerations
but not task scheduling. A NI introduces additional complexity of re-
source management to the scheduling problem. Its implementation can

84 The ARTS Modeling Environment

8

range from just a set of wires, in a simple case, to dedicated network
processing capability with memory in a more complex case.

2.3 NoC Usage

Application design for embedded systems is a special challenge be-
cause embedded systems do not simply perform computations; they also
interact with their environment. Thus the embedded systems must in-
terface with and react to real processes. To achieve this goal, system
designers must juggle real-time constraints, concurrency, and hetero-
geneity. The future SoC designers are faced with two major design
challenges:

Platform Design: Finding good solution templates for the archi-
tecture platform under the constraints and characteristics set by the
semiconductor technology on one side, and the application domain in
question on the other side.

Platform-based Design: Given a platform architecture, how should
it be configured (or instantiated) and how should the application, in
terms of a description of multiple, concurrent processes, be mapped onto
the platform while optimizing a number of design metrics, such as, per-
formance, power consumption, memory utilization, and size, reusability,
and flexibility.

Platform-based design is an efficient way to design complex system-on-
chip products. It follows a meet-in-the-middle approach, starting with a
functional system specification and a predesigned SoC Platform. Perfor-
mance estimation models can help analyze different mappings between
the functional modules of the application and the platform components.
During these iterations, designers can try different platform customiza-
tions and functional optimizations.

Example 2: As the number of components in architecture plat-
forms increases, the type of on-chip interconnection and communication
schemes for processing elements, memories, and peripherals becomes im-
portant.

Figure 1.3 illustrates a simple example explaining how NoC modeling
can facilitate design-space exploration. In this example, we consider a
system that can use three sample network topologies (1-D torus, 1-D
mesh, and bus), each interconnecting three processing elements {PE,,
PE,, PE_.} executing five tasks {7y, 79, 73, 74, 75}. The initial mappings
are: {11, o} — PE,, {3} — PE,, {14, 75} — PE. (where, — means
'maps to’), and having dependencies: {71, 74} < 73, T2 < 75 (where, <
means 'precedes’). Each task dependency is manifested by the insertion

Paper #3: Network-Centric System-Level Model for MPSoC Simulation 85

Network-Centric System-Level Model for Multiprocessor SoC Simulation 9

1.2 45
2

3 12(3) (®3 (0 45

Ls =3
(i) Timing-Aware Scheduling
. [EE Rl i
1 b 3 |
. o | EI X 1 [}s
b 0. =3 b 1. = o [T
L [xIy] L [=]] pus| L2 Y [TTxT]

B
M
L
a]
=
B

ii) QoS-Aware Scheduling

j
g
a|
=
=l
|
Shs

L =1 | Il

(iii): Allocation-Aware Scheduling

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

Figure 1.3. System-level modelling illustration

86 The ARTS Modeling Environment

10

of a communication task between the inter-dependent task pairs. Thus
TL < Tz < T3, T4 < Tmy < 73, and 73 < Tz < 75 (where Tz, Tmy, and
Tmz Te€present message tasks).

For simplicity, all the tasks have been assigned the same period (T =
100), execution time (BCET! = WCET? = 15), and deadline (d = 100).
The time is measured in absolute time units. The tasks are mapped in
such a way that none of them misses its deadline. For the purpose of this
example, the overlapped NoC model is used and the system performance
criterion is defined to be the time when all the tasks finish their execu-
tion, i.e., the earlier all the tasks finish their execution, the better is the
system performance. The results of Example 2 are analyzed below.

2.3.1 Timing-Aware Scheduling. In the first row of Fig-
ure 1.3, Timing-Aware Scheduling scheme is depicted. In this scheme,
the tasks executing on a system using the bus or the torus topologies
finish in 80 time units whereas if the same system is using the mesh
topology, the tasks take 65 time units to finish. The link contention is
resolved randomly. As a bus comprises a single link, so the NoC resource
allocator/arbiter does not have much freedom in its allocation. There-
fore, the communication tasks are scheduled sequentially. On the other
hand, the torus and the mesh networks have multiple ways to allocate
their resources and schedule message tasks. The full potential of the
torus network to handle concurrent communication is not exposed very
well in this example but for the mesh network, it can be seen that its
performance is better than the other two networks by over 10 time units.

From the point of view of link utilization®, the torus and the mesh
networks only use two out of three links and three out of four links respec-
tively. So a possible network optimization can occur for these networks.
On the other hand, if the tasks, 71 and 74, are scheduled concurrently
on a torus network, there is a contention on link Lq. So the network has
to be optimized accordingly to meet the timing requirements.

2.3.2 QoS-Aware Scheduling. In the second row of Fig-
ure 1.3, QoS-Aware Scheduling scheme is shown. In this scheme, the
traffic originating from PFE, is assigned a higher priority and, therefore,
it is allocated the contentious link whenever a link contention arises. In
the case of a mesh network, there is no link contention, so it has no

IBCET is the Best-Case Execution Time

2WCET is the Worst-Case Execution Time

3Link Utilization is defined as the aggregation of the number of links occupied in the smallest
time unit.

Paper #3: Network-Centric System-Level Model for MPSoC Simulation 87

Network-Centric System-Level Model for Multiprocessor SoC Simulation 11

effect on system performance. However, in the case of a torus network,
such a message scheduling scheme results in a performance gain of 5
time units. For a complex network with lots of nodes and links, such
a performance gain can be significant (both for the torus and the mesh
topologies). The bus architecture, on the other hand, would result in a
communication bottleneck.

2.3.3 Task Allocation-Aware Scheduling. In the third row
of Figure 1.3, we illustrate the effects of altering the allocation of tasks to
the processing elements while selecting different networks. The new task
allocation is: {2, 73} — PFEg, {14, 75} — PE}, and {1} — PE, (the
task dependencies are kept the same). Compared to the bus, the system
performance advantage is significant with the segmented (the torus and
the mesh) networks. The reasons for the poor system performance with
the bus are the same as described above. From the point of view of link
utilization, it is now higher with the torus and the mesh networks. Most
of the links, though not all, are now used simultaneously without any
contention.

2.4 Discussion

As mentioned earlier, the timing-, QoS-, and allocation-aware schedul-
ing analysis of Figure 1.3 is based entirely on the finish-deadline of the
task mapped to the allocated resource, where the resource is either a PE
or a network resource, such as a node or a link. Additional quantifica-
tions such as memory, area and power are also possible to incorporate
into the model. For example, if the power consumed per communicated-
bit is assumed equal, then the comparison of the power profile of the
allocation-aware 1-D mesh with the timing-aware bus will show a power
spike within the time duration of 20 to 40 time units for the 1-D mesh
network while exhibiting a stable power profile for the bus. Even within
the 1-D torus network, the communication power profile down the col-
umn (in Figure 1.3) shows an aggregation which may be disadvantageous
although link utilization has improved.

The main aim of this example exercise is to show how various options
for performing design trade offs like resource types, resource allocation,
task/message scheduling, etc. can be explored via the proposed NoC
framework.

3. Framework for NoC Modelling

For the purpose of abstracting a system-level model, an embedded,
real-time application can be represented as a collection of multiple, con-

88 The ARTS Modeling Environment

12

current execution threads that are modelled as a set of dependent tasks
under certain precedence and resource constraints which have to be exe-
cuted on a number of programmable processors under the control of one
or more RTOS(s).

A system-level model can, thus, comprise three types of basic com-
ponents: tasks, RTOS services, and communication network, where the
communication network is meant to provide communication services be-
tween the other system components.

The RTOS services can be further decomposed into independent mod-
ules that represent different basic RTOS services like task scheduling, re-
source allocation, and execution synchronization, where a scheduler mod-
els a real-time scheduling algorithm; a synchronizer models the depen-
dencies among the tasks and, hence, both the intra- and inter-processor
communications; and an allocator models the mechanism of resource
sharing among the tasks. A modeling framework provides the mech-
anism by which the various components comprising a model interact
[15]. It is a set of constraints on the components and their composition
semantics and, therefore, it defines a model of computation which gov-
erns the interaction of components [7]. Using a modeling framework, a
system-level model can be composed from the basic components in such
a way that the nature of services provided by any of the components
can be altered in a simple and straightforward manner independent of
the other components. In our discussion of the system-level modelling
framework so far, we have not incorporated the effects of a NoC but we
are going to consider that aspect now.

In order to communicate, the tasks executing on different process-
ing elements generate messages and submit them to the communication
network for transmission. The real-time, inter-processing element traffic
consists of messages that are continuously generated by their sources and
delivered to their respective destinations. Such traffic includes periodic
and sporadic messages that require some degree of guarantee for on-time
delivery. In addition, there are also aperiodic messages. Aperiodic mes-
sages have soft timing constraints and expect the system to deliver them
on a best-effort basis.

Periodic Messages are generated and consumed by periodic tasks, and
their characteristics are similar to the characteristics of their respective
source tasks. Therefore, the transmission of a periodic message can
be represented by a periodic message task. By a similar argument, the
transmission of an aperiodic message can be represented by an aperiodic
task. Although an aperiodic message task, like an aperiodic task, does
not have a relative deadline, it is still desirable to keep the average
delay suffered by aperiodic message tasks to be as small as possible.

Paper #3: Network-Centric System-Level Model for MPSoC Simulation 89

Network-Centric System-Level Model for Multiprocessor SoC Simulation 13

Sporadic message tasks have widely varying lengths and/or inter-arrival
times. In general, sporadic messages represent burst communication and
a sporadic message can be characterized in the same way as a sporadic
task [16].

For the purpose of efficient transmission through the communication
network, messages are fragmented into smaller-sized segments. The unit
of data transmission at the network level is called a packet. Therefore,
a message can be considered as a set of packets, where the packet size
is bounded. Packet transmission is non-preemtive. Thus, a communica-
tion network can be modelled as a communication processor on which
message transmission tasks are scheduled nonpreemptively on a fixed-
priority basis. In this way, the effect of the inter-processing element
communication is modelled automatically by the response times of the
message transmission tasks on the network [16].

Modelling an on-chip communication network as a communication
processor can reflect the demands on the network services. As a com-
munication event within a network is modeled as a message task (7,,)
executing on the communication processor, therefore, when one PE in-
tends to communicate with another PE, a 7, is fired on the commu-
nication processor. Each 7, represents communication between a set
of two fixed, predetermined PE’s only. Since a NoC supports concur-
rent communication, 7,,’s need to be synchronized, allocated resources
and scheduled accordingly. This reflects the property of the underly-
ing NoC implementation, where the NoC' Allocator reflects the topology
and the NoC' Scheduler reflects the protocol. Additional flow-control
aspects, such as deadlock-avoidance, session-maintenance, acknowledge-
based completion, etc. can also be implemented. Though the handling of
those aspects either by the NoC Allocator or the NoC Scheduler depends
upon the specific NoC architecture.

A resource database which is unique to each NoC implementation,
contains information about all its resources. In a segmented network,
these resources are laid-out as two-dimensional interconnects and com-
prise nodes (routers) and links. The algorithm for NoC allocation and
scheduling map an 7,,, onto the available network resources. The main
focus of our discussion here is the networks which allow parallel commu-
nication, such as the segmented networks.

3.1 NoC Allocator

In a system-level NoC model, the role of the NoC Allocator is to
translate the path requirements of the 7, in terms of the resource re-
quirements such as link bandwidth, storage buffers, etc. It has to min-

90 The ARTS Modeling Environment

14

imize conflicts over the network resources. The links and the nodes in
the communication path can be set aside dynamically (i.e., for the re-
quested time-slot) in the resource database. If the resource reservation
process is successful, the 7, has to be queued for scheduling. When an
T, releases a resource after usage, the resource is free to be assigned
to another 7,,. However, if there is a contention over a resource, then
resource arbitration has to occur. The NoC allocation patterns for two
sample networks are shown in Table 1.1. The resource arbitration can be
based on the underlying network implementation and will be discussed
further shortly.

Table 1.1. A sample reservation for two sample networks.

R, R, R,
ey onmoDEol
Message | Path L L L
Task 1-D Torus 1-D Mesh
Resource Scheduling Needs Resource Scheduling Needs
Allocation Small Large Allocation Small or Large
Message Size | Message Size Message Size
Tma a—b L1 Immediate Preemptive Ly Immediate
Tmy c—b Ls, Ri, L1 Immediate Immediate L3 Immediate

3.2 NoC Scheduler

Message Scheduling constitutes a basic function of any distributed
real-time system. The scheduling of real-time messages aims to allocate
the medium shared between several nodes in such a way that the time
constraints of the messages are respected. As outlined above, not all of
the messages generated in a distributed real-time application are critical
from the point of view of time. Thus, according to the time constraints
associated with the messages, the following message scheduling strategies
can be applied:

m Guaranteed Strategy: According to this strategy, a message is al-
ways guaranteed to be delivered within its deadline requirements.
This strategy is generally reserved for messages with critical timing
constraints.

m Stochastic Strategy: In stochastic message scheduling strategy, the
time constraints of messages are met in a best-effort fashion at a
pre-computed probability. This strategy is used for messages with
soft timing constraints.

Paper #3: Network-Centric System-Level Model for MPSoC Simulation 91

Network-Centric System-Level Model for Multiprocessor SoC Simulation 15

In a distributed real-time system, the above strategies can cohabit, to
be able to meet various communication requirements, according to the
constraints and the nature of the communicating tasks.

As messages have similar constraints as tasks (mainly deadlines), the
scheduling of real-time messages uses techniques similar to those used in
the scheduling of tasks but with a difference. Whereas, tasks, in general,
can accept preemption without corrupting the consistency of the end
result, the transmission of a message does not admit preemption. If the
transmission of a message starts, all the bits of the message must be
transmitted, otherwise, the transmission fails [5].

The NoC Scheduler has to execute the 7, according to the particular
network service requirements. It has to minimize resource occupancy
while making sure that the 7,,,’s are delivered within the specified timing
bounds. In a network, resource occupation is dictated by the message
size. The concept is better illustrated using the example in Table 1.1,
where scheduling needs for the same two sample networks are shown. For
a mesh there is no conflict. The 7,,,’s get the required resources scheduled
”immediately”. But in the case of the torus, it may experience resource
allocation conflict for link L;. Here, in the event of a small message
size, where 7, is finished before 7,,, asks for L, there is no scheduling
problem. The resources can be "immediately” assigned to the 7,,,’s. But
in the case of a large message size were 7,,; is still running when 7,
asks for the link L, resource contention occurs. Thus the resource L
is required to be scheduled ”preemptively”. Preemptively, here, implies
the degree of contention resolution.

For example, let us consider this from the network-designer’s and the
system-designer’s view point. At the network-level, seeing the resource
conflict as a network problem, the network designer may over-design
link L; by providing excess bandwidth or introduce processing over-
head, such as TDM-based message interleaving. These techniques would
restore fair servicing for both 7,,’s, reducing the degree of contention.
However, at the system-level, it may be possible to reschedule the com-
munication event between the PE’s (either 7., or 7,,,). This opens the
possibility of alternate path allocations for the 7,,’s or simply stall one
of the traffics until the other has finished. System designers may even
realize that ”large messages” (to the extent where L; is contentious)
never occur within the given system. This could save potential schedul-
ing/computation overhead in terms of hardware real-estate, power, etc.
at router, R;, and on link, L;, as was envisioned by the network de-
signer. Thus, when seen from the system-level, a trade-off between the
NoC resource allocation and the NoC scheduling would not only com-

92 The ARTS Modeling Environment

16

plement better self utilization, but might give other useful insights for
design improvements.

In the following section, we present an implementation of the NoC
model in SystemC [19, 9]. This implementation can be viewed as an
extension of the implementation an abstract RTOS model described
above.

4. NoC Model Implementation

The above-mentioned ideas about forming an abstract system-level
NoC model can be validated by implementation in a system-level mod-
elling language such as SystemC. We will briefly describe here the Sys-
temC implementation of the NoC model described above. Further details
regarding the implementation can be found in [8] [17].

For the purpose of implementation, tasks are considered to be an ab-
stract representation of the application and, therefore, have been charac-
terized through a set of parameters, such as the worst- and the best-case
execution times, context-switching overhead, deadline, period (if it is a
periodic task), offset, resource requirements, and precedence relations.
A task is modeled as a finite state machine (FSM) that sends the mes-
sages: ready and finished, to the scheduler which, in turn, sends one
of the three commands to a task: run, preempt, and resume. In between
the schedulers and the tasks, we have the synchronizer and the allocator
acting as ”logical command filters”. By this scheme, each component
can handle its relevant data independently of the other. For example,
a task can determine when it is ready to run and when it has finished.
The scheduler behaves in a reactive manner; scheduling tasks according
to the indications received from them. Thus, as many tasks and sched-
ulers can be added as desired. The same is the case with the synchronizer
and the allocator models. They can hold the information regarding their
services, i.e., which tasks depend on each other or, for the case of the
allocator, what resources are needed by a given task.

The NoC model has exactly the same structure as the abstract RTOS
model [8] but with some modifications. The message routing scheme
implemented in the NoC model is that of fixed routing but the framework
has provisions for implementing other routing schemes. The effects of the
network interface or the task overlap due to message processing in the
PE, as discussed in Section 2, have not been implemented for simplicity
but the model can be extended to incorporate any of those effects.

Paper #3: Network-Centric System-Level Model for MPSoC Simulation 93

Network-Centric System-Level Model for Multiprocessor SoC Simulation 17

4.1 Message Task

The message task (7,,,) has the same finite state machine (FSM) struc-
ture as the task model in the abstract RTOS model with some modifica-
tions to take out preemption and introduce resource requirements. The
Tm implementation accepts a number of arguments for its characteriza-
tion.

m Message Task ID: enables the synchronizer and the NoC Scheduler
to identify the 7,,, sending the message.

m NoC Scheduler ID: is meant for the 7,,’s to recognize their sched-
uler for exchanging various control messages.

» Best Case Transmission Time (BCTT): is the lower bound on the
transmission latency of a 7, through the NoC.

n Worst Case Transmission Time (WCTT): is the upper bound on
the transmission latency of a 7, through the NoC.

m Offset: is the setup time for a 7,,.

m Resource ID: is the ID tag for a resource (link, router, etc.) re-
quired by a 7.

m Critical Section Length (CSL): the time duration for holding a
resource.

The implementation of an 7,,, can be viewed as an FSM that manages
various counters after sending indications to the NoC Scheduler and the
NoC Allocator and upon receiving commands from the NoC Scheduler.

4.2 NoC Allocator

The NoC Allocator manages its resource database upon receiving
request and release indications from the 7,,’s. The resources are
allocated to the 7,,’s dynamically and they are released by the 7,,’s
immediately after usage. This makes resource management very flexible
allowing sharing and concurrency. In this implementation, the resources
are served by the NoC Allocator on a ’first-come-first’ basis but other
allocation policies can be implemented as well. Whenever a requested
resource is available, the NoC Allocator sends a grant indication to the
NoC Scheduler and whenever a requested resource is occupied, there is
a resource contention and the NoC Allocator sends a refuse indication
to the NoC Scheduler for appropriate action.

94 The ARTS Modeling Environment

Allocator,
Scheduler,

PE, PE,
Tis) (M3) \Tas

Allocator

Scheduler;

PE,

Figure 1.4. The system-level usage of the NoC model with the RTOS model.

4.3 NoC Scheduler

The NoC Scheduler receives the ready and finished indications from
the 7,,,’s through the Synchronizer and the grant and refuse indica-
tions from the NoC Allocator. It then issues the run and buffer com-
mands to the 7,,,’s. Whenever a task running on a PE, is finished and
needs to communicate with a task running on another PE, it sends a
finished indication to the synchronizer which maintains a task depen-
dency database and passes the ready indication for the corresponding
Tm to the NoC Scheduler which issues the run command to that 7,,.

Whenever there is a resource contention, the NoC Allocator issues a
refuse indication to the NoC Scheduler which then either terminates
the execution of the requesting 7, (equivalent to a message dropping) or

Paper #3: Network-Centric System-Level Model for MPSoC Simulation 95

Network-Centric System-Level Model for Multiprocessor SoC Simulation 19

blocks the 7, from execution (equivalent to message buffering) till the
requested resource becomes available again which is indicated by the
grant indication sent by the NoC Allocator to the NoC Scheduler. The
message dropping or buffering decision is taken by the NoC Scheduler
according to its underlying network implementation.

5. Simulation Results

The results of our SystemC implementation of the NoC model from
Figure 1.4 are presented in Figure 1.6 and Figure 1.7. The sample SoC-
NoC setup is as shown in Figure 1.5. Here, the application is assumed
to be decomposed into four tasks. Three PE’s are selected to execute
these tasks. The task mapping is: {11} — PE,, {11} — PE}, and {72,
T3} +— PE.. T has a higher priority than 73, so it can preempt 73 on
PE,.. In this example, we look at a simple case where all the tasks are
modeled identically with a period of 25 time units (except for the 7, with
a period of 24 time units due to the priority-assignment scheme in the
Rate-Monotonic Scheduling), execution time (both BCET and WCET)
of 10 time units, and finish deadline of 22 time units.

Tasks and their dependencies NoC test setup

(o) e

Figure 1.5. System simulation model

The communications between the tasks are modelled as 7,,,’s (as de-
scribed in Section 4) which run on a torus network processor using store-
and-forward routing protocol (with infinite buffer at the source and the
destination nodes). The message task paths and dependencies are: 7,3,
from PE, to PE, using L1, Re and Lo, and 7,,,, from PE,. to PE} using
L3, Ry and L;. Thus, the link L; experiences possible contention. In
our test SoC-NoC setup, these resources are tagged by an ID which is
given in brackets (in Figure 1.5). We present two cases of interest.

In Figure 1.6(a) modelling of two concurrent communications is shown.
As mentioned earlier, there is a link contention between 7,,; and 7,,, for

96 The ARTS Modeling Environment

20

0 o ‘WEI T ‘QD T ‘3EI L ‘4EI T ‘ED L ‘EEI T ‘7EI . X ‘ED X X L |9EI L

PEa Taskl 2 [i] 2 [i] 2 [i] 2 a

NoC. CommTaski 1 2 [i] 1 2 [i] 1 2 o 1 2 [1]
PEc.Task3 1 2 3 2 1 2 3 2 1 2 3 2 1
PEc.Task2 2] 2 o 2 [i] 2 [i]

MoC. CommTaskZ — 1. a 2 o — 1 VT 2 o - .1 B 2z o - 1 N 2 .EI
PEb.Taskd 1 2 1 2 1 2 1 2

Bt AVAVAVAVAVAVAVAVAVAVAVAVEVAYAVAYAVEVAVAVAVAVAVAY

o ‘ oo oo po [t40, s peg) pro e
PEaTask! 1] 2 1] 2 1 2 0 2
[MoC. CommTaskx [i 1 2 [i 1 2 0 1 2 [i 1
PEc.Task3 1 3 2 1 3 2 1 2 1 2
PEc Task2 2 [i 2 [i 2 [i 2 0
MoC. CommTaskZ 0 1 2 0 1 2 [1] 1 2 0 1 2
PEb Taskd 2 1 2 1 2 1 2 iy 1

B AV AVAVAVAVAY AVAVAVAVAYAV VAV AVAVAVAVAVAVAVAVAVAVAYAVAVAVAVAVAVAVAVAVLVAVAVAVAVAVAVAVAVAVAVAYAVAVAVAY

Figure 1.6. Simulation results for communication events (from 0 to 190 time units).
State enumeration: O=inactive, 1=ready, 2=running, 3=preempted.

Tnx * T4 10 T, (PE, to PE)
0 Initializations
10 CommTask X released by the synchronizer
10 CommTask Z released by the synchronizer
11 task x (request resource# 1)-> allocator r_
11 NoC_allocator (granted)->NoC_scheduler

task z (request resource#
NoC_allocator (granted)-—>
task x (release resource#
task x (request resource#
NoC_allocator (granted)-—>
task z (release resource#
task z (request resource#
NoC_allocator (granted)->
task x (release resource#
task x (request resource#
NoC_allocator (granted)->
task z (release resource#

4)-> allocator
NoC_scheduler
1)—> allocator
2)-> allocator
NoC_scheduler
4)-> allocator
5)—> allocator
NoC_scheduler
2)—> allocator
3)-> allocator
NoC_scheduler
5)—> allocator

synchronizer (release)-> allocator

setup

PE,

T

20

30 t

17 task z (request resource# 1)-> allocator Tz + T, 10 T, (PE_ to PE,)
17 NoC_allocator (granted)-> NoC_scheduler
20 task x (release resource# 3)—> allocator
20 task x (finished)-> scheduler 2 PEc T,
20 synchronizer (finished)-> allocator v
20 NoC_allocator (finished)-> NoC_scheduler

20 task z (release resource# 1)-> allocator setup
20 task z (finished)—-> scheduler 2 L.
20 synchronizer (finished)-> allocator
20 NoC_allocator (finished)-> NoC_scheduler R

and so on...

Figure 1.7. NoC allocation and scheduling for the first communication cycle along
with the simulation log.

Paper #3: Network-Centric System-Level Model for MPSoC Simulation 97

Network-Centric System-Level Model for Multiprocessor SoC Simulation 21

Lq. It is resolved by scheduling L, at different times among the 7,,’s
within the time-slot of 10 to 20 time units (and subsequent time slots).
L1 is used from 11 to 14 time units in 7y, and from 17 to 20 time units
in 7,,,. Figure 1.7 shows the log file of resource occupancy (Resource##
1, that is, the link L;). The accompanying plots on the right provide a
graphical representation (Note that 1 time unit is lost in network setup
during simulation). Thus, our model clearly supports concurrent com-
munication as observed in segmented networks.

Figure 1.6(b) shows the interplay of process modelling and intercon-
nect activity. Consider the signal near the time period of 95 time units.
Here, it is clear that 75 starts accepting the communication message and
is then preempted by 7 on PFE, because of its higher priority. Once
To is finished, 73 resumes and completes in time before deadline. Now
consider the next execution of 73. Both 7 and 73 are in contention.
The 13 does not even start instead, 7 starts on the PE.. 73 here is not
able to accept the message communicated to it by 7. This brings us to
an interesting role of the NoC. In this simulation, we have enabled the
routers to be able to buffer messages. Thus 7,,, finishes freeing up its
resources although 79 has yet to begin. The 73, when finished, is, thus,
able to initiate 7,,,, which is when 75 resumes.

Consider the case where the same torus network processor is running
the wormhole routing (plots not provided). Then, in the preemption
case, the 7,,, stalls, holding the link Li. As 75 has already preempted 73
on PFE,, when it is complete, it would preempt 7,,,,. But this would not
be possible as the L; required here is busy in 7,,;, thus stalling 7,,,,. This
causes deadlock in the system. As seen earlier, we can resolve it either
by introducing buffering in the routers or we have the freedom to choose
an alternate network implementation or scheduling strategy. Thus, this
example clearly demonstrates the global performance evaluation for co-
design when both SoC and NoC are jointly modelled.

6. Summary

In this chapter, we have presented an abstract modeling framework
based on SystemC which supports the modeling of multiprocessor-based
RTOS’s and their interconnection through a NoC. The aim is to provide
the system designer of single-chip, real-time embedded systems with a
simple modeling and simulation framework in which he/she can experi-
ment with different task mappings, RTOS policies and NoC structures
and protocols in order to study the consequences of local decisions on the
global system behavior and performance. We have presented how our
initial multiprocessor RTOS model has been extended to handle NoCs.

98 The ARTS Modeling Environment

22

So far, our experimental work has been aimed at providing a proof-of-
concept as demonstrated in Section 5. We are currently working on
extending the NoC model to incorporate issues like, dynamic path rout-
ing, packet switching and power profiling. We are also working on a few
large real-life examples as well as a schedule viewer based on the out-
put from the monitors which will provide detailed and annotated views
of the system behavior such as detailed network usage and power- and
memory-profiles.

Acknowledgements

The SystemC-based modelling framework described in this chapter
has been supported by SoC-MOBINET (IST-2000-30094), an EU-funded
project.

References

[1] L. Benini and G. D. Micheli. Network on Chips: A New SoC
Paradigm. IEEE Computer, 35(1):70-78, January 2002.

[2] P. Bhojwani and R. Mahapatra. Interfacing Cores with On-chip
Packet-Switched Networks. In IEEFE Proceedings on VLSI Design,
pages 382-387, January 2003.

[3] W. Brainbridge and S. Furber. Delay Insensitive System-on-Chip
Interconnect using 1-of-4 Data Encoding. In International Sym-
posium on Asynchronous Circuits and Systems (ASYNC), pages
118-126, 2001.

[4] J. Cong. An Interconnect-Centric Design Flow for Nanometer Tech-
nologies. In International Symposium on VLSI Technology, Sys-
tems, and Applications, pages 54-57, 1999.

[5] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri. Scheduling in
Real-Time Systems. John-Wiley & Sons, 2002.

[6] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Archi-
tecture: A Hardware/Software Approach. Morgan-Kaufmann, 1998.
1st edition.

[7] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli.
Design of Embedded Systems: Formal Models, Validation, and Syn-
thesis. Proceedings of the IEEE, 85(3):366-390, March 1997.

[8] M. J. Gonzalez and J. Madsen. Abstract RTOS Modeling in Sys-
temC. In Proceedings of the 20th IEEE NORCHIP Conference,
pages 43-49, November 2002.

[9] T. Grotker, G. M. S. Liao, and S. Swan. System Design with Sys-
temC. Kluwer Academic Publishers, New York, 2002.

Paper #3: Network-Centric System-Level Model for MPSoC Simulation 99

REFERENCES 23

[10]

[11]

[12]

[14]

P. Guerrier and A. Greiner. A Generic Architecture for On-Chip
Packet-Switched Interconnections. In Design Automation and Test
in Europe, DATE, pages 250-256, March 2000.

R. Ho and K. W. Mai. The Future of Wires. Proceedings of the
IEEE, 89(4):490-504, April 2001.

J-M. Daveau, T. B. Ismail, and A. A. Jerraya. Synthesis of System-
Level Communication by an Allocation-Based Approach. In Pro-

ceedings of the 8th International Symposium on System Synthesis
(ISSS), pages 150-155, September 1995.

P. V. Knudsen and J. Madsen. Integrating Communication Pro-
tocol Selection with Hardware/Software Codesign. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 18(8):1077-1095, 1999.

