2,811 research outputs found

    A Community-based Cloud Computing Caching Service

    Get PDF
    Caching has become an important technology in the development of cloud computing-based high-performance web services. Caches reduce the request to response latency experienced by users, and reduce workload on backend databases. They need a high cache-hit rate to be fit for purpose, and this rate is dependent on the cache management policy used. Existing cache management policies are not designed to prevent cache pollution or cache monopoly problems, which impacts negatively on the cache-hit rate. This paper proposes a community-based caching approach (CC) to address these two problems. CC was evaluated for performance against thirteen commercially available cache management policies, and results demonstrate that the cache-hit rate achieved by CC was between 0.7% and 55% better than the alternate cache management policies

    Extensões para a compressão Base-Delta-Imediato

    Get PDF
    Orientador: Rodolfo Jardim de AzevedoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Memórias cache há muito têm sido utilizadas para reduzir os problemas decorrentes da discrepância de desempenho entre a memória e o processador: muitos níveis de caches on-chip reduzem a latência média de memória ao custo de área e energia extra no die. Para diminuir o dispêndio desses componentes extras, técnicas de compressão de cache são usadas para armazenar dados comprimidos e permitir um aumento de capacidade de cache. Este projeto apresenta extensões para a Compressão Base-Delta-Imediato, várias modificações da técnica original que minimizam a quantidade de bits de preenchimento numa compressão através da flexibilização dos tamanhos de delta permitidos para cada base e do aumento do número de bases. As extensões foram testadas utilizando ZSim, avaliadas contra métodos estado da arte, e os resultados de desempenho foram comparados e avaliados para determinar a validade de utilização das técnicas propostas. Foi constatado um aumento do fator de compressão médio de 1.37x para 1.58x com um aumento de energia tão baixo quanto 27%Abstract: Cache memories have long been used to reduce problems deriving from the memory-processor performance discrepancy: many levels of on-chip cache reduce the average memory latency at the cost of extra die area and power. To decrease the outlay of these extra components, cache compression techniques are used to store compressed data and allow a cache capacity boost. This project introduces extensions to the Base-Delta-Immediate Compression, many modifications of the original technique that minimize the quantity of padding bits by relaxing the allowed delta sizes for each base and increasing number of bases. The extensions were tested using ZSim, evaluated against state-of-the-art methods, and the performance results were compared and evaluated to determine the validity of the proposed techniques. We verified an improvement of the original BDI compression factor from 1.37x to 1.58x at a energy increase as low as 27%MestradoCiência da ComputaçãoMestre em Ciência da Computação1564395CAPE

    On the Theory of Spatial and Temporal Locality

    Get PDF
    This paper studies the theory of caching and temporal and spatial locality. We show the following results: (1) hashing can be used to guarantee that caches with limited associativity behave as well as fully associative cache; (2) temporal locality cannot be characterized using one, or few parameters; (3) temporal locality and spatial locality cannot be studied separately; and (4) unlike temporal locality, spatial locality cannot be managed efficiently online

    JTP: An Energy-conscious Transport Protocol for Wireless Ad Hoc Networks

    Full text link
    Within a recently developed low-power ad hoc network system, we present a transport protocol (JTP) whose goal is to reduce power consumption without trading off delivery requirements of applications. JTP has the following features: it is lightweight whereby end-nodes control in-network actions by encoding delivery requirements in packet headers; JTP enables applications to specify a range of reliability requirements, thus allocating the right energy budget to packets; JTP minimizes feedback control traffic from the destination by varying its frequency based on delivery requirements and stability of the network; JTP minimizes energy consumption by implementing in-network caching and increasing the chances that data retransmission requests from destinations "hit" these caches, thus avoiding costly source retransmissions; and JTP fairly allocates bandwidth among flows by backing off the sending rate of a source to account for in-network retransmissions on its behalf. Analysis and extensive simulations demonstrate the energy gains of JTP over one-size-fits-all transport protocols.Defense Advanced Research Projects Agency (AFRL FA8750-06-C-0199
    corecore