S. Kumar, A. Jantsch, J-P. Soininen, M. Forsell, M. Millberg,
J. Oberg, K. Tiensyrji, and A. Hemani. A Network-on-Chip Ar-
chitecture and Design Methodology. In IEEE Computer Society
Annual Symposium on VLSI, pages 117-124, April 2002.

E. A. Lee. What’s Ahead for Embedded Software? IEEE Computer,
33(9):18 26, September 2000.

J. W. S. Liu. Real-Time Systems. Prentice-Hall, 2000.

J. Madsen, K. Virk, and M. Gonzalez. Abstract RTOS Modelling
for Multiprocessor System-on-Chip. In International Symposium on
System-on-Chip, November 2003.

V. J. Mooney and D. M. Blough. A Hardware-Software Real-Time
Operating System Framework for SoC’s. IEEE Design & Test of
Computers, 19(6):44-51, Nov/Dec 2002.

SystemC Workgroup. http://www.systemc.org.

X. Zhu and S. Malik. A Hierarchical Modeling Framework for On-
Chip Communication Architectures. In International Conference
on Computer-Aided Design (ICCAD), pages 663670, 2002.

100 The ARTS Modeling Environment

4.2 ARTS: A System-Level Framework for Mod-
eling MPSoC Components and Analysis of
their Causality

Paper #4: ARTS: A System-Level Framework for Modeling MPSoC

Components and Analysis of their Causality

101

ARTS: A System-Level Framework for Modeling MPSoC Components and
Analysis of their Causality

Shankar Mahadevan®

Michael Storgaard*

Jan Madsen? Kashif Virk"

Informatics and Mathematical Modelling (IMM), Technical University of Denmark (DTU), Richard Petersens Plads 2800 Lyngby, Denmark
E-mail: f{sm, jan, virk} @imm.dtu.dk, #{s011934} @student.dtu.dk

Abstract

Designing complex heterogeneous multiprocessor System-
on-Chip (MPSoC) requires support for modeling and analy-
sis of the different layers i.e. application, operating system
(OS) and platform architecture. This paper presents an ab-
stract system-level modeling framework, called ARTS, to sup-
port the MPSoC designers in modeling the different layers
and understanding their causalities. While others have de-
veloped tools for static analysis and modeled limited correla-
tions (processor-memory or processor-communication), our
model captures the impact of dynamic and unpredictable OS
behaviour on processor, memory and communication perfor-
mance. In particular, we focus on analyzing the impact of
application mapping on the processor and memory utiliza-
tion taking the on-chip communication latency into account.
A case-study of a real-time multimedia application consist-
ing of 114 tasks on a 6-processor platform for a hand-held
terminal shows our frameworks co-exploration capabilities.

1. Introduction

A key pre-requisite in the design of heterogeneous mul-
tiprocessor system-on-chip (MPSoC) is an abstract system-
level model that enables evaluation options and make critical
architectural decisions in advance of a detailed design. The
scheduling problem, central to the analysis of the complex-
ity of concurrent MPSoC programs, depends on the way in
which the tasks are mapped on the processing elements (PE).
This, in turn, is linked with the physical architecture of the
computing platforms, i.e. with task execution latency of the
PEs, memory constraints of the PEs which limits the number
of tasks mapped to a given PE, and the amount of data to be
transferred between tasks mapped to different PE, which will
influence communication latency and dynamic memory allo-
cation. When scheduling is handled by a real-time operating
system (RTOS) and not statically during compile-time, the
system analysis becomes particularly challenging.

‘We propose an abstract system-level modeling framework,
called ARTS, which captures the cross-layer dependencies
of application software, RTOS, and multiprocessor platform
consisting of PEs connected through an on-chip network. In
this paper we focus on two issues of importance for analyz-

1

Interface
Application

Abstract I
PE |
Sottware
modeli
) e <):> I
10 Task |
Core
P interface |
Todeing 10 Device

SoC communication interface

(a)
SoC Communication Interface

oce oc;‘ oce | [ocp
le—

| 10 Adpters |

| 10 Adpter,

Allocator

|
|
|
|
|

Topology Model |

Figure 1. The PE Model: (a) Layer Structure (b)
Block Diagram. (c) Network Model.

ing cross-layer dependencies; static and dynamic memory us-
age and communication latency due to network topology and
protocol. We illustrate the capabilities of ARTS for modeling
and analyzing heterogeneous MPSoC systems, by exploring
a real-time multimedia application consisting of 114 tasks on
a 6-processor MPSoC architecture for a hand-held terminal.

System-level models for design space exploration of em-
bedded systems targeted for real-time applications has been
proposed in [3, 8]. In [3], while supporting extensive RTOS
capabilities to evaluate processor utilization, it does not ad-
dress memory and communication concerns. Tools pre-
sented in [1, 4, 9] support processor-memory or processor-
communication co-exploration and are important contribu-
tion in expanding the scope of design space exploration.
In [4], the proposed framework is integrated with a two step

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS'05)
1526-7539/05 $20.00 © 2005 IEEE

102

The ARTS Modeling Environment

co-exploration methodology of static-analysis followed by
trace-driven simulation for design evaluation.

We do not propose any specific methodology for design
exploration, but provide a flexible framework for designer
driven exploration. Using our framework, algorithms such as
energy-delay driven memory analysis [2] can be applied prior
simulation to group and partition application tasks, or post-
simulation traces collected such as those required to identify
and tune platform tradeoff [7].

2. The ARTS Modeling Framework

This section presents the PE and application models, fol-
lowed by details of the communication and memory exten-
sions which are the focus of this paper. The models are im-
plemented in SystemC.

2.1. PE and Application Model

In [5, 6], the PE and application model has shown to be
sufficient to model the execution behaviour of a wide range
of IP cores. In this paper, the model has been extended with
a OCP (v2.0) based core interface, Figure 1(a) and (b), for
inter-processor communication at RT and transaction levels.

The abstract Real-Time Operation System (RTOS) pro-
vides RTOS services, such as task synchronization, alloca-
tion of shared non-preemptive local resource between tasks
and task scheduling for execution. Protocols supported are
Direct Synchronization for the task synchronization, ba-
sic priority inheritance for the resource allocation and Rate
Monotonic (RM) and Earliest Deadline First (EDF) for the
task scheduling. The RTOS manages the tasks and its timing
constrains, which is provided by the application model. The
application model is based on static task graphs (or dataflow
graph). For task modeling, a periodic and sporadic task
model is available. Both models supports preemption.

The core interface consists of an IO task and IO de-
vice, modeling an IO device driver application and a hard-
ware 10 port respectively. The IO task manages the encod-
ing/decoding of data to/from the SoC communication inter-
face. The IO task is released for execution, whenever an
inter-processor communication event starts (i.e. transmitting
or receiving data). The IO device implements/manages the
OCP SoC communication protocol.

2.2. Network model

The network model allows modeling of different commu-
nication topologies ranging from a single shared bus to a
1D/2D mesh NoC with minimal path routing. The model is
characterized by having an abstract description of the topol-
ogy but being able to support transmission of real data (e.g.
at RTL). Further, it supports multithreaded out-of-order com-
munication, Figure 1(c) shows a block diagram of the model.

The 10 adapter model implements and manages the SoC
communication protocol and the data conversion between the

2

X Y

@ (a)

. - v
PN(Ty| X | POH(T) Yo |PoNTy
PHT]

L)
[

PON (T,) |15

Memory@PE1

Ait) .

time

Memory @ PE1

L,
-
T Fo |
bus. X Y

T2 U
time

©)

ET

L, T |,
time 4
(b)

Figure 2. (a) Task graph. Memory profile of PE;:

(b) when all tasks run on PE;, and (c) when 1,

is mapped to different PE.
topology model and the SoC communication interface. When
data is received from the SoC communication interface, it is-
sues a process data package message to the topology model.
Similar, when data package message is received from the
topology model (indicating data has reached the destination
node), it initiates a SoC transaction to the particular node.

The topology model describes the communication topol-
ogy. It ensures that a data package message is not released to
the destination IO adapter, until a time interval, equal to the
communication latency, has expired. The allocator models
the actual topology and manages the usage of shared com-
munication resource (e.g. links and routers, bus). It assigns
resources to the messages as they are received. The resource
buffer models the resource usage mechanism, by buffering a
data package before releasing it back to the allocator again.
The interaction between the allocator and the resource buffer
models the chain of communication tasks in the communica-
tion layer (i.e. the usage of different links and routers for a
particular transfer). The scheduler models the scheduling of
data package messages in case of resource contention. Mes-
sages assigned to an occupied resource gets buffered in the
scheduler, until the resource becomes available. The current
protocol implemented is first-come-first-served.

2.3. Memory Model

The memory model, models both static memory alloca-
tion, due to program memory (PM) and dynamic allocation,
due to total data memory of the task. The example in Fig-
ure 2 illustrates the memory model. It shows the scheduling
and resulting memory profile (spilt into static and dynamic
memory). The dynamic part is split into private data mem-
ory (PDM) needed while executing the task and data memory
needed to store data for exchange among tasks.

The total data memory size of the tasks, which is allocated
during runtime by the RTOS, is calculated based on prece-
dence constraints. We take a conservative view, i.e. during
execution, the task data memory profile is the sum of preced-
ing and succeeding data edges. This is observed for data x
of PE; (Figure 2(b)) which, is created and dynamically allo-

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

Paper #4: ARTS: A System-Level Framework for Modeling MPSoC

Components and Analysis of their Causality 103
Applications Tasks/ Deadline/ P Frequency Wil 15 Word 10 Bufer wih 84 Word 0 Bufer
Edges | Period (ms) Cores (MHz)
GSM Encoder 53780 20 GPP0 25 i
GSM Encoder || 34755 20 GPPI 10 H
MP3 Decoder 16/15 25 GPP2 6.6 H
JPEG Encoder 6/5 500 FPGA 2.5 8’
JPEG Decoder R 250 ASIC 25 é’
@ (b) 52
4
Table 1. Application and IP Characteristics. 8
I [PE#0 | PE#I | PE# | PE#3 | PE#4 | PE#S | ‘ ‘ H
Archl: CT = 57006 us, BC= 71 [T TR TR TR TR T E T T T
1P GPPO [GPPO | ASIC | GPPO | GPPO | ASIC Time ss) Time s}
oS RM RM - RM RM -
Tasks 18 19 19 23 19 16 Figure 3. Bus Contention in Arch2.
PEU (%) 100 59 47 23 61 24 possible architectural combinations, for a given partition and
Arch2: CT = 57568 us, BC= 79 0S. Co-exploration in this multi-dimensional space, presents
P ASIC | FPGA | ASIC | FPGA | GPP0 | ASIC .) . i
o = M = RM RM - many suitable platform architectures and complex trade-off
Tasks 13 9 19 23 19 16 scenarios.
PEU (%) 40 60 47 26 ol 24 Table 2! shows four platform architecture instances, la-
Arch3: CT =58271 us, BC=7 . . i
- GPPO T GPPO | ASIC | GPPO | GPPO | ASIC beled flom' Archl to AI.‘CI?4 flom 'the co-exploration space.
05 EDE | EDF - EDE | EDF - The changing characteristics within these platforms is ei-
Tasks 18 19 19 23 19 16 ther, IP cores, OS or task partitions. The Completion Time
% . . .
iEIIJzI(AéT 5;;;(())7 DS 9 — I\:I” - B? = ol 2 (CT) and the bus contention (BC) is also presented. Using
IPr“ ———GPPO £ (fo;o e Asllsée). GPPO T GPP0 | ASIC the ARTS framework, we invesligaled these platforrr} archi-
0S RM RM - RM RM - tectures in the context of modeling and understanding the
Tasks 19 9 24 2 15 23 causality between their system properties.
PEU (%) 100 52 56 58 19 34

Table 2. Case Study Platform Architectures.

cated for the whole duration of task T;. As it has to be used
by task 12, we have to keep the memory allocated until T,
has completed. After execution, only the succeeding data is
saved, until the time where it is read by the succeeding task,
or transferred to the NoC, after which it is deallocated.
Figure 2(c), shows a scenario with NoC transfer, require-
ing x and y to be transferred over the bus. T;, emulates the de-
vice driver for the PEs and, dynamically allocates (y in PE»)
and deallocated (x in PE)) the needed memory. If the IO task
has to stall, i.e. due to bus congestions, the memory profile of
the IO task will be a step function as illustrated with dashed
lines in Figure 2(c). As the IO task is handled by the PE,
any stall will result in an increased latency. Depending on
OS scheduling, the time slot when data memory is initialized
and deallocated has direct impact on network congestion.

3. Case Study

To illustrate the potential of our framework, we look at
an embedded subsystem that executes GSM, JPEG and MP3
applications (Table 1(a)) - in all 114 tasks. Based on the
PE choice of GPP, ASIC or FPGA (Table 1(b)); the tasks
have different execution properties i.e. best- and worst-case
task execution times. Further we can apply, RM or EDF
scheduling to the RTOS. We experiment with different plat-
forms, task partitioning and OS choice on a 6 PEs platform
connected via a bus. Even for this simple platform, there
are in all 15625 (5 IP cores characteristics applied to 6 PEs)

3

The correlation at 7 = 0 and 7 = 20000 s in BC and mem-
ory profile (Figure 3 and 4), is due to the GSM applications,
which have a period of 20ms (Table 1(a)). However, the cor-
relation is not identical and it depends on the OS applied to
the platform architectures, and the task mapping. Following
is the discussion of the system properties in additional detail.

PE Exploration: Archl and Arch2, which use identi-
cal interconnect and OS in their platforms, present interest-
ing trade-off of performance vs flexibility. Archl, with four
GPPOs, provides greater programming flexibility (software),
while Arch2, with two FPGAs, provides greater flexibility in
configurable hardware. The difference in CT and BC, among
the architectures, is small (Table 2), however the PE utiliza-
tion (PEU) of Arch2 is well balanced among the IPs, com-
pare to Archl. This is due to the presence of ASIC which
brings added performance.

OS Exploration: For a given platform architecture, a
change of OS on one PE may have non-local consequences
on other system components. This is due to management and
scheduling of task executions by the RTOS, which in turn in-
fluences the causality, for example with bus access and mem-
ory spread. In Archl and Arch3, the switch from RM to
EDF, albeit presents limited effect on PEU or CT or BC, it
does impact the peak bus occupation (3 in Are3 oppose to
5 in Arch3). In this case it is favourable to use EDF, since
majority of bus contention in earlier architectures where due
to conflict between GSM and JPEG, where JPEG transfers
large streams of data over the bus, blocking GSM. Due to

!The simulation time with complete result logging (PE Utilization, bus

contention and memory profiling), for one platform architecture was 0.15sec
on Intel Pentium IV®1.99 GHz with 512 MB of RAM.

I}

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS'05)
1526-7539/05 $20.00 © 2005 IEEE

104

The ARTS Modeling Environment

10500

10500

10000

Arch3

9500

32:bit Words
8

32-bit Words
2

8000

’W’i 11000
PE# P
PE# ooy B!

g

g

g

32:bit Words
8

0 5000 10000 15000 20000 25000 30000 35000 o 5000 10000
Time (us)

A
15000 35000 o

Time (i)

20000 25000 30000 5000 10000 15000

Time (us)

20000 25000 30000

Figure 4. Memory Profile for GPP and FPGA PEs.

EDF, the conflicting JPEG task is swapped with local GSM
task, which has higher priority due to its early deadline, there
by reducing bus contention. The impact on memory spread
can be seen in Figure 4.

Communication Exploration: Communication explo-
ration can be undertaken at different granularity. For ex-
ample at architectural level by using bus or multi-hop on-
chip network topology model (Section 2.2), or at component
level by changing the buffer size in the IO adapter. We mod-
eled Arch2 with 10 buffer of size 16 words and then with
64 words, as seen in (Figure 3), which reduced the bus con-
tention. The idea behind this experiment, is to show that even
relatively minor tuning within one of the system components,
could provide significant system-level gains, without needing
deployment of ”superior” alternatives, whose impact has not
yet been ascertained.

Memory Exploration: The goal of updating the task par-
tition, from that presented in Archl to Arch4 (Figure 4), was
to reduce the peak memory usage of Archl. However, the re-
sulting architecture Arch4 causes the MP3 to its deadline. It
is because, the two task from concurrent branch of the MP3
Decoder are mapped on to the same PE. Interestingly, the
partition shows a more balanced PEU, low bus contention
and better peak-to-average memory usage, and thus may not
be discarded lightly. Mapping the conflicting MP3 task to an
alternate PE could potentially bring higher benefits compare
to other architectures discussed so far.

The above explorations, shows that choosing an optimum
platform architecture of a cross-layered complex design in-
volves studying a large set of viable solution space.

4. Conclusions

The ARTS is a simulation-based framework for single-
chip designers to model and explore complex MPSoC de-
signs. In this paper, we have presented valuable extensions
to this model by introduction of the communication model
and a memory model. The versatility of quasi-static based
application models, along with runtime independent execu-
tion model, combined with RTOS and communication plat-
form, enables the ARTS framework to develop and explore a
broad class of designs. This has been demonstrated in a co-

exploration case study for multimedia applications typical in
the hand-held device. We have shown various capability and
features of our framework which allow selecting and tuning
platform exploration under given system constraints. In fu-
ture, we will extend the model to include dynamic power and
area analysis, as additional parameters for trade-off analysis
during MPSoC exploration.

References

[1] G. Braun, A. Wieferin, and A. Nohl. Processor/Memory Co-
Exploration on multiple abstraction levels. In Proceedings of
Design, Automation and Testing in Europe Conference 2003

QVATE03). IEEE Computer Society, March 2003,
Fornaciari, D. Sciuto, C. Silvano, and V. Zaccaria. Fast

system-level exploration of memory architectures driven by

eneﬁy delay metrics. In ISCAS, 2001.
[3] S. Honda, T. Wakabayashi, H. Tomiyama, and H. Takada.

RTOS-Centric hardware/software cosimulator for embedded
system design. In Second IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis

(CODES ISSS), Seplember 2004
S. C. Im, and S. Ha. Efficient exploration of

On—Chlp bus architectures and memory allocation. In
Second IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES ISSS),

September 2004.
J. Madsen, S. Mahadevan, and K. Virk. Network-centric,

system-level model for multiprocessor system-on-chip simula-
tion. In J. Nurmi, H. Tenhunen, J. [soaho, and A. Jantsch, edi-
tors, Interconnect-Centric Design for Advanced SoC and NoC,

chapter 13, pages —. Kluwer, 2004.
J. Madsen, ahadevan, K. Virk, and M. Gonzalez. Network-

on-chip modelmg for system-level multiprocessor simulation.
In Proceedings of the 24th IEEE International Real-Time Sys-

tems Symposium (RTSS03), é)a es 82-92, 2003.
[7] A.Maxiaguine, Y. Zhu, S. Chakraborty, “and W.-F. Wong. Tun-

ing SoC platforms for multimedia processing: Identifying limits
and tradeoffs. In Second IEEE/ACM/IFIP International Con-
ference on Hardware/Software Codesign and System Synthesis

(CODES ISSS), September 2004.
. L. Moigne, O. Pasquier, and J.-P. Calvez. A generic RTOS

model for real-time systems simulation with systemc. In Pro-
ceedings of the conference on Design, automation and test in

[5]

6

[8] R

Euro e, Fage 30082. IEEE Computer Society, 2004.
[9] A. rink, T. Kogel, R. Leupers, G. scheid, H. Meyr,
G. Braun and A. Nohl A system level proces-

sor/communication co-exploration methodology for multi-
processor system-on-chip platforms. In Proceedings of the De-
sign, Automation and Test in Europe Conference (DATE’04),
page 21256. IEEE Computer Society, 2004.

4

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

35000

CHAPTER 5

The RIPE Modeling
Environment

This chapter consists of the following papers.

#5:

#6:

#7:

Shankar Mahadevan, Federico Angiolini, Michael Storgaard, Rasmus G.
Olsen, Jens Sparsg and Jan Madsen. “A Network Traffic Generator Model
for Fast Network-on-Chip Simulation.” In Proceedings of Design, Automa-
tion and Testing in Furope Conference (DATE), Munich Germany. IEEE,
Mar. 2005: 780-785.

Federico Angiolini, Shankar Mahadevan, Jan Madsen, Luca Benini and
Jens Sparsg. “Realistically Rendering SoC Traffic Patterns with Interrupt
Awareness.” IFIP Very Large Scale Integration Systems and their Designs
Conference (VLSI-SoC), Perth Australia. IEEE, Oct. 2005: 211-216.

Federico Angiolini, Shankar Mahadevan, Jens Sparsg, Luca Benini and Jan
Madsen. “A Reactive IP Emulator for Multi-Processor System-on-Chip
Exploration.” Submitted for Journal Publication.

From this group only Paper #7 has been presented as it is a comprehensive
extension of concepts presented in Paper #5 and #6 with new implementation
and case studies. We refer the interested readers to Appendix [Mand B for the full

106 The RIPE Modeling Environment

text of Paper #5 and #6. With regards to nomenclature, the RIPE framework
in Paper #5 and #6 is referred to as simply ‘traffic generator’ or ‘reactive traffic
generator’.

Paper #7: A Reactive IP Emulator for MPSoC Exploration 107

A Reactive IP Emulator for Multi-Processor System-on-ChipExploration

Shankar Mahadevargtudent Member, IEEEFederico Angiolini,
Jens Sparsg, Luca Benirsienior Member, IEEEand Jan Madsen

Abstract test the interconnect under the most realistic application
behaviour. To date, these traffic models can be grouped
The design of Multi-Processor Systems-on-Chip (MP- into two primary classes: stochastic models and IP-based
SoCs) emphasizes Intellectual Property (IP) based models.
communication-centric approaches. Therefore, for the op- The stochastic models provide traffic similar to mathe-
timization of the MPSoC interconnect, the designer must matical distributions such as uniform, Poisson, etc. Asisee
develop traffic models that realistically capture the appli in [19] and [11], they have been used in the evaluation of
cation behaviour as executing on the IP core. In this paper, different interconnect architectures and features. Hawev
we introduce a Reactive Intellectual Property Emulator they do not capture the close correlations between differ-
(RIPE) that enables an effective emulation of the IP ent events as would be expected in a realistic MPSoC
core behaviour in multiple (including bit- and cycle-true environment. To make an example, checks for a shared
simulation) environments. The RIPE is built as a multi- resource done by polling generate different amounts of
threaded abstract instruction set processor and it can traffic depending on the relative ordering of accesses to
generatereactivetraffic modeling. We compare the RIPE the resource. Thus, the usefulness of stochastic models is
models with cycle-true functional simulation of complex restricted to validating the correctness of the implementa
application behaviour (task synchronization, multitasgki tion of the interconnection backbone, and does not extend
input/output operations). Our results demonstrate high to application-specific optimization.
accuracy and significant speedups. Further, via a case The IP-based models come in several flavours. Some are
study we show the potential use of the RIPE in a designdescribed at higher abstraction levels, such as Transactio
space exploration context. Level Models (TLM), and some at lower abstractions,
such as Cycle-True Models (CTM). The IP-based TLMs
used in [18] and [24] are very useful in fast exploration
of the system fabric, however the loss of accuracy due
to the highly abstracted description of IP models is an
))) . impediment to thorough fabric optimization. The detailed
The primary design paradigm for Multi-Processor |p.pased CTMs used in [20] and [16] provide an accurate
Systems-on-Chip (MPS0Cs) is the separation of the com-pictyre for such an optimization, but are time-consuming
munication and computation concerns, as this enablesy simulate, which disadvantages them for repeated use
Intellectual Property (IP) reuse and shorter design time. ity alternate fabric architectures and/or feature imple-
However, to test and optlmlge the |nd.ependently deve'qpedmentations. The primary drawback, however, is that in
IP cores, and assess their collective perform'ance in apoth cases, the complete application, the operating system
MPSoC platform, one must understand the impact of (0s) and the architecture have to be described within the
the communication fabric on the application executing model, in terms of an abstract system behaviour (TLMs) or
on the platform. Fabrics can span over a huge variety getailed instruction-set behaviour (CTMs). Since the MP-
of architectures and topologies, ranging from traditional 5o specifications and designs are susceptible to repeated
shared buses up to packet-switching Networks-on-Chipchanges, this drawback is costly in terms of modeling and

(NoC) [10], [14]. To properly assess functionality and yajidation time, and may impact time-to-market - which is
performance, fabric designers build traffic models that 5 ever shrinking constraint.

For the purposes of the interconnect designer, a valu-
Shankar Mahadevan, Jens Sparsg and Jan Madsen are wittckimg- Te bl I f purp | . d o gd
cal University of Denmark; Federico Angiolini and Luca Beinare with able tool for exploration and optimization needs to meet

the University of Bologna. important criteria, as addressed in [9]. These include

I. Introduction

108 The RIPE Modeling Environment

IP under 2
Development

~>c] ::> RIPE RIPE f/

L JL 1L N JLIEAIL N =N]
NoC Ilrl;u:lrface NoC ,il,ﬁ,, ,lENQC,,,Q,g,l;,
-NoC
LT IT merses 1T 1T NoC e NoC
— LT IT wenass 1T 1T

:> RIPE

Fig. 2. RIPE as IP Mock-up

Fig. 1. RIPE as IP Replacement

repeatability across different fabric architectures,iBaixy sections.

for easy incorporation of changes in design specifications, The RIPE device is designed for interconnect per-
and scalability and simulation speedups compared to otheformance tuning and matches multi-threaded application
models. In this paper, we describe a Reactive IP Emulatorrequirements with a truly multi-threaded internal arctite
(RIPE) which addresses all of the above criteria, and ture, as will be extensively shown in this paper. Some of
extends further by accurately capturing the communica-the RIPE concepts were originally introduced as a cycle-
tion behaviour that results from the multiple constraints true OCP-based Reactive Traffic Generator (RTG) in [21]

imposed by and [6]. The main objective there was to use a device
« the application, to accurately play prerecorded system traces back. As
« the OS, illustrated in Figure 1, by swapping away IP cores for
« the architecture dynamics. RIPE blocks in the reference cycle-true system, subsequent

The RIPE enables a versatile and effective emulation of design space exploration of the interconnect is allowed to
IP behaviour towards the MPSoC interconnect and otherbe performed at the same level of accuracy. We expand
IPs in multiple test environments (including bit- and cycle the scope of the RTG architecture in three ways:
true). It is built as a multi-threaded instruction set archi « We support multi-threading in the architecture by
tecture with OCP (Open Core Protocol) 2.0 [4] sockets maintaining multiple program counters and register
at its ports. The RIPE allows for easy programming of files, in place of inflexible branching within a single
sequences of communication transactions interleaved with thread.
idle waits, and is also capable of sensing feedback fromthe « To validate this new architecture, the off-line tool-
system. Thereby, it is able to capture the communication- chain used to convert the system traces into RIPE
sensitive portion of IP execution behaviour, such as in programs has been updated extensively.
case of synchronization and interrupt events. The response « We demonstrate how a RIPE program manually writ-
of the RIPE to such events is governed by the state of ten by the designer can provide insight on the re-
the system resources (communication channels and shared lationship among the behaviour of the whole system
memory areas), and mimics the behaviour observed with and of its components. For example, variable densities

applications and OS executing on an IP core in a real of interrupt events can be investigated, or the impact
MPSoC system. This is the essenceredctivenessThe of cache write-backvs. write-through policies. As
main contribution of this work are (i) motivating its need, illustrated in Figure 2, this expands the potential of
(ii) deriving its requirements, (iii) validating these rerg- the RIPE to the modeling of design features that are
ments, and (iv) demonstrating the impact of RIPE in a not yet fully implemented.

co-exploration environment. Our RIPE approach has been While still stating the suitability of RIPE for cycle-true
proposed for complete realistic emulation of the hardware environments, we now additionally prove its usefulness as
and the software layers which are stacked in an IP core,a design space exploration tool when under less strict tim-
and which eventually determine its behaviour at the pinout ing constraints. Additionally, we will show traffic profikin
boundary. This enables a complete decoupling of thecharts that will further motivate and validate the RIPE
simulation of the IP cores from the underlying interconnect approach.

fabric. The RIPE can be programmed to reproduce a range To validate our RIPE model and programming para-
of behaviours from polling to interrupt-triggered context digm, we test the infrastructure against the bit- and cycle-
switches in presence of an OS. The requirements for suchtrue detailed MPARM model [20]. MPARM is a homo-
reactive behaviours are explored in detail in subsequentgeneous multiprocessor simulation platform that supports

Paper #7: A Reactive IP Emulator for MPSoC Exploration 109

many MPSoC platform configurations and application (IPC) is realized via channels that implement abgtract
suites. As part of the validation, we use the MPARM soft- blocking or non-blocking communication calls. Thus, it is
ware toolchain to partition and compile different bench- argued that TLM enables higher simulation speed than pin-
mark applications onto the various IPs. These applicationbased interfaces via suppressing “uninteresting” details
partitions might conceptually be either routines execut- In [22], [23], TLM has been used for bus architecture ex-
ing on general purpose microprocessors, dedicated ASICploration. The communication is modeled as read and write
blocks, DMA engines, or any other device. transactions towards the bus. Depending on the required
The rest of the paper is organized as follows. Section Il accuracy of the simulation results, timing informationtsuc
introduces related work and motiviation, and is followed as bus arbitration delay is annotated within the bus model.
by a discussion of the requirements for IP emulation In [23] an additional layer called “Cycle Count Accurate
in Section Ill. Section IV details the RIPE model and at Transaction Boundary” (CCATB) is presented. Here, the
presents a sample program for modeling application flow. transactions are issued at the same cycle as that observed
In Section V we discuss the different potential ways to in Bus-Cycle-Accurate (BCA) models. Intra-transaction
use the RIPE. Section VI describes the mechanism tovisibility is traded off for a simulation speed gain. An
validate the RIPE. Section VII presents results of valmati average speedup of 1.55x is reported. While modeling
and simulation for a range of complex benchmarks with the entire system at TLM, both [22] and [23] present a
and without OS, while Section VIII shows a case study methodology for preserving accuracy with gain in simula-
where the RIPE is used as a useful tool for design spacetion speed. Such models are efficient in capturing regular

exploration. Finally, Section IX provides conclusions. communication behaviour, but the fundamental problem
of capturing system unpredictability in the presence of
Il. Related Work and Motivation interrupts is not addressed.

In [24], a commercial TLM-based reactive workload
The use of IP emulation devices such as traffic genera-generation framework is presented that is somewhat sim-

tors (TGs) is not new, and several approaches and modeldar to our RIPE approach, wherein users can configure
have been proposed. traffic patterns for handling synchronization and inter-1P

In [19], a stochastic TG model is used for fabric €vents. Though limited to single-threaded architecture, i
exploration, where the IP behavior is statistically repre- also claims to provide primitives for timing-dependent
sented by means of uniform, Gaussian, or Poisson dis-Pehaviour, wherein the user can tigger actions, which
tributions. A similar approach in [30] uses random and do not depend on application flows but on simulation
semi-deterministic distributions. The IP model used for time. Other commercial efforts also exists, including the
NoC optimization in [11] takes into account the nature of OPENVERA [28] language and toolchain that, in addition
MPSoC traffic such as real-time, short-data access, bursty!0 modeling concurrency and synchronization, also sup-
etc., however the injection rate is governed by statistical POrt verification from abstract level to RTL. Our RIPE,
methods. In [29], an extra dimension of self-similarity is While not supporting some classes of timing-dependent
added to the stochastic model which is argued to assist inPehaviour, supports multi-threading (required for intetr
precise characterization of multimedia traffic by examgnin driven OS-supported context-switch) and traffic genenatio
the “similarities” in traffic traces at the macroblock-léve ~at multiple levels of abstraction, including cycle- and- bit
Despite the refinements, the inherent probabilistic naturetrue environment. More importantly, we have validated
of the statistical approaches makes it less accurate, a®ur approach with a cycle-true reference system (details
each TG injects traffic in complete isolation from every Provide in Section Vi), with near 100% accuracy - a step
other. As surveyed in [9], such stochastic models are Which the commercial approachs have yet to demostrate,
therefore widely popular for analysis of macro-networks, thereby, limiting the confidence in their usage.
e.g.Internet, that exhibit such behaviour, which is unlikely In [20] (MPARM) and [16], complete cycle-true MP-
in MPSoC environment. The simplicity and simulation SoC systems including the full instruction set of the IP
speed of stochastic models may make them valuable duringcores and the OS are described. This consequently impacts
preliminary stages of interconnect development, but,esinc the simulation speed and the scalability of system. Further
the characteristics (functionality and timing) of the IR&® the time required to investigate the performance impact
are not captured, such models are unreliable for optimizingof relatively minor changes in systems modeled in such
communication fabric features. a way is often inflated by the implementation time and

A modeling technique which adds functional accuracy then by a relevant simulation time. This hampers the use
and causality is Transaction-Level Modeling (TLM), which of such models for the iterative design space exploration
has been widely used for SoC design [12], [15], [18], process. To overcome the speedup limitation of such
[22], [23], [25]. In TLM, Inter-Process Communication simulation-based approaches, an FPGA-based emulation

110 The RIPE Modeling Environment

IP#1 Semaphore IP#2

o]

in such designs is timing-, and thus architecture-, d?apen-
dent. Therefore, very different transaction patterns may b

observed as a function of the chosen application model and
interconnection design. For example, consider Figure 3,
where two IP cores (IP#1 and IP#2) attempt to acquire
the semaphore lock and, in case the ownership attempt
fails, poll the location until success. It is clear that such

RD

Fail

AVAN

Resp
Wait RD !) !
time{ polling polling checks fo}r a shared_ resource will ge_nerate d|_fﬂaren
WR \tlwk\. amounts of traffic depending on the relative ordering of
unlocked |1t Fail accesses to the resource. Time-shifting of traces is not
%} “t"“’“ &b going to be enough to reproduce such behaviour.
| e The picture is further complicated by the presence of
% interrupts. While interrupts in themselves do not typigall
w‘ imply an intensive load on the communication architecture,
. . . Resp interrupt handling, possibly followed by OS-driven task

rescheduling, can severely strain network resources with
activity peaks, which in turn may indirectly affect other
processors. This event-driven processor reaction must be
realistically modeled in order to accordingly optimize the
underlying interconnect fabric.

These observations motivate the need for an IP emula-
tion device that isreactiveto the changes in the system
architecture and the application behaviour. It is only by

Fig. 3. Typical polling synchronization time-
line.

platform has been proposed in [17]. Here, the registers
in the traffic generator can be configured to generate

different traffic patterns. However, the configurations use | " ;
. patte '9 taking both the hardware and software into account that
either the stochastic model or the trace-driven approach, ™ . N . :
a wide range of synchronization patterns, including OS-

and the reactiveness capability that is needed for accuratebased interrupt handling, can be accurately rranslatex int
performance optimization is never mentioned. Further, the L ' .

requirement of a state-of-the-art FPGA board, as used inzé\fgtsg:f]éift load for an interconnect infrastructurdam
the emulation, is not alway possible to meet. Our RIPE is significantly different from either a purely

Based on the above considerations, given the require-, . . L .)
- - behavioural encapsulation of application code into a simu-
ments of accuracy, repeatability, scalability, speed and

flexibility set in Section I, no true IP emulator model lation device, which would be in analogy with TLM mod-

; eling environment, or detailed instruction-set simulator
that spans a range of abstraction levels and usage schemes . :
:) which would be closer to deployable hardware environ-
seems to be available for the MPSoC designers. Our RIPE . - .
; . . ment. However, it spans the behaviour of an IP over this
is meant to address this need and we will suggest a process))
.) . Spectrum of environments. The RIPE model we propose is
for its usage at multiple abstractions. aimed at faithfully creating traffic patterns as they woudd b
The emulation of the IP core behaviour is not simply y 9 P y

a matter of issuing communication transactioasy. by generated by afP running an applicationnot just by the
. y application; this includes.g.accurate modeling ofache
replaying traces collected from a reference system, an

. w . refills and of latencies between accesses, allowing for

approach that we might call “cloning”. Such an approach : . .
. . : cycle-true simulations. We now look at the requirements
is clearly inadequate for co-exploration, for example when for modeling such reactiveness
taking into account the behaviour of a NoC. Here, the '
variance of network latency results in unpredictable re- . .
sponse delays. Such transaction time variability, eituer d ll. Reactive IP Emulator Requirements
to topological reasons or to congestion, should propagate
to subsequent transactions, which would also be delayed in Communication over a shared fabric can be categorized
real systems. A simple example of such critical blocking according to several different criteria, such as expliit (
is execution resumption after a cache refill request. example, data fetching)s. implicit (for example, instruc-

This observation leads to the concept of “time-shifting” tion cache refills), or computation-related (data procegsi
behaviour: consecutive transactions are tied to each,othervs. synchronization-related (exchange of signals among
and are issued at times which are a function of the delayprocessors to keep the status of the system consistent).
elapsed before receiving responses to previous transacAnother possible criterium is:
tions. However, even this model fails when multi-master |. Processor-initiated communication towards an exclu-
systems come under scrutiny. The arbitration for resources sively owned slave peripherak.g. accesses to a

Paper #7: A Reactive IP Emulator for MPSoC Exploration 111

A 5
Master Slave is thus stalled at the slave interface. This stalling befravi
does not need to be explicitly captured in a RIPE model,

WR \ since, from a processor perspective, it simply appears to
Wait be part of the slave response time.
time WR access R . .
}l\me Modeling requirements of Category | traffic can be
RD | predicted or inferred given an algorithmic specification.
RD access In [29] and [11] such inference is drawn to test the fabric
/ tme architecture. However, for categories Il and I11 listed a0
Resp it is almost impossible to predict traffic requirements
il without detailed models of the underlying hardware (such
wair] WR \ as cache replacement policies) and without simultaneously
mel ep [IRaccess tracking the status of each processor and shared resource of
time the system. It is due to this requirement that most synthetic
Sla”f R access TG approaches find a roadblock limiting their applicabijlity

but this is also the area RIPE is focusing onto. So, in
describing the requirements for a reactive emulator, we wil
not consider dataflow issues, but instead the much more
challenging synchronization traffic patterns. The cajigbil
of handling synchronization and system-initiated traféic i
a first requirement for RIPE.
To understand the implications of these different MP-
private memory), SoC traffic categories, we looked at typical application
IIl. Processor-initiated communication towards an exclu- Pehaviour in MPSoCs. Specifically, the following ex-
sively owned slave peripherak.g. accesses to a amples from real-life were considered [31]: multimedia

Resp

A

Fig. 4. Communication with Private Memory

private memory), data stream processing, time slicing mechanisms in OS
IIl. System-initiated communication towards the proces- Schedulers, and I/O device handling. Depending on the
sor (e.g.interrupts). underlying hardware architecture and on the application

Figure 4 shows a simplistic model of Category I traffic, requ_irements, a range of sy_nch_ronization schemes, each
i.e. a master accessing a private slave. For such traffic, ©ding to different communication patterns, can be ob-
a trace containing the type and the timestamp of theserved in these examples. To derive the requirements for

communication events can be captured at the IP ports our realistic IP emulation, we coded templates of these
and is subsequently sufficient to emulate the behaviour of@PPlications. We leverage the previously introduced (in

the master via non-preemptive sequential communicationshecnon 1) IMPARé\/I S|muflat|on enr\]nrc_)r}ment to extlelgute
transactions interleaved with an appropriate amount ef idl €S€ templates. By transforming the information collécte

wait cycles. To elaborate, consider the first two master during such exect_Jtion into a RIP'.E program (a description
transactions, a writeWR) and a read RD). The time to of Fhe process will be provided in Section VI), we can
service theWR transaction, which is a posted write, is validate our gpproach,‘and compare the p_erformz?mce and
just the network latency plus the slaWR access time. ~ accuracy ac_hlevable with the RIPE execution engine. _
The RD, which in our case uses blocking semantics, pays The details of these template programs are described

an additional penalty because the response has to mak@€xt: The first example is about synchronization patterns
its way back to the master. From the emulation point of typical of multimedia data stream processing, where multi-

view, this pattern is easily recordable: network latenog an PI€ computational blocks are deployed in a pipelined fash-
slave access time are unimportant factors, and the essentid®n @nd communicate according to the producer/consumer
point to capture is just the delay betwedR assertion and paradlgm. The_ Iatt_er examples are more strl_ctly relateq to
RD assertion (wait time), and betwedD response and interrupt handling in .pre.sence of an underlying OS which
the following command. This is the essence of the “time- Performs context switching.

shifting” technique discussed in Section Il. In a subseguen

simulation with RIPEs replacing IP cores, these delaysA. poll

will be modeled by explicit idle waits in the RIPE, while

the network latency will be dependent on the interconnect In the simplest synchronization casgdll”), one or
model under simulation. In the next set of transactions, more processors competing for a shared resource may
where aRD closely follows a\R, theRD command reaches poll a semaphore, performing an unpredictable number
the slave before the latter has finished servicingAReand of accesses prior to lock acquisition and flow resumption.

112 The RIPE Modeling Environment

IP#1 IP#2
Producer Consumer ‘

semaphore |
check &~

Read Semaphor e

Read e

(IockeET |

semaphore
—a Unlock

Wait for
Interrupt

interrupt

semaphore

recheck, |
g

(unlocked’f

Semaphor e
Locked ?

Semaphor e
Locked ?

Normal Comput ation

Normal Computation
Flow

Flow

Fig. 6. Typical interrupt syn-

Fig. 5. poll application flow chronization timeline Fig. 7. pipe application flow

For this case, a single task is mapped onto every systenB. pipe

core. Tasks are programmed to communicate with each

other in a point-to-point producer-consumer fashion; gver An interrupt-based task synchronization scenario
task acts both as a consumer (for an upstream task) and“pipe”) is illustrated in Figure 6. In terms of functionality,
as a producer (for a downstream task), therefore logicalthis case is similar tgoll, except for semaphore release
pipelines can be achieved by instantiating multiple cores handling, which is now augmented by issuing interrupts. If
and tasks. Synchronization is needed in every task tothe semaphore is found locked upon the first read, a polling
check the availability of input data and of output space could be performed, at a heavy price in terms of energy
before attempting data transfers. To guarantee data in-consumption, and possibly contributing to the saturation
tegrity, semaphores are provided to assess such avdjfabili of the system interconnect. Instead, in this scenario, we
For example, the consumer checks a semaphore beforémplemented a mechanism which suspends the consumer
accessing producer output. Figure 3 presented earligr illu task and resumes it only when the producer has data ready.
trates such a scenario. Here, two tasksIP#1 Producer The producer will notify this event by both unlocking
and IP#2 Consumer, attempt to gain access to the saméhe semaphore and sending an interrupt. Figure 7 shows
hardware semaphore, which controls an area of sharedhe corresponding application flow within the IPs. Upon
memory used for data exchange. IP#1 arrives first andinterrupt delivery, the consumer re-evaluates the semrapho
locks the resource; the attempt by IP#2 thus fails. If the value for fail-safe operation, and since this time it finds it
semaphore is found locked upon the first read, thetets free, it goes on to process the available input data. The
with a continuous polling strategy, whereby IP#2 regularly producer follows a similar flow when attempting to push
issues read events until eventually the semaphore is foundlata to the output. In this example, the task is interacting
unlocked. Figure 5 represents the application flow of the with the OS of the IP cores to voluntarily suspend should
polling IPs. Since the transactions occur over a sharedcertain conditions be trué.¢.finding a semaphore locked).
network fabric, the unlock even¥\R) issued by IP#1 and Additionally, the task negotiates with the OS to be resumed
the success of the next requeRDJ event by IP#2 are upon interrupt receipt. The task may also want to ignore an
interdependent. Only if the IP#RD event is issued at interrupt in the following condition: it is possible thateth
leasttnwi, ip#1 + tunlock,s — tnwk,IP#2 after the unlocking upstream producer, or the downstream consumer, notifies
by IP#1, then IP#2 will be granted the semaphore andavailability of data or buffer space before the actual need
additional polling events will not be required. Therefore, for such resources, because the current task is still busy
depending on network properties, a variable amount of with previous internal processing.

transactions might be observed at the OCP interfaces of

IP#1 and IP#2. C. multi

A task scheduling scenaridnfulti”) is illustrated in
Figure 8(a). In this case, two tasks (Task A and Task B) run

Paper #7: A Reactive IP Emulator for MPSoC Exploration 113

. ; Timer P 10 P 7
on each IP; a variable amount of system processors may be Device Task A Task B Device Task

present. No explicit communication is performed between nerrupt ! intermupt os
tasks, neither intra- nor inter-core. The context switghin \I | \I Handler
between tasks is performed by the OS in response to an i
external interrupt, which may typically be sent by a timer '
device. The end of any task automatically triggers a context |
switch to the outstanding suspended task. Any nested
interrupts arriving during the context switch are ignorasl, interrupt
would be expected in any well-behaving system. The tasks
are not explicitly aware of any system synchronization
going on, as they are not notified upon the receipt of an
interrupt, and are just passively suspended and resumed
by the OS. Since tasks can be asymmetric, a difference in

interrupt

interrupt

interrupt

interrupt

OS scheduling might in turn translate into different traffic interrupt
workloads. !
D. 10
An |/O-aware application“(O”) is illustrated in Fig- (a) (b)

ure 8(b). A single task is running on every system proces-

sor. These tasks do not communicate with each other, and Fig. 8. Typical interrupt-triggered context

perform independent computation. However, at random switch timeline. (a) multi (b) IO

times, a system 1/O device sends an interrupt to the IP

cores to signal availability of data. In response to this

signal, the IP executes an interrupt handler routine, which

moves blocks of data across the system interconnect. Wheriecognizable. Even though tasks with even more timing-

such handling is finished, normal operation is resumed.dependent behaviour do exist, the effort required to model

The interrupt handling is part of the functionality of an such tasks requires an intra-task notion of context switch-

I/O device driver, and can be programmed as such. ing. Itis also worth stressing that, though not all intetrup
Our RIPE models emulates a processor running andriven behaviours are represented, the applications we try

application. The application may or may not encompassto analyze here are definitely representative of a vast class

0OS behaviour, and may or may not be composed of Of computation. The model we will propose can capture

multiple tasks per core. Apart from theoll scenario, in all such dynamics with proper insight on the mechanics of

all the envisioned applications the OS plays an importantthe applications and the OS.

role, with and botmulti andIO involving some form of The experimental results will prove that traces collected
multiple tasks per core. The support for OS and multitask- at the |P-fabric interface are sufficient to accurately oepr
ing modeling represents the second set of requirements fojyce the IP core communication, providing an important
the RIPE. mechanism for RIPE validation. These traces should col-
lect sequences of communication transactions, comprising
The applications described above are timing-sensitive.of requests, responses and interrupt events, separated by
However, within the single task, the overall performed time intervals with no communication.e. idle time. A
computation does not change depending on the order ofreference simulation of the entire system should produce
arrival of external events, and the data dependencies careveral traces, one per IP core interface.
be captured. Only the amount of computation between
each pair of events can vary. Should an environment
constraint not be satisfied, tasks always enter some form
of suspension, albeit in very different manners in each of
the examples. The different degree of awareness of OS
functionality in each of these templates is important be-
cause it impacts the ability to annotate execution traces, a In this section, we motivate the choice of creating
will be seen in Section VI. So, while an execution trace of the RIPE as an instruction set processor, then describe
these benchmarks shows varying traffic patterns dependingts operation and implementation, which are capable of
on external timings, the major computation blocks are still reproducing the required IP core reactiveness behaviour.

IV. The RIPE Model

114 The RIPE Modeling Environment

[Instruction Size (Words) Description 8
Communication Instructions:
Read(AddrReg) 1 Read from an address
Write(AddrReg, DataReg) 1 Write to an address
BurstRead(AddrReg, CountReg) 1 Burst read an address set
BurstWrite(AddrReg, DataReg, CountReg) 1 Burst write adress set
Flow Control Instructions:
If(argl, arg2, operand) 2 Branch on condition
Jump(label) 1 Branch direct
Idle(counter) 1 Wait for given no of cycles

SetRegister(reg, value) 2 Set register (load immediate)

TABLE I. RIPE instruction set.

A. Motivation for the Instruction Set Architecture arrival of interrupt events and must support multiple
threads.

The RIPE must generate traffic patterns according to « A RIPE emulating a private memory. This component
two different constraints. First, it must follow the direts must be able to respond to communication transac-
set by the designer, who wants to inject a certain type tions issued by a master. The RIPE just has to model
of traffic in the system, typically shaped to emulate the the access time but it does not have to provide a data
traffic requirements of some application. Second, it has to structure for storage. It simply responds to a read
respond dynamically to the external environment (conges- transaction by providing a dummy value.

tion, synchronization events) in the same way the applica- « A RIPE emulating a shared memory. This component
tion that is being modeled would. To generate appropriate must contain a data structure modeling an actual
communication transactions “on-the-fly” respecting both shared memory (since the values read by the masters
requirements, an instruction set, supported by state-regis may affect the application flove.g.current values of
ters and by a programming language, is a natural choice. semaphores).
By introducing a programmable paradigm, the RIPE can The second and third entities can be extremely simple
be used in association with manually written programs to in design, as their logic basically involves a small state
generate traffic patterns typical of IPs still in the design machine to handle the communication protocol at the IP
phase, helping in the tuning of the communication per- interface and possibly a storage element for corresponding
formance or understanding the causality relationship with memory accesses. In any case, for our tests within the
other IPs in the MPSoC. Hence, we choose an InstructionMPARM framework we could use the equivalent MPARM
Set Architecture (ISA) for the RIPE implementation. This blocks. Therefore, only the RIPE entity that emulates an
choice allows us to describe reactiveness characteristics IP master is described next, and is the main focus of this
a wide range of IP cores at different levels of abstraction. paper.
Additionally, this choice allows future deployment as
a hardware device in test chips containing interconnectB. |nstruction Set Architecture
prototypes. In [17], the potential of this type of archi-
tecture has been shown within an FPGA-based emulation The RIPE is imp|emented in Systemc [2] as a non-
platform. The ISA approach, with a fixed device and user- pipelined processor with a very simple instruction set, as
written programs, avoids time consuming operations suchjisted in Table I. The RIPE program that controls the device
as recompilation, in the case of behavioural models, or pehaviour contains code to model one or multiple tasks.
resynthesis, in the case of a hardware flow. Such stepsThese tasks might be actual tasks running on the IP core
would be required by a monolithic traffic generation device which is being modeled, or chunks of the OS layer, such
to emulate and study different applications on the samegas its native interrupt handlers and scheduler. The RIPE is
platform. In this paper, program execution will only be capable of switching the execution flow among these tasks,
shown within a simulation model. as discussed later. Via the OCP 2.0 [4] master transaction
From the analysis of communication requirements in interface, the RIPE is able to issue a sequence of commu-
Section IIl, it can be postulated that three different RIPE nication transactions separated by idle wait periods,dase
entities might be needed: on the programmed flow control conditions. The choice
« A RIPE emulating an IP master (a processor). This of the OCP protocol for the interface is motivated by the
component must be able to issue conditional se- availability of this interface on the interconnect sidehirit
guences of communication transactions separated bythe MPARM reference system. Any other standard, such
idle wait periods. Further, it must be sensitive to as AXI (Advanced eXtensible Interface) [7], could also

Paper #7: A Reactive IP Emulator for MPSoC Exploration 115

Special Name Usage . 9
‘ Registers C. ISA Implementation
Interrupt Registers:
g ?tri?ﬁ)askReg g/lasks or unme[\)sks interrupts To execute the instructions discussed above, the RIPE
as eg tores a tas B . i . .
5 SWinpReg Sends a software interrupt from m_od_el |mplements a S|mp_le non _plpe_llned engine where,
within the program within a single cycle, the instruction is fetched, decoded
Other Registers: and executed. The RIPE can either initiate OCP transac-
4 RDReg Stores the data value returned i i i i i
by the Read(AddrReg) instructio tions or perform flow control operations, including setting

up register values.

TABLE Il. RIPE Special Registers. The Set Registerinstruction executes the load of an
immediate 32-bit value, which is written to the speci-
fied register $et Regi st er (reg, val ue) in Table).

This opcode is two memory words long, as it has to
accommodate the immediate data. The class of instructions

be supported depending on the interface required by there|ating to communication is designed to execute the OCP
interconnection under study. transactions. The OCP transactions are initiated with the
The RIPE has a Program Counte?Qj register, an address and data values that were set up in the register file

instruction memory and a register file for each task running I the preceding cycles. These instructions are blocking,
on the core, but no data memory. Collectively, this state i-€- the RIPE execution |s_suspended until _co.mpletlon of
information drives the RIPE execution engine, whose stateth® OCP handshake, which for a read will include the
machine is described in the next section. The instruction!aténcy of the response over the network. Currently, we
set consists of a group of commands which issue ocpsupport the ba_s_lc s_|gnals and the_burst extension of the
transactions (arguments are taken from the register file)OCP 2.0 specification. An extension to support out-of-
and a group of flow instructions allowing the conditional Order transactions could be achieved by the implemen-
programming of sequences of transactions and idle waits.tation of an outstanding instruction buffer. The class of

Within the register file, most registers are general purpose instructions relating to flow control is used to realize the
and their number can be configured. reactive behaviour. Thief andJunp instructions are used

to change the execution flow and thél e instruction is

Some registers are designated as special purpose; fofjsed to fake the IP computation latency. TiHe opcode
example, since in specific flow control scenarios the js two words long, to accomodate its operands and branch
data returned by a read command must be available forjgcation.
evaluation, RIPE provides in Register 4 the response t0 A context switch among tasks in the task pool is
the preceding read. Table Il shows all designated spe-realized simply by referring to the corresponding set of
cial purpose registers. Of the interrupt-related regsster pc and register file. The explicit swapping operatioe,
Register 2 is used to mask critical sections of the RIPE storing the state of current thread, loading the state of the
program from interrupts. As seen in Section Ill, different pext thread and eventually restoring the suspended thread,
applications require different responses to interruphsce which is described in [6], is a byproduct of the presence of
For example, inlO modeling, the main task is always g single task memory in the device, and is no longer needed
interruptible, while once in the interrupt handling rou- sjnce each task now has its own independent program
tine, additional (nested) interrupts should be tempararil memory. The context switching is simultaneous with an
skipped. Inpipe modeling, the interrupt handling is more jncoming interrupt signal, thus avoiding inconsistencies
specialized; interrupts are only enabled after the task hasUpon interrupt notification, th@C, register file and pro-
suspended, while they are masked during normal operationgram instruction memory are updated to the task ID read
Register 5 allows the RIPE program to assert “software from the special-purpose Register 3.
interrupts”, to which the RIPE model will react by loading The aforementioned instructions must be combined in
the program and register set of the next thread. Register 3 program and then transformed into a binary executable
can be programmed to hold the task ID of the next task t0 format for use within the RIPE ISA. The program syntax

be loaded and run on the RIPE device out of the availableang the tool to generate RIPE executables are described
task pool. The usage of the special registers will be shownpext.

in Section IV-D.

Software interrupts are managed internally by the RIPE D. Programming Language and Assembler
model. In contrast, hardware interrupts are routed through
external wires of the system fabric, and are available onthe The programming language to code traffic patterns of
sideband portionSl nt er r upt) of the OCP interface. the RIPE is similar to an assembly language, though

116

The RIPE Modeling Environment

additional semantics are provided to make it user-friendly
It is best explained via the example shown in Figure 9,
where a program to model tH® application is sketched.
Statements starting with a semicolon (;) are inlined com-
ments.

The RIPE program starts with a header describing
the core and the task identifieMASTER] <cor el D>,
<t askl D>] . All of the tasks running on any given IP
core are described within a single program, so that there
is one program per RIPE device. Recall th@t models
an application with a linear program flow, which can be
suspended by the OS to process IO interrupts. Therefore|
two tasks are described: task #0 (the main application) and

MASTERTL, 0]

; Special Registers
REGISTER IntrpMaskReg 0
REGISTER TaskIDReg 1

; General Purpose Registers (GPRs)
REGISTER AddrReg OxdOabcdef

REGISTER DataReg 0

BEGIN

; Regular task 10

; Unmask Interrupts
; Next Task ID

; Initialize address GPR
; Initialize data GPR

task #1 (the interrupt handler).

The next few statements express initialization of the
register file for this task. Unique labels should be used
for register names/tags. This allows correct initialiaati
and easy identification of the registers within the program.
The PC s increasing by either one or two locations along
the trace; this is becausBet Regi ster and | f, as
seen in Table |, require longer operands and therefore fill
two instruction slots. For task #0, the main body of the
RIPE program, this is represented by a linear execution
flow, composed of sequences of reads and writes, inter-
leaved with register accesses (mostly, to set up transactio
addresses and data). Flow control instructions might be|
inserted where appropriate, but are not needed in thig
model. Note the initialization of interrupt-related regis
at the top of task #0; upon a hardware interrupt, the RIPE
swaps the context to the task having the ID provided in
Taskl DReg, i.e. to task #1 (the interrupt handler). Since
task #0 can be suspended by OS to process I/O interruptg
I ntrpMaskReg is set as unmasked, allowing for such
suspension.

The OS-driven context switch traffic and the 1/0O handler

; Comments PC
; Normal application flow
1dle(10) ; Idle for 10 cycles 0
Read(AddrReg) ; 1
SetRegister(AddrReg, 0x10fedcab0) ; Setup an address
SetRegister(DataReg, 0x10abcdef0) ; Setup a data value
i Write(AddrReg, DataReg) ; 125
END ; 1078
MASTER[1, 1] ; 10 driver task
; Special Registers
REGISTER IntrpMaskReg 0 ; Unmask Interrupts
REGISTER SWintrpReg 0 ; Disable SW Interrupts
REGISTER TaskIDReg 0 ; Next Task ID
; General Purpose Registers (GPRs)
REGISTER AddrReg 0 ; Initialize address GPR
REGISTER DataReg 0 ; Initialize data GPR
BEGIN ; Comments PC
; Interrupt Handling Routine
IntrptHandler
; OS Suspension Routine
SetRegister(IntrpMaskReg, 1) ; Mask Interrupts 0
SetRegister(AddrReg, 0x30bebeef) ; Setup an address p
Read(AddrReg) : 4
; 10 Routine
SetRegister(AddrReg, 0x30beefcd) 39
SetRegister(DataReg, 0x10101010) 41
Write(AddrReg, DataReg) 43
Idle(121) 44

routine are programmed in task #1. Within the interrupt

; OS Release Routine

SetRegister(SWintrpReg, 1)
SetRegister(SWIntrpReg, 0)
Jump(IntrptHandler)
; End Interrupt Handling
END

; Trigger SW Interrupt 10
; Disable SW Interrupt 1qQ
: 110

o O

routine (starting with label nt r pt Handl er), which is

the critical section of the flow, interrupts are disabled. At
the end of the flow, a software interrupt is triggered to
restore the normal program flow to task #0. Upon another

Fig. 9. RIPE Program for “10" Example.

HW interrupt in the main task, the interrupt handler routine Program memory and the register file size to be allocated

will be executed again fronPC 0. The flow therefore
mimics Figure 8(a).

An assembler was built to convert the human under- V. Using RIPE Programs

standable RIPE program into a binary for execution on the

to each one.

RIPE device. There is a direct one-to-one correspondence Depending on IP model availability to the designer,
between program instructions and the binary. Within the different ways exist to write RIPE programs which best
binary, the individual task sections are appended in orderrepresent the desired type of traffic.

of their task ID. A header with a small task lookup table
is prepended.

During setup, the RIPE device loads the binary, and
based on the information encoded at the start of the binary

A. Trace Parsing

In this scenario, as is seen in Figure 1, the availability
file, it determines the number of tasks and the amount of of a pre-existing model for the IP under study is assumed.

121
123

Paper #7: A Reactive IP Emulator for MPSoC Exploration 117

MCmd WR MAddr 0x01bedfb0 MData 0x00015958 MBurstSingleRetylBurstSeq INCR 0x4 MBurstLength 1 Time 6860264 1
SCmdAccept Time 6860295

Sinterrupt SFlag 0x00000001 Time 6860310
MFlag Time 6860310

MCmd WR MAddr 0x010b48dc MData 0x00000008 MBurst SingleRelBurstSeq INCR 0x4 MBurstLength 1 Time 68603715
SCmdAccept Time 6860385

MCmd RD MAddr 0x0100acb0 MBurstSingleReq 1 MBurstSeq INCR ®BurstLength 4 Time 6860720

SCmdAccept Time 6860730

Resp Data 0xe5901000 Time 6860760

Resp Data 0xe2411001 Time 6860780

Resp Data 0xe5801000 Time 6860800

Resp Data 0xe14f0000 Time 6860820

MCmd WR MAddr 0x0102c040 MData 0x00000000 MBurstSingleReNIBurstSeq INCR 0x4 MBurstLength 1 Time 686083
SCmdAccept Time 6860840

Fig. 10. Trace syntax example.

In this case, the approach for RIPE program generationFigure 2. The designer may then follow a route similar

goes through two steps. First, a reference simulation isto the one outlined above, but with an additional step of
performed by using the available IP model, even if plugged editing the reference trace so that it more closely resesnble
into a different MPSoC platform from the final target one. that of the target IP. Some examples of the editing steps
In fact, since RIPE programs abstract from the transactionwhich are possible include:

latency factor, a vary fast transaction-level model of the , Removing or adding bus transactions to model a more
interconnect can be used in this stage to speed simulation or less efficient cache subsystem

up. An execution trace is collected. The trace is a very + Removing or adding bus transactions to model a
straightforward log of events on the OCP pinout; entries more or less comprehensive target Instruction Set
include requests, responses and interrupts, all of which Architecture (ISA)

annotated with timestamps. A sample trace snippet is « Altering the spacing among bus transactions to reflect

sketched in Figure 10. different pipeline designs or timing properties
Second, the trace is parsed with an off-line tool. The .+ Grouping or ungrouping bus accesses to reflect write-
output of the tool is the desired RIPE program. The backvs. write-through cache policies

resulting program is coded to behave exactly as the original |t is certainly reasonable to expect that the alteration
IP model in the native system, and to behave as the corajme of the RIPE code will be substantially less than that
would do when plugged to a different interconnect. This required to develop or refine the target IP model, thus
program is now ready to be used for cycle-accurate inter- gjlowing for earlier exploration of the interconnect desig
connect design space exploration with extremely realistic space.
test traffic. In this scenario, overall cycle accuracy with respect to
This type of flow is useful whenever the pre-existing IP the eventual system is of course not guaranteed. However,
model is not available, due to licensing or technical issues the RIPE will still be able to react with cycle accuracy to
for the next co-exploration phase. In this case, the RIPE any optimization in the SoC interconnect. Provided that the
can provided a quick functional yet cycle-accurate port of transaction patterns are kept close to the ones of the target
the IP model to a MPSoC interconnect. IP core, the approach will result in valuable guidelines.
The off-line parsing tool must of course have some

knowledge about the traced application in order to cor- C. Direct Development

rectly analyze and rearrange execution traces into RTG

programs. While this effort is not trivial, it is feasible Of course, RIPE programs can be written from scratch
and provides a path for validation of the presented RIPE without reference IP traces. In this case, the flexible RIPE
device in a complete cycle-accurate flow, as described ininstruction set allows for a full-featured traffic geneoati

Section VI. system. The availability of built-in flow control manage-
ment lets the designer implement the same synchronization
B. Trace Parsing and Editing patterns which are present in real world applications (see

Section V). Additionally, the application chunks encldse
In a related scenario, an IP model might be available, within synchronization points can quickly be rendered
but it may differ under some respect from the IP that will by exploiting the flexible loop structures provided by
eventually be deployed in the SoC device. In this scenario,the RIPE ISA, thus providing periodic traffic generation
the RIPE may be used to approximate the IP, as seen ircapabilities at least on par with those of traditional TG

118 The RIPE Modeling Environment

implementations as seen in [19] [11] and [17]. In the very = The next step is to convert the traces into corresp(ljznding
first stages of development, the RIPE can also be deployeRIPE programs.{gp). The off-line translator tool outputs
as a validation tool, to check the correct functionality of symbolic code; Figure 12(b) shows the RIPE program
the interconenct under the load of the supported trangactio derived from traces in Figure 12(a). We will explain the

types. translator operation in detail in SubsectionVI-C. Fingdlg
assembler is used to convert the symbolic RIPE program
VI. Validation of RIPE into a binary image .bin) which can be loaded into the

RIPE instruction memory and executed.

The off-line tool for trace to RIPE program conversion
is written to exploit the sophisticated way application
tasks can be described in RIPE programs and the multi-
the user performs a reference simulation of the targettaSke,d architecture descrjbed in Sgction IV. The automgted
applications where all IP cores are simulated using bit- algorithm in the conversion ﬂO_W IS capable_ of dete_ctmg
and cycle-true models, to collect traces. Subsequently, th and capturing many synchronization behaviours, without

traces are processed into RIPE programs. The foIIowingf[he “eeF’ for the deS|_gne_r to handle them manu_ally, and
sections describe these steps in detail. is explained next. Validation of the trace collection and

processing mechanisms can be achieved by collecting
A. Reference MPSoC System traces with IP cores running on different interconnectd, an
' verifying the resulting.tgp and .bin programs to match.

To achieve validation, the RIPE model was integrated The conver;ion process i_s fully auFomateq and the time
into the MPARM [20] reference system. MPARM is a ho- taken for this process is discussed in Section VII.
mogeneous multiprocessor instruction-set simulatio®)1S .
platform with a configurable number of processors as IP C- Translator Operation
masters with private and shared memories, and semaphore . . .)
and interrupt devices. It also contains a port of RTEMS [3] N this section we detail thg Worklng _of the translator.

- a real-time OS. The IP cores can be plugged onto oneWe use the system traces given in Figure 12(a) as an
of several interconnect architectures, such as AMBA [g], €xample source for transformation into a RIPE program,
STBus [27] and xpipes [13]. The use of the OCP v2.0 and the resultis in Figure 12(b).]

protocol at the interfaces between the IP cores and the AS discussed in Section Ill, some prior knowledge about
interconnect allows for easy exchange of native coresthe IP core used in the reference smulatlon is required
with RIPE blocks (Figure 1). To record execution traces, {0 accurately program the RIPE device. Apart from the
the OCP interface modules within the MPARM system Seduence of transaction requests and responses, following
(the AMBA AHB bus master) were adapted to collect is a list of information needed for correct operation of the
traces of OCP requests, responses and interrupt events ifansiator:

a predefined file formattfc). « The global identifier of the IP core in the MPSoC

It is worth stressing that the complexity of the appli- system
cations described in Section Ill is not trivial from the e The clock period of the IP core
modeling point of view. The amount of annotations that « The addressing ranges representing semaphore (pol-
can be extracted from the application and its traces reflects lable) resources
the programmer’s degree of knowledge and access to « The timestamp of interrupt events
the application synchronization schemes, to the interrupt The timestamp of the return from an interrupt han-

To test RIPE accuracy and viability, we set up a
validation flow in a cycle-true environment, following the
trace-based outline described Section V-A. As a first step,

routines and to the OS internals. dling routine
« The timestamp of a spontaneous control yield
B. Trace to RIPE Program The first three pieces of information are encoded in

the trace filename, the rest are explicitly or implicitly

The RIPE validation flow is illustrated in Figure 11. (provided some knowledge of the application functions)
During the reference simulation, traces are collected fromannotated within the trace file. For example, incoming
all OCP interfaces in the system. The address and (ifinterrupts are detected on the OCP pinout and explicitly
any) data fields of the transactions were also observedrecorded in the trace. On the other hand, returns from
Trace entries may contain one of many transaction types:interrupt handling routines must be located implicitly by
single or burst read/write requests, assertion of hardwaredetecting known behaviour, such as a specific memory
interrupt, arrival of response, etc. Figure 12(a) shows anaccess at the end of the handler or at the return point in
example trace. the main code. Based on the above information, we first

Paper #7: A Reactive IP Emulator for MPSoC Exploration 119

13

; Master Core
MASTER[<corelD>,<thrdID>]
; Initializations

REGISTER rdreg 0 ; holds value of RD
REGISTER tempreg 0

REGISTER addr 0x00000104
REGISTER data 0

Next IP comm BEGIN
transaction interval S‘glrl() ot
Benchmar k Idle(11; ; wait for first inst
enenma Network Read(addr, rd)
latency SetRegister(addr, 0x00000020)
SetRegister(data, 0x00000111)
; Simple RD/WRMWRNP Idle(1)
jliacelColiceion { » RD 0x00000104 @55ns Write(addr, data, wr)
| 5 Resp Data 0x088000f0 @75ns SetRegister(addr, 0x00000031)
Trace (.trc) L > WR 0x00000020 000000111 @90ns dle(9)
RD 0x00000031 @140ns Read(addr, rd)
Resp D 2236 @1 .
‘ Trars e ‘ F esp Data 0x00002236 @165ns -
. ; polling a semaphore location!!
RIPE Program : polling a semaphore!! SetRegister(addr, 0x000000ff)
File (.tgp) RD 0x000000ff @210ns SetRegister(tempreg, 0x00000001)
Resp Data 0x00000000 @270ns Semchk
‘ Assembler ‘ RD 0x000000ff @285ns read(addr, rd)
Resp Data 0x00000000 @310ns If rdreg != tempreg then Semchk
RIPE Binary RD 0x000000ff @305ns -
(.bin) Resp Data 0x00000001 @320ns Ei‘utr)np(ﬁan) ; rewind
(@) (b)
Fig. 11. Trace to RIPE Program Flow. Fig. 12. (a) MPARM Trace (b) RIPE Program.

describe the insertion of th8et Regi st er instruction gap. This represents the “time-shifted’ behaviour disedss
within the RIPE program, which is critical to initiate the in Section II: if the RIPE program is run on a different
correct OCP transactions and flow control behaviour; andinterconnect where the read response latency is different,
then we describe how the reactiveness is realized. the write request will be accordingly shifted backward or

As seen in Figure 12(b), and described in Section IV- forward from the 90ns timestamp.

D, the RIPE program starts with the typical core iden- Then, the following read request is translated into the
tifiers. For the illustrative example in Figure 12(a), let correspondindRD program call, which is issued after ten
the clock period be 5ns and the semaphore location becycles, one spent to set up the target address and nine
0x000000f f . RegisterRDReg is defined as the name of in idle waiting. Please notice that write transactions ia th
the special register where the value of read transactions iSOCP protocol can be posted, as we assume in this example;
stored (Table II). hence the time gap (equivalent to some processing time
within the IP core that is being replaced) between the
previous write command and the current read is noted by
the translator in the RIPE program. The read is blocking
until a response is received, five cycles later.

At the beginning of the trace file, the first communi-
cation request, a readRD), occurs at 55ns, meaning the
RIPE has to perform 11 (55/5) cycles of idle wait in
the first place. Therefore, anhdl e wait is observed in
the RIPE program. When parsing this trace statement, the Now, consider the trace entries from time 210ns to
translator collects thBD address and initializes one of the 320ns. By identifying the address as belonging to a
registers marked as available in the register table (tagged semaphore location and knowing the polling behaviour of
addr on top of the program). The response is received atthe original IP core, the translator inserts 8&rchk label
75ns; the translator simply skips to this timestamp, sinceand anl f conditional statement. This statement checks
response latencies are only dependent on the underlyingvhether the read value is equal to “1”, which reflects an
network and the IP core (and so the RIPE) is simply unblocked semaphore. This loop effectively models the
blocked in the meanwhile. The next trace event of interestsemaphore polling behavior. The semaphore address and
is the write R request at 90ns. This means three ((90- expected unblock value are set up prior to the loop label to
75)/5) cycles have elapsed since the previous response igvoid repeated initialization, thus allowing for contiruso
received. New values have to be set up in the address angbolling at the maximum frequency rate for unlimited
data registers, which takes a cycle each (either for upglatin periods. Idle waits can obviously be added in the loop
the already usedddr anddat a or for setting up a new should the original IP core have a low-frequency polling
pair of registers). An ensuirigdl e wait is added to fillthe behaviour. All master devices attempting to accessing this

120 The RIPE Modeling Environment

MASTER[3, 0] ; Initializations Task A 14
; Special Registers

REGISTER IntrpMaskReg 0 ; Unmask Interrupts

REGISTER TaskIDReg 1 ; Next Task ID upon Interrupt
; General Purpose Registers (GPRs)

REGISTER AddrReg 0x00000104 ; Initialize GPR labeled AdeyR

REGISTER DataReg 0 ; Initialize GPR labeled DataReg
BEGIN ; Comments

Idle(3)

Read(AddrReg) ; RD @15ns

Idle(8)

SetRegister(AddrReg, 0x00000020)
SetRegister(DataReg, 0x00000111)
Write(AddrReg, DataReg) ; WR @95ns

; multi trace for Core ID #3
RD 0x00000104 @15ns
Resp Data 0x088000f0 @45ns

WR 0x00000020 0x00000111 @95ns SetRegister(AddrReg, 0x00000031)

Read(AddrReg) ; RD @120ns
Idle(15)

SetRegister(AddrReg, 0x01009340)

SetRegister(CountReg, 0x4)

BurstRead(AddrReg, CountReg) ; Burst RD @620ns

RD 0x00000031 @120ns

Resp Data 0x00002236 @225ns
Sinterrupt @365ns

RD 0x00000031 @440ns

Resp Data 0x00002236 @465ns
RD 0x0000beef @540ns

Resp Data 0x00002236 @565ns

getRegister(SWIntrpReg, 0x00000001) ; Trigger SW Infrru
SetRegister(SWIintrpReg, 0x00000000) ; Disable SW Inggrru

END
WR 0x00000020 0x00000111 @390ns ()
Sinterrupt @595ns —
Burst RD MAddr 0x01009340 Length 4 @6201)s Mg;;g;laeﬂisters ; Initializations Task B
Resp Data 0x00027864 @710ns REGISTER IntrpMaskReg 0 ; Unmask Interrupts
Resp Data 0x00029994 @730ns e
REGISTER SWintrpReg 0 ; Diable SW Interrupts
Resp Data Oxe52de004 @750ns K ! K
Resp Data 0xe59f0004 @770ns REGISTER Tasl IDRe_g 0 ; Next Task ID upon Interrupt
; General Purpose Registers (GPRs)
REGISTER AddrReg 0x00000031 ; Initialize GPR labeled AdsyR
REGISTER DataReg 0 ; Initialize GPR labeled DataReg
@ BE”GIN ; Comments
Idle(26)
Read(AddrReg) ; RD @440ns
Idle(74)
SetRegister(AddrReg, 0x0000beef)
Read(AddrReg) ; RD @565ns
éétRegister(AddrReg, 0x00000020) ; Trigger SW Interrupt
SetRegister(DataReg, 0x00000111) ; Disable SW Interrupt
Write(AddrReg, DataReg) ; WR @390ns

getRegister(SWIntrpReg, 0x00000001) ; Trigger SW Infrru
SetRegister(SWintrpReg, 0x00000000) ; Disable SW Infgrru
END ;

©
Fig. 13. RIPE Program for “multi" Example. (a) MPARM trace, (b) Task A, and (b) Task B.

semaphore incorporate the same routine in their RIPEinstructions. The translator algorithm attempts to uséasuc
program, thus capturing the system dynamics. slack as much as possible to prefetch register contents.

Within the translator, a register allocation algorithm However, if packed streams are very long, the problem
correctly sets up all the required data in registers beforemay be further compounded by lack of free registers. In
the OCP or the flow-control instructions that need them this case, the only solution is to increase the size of the
are scheduled for execution. It is possible that streamsregister file. We expect the problem to occur with minimal
of closely packed communication requests may leave fewfrequency, as two idle cycles (for writes) or even just one
or no interleaved idle cycles available for preparing their (for reads) among transaction entries are enough to allow
address (and data, if any). The solution is to exploit the for streams of arbitrary length. Otherwise, the maximum
slack (idle wait time) available further above in the trans- length of streams will be directly limited by register file
action sequence for setting up register values for upcoming

Paper #7: A Reactive IP Emulator for MPSoC Exploration 121

size. This is of no importance in the context of a simulation
RIPE device (as in this paper), but would have an area
penalty in a hardware implementation. In the event of lack
of registers, the translator tool prompts the user to irs@ea
the size of the register file in the RIPE architecture and to
attempt the translation again.

Spontaneous

Semaphore gk

locked?

mWait

Interrupt?

Task
Execution

Resumption on
Normal Interrupt

D. Handling Interrupt Reactiveness

Computation
As mentioned before in Section lll, the amount of Flow 0S Routines
annotations that can be extracted from a trace reflects primary Task 0S Task dle Wait
the degree of access the programmer has to the interrupt
routine and to the OS internals. Specific locations within Fig. 14. Application flow of pipe.

the trace file, such as interrupt handling routine entry and
exit points, have to be recognized by the translator tool to
optimally insert the corresponding code as a task into theprogram in Figure 13(b). Upon the HW interrupt, the next
RIPE task pool. set of events are mapped to task B, which is then coded into
The trace files are always annotated with the time of corresponding program in Figure 13(c). Upon encountering
occurrence of interrupt events. For th@ benchmark, the the next interrupt (at 595ns), the translator toggles back t
interrupt handling routine is supposed to be accessible bycoding task A and this operation continues to the end of the
the programmer, as described in Section Ill; thus, a markertrace. When appending subsequent execution blocks of the
(a dummy transaction to a known address) can be addedame task, the translator automatically adjusts the velati
at the exit of the routine to tag it. The transactions within timing between transactions as if the task had executed
these bounds are detected as interrupt handling code andiithout interruption. At the end of each task listing, a
are encapsulated as such in the RIPE program. In Figure 38W interrupt routine is inserted to yield control to any
we have seen the backbone of th@ RIPE program, other task running on the processor whose execution is still
where interrupt response blocks are handled so as to mimidncomplete. This matches what could be expected of well
Figure 8(b). behaving OSes, where the end of one task prompts a non-
Usingmulti as an example, let us consider the interrupt- timer-triggered rescheduling to switch to other pending
triggered reactiveness in more detail. Here, the trace filestasks to finish the remaining portion of their instructions.
are annotated only with the time of occurrence of interrupt Any further HW interrupts from the timer device are
events. Indeed, recall that in thaulti benchmark the internally masked as meaningless during this final phase
interrupt handler is supposed to be completely out of the of execution, since there is only one schedulable task
programmer’s control, as it is tied to the OS scheduling remaining. During execution, the RIPE ISS automatically
code. The IP core toggles among the two tasks upon thesesupports context switching, as described in Section IV:
interrupts. Additionally, control is never spontaneously upon an HW interrupt, the RIPE device simply loads the
released by means of SW interrupts: the previously activenext instruction from the task whose ID is found in the
task is only resumed upon arrival of a HW interrupt. Thus, Taskl DReg special register.
the translator’s job is simply to capture the OCP transactio In the pipe scenario, the task is explicitly interacting
stream between two successive interrupts (identified bywith the OS internals, as described in Section Ill. Usually
the Sl nt errupt tag in the trace) and append it to the this interaction can be achieved by OS API calls, without
corresponding task program, knowing that the schedulingdirect access to the interrupt handler code, whose exit
pattern will be alternating. A minor inaccuracy in this point is therefore assumed to be not accessible to the
approach is that the code of the OS which manages theprogrammer. As a result, the only annotations of signif-
rescheduling cannot be isolated by the translator, andicance within the trace file are the synchronization points
is instead captured as a part of the instructions of the (semaphore checks) and the interrupt arrival time. The
next task. Despite the above approximation, experimentalRIPE program thus mimics the flow shown in Figure 8(c),
results show a negligible accuracy skew. first by reading the semaphore location, then choosing
Figure 13 shows the trace (a) and RIPE program (b) andto continue or suspend depending on the lock. Upon
(c) for a processor (in this case ID 3) performing two tasks resumption by HW interrupt, a final (re-)check of the
in multi scenario. By default, in Figure 13(a), the set of semaphore unlock is done to ensure safe task operation.
instructions until the first HW interrupt (at 365ns) are iden Figure 14 shows the equivalent flow. In the RIPE program,
tified with task A, which is then coded into corresponding this is realized via three tasks (dotted lines mark their

122 The RIPE Modeling Environment

16

boundaries). The primary task represents the main applica- Benchmark

tion flow. The interrupts are masked here, as the application
is insensitive to HW interrupts unless in suspension state. AMBA
If the semaphore is found locked, the flow is derouted to

load the OS routine which leads the processor to an idle

wait. The translator captures the chunk of trace after the
semaphore check in an independent OS task, which always i ‘
yields control to a third task consisting of an infinite loop :

of idle wait instructions. The easily identifiable sequence | RIPE RIPE
| Program

MPARM+
XxPIPES

v v
Trace (.trc) Trace (.trc)

Off-line Toolchain

Translator

of transactions between the eventual arrival of the HW i Program Fie (10p)
interrupt and the semaphore re-check is the OS wake-up File (tgp)

routine to reschedule the suspended main program, and the | ‘ Assembler y
translator appends it as a part of the OS task. In the RIPE B T M
program, HW interrupts are used to wake up from the RIPE Binary - RIPE Binary
suspension state within OS routines, while SW interrupts (bin) (bin)

redirect the execution flow towards the main task. Note ﬁ ﬁ
that | nt r pMaskReg is set to “masked” for the regular
program and OS execution, and is only unmasked within
the suspension task. Fig. 15. RIPE and MPARM Accuracy Test.
After performing the translation described in this Sec-
tion and after RIPE program assembling, a second set of
simulations can be run on a platform with RIPE and a vari- see if RIPE is correctly responding in a “time-shifting”
ety of interconnect fabrics, thereby evaluating perforogan scenario, as discussed in Section Il and Ill.

of interconnect design alternatives. For multi andlO, we devoted one of the system cores
to the generation of interrupts, emulating the role of a
VII. Validation Results timer or an 10 device; this processor is not generating any

other traffic on the bus, and is just idling between interrupt

As discussed earlier, for validation we simulated the generation events. ThEipe benchmark does not need this,
different benchmarks within the MPARM framework, first Since interrupts are directly triggered by the same tasks
using the native ARM cores and then using the RIPE Which perform the computation.
model, and compared the resulting benchmark statistics. In the first experiment, we only aimed at validating
We undertook this experiment for six benchmarks. Each the trace collection and off-line processing environment.
was tested with one to twelve (1P-12P) system processord-igure 15 outlines the process. We ran the same bench-
simultaneously plugged to the system interconnect, exceptnarks over two of the interconnects of MPARM, namely
where the application needed at least two or three coresAMBA AHB [1] and the xpipes [26] NoC, noticing
for functional reasons. The aim was to ascertain the very different execution times due to different latency
accuracy of the RIPE approach when stressed by complexand scalability features. Execution traces reflected these
transactions. differences. However, after translation, a check acrogs

Four of the benchmarks are the applications describedprograms showed no difference at all, because the network
in Section Ill. Two more applications were added as a latency factor is completely abstracted from in the RIPE
referenceCacheloopis a dummy program, which contin- programs. As a consequence, a trace collected on one
uously performs cache fetches. As such, it is generating nointerconnect could be used to generate a program to be run
bus transactions, except for a few at boot and shutdown.on another; the resulting execution would match that of the
It is intended as a metric of the maximum simulation same benchmark natively run on the second interconnect.
time speedup achievable by replacement of IP cores withThis result strengthens the postulate of the feasibility of
another simulation devicéMatrix is a benchmark where an effective approach which decouples simulation of the
the application involves one task per processor performing!P cores and of the underlying interconnect fabric.
some private computation. Since no inter-core synchro- Table Ill summarizes the results of simulations done
nization is used at all, modeling is very simple and could on the AMBA AHB interconnect with ARM processors
be achieved also by traditional TG approaches. The onlyfrom MPARM and then with RIPEs. The different columns
source of uncertainty is due to the fact that all tasks relate to cumulative execution (Cmlt. Exec.) cycles of
compete for access to the same interconnection resourceghe benchmarks, the number of single read (SR), single
which impacts transaction latency. This test is useful to writes (SW) and burst reads (BR) transactions observed on

Benchmarks | # IPs RIPE MPARM Comparison
Cult. Exec. SR SW BR Sim Cmlt. Exec. SR SW BR Sim Accuracy | Speedup
Cycles Time (s) Cycles Time (s) || Exec% SR % SW % BR%| (X
SP Cacheloop| 1 2500692 0 16 25 8 2500700 0 16 25 15 0.000% 0.000% 0.000% 0.000% 1.88
SP matrix 1 1324132 0 58751 92 5 1324138 0 58751 92 9 0.000% 0.000% 0.000% 0.000% 1.80
Cacheloop 2 2500916 0 32 51 10 2500908 0 32 51 26 0.000% 0.000% 0.000% 0.000% 2.60
4 2501721 0 64 106 15 2501714 0 64 106 49 0.000% 0.000% 0.000% 0.000% 3.27
6 2502565 0 96 156 22 2502558 0 96 156 67 0.000% 0.000% 0.000% 0.000% 3.05
8 2503321 0 128 201 28 2503314 0 128 201 87 0.000% 0.000% 0.000% 0.000% 3.11
10 2504137 0 160 251 35 2504130 0 160 251 117 0.000% 0.000% 0.000% 0.000% 3.34
12 2504953 0 192 301 40 2504946 0 192 301 141 0.000% 0.000% 0.000% 0.000% 3.53
Matrix 2 1324711 0 117502 186 7 1324717 0 117502 186 16 0.000% 0.000% 0.000% 0.000% 2.29
4 1326582 0 235004 374 12 1326588 0 235004 374 28 0.000% 0.000% 0.000% 0.000% 2.33
6 1330971 0 352506 562 16 1330977 0 352506 562 39 0.000% 0.000% 0.000% 0.000% 2.44
8 1421281 0 470008 750 22 1421272 0 470008 750 52 0.001% 0.000% 0.000% 0.000% 2.36
10 1776352 0 587510 921 32 1776343 0 587510 921 7 0.001% 0.000% 0.000% 0.000% 2.41
12 2131618 0 705012 1105 45 2131609 0 705012 1105 104 0.000% 0.000% 0.000% 0.000% 2.31
poll 2 881839 7176 71764 254 4 883977 7201 71764 254 10 0.242% 0.347% 0.000% 0.000% 2.50
4 975267 18241 143596 508 8 976488 18183 143596 508 20 0.125% 0.319% 0.000% 0.000% 2.50
6 1049145 31057 215460 762 12 1049965 31101 215460 762 30 0.078% 0.141% 0.000% 0.000% 2.50
8 1139110 46044 287356 1016 17 1140199 46300 287356 1016 44 0.096% 0.553% 0.000% 0.000% 2.59
10 1385053 71989 359284 1270 24 1385007 71966 359284 1270 62 0.003% 0.032% 0.000% 0.000% 2.58
12 1678901 96756 431244 1524 36 1678804 96689 431244 1524 84 0.006% 0.069% 0.000% 0.000% 2.33
multi 2 1823882 14 85729 24764 9 1824135 14 85729 24764 19 0.014% 0.000% 0.000% 0.000% 2.11
4 2224333 42 192745 52242 17 2225867 42 192745 52242 37 0.069% 0.000% 0.000% 0.000% 2.18
6 2818936 70 299963 80159 30 2820912 70 299963 80159 60 0.070% 0.000% 0.000% 0.000% 2.00
8 3482223 98 407707 10982 48 3482793 98 407707 109820 91 0.016% 0.000% 0.000% 0.000% 1.90
10 4129205 126 515815 13842y 64 4135736 126 515815 13842y 136 0.158% 0.000% 0.000% 0.000% 2.13
12 4800566 154 624107 16778p 89 4801433 154 624107 167780 184 0.018% 0.000% 0.000% 0.000% 2.07
10 2 1156047 2560 68494 18271 6 1158639 2560 68495 18271 12 0.224% 0.000% 0.001% 0.000% 2.00
4 1446888 2560 145826 36966 11 1449109 2560 145827 36966 24 0.153% 0.000% 0.001% 0.000% 2.18
6 1870491 2560 223166 55654 20 1872248 2560 223167 55654 39 0.094% 0.000% 0.000% 0.000% 1.95
8 2325228 2560 300514 74434 31 2325625 2560 300515 74435 60 0.017% 0.000% 0.000% 0.000% 1.94
10 2780595 2560 377947 93274 44 2781660 2560 377948 93274 95 0.038% 0.000% 0.000% 0.000% 2.16
12 3241959 2560 455465 112037 62 3242080 2560 455466 112037 111 0.004% 0.000% 0.000% 0.000% 1.79
pipe 2 745386 2601 56004 16293 4 754998 2601 56004 16293 7 1.273% 0.000% 0.000% 0.000% 1.75
4 1051512 5246 114118 33257 9 1055056 5247 114298 3331 16 0.336% 0.019% 0.157% 0.168% 1.78
6 1430317 7888 171880 49894 16 1436149 7888 171880 49894 29 0.406% 0.000% 0.000% 0.000% 1.81
8 1829005 10530 229675 6632 25 1833183 10530 229675 66321 44 0.228% 0.000% 0.000% 0.000% 1.76
10 2240354 13172 287435 83114 37 2243537 13175 287975 8329 66 0.142% 0.023% 0.188% 0.218% 1.78

TABLE Ill. RIPE vs. ARM performance with AMBA.

LT

uoneiojdx3y JOSdIN 10} 101ejnWT d] dA110edY Y :)# 4oded

X4 !

124 The RIPE Modeling Environment

18
3.5+ M
3
2.5 HHH] - =
— _ _
3 _ o
= M _
=X 2 HHH — — H — H — — H
5 - ——
° -
) A A -
[
&
1.5 A
1 -HHH S B L 1] [L L 1] L 1] [L] LI
0.5+
[e e e A e e e e L L A s e e o e e e S B e IS A
[T W W W W [T W W W ooaaaa s W W N W oaaaaa aaoaaaon
N ¥ 6 ® SN N F 6 ® SN N T 6 ® SN N Y 6 © SN & F 0 oo A N T 6 ® S
. R R R A A A A) oA = R
2 2aaaq ' X X x x ' ! === = . SS9 ! o000 . 2 2w o !
© 999 aaq =5 5 = x x S 500 == S 5355 == =2=2=2=200 2 29220
0 606 06 90 o I 8T 33 E & aaoaoca o o £ = o o 222222
o6 8 o0 SsSsSs38 38 o a EEEEEE asasa g
S £ £ £ 00 = =
S 565 £ £
888333
o O

Fig. 16. RIPE vs MPARM Speedup.

the bus. The simulation tiMeThe simulation time (Sim effects. Eventually, polling occurs at periodic intervals
Time) is accounted in seconds. The column “Accuracy” This initial timing mismatch is not captured in the RIPE,
is a measure of the accuracy of replacing IP cores withwhich performs all polling loops at the asymptotic rate.
RIPEs, based upon the difference in simulated cycles andThis causes RIPE to be affected by a small timing skew,
bus accesses, while the column “Speedup” describes thevhich impacts subsequent simulation. As results prove,
improvement in simulation time. this has negligible consequences on the application flow,
The table shows that replacing ARM processors with which is dominated by the interconnect delay.
RIPEs yields excellent accuracy, over 99% in most cases, The inaccuracies in OS- and interrupt-related bench-
resulting in a faithful reproduction of the original exeicut marks are due to minor issues in properly pinpointing
flow and traffic pattern. The near-matching amount of different sections of OS code in the execution trace, as dis-
read and write accesses validates the correctness of ougussed before in Section VI. The near-matching statistics
RIPE program translation (see Section VI). Inaccuracies however fully prove the role of the RIPE as a powerful

in execution time can be explained as followspuwil, the design tool to mimic complex application behaviour in
amount of single reads is the primary source of inaccuracy.replacement of a real IP core.

This is due to the compounding of minimal timing mis- gcalability tests, performed by increasing the number
matches caused by the semaphore polling mechanism iyt processors attached to the bus, exhibit two main dif-
RIPE programs. In the real system, the first few semaphoresgrent trends, as seen in Figure Bacheloop exhibits

polls were found to occur at a slightly different rate 5 fyndamentally monotonic trend, showing the advantage
than subsequent ones, due to assembler-level and cachingg replacing a progressively increasing amount of system

cores with a faster device model. Other benchmarks show
1Benchmarks taken on a Pentiurff 2.26GHz with 1 GB of RAM. a fundamentally constant figure, or an increase with the
The absence of disk swapping effects was checked duringlatiomu number of processors which gets capped at some point
Especially for benchmarks with a short duration, time mezsents were f le Matri Thi inal behavi
taken by averaging over multiple runs and care was put inmikzing (or example,Matrix) Is seemingly strange behaviour

disk loading effects. can be explained by recalling that the system being sim-

Paper #7: A Reactive IP Emulator for MPSoC Exploration 125

. . Interval among interrupt: Notes 19
ulated is also_composed of Fhe |nt_erconnect model a_nq oq ‘ to same core (ms) j
some simulation support (simulation scheduler, stafistic = rererence >
collection, etc.). Therefore, the simulation time cannet b Case | 1
decreased below a certain threshold. Further, an increase Case i 2 Ptrocesscgsbreceg)vE interrftflpt?
. . . X staggered by a 0.5 ms offse
in th_e number of processors qlso mphes more traffic on —~—m > TWo processors receive an exita
the interconnect, shifting the simulation load towards the interrupt just after the boot

latter and hindering any speedup. At a certain point, the

fabric becomes completely saturated. In this condition, no ~ TABLE IV. Interrupt issue frequency for four

further speedup is achievable at all because both ARM different multitasking patterns

and RIPE execution time is dominated by idle waits for

bus responses - a situation where the ARM simulation

model can be as fast as whatever possible replacement. T?ntervals to the other four RIPE devices, which as a

support this analysis, we observe that the lowest Speedu%sult switch among two tasks. The two tasks are tuned

E‘ acr:lievekd for:p:]pe,h_wr?ich bis ZIS% rf]ound _to be the dto have very different bandwidth requirements; one task
enchmark with the highest bandwidth requirements (an performs matrix manipulationsM), and heavily relies

thertle;ol'rlf the hlghesthloaclé)n tr?el mte(;connect modelg: We o, data caches to minimize memory transactions, while the
\évou lke to s.tresls that, a‘; eloop emonsr:rates, this fsecond task performs streams of writé¢S) to a memory
ecrease in simulation speedup is not a shortcoming ofyyacheq to the bus. THY/S task is very demanding on

O;JL RIPhE aplf roz;ch, and 'E 'ESt(.Ed acjjlrelct_ constcejquenc e interconnect and can easily saturate it, thereforengurt
of benchmark and system behavi®. andmulti speedup 100 system performance.

figures are a bit higher than those pipe also thanks In this case study, using the RIPE, we test the behaviour

to the presence of one_basmally idle processor de_VOtEdof this system for different interrupt delivery policiescan
only to interrupt generation. In absolute terms, a gain of

tudy th Ilting traffi files (Fig. 17-20). Thi
1.75x to 3.53x was observed when running the benchmarkS udy the resuiting traffic profiles (Fig) IS type

d RIPE d to ARM ISSs. Thi d of exploration may be useful to schedule bus accesses
co de on h S as opf)osfehto >S. | IS Sp?ﬁ. Uor real-time tasks in critical systems. The traffic plots
IS due to_t e removal of the computation logic W_'t N show the profile of the bus traffic over time, expressed
cores. Itis not.ewc_)rthy that even though speedup is NOtas transferred data words over a time window ofu2
the primary ob_]ectlve of RIPE, it compares fav_orably 0 This method of presentation is useful to note the load on
previous work in the area (a speedup of 1.55x is reported

in (23 iallv given the fact that it i hieved at th the bus over the complete execution period, without the
in [23]), especially given € fact that it Is achieved at the peaq for cumbersome investigation of correlation among
cycle-true level of abstraction.

The tim nalty for tr llection is small. and i different processors via individual bus activity plots.
. e time penalty for trace collection is small, and 1S For these experiments, to achieve maximum realism, the
incurred only once. For example, when running the rela-

) ; . RIPE programs modeling the tasks on the four computa-
tl\{ely complexpipe benchmark on the AMBA interconnect tion cores were created by translating MPARM execution
with four ARM processors, a benchmark run augmented

r{Rraces. However, they could have easily been written by
. . . I and. In MPARM, interrupts are triggered by writing to a
trzznzla;\s:gntand i_llaboc;atllon requnehs_tan a:_ddltlpnal 15 Z ftorspecific address of a memory-mapped device; therefore, to
ano. race file. Dnly one such iteration 1s needed to trigger the interrupts that should come from a timer device,

validate ‘the RIPI.E. model a_nd for subsequent design SPACE, e wrote a small RIPE program issuing OCP writes at the
epr(_Jrathn. Additionally, since processed RIPE programs right times. In turn, this is achieved by parameterized idle
are identical regardless of the reference mtgrconnect inaits. Such a program was written in a dozen of lines of
which raw traces were collected, such collection could be RIPE code

performed on top of a transactional fabric model, further In all the plots, until about the 6000s mark, the bus

reducing the impact of the reference simulation. activity during the OS boot is observed. The boot activity
is irregular, but on average pretty intensive in terms of

VIIl. Case Study required bandwidth, since all the processors are loadiag th

OS and application instructions from the memory across

To demonstrate the potential of the RIPE as a co- the interconnect. After this mark, application code begins
exploration tool, we look at a variant of thmulti ap- to be executed. In Fig. 17, a straightforward scheduling
plication, first discussed in Section IlI-C, in more detail. policy is used: a timer interrupt is sent to each core
Specifically, we consider a five processor bus-based systensimultaneously, therefore causing all of the cores to $witc
with one RIPE configured to act like a timer device. amongMM and WS at the same time. Since interrupts
This core triggers the delivery of interrupts at regular arrive simultaneously to all processors, all of them are

126 The RIPE Modeling Environment

MM :: | |

5000 10000 15000 20000 25000 30000 5000 10000 15000 20000 25000 30000
Time (us) Time (us)

20

Bus Usage (transferred words)
Bus Usage (transferred words)

°
°

Fig. 17. Reference traffic pattern Fig. 18. Case |

M

5000 10000 15000 20000 25000 30000 5000 10000 15000 20000 25000 30000
Time (us) Time (us)

Bus Usage (transferred words)
Bus Usage (transferred words)

°
°

Fig. 19. Case Il Fig. 20. Case Il

in the same task group during any given time slice of frequency as in the reference case; however, the interrupts
execution. As expected, the bus load shifts dependingsent to each processor are staggered with respect to the
on the task characteristics; the traffic profile exhibits a interrupts sent to other cores by 25% of the original time
clear alternating pattern among two disproportionate @sag window. As a result, an interrupt is sent every 509 but
values, with peaks above 130 and a floor of around 20two interrupts to the same processor are spaced 2300
transactions per time window. The number of transitions apart. The traffic profile is smoother; thanks to staggering,
between these two limits and the width of each peak MM tasks on some cores run in parallelWS tasks on
correspond to the number of issued interrupt events andother cores. Over time, the system shifts from running
the interval between them (see Table V). The tail of the four MM tasks to running foutWs tasks and back, which
plot is representing shutdown code, and is not relevant. results in a sinusoidal-like trend with visible steps. Peak

Since excessive contention inflates the response latencypongestion is only reached during a shorter fraction of the
of the bus and therefore hurts performance, the traffic ime, therefore reducing the execution time to about 26000

profile must be reshaped to decrease congestion. As ig's:

observed in Fig. 18, as compared to Fig. 17, doubling 1o palance the traffic even better, the clear choice is
the interrupt issue frequency does little to mitigate the bu 5 always overlap twaMM and two WS tasks. This is
congestion issue; it only shifts the contention to a diffi¢re 5chieved in Fig. 20, where two processors are forced to
time slot. Execution time remains constant at about 28200perform a context switch just after the OS boot, and the
HS- subsequent interrupt pattern is the same as in Fig. 17.

Let us now consider the impact on the bus activity Thanks to much better traffic balancing, the bus never
of staggering the interrupt events. In Fig. 19, we see thesaturates, providing good performance and decreasing the
impact of issuing interrupts to each processor at the sameexecution time to 25200s.

Paper #7: A Reactive IP Emulator for MPSoC Exploration

127

Time

Exec. time (ms)
15 “, Latency (ns)

T 1
Reference Casel Case ll Case lll

Fig. 21. Performance of the four synchroniza-
tion patterns under test

In Fig. 21, the benchmark execution time and the
average communication latency for a write transaction on
the bus are plotted for the four configurations. As can be
seen, Case | exhibits basically identical performance¢o th
baseline, while Case Il improves 18% on communication
latency (and thus 8% on execution time) and Case Il
improves 24% on latency (and thus 11% on execution
time). Therefore, Case Il is the best among the alternsitive
under evaluation.

These experiments highlight that RIPE can be an ex-
tremely useful tool to explore communication bottlenecks
even without having the real IP cores and benchmarks
attached to the fabric. The flexibility guaranteed by the
interrupt handling support provides the designer with
additional degrees of freedom and accuracy, allowing a
realistic system exploration even in presence of complex
communication and synchronization patterns.

IX. Conclusions

In this paper, we identified the requirements to split the
design of computation and communication entities in an
MPSoC. Modeling requirements were derived from real-
life applications, and they represent complex scenarios

including an operating system layer and asynchronous

interrupt-based synchronization. The key piece of the puz-
zle can be identified in reactiveness to external events

and state. In this paper, we presented the RIPE device

and its programming interface to provide support for the
previously identified traffic generation functionality.

We have shown the usefulness of the RIPE device
within different co-exploration domains, either to remac
existing IP cores in new domains or to provide emulation

of IP cores that are under development or even yet to be

designed.

Experimental results show excellent accuracy flzéures
when validating the RIPE against a reference system,
and a respectable gain in simulation speed when taking
into account previous literature and the cycle-accurate
abstraction level. A case study is supplied to show the
usefulness of RIPE in a design space exploration context.

Future work may carry the current RIPE design to
silicon for on-chip traffic generation.

X. Acknowledgments

The authors from University of Bologna acknowledge
financial support by Semiconductor Research Corporation
(SRC) under contract 1188.

References

(1]

[2]
(3]

4]
[5]
6]

The Advanced Microcontroller Bus Architecture (AMBA)ome-
page. www.arm.com/products/solutions/AMBAHomePagelht
The SystemC discussion forum. Web Forum (www.systergg.o
The Real-Time Operating System for Multiprocessor By.
http://www.rtems.com.

Open Core Protocol Specification, Release 2.0, 2003.

IEEE, March 2005.

F. Angiolini, S. Mahadevan, J. Madsen, L. Benini, and paSg.
Realistically rendering SoC traffic patterns with intetraprareness.
In IFIP International Conference on Very Large Scale Integgnat
(VLSI-SoC) September 2005.
ARM. AMBA AXI Protocol
www.arm.com, March 2004.
ARM Holdings PLC. Advanced Microcontroller Bus Architeire
(AMBA) specification rev 2.0, 2001.

S. Avallone, A. Pescape, and G. Ventre. Analysis and exmnta-
tion of internet traffic generator. IRroceedings of FTDGS2004.

L. Benini and G. D. Micheli. Networks on chips: A new SoC
paradigm.|IEEE Computer 35(1):70 — 78, January 2002.

E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. QNoC:08Q
architecture and design process for network on chipJowrnal of
Systems Architectur&lsevier, 2004.

L. Cai and D. Gajski. Transaction level modeling in syst
level design. CECS technical report 03-10, Center for Erdbdd
Computer Systems, Information and Computer Science, bifye
of California, Irvine, March 2003.

M. Dall’'Osso, G. Biccari, L. Giovannini, D. Bertozzind L. Benini.
xpipes: A latency insensitive parameterized Network-dvipCar-
chitecture for multi-processor SoCs. Rroceedings of the Inter-
national Conference on Computer Design (ICCIBEE Computer
Society, 2003.

W. J. Dally and B. Towles. Route packets, not wires: @ipc
interconnection networks. IProceedings of the 38th Design
Automation Conferencepages 684-689, June 2001.

F. Fummi, P. Gallo, S. Martini, G. Perbellini, M. Ponoinand
F. Ricciato. A timing-accurate modeling and simulation ismv
ment for networked embedded systemsPhoceedings of the 42th
Design Automation Conference (DAQ@gges 42—47, June 2003.
F. Fummi, S. Martini, G. Perbellini, M. Poncino, F. Riato, and
M. Turolla. Heterogeneous co-simulation of networked edleel
systems. InProceedings of Design, Automation and Testing in
Europe Conference 2004 (DATHEEE, Febuary 2004.

N. Genko, D. Atienza, G. D. Micheli, L. Benini, J. M. Meiad,
R. Hermida, and F. Catthoor. A novel approach for network ttip ¢
emulation. InInternational Symposium on Circuits and Systems
pages 2365-2368. IEEE, 2005.

version 1.0.

[
8

[l
[10]

Specification,

[11]

[12]

[13]

(14

[15]

[16]

[17]

128

The RIPE Modeling Environment

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

T. Grotker, S. Liao, G. Martin, and S. Swaystem Design with
SystemC Kluwer Academic Publishers, 2002.

K. Lahiri, A. Raghunathan, and S. Dey. Evaluation of thefic-
performance characteristics of System-on-Chip commtinitaar-
chitectures. IrProceedings of the 14th International Conference on
VLSI Design pages 29-35, 2001.

M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zalon.
Analyzing on-chip communication in a MPSoC environment. In
Proceedings of the Design, Automation and Test in Europdeon
ence (DATE)IEEE, 2004.

S. Mahadevan, F. Angiolini, M. Storgaard, R. G. OlsenSparsg,
and J. Madsen. A network traffic generator model for fast ngtw
on-chip simulation. InProceedings of Design, Automation and
Testing in Europe Conference 2005 (DATE).

0. Ogawa, S. B. de Noyer, P. Chauvet, K. Shinohara, Y.ahate,

H. Niizuma, T. Sasaki, and Y. Takai. A practical approach for
bus architecture optimization at transaction level. Pimceedings
of Design, Automation and Testing in Europe Conference 2004
(DATE) IEEE, March 2003.

S. Pasricha, N. Dutt, and M. Ben-Romdhane. Extendirgtthns-
action level modeling approach for fast communication iechure
exploration. InProceedings of 38th Design Automation Conference
(DAC), pages 113-118. ACM, 2004.

S. Schneider, U. Mueller, and D. Tiegelbekkers. A risact
workload generation framework for simulation-based penfance
engineering of system interconnects. Modeling, Analysis and
Simulation of Computer and Telecommunication Systems {MAS
COTS) IEEE, September 2005.

M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. ey, and

A. Sangiovanni-Vincentelli. Addressing the System-oripCinter-
connect woes through communication-based desigRrdneedings

of the 38th Design Automation Conference (DAC,qidges 667 —
672, June 2001.

S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Berimz and
G. D. Micheli. xpipes Lite: A synthesis oriented design dityr
for networks on chips. IfProceedings of Design, Automation and
Testing in Europe Conference 2005 (DATB), pages 1188-1193.
STMicroelectronics. The ST Bus. http://www.st.cotordine/,
2004.

Synopsys. OpenVERA Technology Backgrounder. Whitpepa
available from http://www.open-vera.com/, 2001.

G. V. Varatkar and R. Marculescu. On-chip traffic modgliand
synthesis for MPEG-2 video applications. Transcations on Very
Larget Scale Integration (VLSI) Systemsmber 1, pages 108-119.
IEEE, JANUARY 2004.

D. Wiklund, S. Sathe, and D. Liu. Network on chip simidas
for benchmarking. InProceedings of the 4th IEEE International
Workshop on System-on-Chip for Real-Time ApplicationsSQ@)
IEEE, 2004.

W. Wolf. Computers as Components:Principles of Embedded
Computing System Desigohapter 3. Morgan Kaufmann, 2001.

22

Part 111

Appendix

CHAPTER 6

Network-on-Chip Modeling
for System-Level
Multiprocessor Simulation

Published in the Proceedings of the 24th Real-Time Systems Symposium 2003.
Complete citation:

Jan Madsen, Shankar Mahadevan, Kashif Virk and Mercury Gonzalez,
" Network-on-Chip Modeling for System-Level Multiprocessor Simulation.” In
Proceedings of the 24th Real-Time Systems Symposium (RTSS), Cancun Mez-
ico. IEEE, Dec. 2003: 265-274.

132 The ARTS Modeling Environment

Paper #2: NoC Modeling for System-Level Multiprocessor Simulation 133

Network-on-Chip Modeling for System-Level Multiprocessor Simulation™

Jan Madsen Shankar Mahadevan

Kashif Virk Mercury Gonzalez

Informatics and Mathematical Modeling
Technical University of Denmark
{jan, sm, virk} @imm.dtu.dk

Abstract

With the increasing number of transistors available on
a single chip, the System-on-Chip (SoC) paradigm has
evolved to exploit its full potential. As many processors
can be accommodated on a single chip, this paradigm
has forced a communication-centric, as opposed to a
computation-centric, design view. Thus, the choice, man-
agement and modeling of the SoC interconnect is essential
Sfor an accurate evaluation and optimization of the global
performance of a system. Recently, the notion of Network-
on-Chip (NoC) has been introduced as a way to extend the
classical bus-based interconnection, which is still the domi-
nant interconnect structure for SoC’s, into a dedicated, seg-
mented and, possibly, packet-switched network fabric [2].
In this paper, we present a NoC model which, together with
a multiprocessor real-time operating system (RTOS) model,
allows us to model and analyze the behavior of a com-
plex system that has a real-time application running on a
multiprocessor platform. We demonstrate the potential of
our model by simulating and analyzing a small multipro-
cessor system connected through different NoC topologies,
and discus how the simulation model may be used during
the design-space exploration phase.

1. Introduction

With the growing complexity of embedded systems and
the capacity of modern silicon technology, there is a trend
towards heterogeneous architectures consisting of several
programmable and dedicated processors, implemented on
a single chip, known as a System-on-Chip (SoC). As an in-
creasing portion of applications is implemented in software
which, in turn, is growing larger and more complex, dedi-
cated operating systems will have to be introduced as an in-
terface layer between the application software and the hard-
ware platform [5]. On the other hand, the hardware platform
will either be developed as a part of the design process or

“Funded by SoC-Mobinet (IST-2000-30094).

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS'03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

configured from an existing reconfigurable platform, which
allows for the implementation of parts of an application as
dedicated processors (ASIC’s).

Modern silicon technologies, with minimum device ge-
ometries in the nanometer range (<100nm), have made it
possible to integrate hundreds of processors on a single
chip. In these deep submicron technologies, the on-chip
interconnection fabric is a major source of delay and power
consumption which is challenging the on-chip communica-
tion infrastructure and forcing a change from device-centric
to interconnect-centric design methodologies. Tradition-
ally, on-chip communication has either been conducted via
dedicated point-to-point links or by shared media like a bus.
Neither is very suitable for generalized communication han-
dling in large systems [13]. A promising solution is to have
a dedicated, segmented, and, possibly, packet-switched net-
work fabric on the chip, a Network-on-Chip (NoC) [2].

Hence, when mapping an application onto its target plat-
form, hardware/software codesign aspects [18] have to be
taken into account. These include mapping of tasks onto
software, hardware, or a combination of both, as well as
task dependencies on the communication infrastructure. In
order to do so, accurate modeling of the systems and all
the interrelationships among the diverse processors, soft-
ware processes and physical interfaces and interconnec-
tions, is needed. One of the the primary goals of system-
level modeling is to formulate a model within which a broad
class of designs can be developed and explored. To sup-
port the designers of single-chip based embedded systems,
which includes multiprocessor platforms running dedicated
real-time operating systems (RTOS’s) as well as the ef-
fects of on-chip interconnect network, a system-level mod-
eling/simulation environment is required to support an anal-
ysis of the:

e consequences of different mappings of tasks to proces-
sors (software or hardware),

o network performance under different traffic and load
conditions,

e cffects of different RTOS selections, including vari-

n‘r,r

COMPUTER

SOCIETY

134

The ARTS Modeling Environment

ous scheduling, synchronization and resource alloca-
tion policies.

In this paper, we present a modeling environment based
on SystemC [22] which can provide the SoC designers a
software-like, system-level abstraction of the platform as
well as supporting the three requirements mentioned above
for system-level design-space exploration.

Most of the future embedded applications are likely to be
real-time applications that will run on multiprocessor SoC’s
which are, essentially, distributed computing systems. In a
multiprocessor or a distributed system, the processing ele-
ments can be connected through shared memory, dedicated
communication links or a communication network. Instead
of dealing with each specific application and system archi-
tecture, we deal with generalized abstract tasks, processing
elements, and communication infrastructures. This not only
broadens the applicability of our modeling framework, but
also leads to a better understanding of the problem at hand.

We extend our previous work [9, 16] on the modeling of
a multi-threaded application, running on a multiprocessor
platform under the control of one or more abstract RTOS’s,
with a model of an on-chip network which can provide pro-
visions for run-time inspection and observation of the on-
chip communication. Using this system-level design ap-
proach, implementations of the most promising network al-
ternatives can be prototyped and characterized in terms of
performance and overhead. Taking communication into ac-
count during hardware/software mapping is essential in or-
der to obtain optimized solutions as emphasized in [14].

The paper is organized as follows: Section 2 describes
current trends and related work in the field of communica-
tion network modeling for multiprocessor environments. In
Section 3, we provide a brief overview of our previously
proposed RTOS model and discuss its extension to include
the NoC model. Section 4 presents our main ideas on NoC
modeling. It provides the methodology for developing a
network model for usage at the system-level. This model
seamlessly handles the allocation and scheduling of com-
munication events within the NoC as driven by the require-
ments from the tasks running on the PE’s in a SoC. A Sys-
temC implementation of a torus network is also discussed.
The results of our implementation and simulation of the
model are given in Section 5. Further, in Section 6, we ex-
tend this discussion to the effects of select design-space ex-
ploration choices on global system performance. Section 7,
finally, provides conclusions and the future direction of our
work.

2. Related Work

One of the essential elements of making a transition from
ad-hoc system-on-chip (SoC) designs to a disciplined SoC

design approach is taking a rigorous, though flexible, ap-
proach towards the design of on-chip communication net-
works that interconnect IP blocks of all variety, includ-
ing the processing elements (PE’s). A network-on-chip
(NoC) approach, driven by a consistent design methodol-
ogy, is bound to lead to dramatic changes in how SoC’s will
be designed in the future. The partitioning and mapping
of tasks onto complex architectures (homogeneous or het-
erogeneous) is a well-known hardware/software codesign
problem [18]. [8, 12, 16, 17, 18, 19] further explain al-
location, scheduling and synchronization in RTOS’s. But
the notion of the on-chip communication medium has been
quite primitive. It has, generally, been viewed as an over-
head where no other useful work can be accomplished.
Thus, it is assumed to occur instantaneously or it is given a
token fixed overhead time. This approach is suboptimal and
error-prone requiring further iteration before design closure.
[12] and [14] clearly show the importance of evaluating the
communication media and how the choice of a communi-
cation architecture clearly impacts the overall architecture
of a SoC. In [1], a communication model for codesign has
been described, but it is limited and cannot account for spe-
cific NoC features for design-space exploration at the sys-
tem level.

There, already, exists plenty of research literature on the
communication modeling for multiprocessors with differ-
ent interconnection topologies to characterize their commu-
nication performance, for example [3]. Moreover, in [2]
and [23], the concept of on-chip, packet-switched micro-
networks has been introduced that borrows ideas from the
layered design methodology for data networks. In [15] the
layered, packet-switched NoC design concepts have been
applied to a 2-D Mesh Network Topology whereas in [10],
similar concepts have been applied to a Butterfly Fat Tree
Topology. While there are several mature methodologies
for modeling and evaluating the processing element archi-
tectures, there is relatively little research done to port the
on-chip communication to system-level. In [24], attempts
have been made to fill this gap by proposing a NoC mod-
eling methodology based upon the ideas borrowed from
the object-oriented design domain and implementing those
ideas using an existing CAD framework — Ptolemy II.
However, the authors have conjectured about the perfor-
mance gains achievable by the porting of their proposed
modeling framework to SystemC. In [21], a theoretical
framework for modeling real-time applications running on
multiprocessor systems has been developed that models the
inter-processing element communication with a link proces-
sor. But such attempts are quite ad-hoc and no generalized
approach has, so far, been reported to our knowledge.

In our proposed abstract system modeling framework, an
embedded, real-time application is represented as a collec-
tion of multiple, concurrent execution threads that are mod-

Proceedings of the 24th |IEEE International Real-Time Systems Symposium (RTSS'03) C
0-7695-2044-8/03 $ 17.00 © 2003 |IEEE

yrrn

OMPUTER
SOCIETY

Paper #2: NoC Modeling for System-Level Multiprocessor Simulation 135

eled as a set of dependent tasks under certain precedence
and resource constraints. Such tasks, in turn, are modeled
as a chain of sub-tasks executing on, possibly, different pro-
cessing elements. Based on the abstract system model, three
distinct, but closely-related problems are identified, namely,
execution synchronization, resource allocation and priority
assignment/scheduling. The inter-processing element com-
munication is modeled by modeling a communication net-
work as a communication processor and the message trans-
mission through the network as a communication task run-
ning (concurrently) on the communication processor. Using
this approach, we have demonstrated that our, previously
proposed [9, 16], abstract RTOS model can be extended
to include an abstract NoC processor that can effectively
model the system-level effects of any NoC architecture.

3. Abstract RTOS Modeling

As discussed earlier, at the system level, the application
software may be modeled as a set of tasks which have to
be executed on a number of processing elements (PE’s) un-
der the control of one or more RTOS(s). For details on the
model and how it is implemented in SystemC (including the
use of the Master-Slave library), we refer to [9] and [16].

Briefly, our system model is designed following the prin-
ciple of composition, as described in [20], and consists of
three types of basic components: tasks, RTOS services,
and links, where the links provide communication between
other system components. We have used SystemC 2.0 as
the implementation language of our model. Although, any
language could have been used, the choice of SystemC is
mainly due to the fact that it is an extension of the C++
programming language and has a built-in simulation kernel
that supports concurrency. In addition, it supports the de-
sign process from system-level down to both hardware and
software implementations. The SystemC Master-Slave li-
brary provides a very elegant way of handling concurrent
messages sent by the tasks to the RTOS services. This al-
lows each RTOS service to deal with a single message at
a time independently of the other. Figure 1 shows the Ab-
stract RTOS Model and Figure 2 presents the overall system
model, including the NoC model which will be described in
the next section. In this section, we focus on the RTOS
modeling which corresponds to the PE’s. The RTOS ser-
vices are composed from independent modules that model
different basic RTOS services. A scheduler models a real-
time scheduling algorithm. A synchronizer models the de-
pendencies among tasks and, hence, both intra- and inter-
processing element communications. An allocator models
the mechanism of resource sharing among tasks.

The model is designed such that any of the RTOS ser-
vices can be changed in a simple and straight forward man-
ner. Tasks are considered to be abstract representations of

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 |IEEE

scheduler

Figure 1. Abstract RTOS model.

the application and are characterized by a set of parame-
ters, such as the worst- and the best-case execution time,
context switching overhead, deadline, period (if it is a pe-
riodic task), offset, resource requirements, and precedence
relations. A task is modeled as a finite state machine (FSM)
which can send the messages: ready and finished, to
the scheduler which, in turn, can send one of the three com-
mands to the tasks: run, preempt, and resume. In be-
tween the schedulers and the tasks, we have the synchro-
nizer and the allocator acting as logical command filters”.
As a way to maintain composition, each module handles its
relevant data independently of the other. For example, a
task determines when it is ready to run and when it has fin-
ished. In this way, the scheduler behaves in a reactive man-
ner; scheduling tasks according to the data received from
them. Thus, we can add as many tasks and schedulers as we
desire. The same is the case with the synchronizer and the
allocator models. They hold the information regarding their
services, i.e., which tasks depend on each other or, for the
case of the allocator, what resources are needed by a given
task.

4. NoC Modeling

Architecturally, a network is characterized by its topol-
ogy and the protocol running on it. The topology concerns
the geometry of the communication links on the chip while
the protocol governs the usage of these links. Many combi-
nations of topology and protocol exist for the efficient com-
munication of one or more predominant traffic patterns. The
performance of a network is measured in quantitative terms
such as latency, bandwidth, power consumption and area
usage, and in qualitative terms such as network reconfig-
urability (dynamic or static), quality of service (QoS), etc.

(rr,r.

COMPUTER

SOCIETY

136

The ARTS Modeling Environment

Allocator

PE

Scheduley

PE

Figure 2. The Network-on-Chip model.

Predictability of performance is necessary for NoC design-
ers to take early decisions based on the NoC performance
before actual implementation. Numerous studies have been
done for deadlock, livelock, congestion-avoidance, error-
correction, network setup/tear-down, etc. to provide a cer-
tain predictable network behavior [7]. Even lower-level en-
gineering techniques like low-swing drivers, signal encod-
ing etc., have been proposed to overcome network commu-
nication uncertainties [4, 6, 11]. Many of these aspects are
custom-tuned to fit the requirements of the underlying ap-
plication.

Throughout this paper, we use network latency as a pri-
mary factor for grading the performance of a network. The
network latency is defined as the time taken to move data
from a source PE to a destination PE. It includes the mes-
sage processing overhead at the PE’s, link delays and the
data processing delays at the intermediate nodes [14]. It is
a function of the topology (which determines the number of
nodes and links) and the protocol (which defines the pro-
cessing requirements for routing and flow-control).

The state of a network at any instant is given by the num-
ber of actively transmitting PE’s and the messages within its
nodes and links. The state of a network dictates which re-
sources of the network are currently in use and which ones
can be available for future use. This provides a measure
of the network services available to the system, which af-
fect its performance. We define network services as the
system-level characterization of network resource alloca-
tion and scheduling. For a given topology-protocol com-
bination, changes in network services, change the resources
available for a given communication event, thus, affecting
its latency.

For the purpose of forming a system-level NoC simula-
tion model, unlike a network simulator, we have abstracted
away all the above-mentioned low-level network details ex-
cept the most essential ones (e.g., topology, latency, etc.).
We treat the on-chip communication network as a commu-
nication processor to reflect the servicing demands. A com-
munication event within this network is modeled as a mes-
sage task, T, executing on the communication processor.

Proceedings of the 24th |IEEE International Real-Time Systems Symposium (RTSS'03) C
0-7695-2044-8/03 $ 17.00 © 2003 |IEEE

yrrr

OMPUTER
SOCIETY

Paper #2: NoC Modeling for System-Level Multiprocessor Simulation 137

Rz RB
T, — : }—Lz—@
LB

Ly Ly
@ " s
L, L,

Message Task | Path
Torus Mesh
Resource Allocation | Scheduling Needs Resource Allocation Scheduling Needs
‘ Small Message Size ‘ Large Message Size }m
| Tx | a—b | Ly ‘ Immediate Preemptive | L | Immediate l
| Ty =Y Ly, Ri, L | tmmediae immediate | I3 | Immediate |

Table 1. A sample reservation for two sample networks.

‘When one PE wants to communicate with another PE, a 1,
is fired on the communication processor. Each 1, repre-
sents communication only between two fixed set of prede-
termined PE’s. Since a NoC supports concurrent commu-
nication, T,’s need to be synchronized, allocated resources
and scheduled accordingly. This is a property of the un-
derlying NoC implementation, where the NoC allocator re-
flects the topology and the NoC scheduler reflects the pro-
tocol. A resource database, which is unique to each NoC
implementation, contains information on all its resources.
In a segmented network, these resources are laid-out as
two-dimensional interconnects and are a collection of nodes
(routers) and links. The NoC allocation and scheduling al-
gorithms map a T, onto the available network resources.
Here, we mainly illustrate this for the networks which al-
low parallel communication to occur, such as the segmented
networks.

4.1 NoC Allocator

The allocator translates the path requirements of a T,
in terms of its resource requirements such as bandwidth,
buffers, etc. It attempts to minimize resource conflicts. The
links and nodes in a communication path are set aside dy-
namically (i.e., only for the requested time slot) in the re-
source database. If the resource reservation process is suc-
cessful, the message task is queued for scheduling. The re-
source allocation for two sample networks is shown in Ta-
ble 1. If there is a contention over a resource, then resource
arbitration occurs. The arbitration mechanism is based on
the underlying network implementation and is discussed
shortly. In this discussion, the resources are regarded as
non-preemptable. Therefore, a resource is free to be as-
signed to another T, only after the T,,, which is already oc-
cupying that resource, has released it.

4.2 NoC Scheduler

The NoC scheduler executes the T,,’s according to the
particular network service requirements. It attempts to

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 |IEEE

minimize resource occupancy. In a network, resource
occupation is dictated by the size of the message. This
concept is better illustrated using the example in Table 1,
where the scheduling needs for two sample networks are
shown. For a mesh there is no resource conflict. The T,,’s
get the required resources allocated 'immediately’. But in
the case of a torus, it might experience a resource conflict
for the link L;. Here, in the event of a small message size,
where T, is finished before T, asks for L;, there is no
scheduling problem. The resources can be 'immediately’
assigned to the 1,’s. But in the case of a large message
size, where Ty, is still running when 1, asks for the link
L, resource contention occurs. Thus, the scheduling of the
messages has to be performed preemptively.

Let us consider the above example from the points of
view of the network-designer and the system-designer. At
the network-level, seeing the resource conflict as a net-
work problem, the network designer may over-design link
L; by providing excess bandwidth or introduce process-
ing overhead, such as TDM-based message interleaving.
These techniques would restore fair servicing for both the
Tp's, reducing the degree of contention. However, at the
system-level, it may be possible to reschedule the commu-
nication event between the PE’s (either Ty or Tmy). This
opens up the possibility of an alternate path assignment
for the 7,,’s or simply stalling one of the traffics until the
other has passed. System designers may even realize that
large message sizes (to the extent where L; is contentious)
never occur within the system. This could save poten-
tial scheduling/computation overhead in terms of hardware
real-estate, power, etc. at router Ry and on link L; as was
envisioned by the network designer. Thus, when seen from
the system-level, a trade-off between the NoC resource al-
location and scheduling would not only complement better
self-utilization, but might provide other useful insights for
design improvements. Towards this, we implement a NoC
model for system-level evaluation.

IEEE.

COMPUTER

SOCIETY

138

The ARTS Modeling Environment

O—0
OO

Tasks & their Dependencies

Task 1 Task 4
BE, B,
I, L,
(1j (3)
L,

(a)

NoC Test Setup

Figure 3. System simulation model.

PEa.Task1 2 [i 2 [

INoC.CommTaski i 2 0 1 2

PEc.Task3 1 2 3 2 T

PEc.Task2 2 [i 2 i

NoC.CommTaskZ il 2 [1 1 2

PEb.Taskd T > D 1

SystemC.cycle

[140 [150 [1B0 [178 180

PEa.Taskl |0 2 i 2

INoC. CommTaskx [1 2 i 1

PEc.Taska [1 3 2 1 3

PEc.Task2 2 i 2

NoC.CommTaskZ 0 1 2 0 1

PEb. Taskd 2 1 2

Figure 4. Simul

ion results for c

4.3 TImplementation

The NoC model has exactly the same structure as the ab-
stract RTOS model but with some modifications to its con-
stituent module blocks. The main idea while implementing
the NoC model was to preserve the existing structure of the
abstract RTOS framework and to reuse the existing code
fragments as much as possible so that no extra complexity
is added and the code size does not grow too much so as
to compromise the simulation speed. The message routing
scheme currently implemented in our NoC model is that of
fixed routing but the framework does have provisions for
implementing other routing schemes.

4.3.1 Message Task

The message task has the same FSM structure as the Task
model in the abstract RTOS model with some modifications
to take out preemption and introduce resource requirements.
The 1, implementation accepts a number of arguments for
its characterization. The Message Task ID enables the Syn-
chronizer and the NoC Scheduler to identify the 1, sending
the message. Similarly, the NoC Scheduler ID is meant for
the 1,,’s to recognize their scheduler for exchanging various

B e AV VAV AV A A AV A a AV A AV VA AV VAV AV A AV AVAV AV AV AV AV AV IVAVAVAVAVAVAVAVAVAVAVAVAVAVAY

ication events. State enumeration: O=inactive, 1=ready, 2=running, 3=preempted.

control messages. The lower- and the upper-bounds on the
transmission latency of an 7T, through the NoC are defined
by the BCET (Best-Case Execution Time) and the WCET
(Worst-Case Execution Time). If a message task has a cer-
tain setup time before it is released, then its offset is non-
zero. A list of resources (links, routers, etc.) required by a
T, during its execution is furnished in the form of Resource
ID’s and the time durations for holding those resources are
specified as CSL’s (Critical Section Lengths). The imple-
mentation of a T, can be viewed as a FSM that manages
various counters after sending messages to the NoC Sched-
uler and the NoC Allocator and upon receiving commands
from the NoC Scheduler.

4.3.2 NoC Allocator

The NoC Allocator manages its resource database upon re-
ceiving request and release messages from the T,,’s.
The resources are allocated to the 1,,’s dynamically and
they are released by the t,,’s immediately after usage. This
makes resource management very flexible. In this imple-
mentation, the resources are served by the NoC Allocator
on a first-come-first basis but other allocation policies can
be implemented as well. Whenever a requested resource is

IEEE o

Proceedings of the 24th |IEEE International Real-Time Systems Symposium (RTSS'03) COMPUTER
0-7695-2044-8/03 $ 17.00 © 2003 |IEEE

SOCIETY

Paper #2: NoC Modeling for System-Level Multiprocessor Simulation 139

available, the NoC Allocator sends a grant message to the
NoC Scheduler and whenever a requested resource is occu-
pied, there is a resource contention and the NoC Allocator
sends a refuse message to the NoC Scheduler for an ap-
propriate action.

4.3.3 NoC Scheduler

The NoC Scheduler receives the ready and finished
messages from the 1,,’s through the Synchronizer and the
grant and refuse messages from the NoC Allocator. It
then issues the run and buffer commands to the T,,’s.
‘Whenever a Task running on a PE, is finished and needs to
communicate with a Task running on another PE, it sends a
finished message to the Synchronizer which maintains
atask dependency database and passes the ready message
for the corresponding 1, to the NoC Scheduler which issues
the run command to that T,,,.

Whenever there is a resource contention, the NoC al-
locator issues a refuse message to the NoC Scheduler
which then either terminates the execution of the request-
ing T, (equivalent to message dropping) or blocks the T,
from execution (equivalent to message buffering) till the
requested resource becomes available again which is indi-
cated by the grant message sent by the NoC Allocator
to the NoC Scheduler. The message dropping or buffering
decision is taken by the NoC Scheduler according to its un-
derlying network implementation.

5. Results

The results of our SystemC implementation of the NoC
model from Figure 2 are presented in Figure 4 and Figure 5
and illustrated in Figure 6. The sample SoC-NoC setup is
shown in Figure 3. The application is assumed to have been
decomposed into four tasks (T, T2, T3, and t4). Three PE’s
(PE,, PE,, and PE,) are selected to execute these tasks. The
task mappings are: {t;} — PE,, {t4} + PE}p, and {12, 13}
— PE_. T3 has a higher priority than 13, so it can preempt 13
on PE,. In this example, we look at a simple case where all
the tasks are modeled identically with a period of 25 time
units (except for T2, which has a period of 24 time units due
to the priority-assignment scheme in the Rate Monotonic
scheduling), an execution time (both BCET and WCET) of
10 time units and a deadline of 22 time units.

The communications between the tasks are modeled as
T,’s (as described in Section 4) which execute on a com-
munication processor simulating a torus network using the
store-and-forward routing protocol [7] (with infinite buffer
at the source and the destination nodes). The message task
paths and dependencies are: T,,, from PE, to PE_ using
Ly, Ry, and L, and T,,;, from PE, to PE}, using L3, R; and
L;. Thus, the link L; experiences a possible contention. In

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 |IEEE

0 Initializations
10 CommTask X Released by the Synchronizer
10 CommTask Z Released by the Synchronizer
11 task x (request resource# 1)-> allocator
11 NoC_allocator (granted)->NoC_scheduler
11 task z (request resource# 4)-> allocator
11 NoC_allocator (granted)-> NoC_scheduler
14 task x (release resource# 1)-> allocator
14 task x (request resource# 2)-> allocator
14 NoC_allocator (granted)-> NoC_scheduler
14 task z (release resource# 4)-> allocator
14 task z (request resource# 5)-> allocator
14 NoC_allocator (granted)-> NoC_scheduler
17 task x (release resource# 2)-> allocator
17 task x (request resource# 3)-> allocator
17 NoC_allocator (granted)-> NoC_scheduler
17 task z (release resource# 5)-> allocator
17 synchronizer (release)-> allocator
17 task z (request resource# 1)-> allocator
17 NoC_allocator (granted)-> NoC scheduler
20 task x (release resource# 3)-> allocator
20 task x (finished)-> scheduler 2
20 synchronizer (finished)-> allocator
20 NoC_allocator (finished)-> NoC_scheduler
20 task z (release resource# 1)-> allocator
20 task z (finished) -> scheduler 2
20 synchronizer (finished)-> allocator
20 NoC_allocator (finished)-> NoC_scheduler
and so on...

Figure 5. Simulation log.

our SoC-NoC test setup, the resource ID is given in brack-
ets (next to the resource label in Figure 3). We present two
cases of interest:

In Figure 4(a), modeling of two concurrent communi-
cations is shown. As mentioned earlier, there is a link
contention between T, and T, for L. It is resolved by
scheduling L, at different times among the T,,’s within the
time-slot of 10 to 20 time units (and subsequent time slots).
Ly is used from 11 to 14 time units in T,,, and from 17 to
20 time units in T,,;. Figure 5 shows the log file of resource
occupancy (Resource# 1 is link L;). Figure 6 provides a
graphical representation (Note that 1 time unit is consumed
in the network setup during simulation). Thus, our model
clearly supports concurrent communication as observed in
segmented networks.

Figure 4(b) shows the interplay of process modeling and
interconnect activity. Consider the signal titled PE. Task 3
(13) in Figure 4(b) at a point close to the time period of 95
time units. Here, it is clear that T3 starts accepting the com-
munication message and is then preempted by 1, on PE,
because of its higher priority. Once T is finished, T3 re-
sumes and completes in time (at time 120) before its dead-
line. Now consider the next execution of 13. Both 1, and 13
are in contention. T3 does not even start; instead, T, starts
on the PE,. 13, here, is not able to accept the message com-

IEEE.

COMPUTER

SOCIETY

140

The ARTS Modeling Environment

£, : Task 1 to Task 3t(PER
1
a
set:
Ty
1
R2
2
T2
3
3
3
10 20 30
t,, : Task 2 to Task 4 t(PERP
2
c
Iy
4
Ry
5
o
1
4
b
10 20 30

Figure 6. NoC allocation and scheduling for the first
communication cycle.

municated to it by 1. This brings us to an interesting role of
the NoC. In this simulation, we have enabled the routers to
be able to buffer messages. Thus the T, finishes freeing up
its resources although T, has yet to begin. t3, when finished,
is thus able to initiate T, which is when 15 resumes.
Consider the case where the same torus network proces-
sor is running wormhole routing (plots not provided). Then,
in the preemption case, the Ty, stalls, holding the link L;.
As 1, has already preempted T3 on PE,, when it is complete,
it would attempt T,,;. But this would not be possible as the
link L, required here is busy in 1T,,, thus stalling T,,;. This
causes deadlock in the system. As seen earlier, we can re-
solve it either by introducing buffering in the routers or we
have the freedom to choose an alternate network implemen-
tation or scheduling strategy. Thus, even this simple exam-
ple clearly demonstrates the global performance evaluation
for codesign when both SoC and NoC are jointly modeled.

6. Design-Space Exploration

Figure 7 illustrates how our proposed NoC model can be
used for design-space exploration at the system level. We
have used three sample network topologies: torus, mesh,

and bus. The assignment of tasks to the PE’s are: {1y, T2}
+ PEg4, {13} — PE,, and {14, T5} +> PE,. All the tasks
have the same period, execution time (BCET=WCET) and
a deadline of 100, 15 and 100 time units, respectively. It
is assumed that the tasks are mapped on the PE’s in such
a way that none of them misses its deadline. The task de-
pendencies are: T3 < {Ty, T4} and Ts < T». The dependen-
cies for the tasks mapped onto different PE’s translate into
T,,’s as described in Section 4. In this illustration, we have
labeled them as x, y, and z. The link and the node utiliza-
tion for each corresponding topology-protocol combination
alters for these 1,,’s. For simplicity, we model all link oc-
cupancies to be 10 time units and node processing times to
be 2.5 time units. Besides, the task and the communication
model, in this analysis we have also included the time spent
at the network interface for message transfer from the PE’s
to the NoC. This is assumed to be about 3 time units. Itis in-
curred twice, once at the source and then at the destination,
for each communication event.

The three rows in Figure 7 show the network perfor-
mance for three different scheduling-architecture combi-
nations. The performance of the system is judged by its
scheduling. In the first row, basic timing-aware schedul-
ing is illustrated. Here, the networks are quite primitive,
i.e., the link contention is resolved randomly. The best-
effort scheduling for the torus network and the bus con-
sumes about 80 time units. The mesh network utilizes 65
time units. The bus is a singular entity and, hence, the NoC
allocator does not have much freedom in its allocation. The
scheduling of the communication is, therefore, sequential.
On the other hand, the torus and the mesh networks have
multiple ways to allocate and schedule their resources. As
the example is relatively small, therefore, the full potential
of concurrent communication is not obvious for the torus
network. But it is obvious for the mesh network. It is about
10 time units less than the other networks. Regarding the
link utilization!, both for the torus and the mesh networks,
one link each is not used in this architectural setup (L; for
the torus and L4 for the mesh network). Thus, if the system
is not under the constraints of meeting the timing-bounds,
a possible network optimization exists. On the other hand,
in the torus network, if T; and T4 are scheduled together,
there is a contention on link L;, so a network optimization
to meet the timing-bounds is required.

In the second row of Figure 7, we illustrate one possible
network optimization, namely, the effects of source-based
QoS routing. Any traffic from PE, is considered to have a
higher priority and, hence, is assigned the contentious re-
source (when necessary). For a mesh network, there is no
effect as the link occupancy is not in conflict. But consider
its effect on the torus network. It gives about 5 time units

ILink Utilization is defined as the aggregation of the number of links
occupied in the smallest time unit

Proceedings of the 24th |IEEE International Real-Time Systems Symposium (RTSS'03) C
0-7695-2044-8/03 $ 17.00 © 2003 |IEEE

yrrn

OMPUTER
SOCIETY

Paper #2: NoC Modeling for System-Level Multiprocessor Simulation 141

. [EnE N JETED 1
. | IR MERE AN
. 0 W oonomm il e
o | T . 7 MRenin
.m0 =0 @

| i

(i) Timipg:Awarée Scheduling

. [EnEm = _ED
o | AR . e
. N Jlon = [

. T BERE B ol |CILHE
. = =0 | e

e s

(ii) Ro$-Aware Schedulinjg

PR I /I N o2 0 e N =l
o | I =1 JEL 0 e
. En | e CET R
o | TR ABEE: e I
. =1 N
. iE T AT

(iii) Allocatibn+Aware Scheduling

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 BO 0 10 2030 40 50 60 70 80

Figure 7. Illustration of the system-level design-space exploration.

better performance than the regular torus network. For a fects the overall performance, at the system-level, one can
complex system with multiple links and nodes and handling even expect to change the allocation of tasks based on the
numerous messages, these advantages are expected to be network choice. This is illustrated in the last row. The new
significant (both for torus and mesh). The bus architecture, allocation under consideration is: {12, T3} — PE,, {T4, Ts}
on the other hand, would become a bottleneck in communi- — PEy, and {11} — PE,. The advantage in terms of over-
cation. all system execution time is considerable for the segmented

Having looked at how a manipulation of the network af- network compared to the bus. The reasons for the poor per-

xrr,r

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03) COMPUTER
0-7695-2044-8/03 $ 17.00 © 2003 |IEEE SOCIETY

142

The ARTS Modeling Environment

formance of the bus are the same as the ones stated earlier.
In the case of the torus and the mesh networks, the link uti-
lization is high now. Many links, though not all, are used
simultaneously without any contention. We have not con-
sidered QoS assignment in this case, but its effect on perfor-
mance, especially, in a large system might be considerable.

Using these illustrations, similar analysis for memory
and power utilization can be easily performed as well.
There are many possibilities of trade-offs during each itera-
tion; namely to change the resource requirements, resource
allocation, or scheduling. The overall idea is to assist the
codesign process to converge while satisfying the desired
performance criteria.

7. Conclusions

We have presented an abstract modeling framework
based on SystemC which supports the modeling of
multiprocessor-based RTOS’s and their interconnection
through a NoC. The aim is to provide the system designer
of single-chip, real-time embedded systems with a simple
modeling and simulation framework in which one can ex-
periment with different task mappings, RTOS policies and
NoC structures and protocols in order to study the conse-
quences of local decisions on the global system behavior
and performance. We have presented how our initial multi-
processor RTOS model has been extended to handle NoCs.
So far, our experimental work has been aimed at providing
a proof-of-concept as demonstrated in Section 5. We are
currently working on extending the NoC model to incorpo-
rate issues like, dynamic path routing, packet switching and
power profiling. We are also working on a few large real-life
examples as well as a schedule viewer based on the output
from the monitors which will provide detailed and anno-
tated views of the system behavior such as detailed network
usage and power- and memory-profiles.

References

[1] A. Baghdadi and N-E. Zergainoh. Design Space Explo-
ration for Hardware/Software Codesign of Multiprocessor
Systems. In Proceedings of the 11th International Workshop
on Rapid System Prototyping (RSP), pages 8 — 13, 2000.

L. Benini and G. D. Micheli. Network on Chips: A New SoC
Paradigm. IEEE Computer, 35(1):70 — 78, January 2002.
S. H. Bokhari. Communication Overhead on the Intel
Paragon. NASA Contractor Report 1982(11), NASA Lan-
gley Research Center, September 1995.

'W. Brainbridge and S. Furber. Delay Insensitive System-
on-Chip Interconnect using 1-of-4 Data Encoding. In Inter-
national Symposium on Asynchronous Circuits and Systems
(ASYNC), pages 118 — 126, 2001.

A. S. Cassidy, J. M. Paul, and D. E. Thomas. Layered, Multi-
Threaded, High-Level Performance Design. In Design Au-
tomation and Test in Europe, DATE, pages 954-959, March
2003.

[2]
13]

[4

[5]

Proceedings of the 24th |IEEE International Real-Time Systems Symposium (RTSS'03)
0-7695-2044-8/03 $ 17.00 © 2003 |IEEE

[6] J. Cong. An Interconnect-Centric Design Flow for Nanome-
ter Technologies. In International Symposium on VLSI Tech-
nology, Systems, and Applications, pages 54 — 57, 1999.

D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan-
Kaufmann, 1998. 1st edition.

A. Gerstlauer, H. Yu, and D. Gajski. RTOS Modelling for
System-Level Design. In Design Automation and Test in
Europe, DATE, pages 132—137, March 2003.

M. J. Gonzalez and J. Madsen. Abstract RTOS Modeling
in SystemC. In Proceedings of the 20th IEEE NORCHIP
Conference, pages 43 — 49, November 2002.

P. Guerrier and A. Greiner. A Generic Architecture for On-
Chip Packet-Switched Interconnections. In Design Automa-
tion and Test in Europe, DATE, pages 250 — 256, March
2000.

R. Ho and K. W. Mai. The Future of Wires. Proceedings of
the IEEE, 89(4):490 — 504, April 2001.

J-M. Daveau, T. B. Ismail, and A. A. Jerraya. Synthesis of
System-Level Communication by an Allocation-Based Ap-
proach. In Proceedings of the 8th International Symposium
on System Synthesis (ISSS), pages 150 — 155, September
1995.

A. Jantsch and H. Tenhunen. Networks on Chip. Kluwer
Academic Publishers, 2003.

P. V. Knudsen and J. Madsen. Integrating Communication
Protocol Selection with Hardware/Software Codesign. IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 18(8):1077 — 1095, 1999.

S. Kumar, A. Jantsch, J-P. Soininen, M. Forsell, M. Mill-
berg, J. Oberg, K. Tiensyrji, and A. Hemani. A Network-
on-Chip Architecture and Design Methodology. In IEEE
Computer Society Annual Symposium on VLSI, pages 117 —
124, April 2002.

J. Madsen, K. Virk, and M. Gonzalez. Abstract RTOS Mod-
elling for Multiprocessor System-on-Chip. In International
Symposium on System-on-Chip, November 2003.

P. Mattson, W. J. Dally, S. Rixner, U. J. Kapasi, and J. D.
Owens. Communication Scheduling. In International Con-
ference on Architectural for Programming Languages and
Operating Systems, 2000.

G. D. Micheli, R. Ernst, and W. Wolf. Readings in Hard-
ware/Software Co-Design. Morgan-Kaufmann, 2001. Ist
edition.

V. J. Mooney and D. M. Blough. A Hardware-Software
Real-Time Operating System Framework for SoC’s. IEEE
Design & Test of Computers, 19(6):44 — 51, Nov/Dec 2002.
I. Sifakis. Modelling Real-Time Systems - Challenges and
Work Directions. In EMSOFT, Lecture Notes in Computer
Science 2211, October 2001.

J. Sun and J. Liu. Synchronization Protocols in Distributed
Real-Time Systems. In Proceedings of the 16th Interna-
tional Conference on Distributed Computing Systems, pages
38 — 45, May 1996.

SystemC Workgroup. http://www.systemc.org.

T. T. Ye, L. Benini, and G. D. Micheli. Packetized On-Chip
Interconnect Communication Analysis for MPSoC. In De-
sign Automation and Test in Europe, DATE, pages 344 — 349,
March 2003.

X. Zhu and S. Malik. A Hierarchical Modeling Framework
for On-Chip Communication Architectures. In International
Conference on Computer-Aided Design (ICCAD), pages 663
— 670, 2002.

[7]

[8

191

[10]

[
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22
[23]

[24]

yrrn

COMPUTER
SOCIETY

CHAPTER 7

A Network Traffic Generator

Model for Fast
Network-on-Chip Simulation

Published in the Proceedings of Design, Automation and Testing in Europe
Conference 2005.

Complete citation:

Shankar Mahadevan, Federico Angiolini, Michael Storgaard, Rasmus G. Olsen,
Jens Sparsg and Jan Madsen. “A Network Traffic Generator Model for Fast
Network-on-Chip Simulation.” In Proceedings of Design, Automation and Test-
ing in Europe Conference (DATE), Munich Germany. IEEE, Mar. 2005: 780-
785.

144 Appendix 7

Paper #5: A Traffic Generator Model for Fast NoC Simulation 145

A Network Traffic Generator Model for Fast Network-on-Chip Simulation

Shankar Mahadevan! ~ Federico Angiolinif =~ Michael Storgaard! ~ Rasmus Grgndahl Olsen’

Jan Madsent

Dipartimento di Elettronica, Informatica e Sistemistica (DEIS)
University of Bologna

Viale Risorgimento, 2 40136 Bologna, Italy

e-mail: {fangiolini}@deis.unibo.it

Jens Sparsg

t Informatics and Mathematical Modelling IMM) ~ #
Technical University of Denmark (DTU)
Richard Petersens Plads, 2800 Lyngby, Denmark
e-mail: {sm, -,-, jsp, jan} @imm.dtu.dk

SW ASIC MEM MEM

Abstract 3 N TG TG

_JrJcJjrocee JLJITLJL
For Systems-on-Chip (SoCs) development, a predomi- NoC Tntertace NoC

iy S . L ocP
nant part of the design time is the simulation time. Perfor- TTTIE AT imterace . 1L 1L
mance evaluation and design space exploration of such sys- hen slsv wem TG

tems in bit- and cycle-true fashion is becoming prohibitive. @ ©

We propose a traffic generation (TG) model that provides
a fast and effective Network-on-Chip (NoC) development
and debugging environment. By capturing the type and the
timestamp of communication events at the boundary of an
IP core in a reference environment, the TG can subsequently
emulate the core’s communication behavior in different en-
vironments. Access patterns and resource contention in a
system are dependent on the interconnect architecture, and
our TG is designed to capture the resulting reactiveness.
The regenerated traffic, which represents a realistic work-
load, can thus be used to undertake faster architectural ex-
ploration of interconnection alternatives, effectively decou-
pling simulation of IP cores and of interconnect fabrics. The
results with the TG on an AMBA interconnect show a sim-
ulation time speedup above a factor of 2 over a complete
system simulation, with close to 100% accuracy.

1 Introduction

An important step in the design of a complex System-
on-Chip is to select the optimal architecture for the on-chip
network (NoC). In order to do so, it is imperative to analyze
and understand network traffic patterns through simulation.
This can be accomplished at various stages in the design
flow, from abstract transaction level models (TLM) to bit-
and cycle-true models. In many cases, only the most de-
tailed models prove capable of capturing important aspects
of communication performance, e.g. the latency associated
with resource contention. The obvious drawback of these
approaches is slower simulation speed.

In this paper, we focus on enabling the exploration of dif-
ferent NoC architectures at the bit- and cycle-true level by

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05)
1530-1591/05 $ 20.00 IEEE

Figure 1. Simulation Environment with bit-

and cycle-true: (a) IP-cores, (b) TG model.
increasing the speed of the complete SoC simulation. This
is a key advantage, since architectural exploration typically
involves carrying out the same set of simulations for each
design alternative, and simulations may consist of millions
of clock cycles each.

We assume as a requirement the availability of a refer-
ence SoC design, consisting of IP cores and of a NoC, and
of an application partitioned and compiled onto the vari-
ous IP cores. This application might either be software exe-
cuting on programmable IP cores, or code synthesized into
dedicated hardware. This reference system will be used to
collect an initial trace of the IP cores’ behavior. In order to
increase simulation speed for subsequent design space ex-
ploration, we propose to replace the IP cores with Traffic
Generators (TG) which emulate their communication at the
interface with the network, as illustrated in Figure 1.

The goal is to perform only one reference simulation us-
ing bit- and cycle-true simulation models of the IP cores
running the target application, and to speed up subsequent
variants of that simulation using traffic generators coupled
with accurate models of the alternative interconnects only.
‘While the internal processing of IP cores does not need thor-
ough replication by the generators, and can often be mod-
eled by waiting for an amount of cycles between network
transactions, the unpredictability of network latency of dif-
ferent NoC architectures may lead to changes in the number
and relative ordering of transactions. Thus, traffic genera-
tors should have at least some reactive capabilities, as will
be explained in Section 3.

1rrr

Co

MPI;TER

SOCIETY

146

The RIPE Modeling Environment

In order to capture reactive behavior, we propose a TG
implementation as a very simple instruction set processor.
Our approach is significantly different from a purely be-
havioral encapsulation of application code into a simula-
tion device, in analogy with TLM modeling. The TG model
we propose is aimed at faithfully replicating traffic patterns
generated by a processor running an application, not just
by the application; this includes e.g. accurate modeling of
cache refills and of latencies between accesses, allowing for
cycle-true simulations. At the same time, this approach al-
lows a straightforward path towards deployment of the TG
device on a silicon NoC test chip.

To evaluate the TG concept, we have integrated the pro-
posed TG model into MPARM [8], a homogeneous multi-
processor SoC simulation platform, which provides a bit-
and cycle-true SoC simulation environment. The current
version of MPARM supports several NoC architectures,
e.g. AMBA [8], STBus and the xpipes [3], and leverages
ARMV7 processors as IP cores. The use of the OCP [1]
protocol at the interfaces between the cores and the inter-
connect allows for easy exchange of IP cores for TGs, as
indicated in Figure 1.

The rest of the paper is organized as follows. Section 2
introduces related work, and is followed by a discussion of
the requirements for modelling traffic patterns in Section 3.
Section 4 details the TG implementation, and Section 5 de-
scribes how communication traces are extracted and turned
into programs executing on the TG. Section 6 presents ini-
tial simulation results which show the potential of our TG
approach. Finally, Section 7 provides conclusions.

2 Related Work

The use of traffic generators to speed up simulation is not
new, and several traffic generator approaches and models
have been proposed.

In [6], a stochastic model is used for NoC exploration.
Traffic behavior is statistically represented by means of uni-
form, Gaussian, or Poisson distributions. Such distributions
assume a degree of correlation within the communication
transactions which is unlikely in a SoC environment. Traf-
fic patterns in SoC systems have shown to be reactive and
bursty [2, 7]. The simplicity and simulation speed of sto-
chastic models may make them valuable during preliminary
stages of NoC development, but, since the characteristics
(functionality and timing) of the IP core are not captured,
such models are unreliable for optimizing NoC features.

A modeling technique which adds functional accuracy
and causality is transaction-level modeling (TLM), which
has been widely used for NoC and SoC design [4, 5, 9, 10,
11]. In [9, 10], TLM has been used for bus architecture ex-
ploration. The communication is modeled as read and write
transactions which are implemented within the bus model.
Depending on the required accuracy of the simulation re-

sults, timing information such as bus arbitration delay is
annotated within the bus model. In [10] an additional layer
called “cycle count accurate at transaction boundary” is pre-
sented. Here, the transactions are issued at the same cycle
as that observed in bus-cycle-accurate models, thus intra-
transaction visibility is traded-off for simulation speedup.
While modeling the entire system at higher abstraction i.e.
TLM, both [9] and [10] present a methodology for preserv-
ing accuracy with gain in simulation speed.

We would like to underline that our approach is dual
with respect to TLM. While transaction-level models usu-
ally represent interconnects as a collection of available ser-
vices and emphasize local processing on IP cores, the plat-
form we describe is composed of accurate models for the in-
terconnect, while processing resources are abstracted away.
Simulation speed is gained like in TLM models, but the
purpose of this gain is enabling accurate assessment of in-
terconnect performance, not of core or application perfor-
mance. The above methods are suitable for feature explo-
ration once the NoC architecture has been chosen, but are
not thought for NoC exploration itself.

3 Traffic Modeling Requirements

The generation of a traffic pattern emulating that of a real
IP core can be faced at varying degrees of accuracy.

At the most basic level, a trace with timestamps can be
collected in the reference system and then be independently
replayed, an approach that we might call “cloning”. This
approach is clearly inadequate when the variance of net-
work latency is taken into account; whenever a transaction
is delayed, either due to hardware design or congestion, the
effect should propagate to subsequent transactions, which
would also be delayed in real systems. A simple example
of such critical blocking is a cache refill request.

This observation leads to the deployment of “timeshift-
ing” traffic generators: adjacent transactions are tied to
each other, and are issued at times which are a function
of the delay elapsed before receiving responses to previ-
ous transactions. This implicitly means that the trace col-
lection mechanism must include not only timestamps for
processor-generated commands, but also for network re-
sponses. However, even this model fails when multi-core
systems come under scrutiny: the arbitration for resources
in such designs is timing-, and thus architecture-, depen-
dent. Therefore, very different transaction patterns may be
observed as a function of the chosen interconnection design.
To make an example, checks for a shared resource done by
polling generate different amounts of traffic depending on
the relative ordering of accesses to the resource.

As a consequence, the need for “reactive” TG models is
justified. Such models must have some knowledge about
the system architecture and about the application behavior
to correctly generate (and not just duplicate) traffic patterns

vrr,p

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Paper #5: A Traffic Generator Model for Fast NoC Simulation 147

Master Slave 1 Semaphore M2
WR RD RD
Wat { \ _
time }\{VH access
RD lockéd _
— Jo sccess Resp [+ | Fai
time
Wait, RD
Wait Resp / “me{ t, / FESmwe
time WR [~touk, w1 ime
war] WR R Fail
S 0
— YR accoss o] "D
; RD access
staigd | [time e
locke
Resp / \ Resp
t 1 t t t
(a) (b)

Figure 2. Two typical MPARM transactions.

across different underlying networks. A TG should be able
to mimic the behavior of an IP core even when facing un-
predictable network performance, e.g. due to resource con-
tention, packet collisions, arbitration and routing policies.

To illustrate the requirements driving the development
of our TG model, we will now describe how two typical
transactions occurring in the MPARM modelling and sim-
ulation environment can be reproduced. MPARM features
in-order, single-pipeline ARM cores as system masters and
two types of memory as system slaves: private (only acces-
sible by one master) or shared (visible by all masters in the
system). Figure 2 shows examples of the two types of com-
munication: (a) processor-initiated communication towards
an exclusively owned slave peripheral, and (b) processor-
initiated communication towards a system-shared slave pe-
ripheral. We call network latency () the time taken for
the communication to traverse from the master OCP inter-
face to the slave OCP interface and vice versa; this latency
depends both on the chosen architecture and on the network
congestion at the time of communication.

In Figure 2(a), the first two master transactions are a
write (WR) and a read (RD). The time to service the WR
transaction, which is a posted write, is just the network la-
tency plus the slave access time. The RD, which in MPARM
uses blocking semantics, pays an additional penalty because
the response has to make its way back to the master. From
the TG point of view, this pattern is easily recordable: net-
work latency and slave access time are unimportant factors,
and the essential point to capture is just the delay between
‘WR assertion and RD assertion, and between RD response
and the following command. In a subsequent simulation
with traffic generators replacing cores, these delays will be
modeled by explicit idle waits in the TG, while the network
latency will be dependent on the NoC model to simulate.
In the next set of transactions, where a RD closely follows
a WR, the RD command reaches the slave before the lat-
ter has finished servicing the WR, and is thus stalled at the

slave interface. This stalling behavior does not need to be
explicitly captured in a TG model, since, from a proces-
sor perspective, it simply appears to be part of the slave re-
sponse time. This simplistic example of a master accessing
a private slave proves that if the type and the timestamp of
the communication events are captured, the behaviour of
the master can be emulated via non-preemptive sequential
communication transactions interleaved with an appropriate
amount of idle wait cycles.

In Figure 2(b), two master devices (M1 and M2) attempt
to gain access to a single hardware semaphore. M1 arrives
first and locks the resource; the attempt by M2 thus fails.
In MPARM, semaphore checking is performed by polling,
i.e. M2 regularly issues read events until eventually the
semaphore is granted to it. Since the transactions occur
over a shared network fabric, the unlock event (WR) issued
by M1 and the success of the next request (RD) event by
M2 are dependent. Only if the M2 RD event is issued at
least thwk M1 + tunlock,s — tnwk,m2 after the unlocking by
M1, then M2 will be granted the semaphore and additional
polling events will not be required. Therefore, depending on
network properties, a variable amount of transactions might
be observed at the OCP interfaces of M1 and M2. This is
the reactive behavior that needs to be captured by the TG
model: both M1 and M2 need to react to accommodate the
network latency. Thus, the simplistic model which could
be applied to transactions towards a privately owned slave
now needs to be extended with additional information about
the master process execution, about system properties, and
about input/output data. In detail, the TG must be able to
recognize polling accesses (i.e. a knowledge of what ad-
dressing ranges represent pollable resources) and must add
support for recording of actual data transfers (e.g., writing
a “1” or a “0” to a shared memory location might be the
difference between locking or unlocking a resource).

We take the above discussion as a requirement to im-
plement accurate TG models. The examples in Figure 2
demonstrate that traces collected at the IP-NoC interface are
sufficient to accurately reproduce the IP’s communication,
provided that the reactive behavior of the master IP cores is
taken into account. These traces should collect sequences
of communication transactions, comprising of requests and
responses, separated by time intervals with no communica-
tion, i.e. idle time. A simulation of the entire system should
produce several traces, one per IP core interface.

4 Implementation of the traffic generators

In this section we describe in some detail the implemen-
tation of our traffic generators. As mentioned before, our
proposed TG model is designed as a simulation tool, but al-
lows future deployment as a hardware device. Within the
simulation environment for NoC exploration, the emphasis
is on simulation speedup, while within a hardware instance

1rrr

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05)
1530-1591/05 $ 20.00 IEEE

148

The RIPE Modeling Environment

the emphasis is on ease of (re)programmability and a small
silicon footprint in order to support implementation of test
chips containing NOC prototypes.

Conceptually, three different TG entities might be
needed: (1) A TG emulating a processor (an OCP mas-
ter). This TG must be able to issue conditional sequences of
traces composed of communication transactions separated
by idle/wait-periods; (2) A TG emulating a shared memory
(an OCP slave). This TG must contain a data structure mod-
eling an actual shared memory (since the values read by the
masters may affect the sequence of transactions seen at the
master IP cores); and (3) A TG emulating a slave memory
(an OCP slave). This TG must be able to respond, possibly
with dummy values, to communication transactions issued
by a master. Only the first is actually required for deploy-
ment in a simulation environment, which already provides
its own system slaves, thus only this entity will be described
in the present paper. On the other hand, it is important to no-
tice that both slave TG modules are much simpler in design
with respect to the master TG, as their logic basically just
involves a small state machine to handle OCP transactions.

For the processor TG, we have implemented and mod-
eled a multi-cycle processor with a very simple instruction
set as listed in Table 1. The processor has an instruction
memory and a register file, but no data memory. The in-
struction set consists of a group of instructions which issue
OCP transactions (whose arguments are set up in registers)
and a group of instructions allowing the programming of
conditional sequencing and parameterized waits such that
the required traces can be implemented/programmed. The
process for deriving TG programs from traces obtained in
the reference simulation is explained in Section 5.

5 The TG simulation flow

In order to use the traffic generators, a user must first
perform a reference simulation using bit-true and cycle-true
IP models. It is interesting to note that, at this stage, the
interconnect does not yet need to be accurately modeled, al-
lowing for time savings. During this simulation, traces are
collected from all OCP interfaces in the system. For this
purpose, the OCP interface modules within the MPARM
platform (the network interfaces in the case of the xpipes
interconnect, the bus master in the case of AMBA AHB)
were adapted to collect traces of OCP request and response
communication events into a predefined file format (.trc).
The address and (if any) data fields of the transactions are
also observed. Trace entries are single or burst read/write
transactions. Figure 3(a) shows an example trace.

The next step is to convert the traces into corresponding
TG programs (.zgp). A translator outputs symbolic code;
Figure 3(b) shows the TG program derived for traces in Fig-
ure 3(a). Finally, an assembler is used to convert the sym-
bolic TG program into a binary image (.bin) which can be

Instructions Description
OCP Instructions:
Read(addr) Read from an address

Write(addr, data)
BurstRead(addr, count)
BurstWrite(addr, data, count)
Other Instructions:
If(argl, arg2, operand)
Jump(location)
SetRegister(reg, value)
Idle(counter)

Write to an address
Burst read a range of addr.
Burst write an address set

Branch on condition

Branch direct

Set register (load immediate)
Wait for given no of cycles

Table 1. OCP-master TG instruction set.

loaded into the TG instruction memory and executed. Ex-
ecution might be within a simulation model (which is the
approach presented in this paper) or in hardware on a NoC
test-chip. Validation of the trace collection and process-
ing mechanism can be achieved by collecting traces with
IP cores running on different interconnects, and verifying
the resulting .zgp and .bin programs to match. The conver-
sion process is fully automated and the time taken for this
process is discussed in Section 6.

As seen in Figure 3(b), the TG program starts with a
header describing the type of core and its identifier. The
next few statements express initialization of the register file.
Register rdreg is defined as special register where the
value of RD transactions is stored.

By looking at the code in Figure 3(a), it is possible to
notice that the first communication events in the trace occur
at time 55ns, 75ns, and 90ns. We assume each TG cycle to
take 5ns, the same as the IP core for which the trace is col-
lected. At the beginning of the simulation, the TG has no in-
struction to perform until the 11th (55/5) cycle, so an Idle
wait is observed. The trace of the RD event is followed by
a response, at a time which is dependent on the network la-
tency. The IP core is blocked until this response arrives. A
WR event occurs three ((90-75)/5) cycles after the response
is received; these cycles are partially spent for TG internal
operations (data and address register setting), and an ensu-
ing Idle wait is added to fill the gap. Then the following
RD instruction is translated into the corresponding Read
program call after 10 cycles, one of which is taken to set
up the RD address. This is blocking until a response is re-
ceived, 5 cycles later.

Now, consider the trace entries from time 210ns to
320ns. By identifying the address as belonging to a
semaphore location and knowing the polling behaviour of
the MPARM IP core, the translator inserts the Semchk la-
bel and an I £ conditional statement. This statement checks
whether the read value is equal to “1”, which reflects an
unblocked semaphore. This loop effectively represents the
semaphore polling behavior. All master devices attempting
to access this address incorporate the same routine in their
TG program, thus capturing the system dynamics.

At this stage, additional simulations can be run on a plat-

vrr,p

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Paper #5: A Traffic Generator Model for Fast NoC Simulation 149

; Master Core
MASTER[<corelD>,<thrdID>]
; Initializations

REGISTER rdreg 0 ; holds value of RD
REGISTER tempreg 0

REGISTER addr 0x00000104
REGISTER data 0

Next IP comm BEGIN

transaction interval Start
Idle(11) ; wait for first inst
Network Read(addr, rd)
latency i
i 0x00000111)
; Simple RD/WR/WRNP Idle(t)

> RD 0x00000104 @55ns Write(addr, data, wr)
{ > Resp Data 0x088000f0 @75ns SetRegister(addr, 0x00000031)
> WR 0x00000020 000000111 @90ns Idle(9)
RD 0x00000031 @ 140ns Read(addr, rd)
Resp Data 0x00002236 @165ns .

. : polling a semaphore location!!

; polling a semaphorel! SetRegister(addr, 0x000000ff)

RD 0x000000ff @210ns SetRegister(tempreg, 0x00000001)
Resp Data 0x00000000 @270ns Semchk

RD 0x000000ff @285ns read(addr, rd)

Resp Data 0x00000000 @310ns Ifrdreg !~ tempreg then Semchk
RD 0x000000ff @305ns

Resp Data 0x00000001 @320ns

@ (b)

Jumpl(start) : rewind
END

Figure 3. (a) MPARM Trace to (b) TG Program.

form with traffic generators and a variety of interconnect
fabrics, thereby evaluating performance of NoC design al-
ternatives. Compared with the reference setup, where the
interconnect fabric could be modeled at a high level, the
target NoC should now be simulated at the cycle- and bit-
true level to carefully assess its performance. Validation of
the TG model can be achieved by coupling the TG with the
same interconnect used for tracing with IP cores, and check-
ing the accuracy of the IP core emulation. Results for this
validation, and for tests on different interconnects than the
reference one, will be presented in the next Section.

6 Results

We simulated within the MPARM framework, using the
AMBA NoC, and four benchmarks. The first benchmark
was a single-processor application (SP matrix manipula-
tion), with the purpose of assessing accuracy and speedup
in the simplest environment. The second benchmark (Cach-
eloop) was a test performing idle loops within the proces-
sors’ cache, and only minimal bus interaction; this allowed
an assessment of the speedup provided by the TG model
when scaling the number of processors in the system up to
twelve. Finally, the remaining two benchmarks (MP matrix
manipulation and DES encryption/decryption) were multi-
processor tests stressing synchronization and resource con-
tention with traffic patterns as discussed in Section 3, and
were used mainly to ascertain the accuracy of the whole de-
sign flow when stressed by complex transactions.

In the first experiment we aimed at validating the trace
collection/processing environment. We ran the same bench-
marks over AMBA and xpipes, noticing very different ex-

’Wps [Cumulative Execution Time || __ Simulation Time __|
| ARM | TG T Error [ARM | TG [Gain |

| SP matrix: ‘

[TP] 6610680 | 6610659 [0.00% [[73s [34s [2.15x |
Cacheloop:
2p 2500903 | 2500913 [0.00% 47 s 14's 3.36x
4P 2501760 | 2501701 0.00% 87s 22s 3.95x
6P 2502558 | 2502640 [0.00% 127s | 29s 4.38x
8P 2503404 | 2503522 [0.00% 163 s 37s 4.41x
10P 2504250 | 2504404 [0.01% 197s | 425 4.69x
12P 2505096 | 2505286 [0.01% 239s [51s 4.69x
MP matrix:
2P 3276505 | 3276030 || 0.01% 66 s 255 2.64x
4P 3528038 | 3530759 [0.08% 128s | 425 3.05x
6P 3691454 | 3697854 || 0.17% 195s | 61s 3.20x
8P 3997878 | 4058812 1.52% 260 s 82s 3.17x
10P 4881007 | 4902806 [0.45% 334s | 106s || 3.15x
12P 5901290 | 5901131 0.00% 432s | 143s || 3.02x
DES:
3p 978080 980098 0.21% 265 10's 2.60x
4P 1054839 [1057944 || 0.29% 34s I1s 3.09x
6P 1491570 [1492274 || 0.05% 53s 20s 2.65x
8P 1959755 [1960575 || 0.04% 735 30s 2.43x
10P 2441026 | 2441743 [0.03% 95s 42 2.26x
12P 2927359 | 2927218 || 0.00% 125s | 625 2.02x

Table 2. TG vs. ARM performance with AMBA.

ecution times due to different latency and scalability fea-
tures. However, after translation, a check across .zgp pro-
grams showed no difference at all. This result demonstrates
the feasibility of an approach which decouples simulation
of the IP cores and of the underlying interconnect fabric.

Table 2 summarizes the results of simulations done on
the AMBA AHB interconnect with ARM processors and
then with TGs. The left columns report the number of simu-
lated cycles, while the right ones illustrate simulation time'.
The column “Error” is a measure of the accuracy of replac-
ing IP cores with TGs, based upon the difference in sim-
ulated cycles, while the column “Gain™ describes the im-
provement in simulation time.

The table shows that replacing ARM processors with
TGs yields excellent accuracy, close to 100% for small
numbers of processors, while guaranteeing a speedup fac-
tor of 2 to 4. This speedup is mostly due to the drastic sim-
plification in the amount of logic needed to generate com-
munication transactions, compounded in small part with the
elimination of any adaptation layer in the system since the
TG is natively implemented with an OCP interface. This
speedup compares favorably to previous work in the area (a
speedup of 1.55x is reported in [10]), and must be evaluated
by taking into account the fact that it involves no shift in the
level of abstraction of the simulations.

'Benchmarks taken on a multiprocessor Xeon® 1.5 GHz with 12 GB
of RAM, eliminating any disk swapping effect. Especially for benchmarks
with a short duration, time measurements were taken by averaging over
multiple runs and care was put in minimizing disk loading effects.

1rrr

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE'05)
1530-1591/05 $ 20.00 IEEE

150

The RIPE Modeling Environment

Inaccuracies in execution time can be explained as fol-
lows. In Cacheloop, and until about 6-8 processors in MP
matrix and four in DES, the TG platform shows an accept-
able accuracy degradation. This is due to the compound-
ing of minimal timing mismatches caused by the conver-
sion from traces to TG programs. When adding even more
processors, however, accuracy improves again, because the
AMBA bus starts to saturate, causing the processors to idle
wait for bus arbitration for long amounts of time. The con-
gestion is serious enough to dominate the effect of the tim-
ing mismatches. Since TGs cannot save simulation com-
plexity if the replaced processors are in idle state, this is
also the reason causing the speedup to get smaller with large
numbers of processors in MP matrix and DES. For Cache-
loop, which always executes from the local caches without
any bus traffic, this phenomenon does not appear. Thus, the
reduced speedup is not a property of the TG.

The impact of trace collection is small, and is incurred
only once. For example, when running the MP matrix
benchmark on the AMBA interconnect with four ARM
processors, a plain benchmark run takes 128 s; the bench-
mark run with TG tracing enabled takes 147 s, and subse-
quent parsing and elaboration requires an additional 145 s
for a 20 MB trace file!. Only one such iteration is needed to
be able to take advantage of 2x to 4x speedups in subsequent
design space exploration. Additionally, since processed TG
programs are identical regardless of the reference intercon-
nect in which raw traces were collected, such collection
could be performed on top of a transactional fabric model,
further reducing the impact of the reference simulation.

7 Conclusions

Experimental results prove the viability of a TG-based
approach which decouples simulation of IP cores and of in-
terconnect fabrics. Even in presence of unpredictable con-
tention for shared resources in a multiprocessor environ-
ment, our TG model proved capable of delivering speedups
in the order of 2x to 4x when run on AMBA while keeping
a remarkable accuracy.

The TG model we propose provides a wide range of fea-
tures, with a simple but powerful instruction set allowing for
sophisticated flow control and therefore a variety of com-
munication patterns. It is very useful for fast and accurate
verification and exploration of different NoC architectures,
which is the motivation of this work. While this paper was
focused on simulation speedup, the TG may also be used as
a flexible tool in a variety of platforms. The TG might be
used in association with manually written programs to gen-
erate traffic patterns typical of IP cores still in the design
phase, helping in the tuning of the communication perfor-
mance between the underlying NoC and that IP core.

Our future work includes synthesis of the TG device,
and support for processors allowing out-of-order transac-

tions. Research will also include analysis of the behavior of
a system in which multiple tasks run on a single processor
and are dynamically scheduled by an OS, either based upon
timeslices (preemptive multitasking) or upon transition to
a sleep state followed by awakening on interrupt receipt.
Context switching-related issues will need to be modeled or
predicted.

8 Acknowledgments
The work of Shankar Mahadevan is partially funded by SoC-Mobinet,

Nokia, and the Thomas B.Thrige Foundation. The work of Federico Angi-
olini is partially funded by ARTIST.

References

[1] Open Core Protocol Release 2.0

http://www.ocpip.org, 2003.

E. Bolotin, 1. Cidon, R. Ginosar, and A. Kolodny. QNoC:

QoS architecture and design process for network on chip. In

Journal of Systems Architecture. Elsevier, 2004.

[3] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and

L. Benini. xpipes: A latency insensitive parameterized

Network-on-Chip architecture for multi-processor SoCs. In

Proceedings of 21st International Conference on Computer

Design, pages 536-539. IEEE Computer Society, 2003.

F. Fummi, P. Gallo, S. Martini, G. Perbellini, M. Poncino, and

F. Ricciato. A timing-accurate modeling and simulation envi-

ronment for networked embedded systems. In Proceedings of

the 42th Design Automation Conference, pages 42-47, 2003.

T. Grotker, S. Liao, G. Martin, and S. Swan. System Design

with SystemC. Kluwer Academic Publishers, 2002.

K. Lahiri, A. Raghunathan, and S. Dey. Evaluation of the

traffi c-performance characteristics of System-on-Chip com-

munication architectures. In Proceedings of the 14th Inter-

national Conference on VLSI Design, pages 29-35, 2001.

[7] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey.
Communication architecture tuners: A methodology for the
design of high-performance communication architectures for
System-on-Chips. In Proceedings of the 2000 Design Au-
tomation Conference, DAC’00, pages 513-518, 2000.

[8] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and
R. Zafalon. Analyzing on-chip communication in a MPSoC
environment. In Proceedings of the 2004 Design, Automation

and Test in Europe Conference (DATE’04). IEEE, 2004.
0. Ogawa, S. B. de Noyer, P. Chauvet, K. Shinohara,
Y. Watanabe, H. Niizuma, T. Sasaki, and Y. Takai. A practi-
cal approach for bus architecture optimization at transaction
level. In Proceedings of Design, Automation and Testing in
Europe Conference 2004 (DATEO03). IEEE, March 2003.
[10] S. Pasricha, N. Dutt, and M. Ben-Romdhane. Extending the
transaction level modeling approach for fast communication
architecture exploration. In Proceedings of 38th Design Au-
tomation Conference (DAC’04), pages 113—118. ACM, 2004.
[11] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik,
J. Rabaey, and A. Sangiovanni-Vincentelli. Addressing the
System-on-Chip interconnect woes through communication-
based design. In Proceedings of the 38th Design Automation
Conference (DAC’01), pages 667 — 672, June 2001.

Specifi cation,

[2

14

[5

6

[9

vrr,p

COMPUTER
SOCIETY

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

CHAPTER 8

Realistically Rendering SoC
Traffic Patterns with Interrupt
Awareness

Published in the IFIP Very Large Scale Integration Systems and their Designs
Conference 2005.

Complete citation:

Federico Angiolini, Shankar Mahadevan, Jan Madsen, Luca Benini and Jens
Sparsg. “Realistically Rendering SoC Traffic Patterns with Interrupt Aware-
ness.” IFIP Very Large Scale Integration Systems and their Designs Conference
(VLSI-SoC), Perth Australia. IEEE, Oct. 2005: 211-216.

152 Appendix 8

Paper #6: Rendering SoC Traffic Patterns with Interrupt Awareness 153

Realistically Rendering SoC Traffic Patterns with Interrupt Awareness

Federico Angiolini* ~ Shankar Mahadevan'

T Informatics and Mathematical Modelling (IMM)
Technical University of Denmark (DTU)
Richard Petersens Plads, 2800 Lyngby, Denmark
e-mail: {sm, jan, jsp} @imm.dtu.dk

Abstract

In Multi-Processor System-on-Chip (MPSoC) design
stages, accurate modeling of IP behaviour is crucial to
analyze interconnect effectiveness. However, parallel de-
velopment of components may cause IP core models to be
still unavailable when tuning communication performance.
Traditionally, synthetic traffic generators have been used
to overcome such an issue. However, target applications
increasingly present non-trivial execution flows and syn-
chronization patterns, especially in presence of underlying
operating systems and when exploiting interrupt facilities.
This property makes it very difficult to generate realistic test
traffic. This paper presents a selection of applications us-
ing interrupt-based synchronization; a reference methodol-
ogy to split such applications in execution subflows and to
adjust the overall execution stream based upon hardware
events; a reactive simulation device capable of correctly
replicating such software behaviours in the MPSoC design
phase. Additionally, we validate the proposed concept by
showing cycle-accurate reproduction of a previously traced
application flow.

1 Introduction

Undertaking realistic exploration and optimization of the
SoC interconnect is an important but time-consuming step
in designing a multiprocessor SoC. It requires cycle-true
simulation models of both the IP cores and the intercon-
nect to be simultaneously available and ready to interoper-
ate. Shrinking product lifetimes force the designers to con-
sider the deployment of Traffic Generators (TGs), i.e. of
devices capable of generating inter-core transactions. How-
ever, it is possible that neither stochastic traffic patterns [3],
nor playback of prerecorded transaction traces collected on
areference system, are sufficient for interconnect optimiza-
tion. The former approach fails to correctly capture the time
distribution of traffic spikes, while in the latter approach, the
deployment of different cores and interconnect architectures
with respect to the reference platform leads to unpredictable
system behaviour. This includes variance in the number and
relative ordering of transactions, thus rendering the use of
prerecorded traces inaccurate. An example is synchroniza-
tion by semaphore polling, which can require an unknown
number of bus accesses before getting lock ownership.

An even greater challenge is posed by inherently asyn-

Jan Madsen?

¥ Dipartimento di Elettronica, Informatica e Sistemistica (DEIS)
University of Bologna
Viale Risorgimento, 2 40136 Bologna, Italy
e-mail: {fangiolini, Ibenini} @deis.unibo.it

Luca Benini* Jens Sparsg’

chronous communication events such as interrupts. While
interrupts themselves typically have a low impact on com-
munication resources, interrupt handling can severely im-
pact network traffic with activity peaks. Interrupt notifi-
cation is generally supposed to alter the application flow,
e.g. by notifying the need for a change of operating mode,
such as rescheduling and context switching in the Operat-
ing System (OS), which may result in completely different
communication requirements. Thus, a model describing IP
core traffic should feature extensive reactive capabilities to
mimic the behaviour of the core when facing unpredictable
environmental events and network performance. Addition-
ally, awareness of the multiprocessor nature of the tar-
get platform, which implies synchronization requirements,
should be provided.

In this paper, we present a reactive traffic generator
model, encompassing an instruction set and a program-
mable simulation device. The novel feature of our approach
is that any knowledge about the behaviour of the final sys-
tem can be thoroughly taken into account and rendered by
means of TG programs. Based on the flow control writ-
ten in the TG program, described later in Section 3, the TG
model realistically adjusts its output depending on complex
external synchronization events, like semaphore interaction
and interrupt notification. The result are traffic patterns that
closely resemble those of the real application with OS, run-
ning on top of the real IP core, while not giving up any accu-
racy on the handling of multiprocessor synchronization and
intercommunication issues (i.e. idle waits, task interruption,
and so on). The proposed cycle-true TG approach allows
for the separation of computation and communication con-
cerns, so that designers can focus on accurate exploration of
the SoC interconnect.

Previously, in [5], we had proposed a traffic generator
model capable of capturing the dynamics of core-initiated
communication (reads, writes). However, it could only han-
dle simple test cases, i.e. single task per processor, with
the OS transparent to the application flow. The contribution
of the current paper is an extension of the model aimed at
accurately capturing system-initiated communication, such
as interrupts, and the related response, i.e. the OS-driven
interrupt handling mechanism. As a demonstration of the
flexibility and accuracy of the proposed model, this paper
will show how it can be applied to more complex and true-

154

The RIPE Modeling Environment

(a) (b) (c)

Timer Device IP Core IP Core 1 IP Core2 10 Device IP Core
Task A Task B lug C Task
interrupt
semapno}r;
gheck interrupt | Handler
interrupt
—_—
(locked,
interrupt
—
semaphore interrupt | Handler
interrupt [aunlock —
—
interrupt
—
interrupt_
interrupt
—_—
interrupt| Handler
interrupt semaphore >
I re—check |
interrupt (unlocke
Time

Figure 1. Interrupt-aware Applications. Dot-
ted lines represent suspended tasks.

to-life applications, with general-purpose ARM processors
running an OS in a multicore environment.

The rest of the paper is organized as follows. Relevant
interrupt-aware applications to be modeled are discussed in
Section 2. Section 3 presents details of the proposed imple-
mentation of the TG, specifically stressing flow control han-
dling in presence of interrupts. Section 4 describes possible
ways to write programs for execution on top of TGs, and
Section 5 highlights an example TG deployment. Section 6
presents simulation results which document the potential of
our TG approach. Section 7 contrasts our results to previous
work. Finally, Section 8 provides conclusions.

2 Interrupt-based Synchronization Scenar-
ios

Using interrupts, many communication and synchroniza-
tion schemes are possible among tasks in a multiproces-
sor environment. To analyze such a wide variety of pat-
terns [8], we identified three applications, interacting both
among themselves and with the underlying OS, which high-
light interrupt handling scenarios typical of real systems.
These applications perform relatively light computation but
exhibit non-trivial flow patterns, which makes them much
more difficult to model than computation-intensive tasks.
As such, these test cases are used to derive requirements of
the most typical interrupt-based flow controls. The applica-
tion templates we identified are:

* A multi-tasking application (“task™), as in Figure 1(a).
In this case, two tasks run on each processor; a variable
amount of system processors may be present. No ex-
plicit communication is performed between tasks, nei-
ther intra- nor inter-core. The context switching be-
tween tasks is performed by the OS in response to an
external interrupt, which may typically be sent by a

timer device. It is important to notice that, if tasks are
asymmetric, any rescheduling translates into different
traffic workloads for the communication fabric. This
effect must be captured.

A task synchronization application (“pipe”), as in Fig-
ure 1(b). For this case, a single task is mapped onto
every system core. Tasks are programmed to commu-
nicate with each other in a point-to-point producer-
consumer fashion; every task acts both as a con-
sumer (for an upstream task) and as a producer (for
a downstream task), therefore logical pipelines can be
achieved by instantiating multiple cores. Synchroniza-
tion is needed in every task to check the availability
of input data and of output space before attempting
data transfers. To guarantee data integrity, semaphores
are provided to assess such availability. For example,
the consumer checks a semaphore before accessing
producer output. If this semaphore is found initially
locked, a continuous polling might be attempted, but
at the expense of wasted energy and saturation of the
system interconnect. Instead, we implemented an in-
terrupt mechanism which, in such a scenario, suspends
the consumer task and resumes it only when data is
ready.

An IO-aware application (“I0”), as in Figure 1(c).
A single task is running on every system processor.
These tasks do not communicate with each other, and
perform independent computation. However, at ran-
dom times, a system I/O device sends an interrupt to
all of the cores to signal data availability. In response
to this signal, the processors execute an interrupt han-
dler routine, which moves data blocks across the sys-
tem interconnect. When such handling is completed,
tasks resume their normal operation.

In real life, a task-style application flow can be observed
in time-slicing mechanisms in OS schedulers, while pipe
models the processing of multimedia datastreams. The IO
flow is commonly found in applications interacting with in-
put/output devices. It is clear from the presented application
behaviours that accurately capturing the interrupt propaga-
tion (and therefore the synchronization schemes) requires
thorough analysis.

The applications described above are timing-sensitive.
However, within the single task, the overall performed com-
putation does not change depending on the order of ar-
rival of external events, and data dependencies can be cap-
tured. Only the amount of computation between each pair
of events can vary. Should an environment constraint not be
satisfied, tasks always enter some form of suspension, albeit
in very different manners in each of the three examples. So,
while an execution trace of these benchmarks shows vary-
ing traffic patterns depending on external timings, the major
computation blocks are still recognizable.

Even though tasks with even more timing-dependent be-
haviour do exist, modeling such tasks requires an intra-task
notion of context switching, which we omit here. It is worth

Paper #6: Rendering SoC Traffic Patterns with Interrupt Awareness 155

[Tnstruction Description
OCP Instructions:
Read(AddrReg) Read from an address

Write to an address
Burst read an address set
Burst write an address set

Write(AddrReg, DataReg)

BurstRead(AddrReg, CountReg)

BurstWrite(AddrReg, DataReg,
CountReg)

pecial Name Usage

S

Interrupt Registers:
2

IntrpMaskReg ~ Masks or unmasks interrupts
3 IntrpReg Stores a backup of the program counter
5 SWintrpReg Sends a software interrupt from

within the program

Other Instructions:

Other Registers:
1

If(argl, arg2, operand) Branch on condition ThrdIDReg Stores the ID of the current task
Jump(label) Branch direct . 4 RDReg Stores the data value returned
SetRegister(reg, value) Set register (load immediate) by the Read(AddrReg) instruction
Idle(counter) Wait for given no of cycles 6 RinReg Stores a jump target location

Table 1. OCP-master TG instruction set.

stressing that, though not all interrupt-driven behaviours are
represented, the applications we try to analyze here are def-
initely representative of a vast class of computation. The
model we will propose can capture all such dynamics, given
proper insight on the mechanics of the applications and the

3 Support for Application Flow Replication

In this section, we describe (i) an instruction set which
is capable of replicating the traffic patterns generated by an
1P core, (ii) an implementation of it by means of a TG In-
struction Set Simulator (ISS), and (iii) an example program
written to exploit TG capabilities. The whole approach sig-
nificantly extends [5] to support interrupts and task switch-
ing, enabling the modeling of real-life tasks.

The TG has an Open Core Protocol (OCP) [2] master in-
terface, and it can emulate IP cores running one or multiple
tasks with or without OS. The TG is able to issue a sequence
of communication transactions separated by idle wait peri-
ods, based on the programmed flow control conditions. In
order to handle interrupts and other synchronization events,
it is reactive, i.e., if necessary, it is able to switch between
tasks upon notification. The TG is implemented as a non-
pipelined processor with a very simple instruction set, as
listed in Table 1. The processor has an instruction memory
and a register file for each task, but no data memory. The in-
struction set consists of a group of instructions which issue
OCP transactions and a group of instructions allowing the
programming of conditional sequencing and parameterized
waits. Within the register file, some registers are designated
as special purpose for flow control management; their us-
age is described in Table 2. The rest are general purpose
registers, and their number can be configured.

Of the interrupt-related registers, Register 2 can be used
to mask critical sections of the TG program from interrupts.
As seen in Section 2, different applications require differ-
ent responses to interrupt events. For example, in IO mod-
eling, the main task is always interruptible, while once in
the OS’s interrupt handling routine, additional (nested) in-
terrupts should be disabled. Register 3 holds the base lo-
cation of the interrupt handling code within the TG pro-
gram. Register 5 allows the TG program to assert “software
interrupts”, to which the TG model will react with jumps
to different parts of the program. Software (SW) inter-
rupts are managed internally by the TG model. In contrast,
hardware (HW) interrupts are routed through external wires

Table 2. TG Special Registers.

from the interconnect, and are available on the sideband sig-
nals (SInterrupt) of the OCP interface. Registers 1, 4
and 6 provide support for specific flow control functions.

Within the TG ISS, by maintaining copies of the Pro-
gram Counter (PC) and register file associated with each
task, the context switching upon an interrupt event can be
realized. Upon interrupt notification, the values of the PC
and register file of the interrupted task are saved, the PC is
updated with a value read from the special Register 3, and
the register file values for the designated task are loaded. It
is afterwards possible to safely exit from the interrupt rou-
tine and resume a suspended task by jumping to the backup
value of the source PC and reloading the backup of the reg-
ister file.

Let us now consider an example of a TG program. In
Figure 2, a program to model the 10 application is sketched;
the interrupt handling routine is coded together with the task
itself. The TG program starts with a header describing the
type of core and its identifier. The next few statements ex-
press initialization of the register file. The PC is increasing
by either one or two locations along the trace; this is because
some of the opcodes in Table 1, namely SetRegister
and If£, require longer operands and therefore fill two pro-
gram slots. The main body of the TG program is com-
posed of sequences of bus reads and writes, interleaved with
register accesses (mostly to set up transaction address and
data). Flow control instructions are inserted where appro-
priate. The interrupt handling routine is located at PC 37;
this base address is stored in Int rptReg, which is initial-
ized at PC 2. Within the interrupt routine, which is the crit-
ical section of the flow, interrupts are disabled. Upon a HW
interrupt event, the TG swaps the content of Int rptReg
with that of PC. The TG program then executes any OS- or
programmer-driven interrupt instructions, including trans-
actions over the communication architecture. At the end
of the flow, a software interrupt is triggered to restore the
PC to the previously interrupted location (retrieved from
IntrptReq). The flow thus mimics Figure 1(c).

4 Coding TG Programs

Depending on IP model availability to the designer, dif-
ferent ways exist to write TG programs which best represent
the desired type of traffic.

156

The RIPE Modeling Environment

MASTER[<coreID>] ; Initializations
REGISTER IntrpMaskReg 0 ; INTRP Mask
REGISTER IntrptReg 0 ; INTRP Save PC

BﬁGIN ; Comments PC
SetRegister(IntrpMaskReg, 1) ; Unmask HW INTRP 0
SetRegister(IntrptReg, 37) ;IRC at PC 37 2
idle(10) s idle for 10 cycles 4
chchislcr(Addchg, 2) ; normal flow 10
SetRegister(DataReg, 1) : 12
Write(AddrReg, DataReg) H 14
jump(myPRGM) : jump to PC 58 36

; Interrupt Handling Routine at PC 37

THR SetRegister(IntrpMaskReg, 0) ; Mask HW INTRP 37
SetRegister(AddrReg, 23) H 39
SetRegister(DataReg, 1) H 41
Write(AddrReg, DataReg) H 43

§cl_chistcr(ImrpMaschg, 1)
SetRegister(SWIntrpReg, 1)
; End Interrupt Handling

; Unmask HW INTRP 54
; Trigger SW INTRP 56

myPRGM SetRegister(AddrReg, ; Continue normal low 38
cad(AddrReg) : 60
END : 124

Figure 2. 10 TG Program.

4.1 Trace Parsing

In this scenario, availability of a pre-existing model for
the IP under study is assumed. In this case, the approach
for TG program generation goes through two steps. First,
a reference simulation is performed by using the available
IP model, even plugged into a different SoC platform from
the target one. An execution trace is collected. Second, the
trace is parsed with an off-line tool. The output of the tool
is the desired TG program.

In [5], we applied the above methology and showed that
the replacement of a pre-existing ISS with a TG device can
speed up subsequent simulations, which is valuable in any
design space exploration stage. The TG provides a quick
functional yet cycle-accurate port of the IP model to a SoC’s
interconnect platform; this is useful in the case where pre-
existing IP models are not directly or immediately avail-
able (due to licensing or technical issues) for the next co-
exploration phase.

4.2 Trace Parsing and Editing

In a related scenario, an IP model might be available,
but it may differ under some respect from the IP that will
eventually be deployed in the SoC device. The designer
may then follow a route similar to the one outlined above,
but with an additional step: editing the reference trace so
that it more closely resembles that of the target IP. Some
examples of the editing steps which are possible include:

¢ Removing or adding bus transactions to approximate
a different cache subsystem and/or a target Instruction
Set Architecture (ISA) behaviour

* Altering the spacing among bus transactions to reflect
different pipeline designs or timing properties

» Grouping or ungrouping bus accesses to reflect write-
back vs. write-through cache policies

The effort required to automate these kinds of trace alter-
ations is expected to be quite low. It is certainly reasonable
to expect that the TG program coding time will be substan-
tially less than that required to develop or refine the target
TP model, thus allowing for earlier exploration of the inter-
connect design space.

In this scenario, overall cycle accuracy with respect to
the eventual system is of course not guaranteed. However,
the TG will still be able to react with cycle accuracy to
any optimization in the SoC interconnect. Provided that the
transaction patterns are kept close to the ones of the target
IP core, the approach will result in valuable guidelines.

4.3 Direct Development

Of course, TG programs can be written from scratch.
In this case, the flexible TG instruction set allows for a
full-featured traffic generation system. The availability of
built-in flow control management lets the designer imple-
ment the same synchronization patterns which are present
in real world applications (see Section 3 and [5]). Addi-
tionally, the application chunks enclosed within synchro-
nization points can quickly be rendered by exploiting the
flexible loop structures provided by the TG ISS, thus pro-
viding periodic traffic generation capabilities at least on par
with those of traditional TG implementations.

5 Test Case of Trace-Based TG Deployment

To test TG accuracy and viability, we set up a validation
flow following the outline described in Section 4.1. The
TG model was integrated into MPARM [4], a homogeneous
multiprocessor SoC simulation platform, which provides a
bit- and cycle-true SoC reference simulation environment.
MPARM also contains a port of RTEMS [1] - a real-time
OS. The use of the OCP 2.0 [2] protocol at the interfaces
between the cores and the interconnect allows for an easy
exchange of IP cores for TGs. After performing a refer-
ence simulation, where execution traces were collected, we
processed them to derive suitable TG programs. The off-
line tool for trace to TG program conversion, explained
in [5], was significantly expanded to capture fundamen-
tal application flow properties and synchronization patterns
like those described in Section 2. The trace to TG program
conversion process is fully automated and the time taken for
this process is nominal. The validation of the TG flow was
achieved by coupling the TG with the same interconnect
used for tracing with IP cores, and checking the accuracy of
the resulting IP core emulation. Experimental results will
be shown in Section 6.

It is worth stressing that the complexity of application
modeling in presence of interrupt handling is not trivial.
However, the algorithm in the automated flow is capable of
detecting and capturing many synchronization behaviours
of Section 2, without the need for the designer to handle

Paper #6: Rendering SoC Traffic Patterns with Interrupt Awareness 157

Spontaneous
suspension

Semaphore

Task suspend
locked? a8

No

Idie walt
Interrupt?
Task
execution

Task resume

Normal
computation

flow Resumption
on interrupt

OS routines

Figure 3. Application flow of pipe.

them manually, as explained next. Depending on the target
application, one or more of the following pieces of infor-
mation can be extracted about interrupt handling from the
trace file to help the translator tool:

« the time when interrupt events occur,
« the end of an interrupt handling routine,

« the spontaneous suspension waiting for an interrupt in
idle state.

The amount of annotations that can be extracted reflects
the degree of access the programmer has to the interrupt
routine and to the OS internals. In the IO test case, the in-
terrupt handling is likely to be part of the functionality of
a custom device driver, and thus we assume that the pro-
grammer has full access to both the code of the application
and of the interrupt handler. Therefore, trace files contain
the time of occurrence of the interrupt event; custom mark-
ers (i.e. dummy memory accesses to specific locations) can
be appended by the programmer at the end of the interrupt
handling routine. The transactions within these bounds can
be detected as interrupt handling code and be encapsulated
as such in the TG program.

In the pipe scenario, the task is interacting with the OS
internals by voluntarily suspending should certain condi-
tions be true (i.e. finding a semaphore locked). Addition-
ally, the task negotiates with the OS to be resumed upon
interrupt receipt. The task may also want to ignore an in-
terrupt in the following condition: it is possible that the
upstream producer, or the downstream consumer, notifies
availability of data or buffer space before the actual need
for such resources, because the current task is still busy with
previous internal processing. Despite the complex interac-
tion, usually the synchronization functionality required by
pipe can be achieved by properly using OS APIs, without
direct access to the interrupt handler code, whose exit point
is therefore assumed to be not accessible by the program-
mer. As aresult, the only annotations of significance within

2.00%

[task - 2P
task - 4P
W task - 6P
pipe - 2P
M pipe - 4P
[pipe - 6P
Wio-2p
J10 - 4p
HWI0-6pP

1.80%

1.60%

1.40%

1.20%

1.00%

Relative Error (%)

Exec Time Reads Writes

Figure 4. Accuracy of the execution on TGs
vs. the original ARM cores.

the trace file are the synchronization points (semaphore
checks) and the interrupt arrival time. A TG program can
thus mimic the flow shown in Figure 1(b), first by reading
the semaphore location, and then by choosing to continue or
suspend depending on the lock. Upon resumption by HW
interrupt, a final (re-)check of the semaphore unlock can
be done to ensure safe task operation. Figure 3 shows the
equivalent flow. In the TG program, HW interrupts are used
to wake up from the suspension state within OS routines,
while SW interrupts redirect the execution flow towards the
main task. Note that Int rpMaskRegq is set to the masked
state for the regular program and OS execution, and is only
unmasked within the suspended state.

In the task benchmark, the interrupt handler is typically
completely out of the programmer’s control, as it is tied to
the OS scheduling code. The tasks are not explicitly notified
upon the receipt of an interrupt, and are just suspended and
resumed by the OS. Therefore, trace files are annotated only
with the time of occurrence of interrupt events. The TG ex-
ecution toggles among tasks upon these interrupts. This is
not much different from IO, but, since it is assumed for the
programmer to be impossible to explicitly tag the handler
exit point with a custom flag, the interrupt handling routine
is merged with a stage of the next scheduled task because
the off-line tool has no way to detect this jump. Addition-
ally, control is never spontaneously released by means of
SW interrupts: the previously active task is only resumed
upon arrival of a HW interrupt. The TG ISS automatically
supports context switching, as described in Section 3, with
multiple register sets.

6 Experimental Results

We coded the three test cases mentioned in Section 2 as
tasks running on top of an operating system and we simu-
lated them within the MPARM framework. Each was tested
with two (2P), four (4P) and six (6P) system processors.
For task and 10, we devoted one of the system cores to the
generation of interrupts, emulating the role of a timer or an
10 device; this processor is not generating any other traffic
on the bus, and is just idling between interrupt generation
events. The pipe benchmark does not need this, since inter-

158

The RIPE Modeling Environment

rupts are directly triggered by the same tasks which perform
the computation. Figure 4 depicts the accuracy of our mod-
eling scheme, by plotting the mismatch among the original
execution on ARM cores and the execution on TGs (after
applying the flow described in Section 5).

The plot shows a good match between ARM and TG
runs. The typical relative error, both in execution time and
number of bus accesses, is below 2%, resulting in a faith-
ful reproduction of the original execution flow and traffic
patterns. The near-matching amount of read and write ac-
cesses proves the role of the TG as a powerful design tool
to mimic complex application behaviour in replacement of
areal IP core. Additionally, the correctness of our TG pro-
gram translation is validated. Some mismatches can be ob-
served especially in the execution time for the pipe bench-
mark. These are due to minor issues in properly pinpointing
single sections of internal OS code in the execution trace.

‘With regards to the simulation speedup, a gain of 1.37x
to 2.27x was observed when running the benchmark code
on TGs as opposed to ARM ISSs'. The task and IO bench-
marks showed slightly better results than the pipe bench-
mark due the presence of an IP core which is idle for most
of the time, in the time lapses between interrupt injections.
In addition, the pipe benchmark is at a disadvantage due
to a higher bus utilization (with six processors, 78% against
63% for 10 and 38% for task), which shifts simulation time
emphasis upon the interconnect model.

7 Previous Work

The use of traffic generators to explore NoC architec-
tures is not new. Apart from the ineffective statistical ap-
proach presented in [3], in [6, 7], Transaction-Level Mod-
eling (TLM) has been used for bus architecture exploration.
The communication is rendered as read and write transac-
tions, which are implemented within the bus model. De-
pending on the required accuracy of the simulation results,
timing information such as bus arbitration delay is anno-
tated within the bus model. In [7] intra-transaction visibility
is traded off for a simulation speed gain. While modeling
the entire system at a higher abstraction level i.e. TLM,
both [6] and [7] preserve accuracy with gains in simulation
speed. Such models are efficient in capturing regular com-
munication behaviour, but the fundamental problem of cap-
turing system reactiveness in presence of interrupts is not
addressed.

Our approach is significantly different from a purely be-
havioural encapsulation of application code into a simula-
tion device, in analogy with TLM modeling. The TG model
we propose is aimed at faithfully replicating traffic patterns
generated by a processor running an application, not just
by the application; this includes e.g. accurate modeling of
cache refills and of latencies between accesses, allowing for
cycle-true simulations. In [5], we have successfully and
accurately captured core-initiated system behaviour, while

'Benchmarks taken on a multiprocessor Xeon® 1.5 GHz with 12 GB
of RAM, thus eliminating any disk swapping or loading effect. Time mea-
surements were taken by averaging over multiple runs.

in this paper we have attempted to model the processor’s
response to unpredictable system-initiated communication
events. We propose an extensive methodology, that takes
into account multitasking and the impact of an underly-
ing OS as seen in realistic applications. To the best of our
knowledge, this is the first time that such a light-weight in-
terrupt modeling flow has been adopted to represent a wide
range of synchronization patterns. Additionally, we have
deployed the flow in a test environment, showing it to be
over 98% accurate and proving a speedup that, while nomi-
nal, favourably compares to [7].

8 Conclusions

Experimental results proved the viability of a modeling
approach which decouples simulation and optimization of
IP cores and of interconnect fabrics. Even when tested
under complex synchronization scenarios, including asyn-
chronous interrupts involving OS interaction in a multi-
processor environment, the proposed instruction set is able
to reproduce IP traffic with full capability to express the ap-
plication flow. Multiple ways to write programs for this ar-
chitecture are suggested, and a thorough analysis of one of
them is presented. The accuracy of a simulation device pro-
viding an implementation of said instruction set is validated
in a cycle-true environment by benchmarking multiple ap-
plications, additionally achieving a nominal but noticeable
simulation speedup.

References

The Real-Time Operating System for Multiprocessor Systems.
http://www.rtems.com.

[2] Open Core Protocol Specification, Release 2.0, 2003.

[3] K. Lahiri, A. Raghunathan, and S. Dey. Evaluation of the traffic-
performance characteristics of System-on-Chip communication archi-
tectures. In Proceedings of the 14th International Conference on VLSI
Design, pages 29-35, 2001.

[4] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon. Ana-
lyzing on-chip communication in a MPSoC environment. In Proceed-
ings of the 2004 Design, Automation and Test in Europe Conference
(DATE'04). TEEE, 2004.

[5]1 S.Mahadevan, F. Angiolini, M. Storgaard, R. G. Olsen, J. Sparsg, and
J. Madsen. A network traffic generator model for fast network-on-
chip simulation. In Proceedings of Design, Automation and Testing in
Europe Conference 2005 (DATEOS). IEEE, March 2005.

[6] O. Ogawa, S. B. de Noyer, P. Chauvet, K. Shinohara, Y. Watanabe,
H. Niizuma, T. Sasaki, and Y. Takai. A practical approach for bus ar-
chitecture optimization at transaction level. In Proceedings of Design,
Automation and Testing in Europe Conference 2003 (DATEO3). IEEE
Computer Society, March 2003.

[7] S. Pasricha, N. Dutt, and M. Ben-Romdhane. Extending the trans-
action level modeling approach for fast communication architecture
exploration. In Proceedings of 38th Design Automation Conference
(DAC’04), pages 113-118. ACM, 2004.

W. Wolf. Computers as Components:Principles of Embedded Com-
puting System Design, chapter 3. Morgan Kaufmann, 2001.

[8

Bibliography

[1]

A. Baghdadi and N-E. Zergainoh. Design Space Exploration for Hard-
ware/Software Codesign of Multiprocessor Systems. In Proceedings of the
11th International Workshop on Rapid System Prototyping (RSP), pages
8-13. IEEE, June 2000.

Luca Benini and Giovanni De Micheli. Networks on chips: A new SoC
paradigm. IEEE Computer, 35(1):70-78, January 2002.

A. Bobrek, J. J. Pieper, J. E. Nelson, J. M. Paul, and D. E. Thomas.
Modeling shared resource contention using a hybrid simulation/analytical
approach. In Proceedings of Design, Automation and Testing in Europe
Conference (DATE), pages 1144-1149. IEEE, Febuary 2004.

Lukai Cai and Daniel Gajski. Transaction level modeling in system level
design. CECS technical report 03-10, Center for Embedded Computer Sys-
tems, Information and Computer Science, University of California, Irvine,
March 2003.

Jon Connell. Arm system-level modeling. Available from ARM website
(http:// www.arm.com), June 2003.

William J. Dally and Brian Towles. Route packets, not wires: On-chip
interconnection networks. In Proceedings of the 38th Design Automation
Conference (DAC), pages 684-689. IEEE, June 2001.

Franco Fummi, Paolo Gallo, Stefano Martini, Giovanni Perbellini, Massimo
Poncino, and Fabio Ricciato. A timing-accurate modeling and simulation
environment for networked embedded systems. In Proceedings of the 42th
Design Automation Conference (DAC), pages 42—47, June 2003.

160 BIBLIOGRAPHY

[8] Franco Fummi, Stefano Martini, Giovanni Perbellini, Massimo Poncino,
Fabio Ricciato, and Maura Turolla. Heterogeneous co-simulation of net-
worked embedded systems. In Proceedings of Design, Automation and
Testing in Europe Conference (DATE). IEEE, Febuary 2004.

[9] Paolo Gai, Luca Abeni, and Giorgio Buttazzo. Multiprocessor DSP
Scheduling in System-on-a-chip Architectures. In Proceedings of the 14th
Euromicro Conference on Real-Time Systems (ECRTS), pages 231-238.
IEEE, June 2002.

[10] A. Gerstlauer, H. Yu, and D.D. Gajski. RTOS modeling for system level de-
sign. In Proceedings of Design, Automation and Test in Europe, DATE’03,
pages 130-135, March 2003.

[11] Thorsten Grotker, Stan Liao, Grant Martin, and Stuart Swan. System
Design with SystemC. Kluwer Academic Publishers, 2002.

[12] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst.
System level performance analysis - the SymTA/S approach. In IEE Pro-
ceedings - Computers and Digital Techniques, March 2005.

[13] Jon Jonsson. The Impact of Application and Architecture Properties on
Real-Time Multiprocessor Scheduling. PhD thesis, School of Electrical and
Computer Engineering, Chalmers University of Technology, Goteborg, Swe-
den, August 1997. Ph.D. Thesis No. 311.

[14] K. Lahiri, A. Raghunathan, and S. Dey. Design space exploration for opti-
mizing on-chip communication architectures. In IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, 2004.

[15] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon. Analyzing
on-chip communication in a MPSoC environment. In Proceedings of Design,
Automation and Testing in Europe Conference (DATE), pages 752-757.
IEEE, Febuary 2004.

[16] G. De Micheli, R. Ernst, and W. Wolf. Readings in Hardware/Software
Co-Design. Morgan Kaufmann, 2001. 1st edition.

[17] OCPIP. Open Core Protocol (OCP) Specification, Release 1.0, 2001.

[18] OCPIP. The importance of sockets in SoC design. White paper download-
able from http://www.ocpip.org, 2003.

[19] Osamu Ogawa, Sylvain Bayon de Noyer, Pascal Chauvet, Katsuya Shino-
hara, Yoshiharu Watanabe, Hiroshi Niizuma, Takayuki Sasaki, and Yuji
Takai. A practical approach for bus architecture optimization at transac-
tion level. In Proceedings of Design, Automation and Testing in Furope
Conference (DATE). IEEE, March 2003.

BIBLIOGRAPHY 161

[20]

[24]

[25]

Sudeep Pasricha, Nikil Dutt, and Mohamed Ben-Romdhane. Extending the
transaction level modeling approach for fast communication architecture
exploration. In Proceedings of 38th Design Automation Conference (DAC),
pages 113-118. ACM, 2004.

P. Pop, P. Eles, and Z. Peng. Analysis and optimization of heterogeneous
multiprocessor SoC. In IEE Proceedings - Computers and Digital Tech-
niques, March 2005.

K. Richter, M. Jersak, and R. Ernst. A formal approach to mpsoc perfor-
mance verification. IEEE Computer, 36(4):60 — 67, April 2003.

James A. Rowson and Alblerto Sangiovanni-Vincentelli. Interface-based de-
sign. In Proceedings of the 34th Design Automation Conference (DAC’97),
pages 178-183, June 1997.

Marcus T. Schmitz, Bashir M. Al-Hashimi, and Petru Eles. System-Level
Design Techniques for Energy-FEfficient Embedded Systems. Kluwer Acad-
emic Publishers, 2004.

M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and Al-
blerto Sangiovanni-Vincentelli. Addressing the system-on-chip interconnect
woes through communication-based design. pages 667 — 672.

J. Sifakis. Modeling real-time systems - challenges and work directions. In
EMSOFT, Lecture Notes in Computer Science Vol. 2211, pages 373—-389.
October 2001.

Andreas Wieferink, Tim Kogel, Rainer Leupers, Gerd Ascheid, Hein-
rich Meyr, Gunnar Braun, and Achim Nohl. A system level
processor /communication co-exploration methodology for multi-processor
system-on-chip platforms. In Proceedings of Design, Automation and Test-
ing in Europe Conference (DATE), pages 1256-1261. IEEE Computer So-
ciety, Febuary 2004.

Daniel Wiklund. Development and Performance FEvaluation of Networks
on Chip. PhD thesis, Department of Electrical Engineering, Linkoping
University, 2005. Dissertation No. 932.

	Abstract
	Preface
	Manuscript Collection
	Acknowledgements
	I Preamble
	1 Introduction
	1.1 Gist of the Published Work
	1.2 Discussion
	1.3 Outline of the Thesis

	2 Concluding Remarks
	2.1 Contribution of this thesis
	2.2 Suggested Future Direction
	2.3 Summary and Conclusion

	II Body
	3 Overview of Networked MPSoC
	4 The ARTS Modeling Environment
	4.1 Network-Centric System-Level Model for Multiprocessor System-on-Chip Simulation
	4.2 ARTS: A System-Level Framework for Modeling MPSoC Components and Analysis of their Causality

	5 The RIPE Modeling Environment

	III Appendix
	6 Network-on-Chip Modeling for System-Level Multiprocessor Simulation
	7 A Network Traffic Generator Model for Fast Network-on-Chip Simulation
	8 Realistically Rendering SoC Traffic Patterns with Interrupt Awareness

