
A Community-based Cloud Computing Caching Service

Unekwu Idachaba

School of Computing

University of Kent

Kent, United Kingdom

e-mail: usi2@kent.ac.uk

Frank Wang

School of Computing

University of Kent

Kent, United Kingdom

e-mail: F.Z.Wang@kent.ac.uk

Abstract—Caching has become an important technology in the

development of cloud computing-based high-performance web

services. Caches reduce the request to response latency

experienced by users, and reduce workload on backend databases.

They need a high cache-hit rate to be fit for purpose, and this rate

is dependent on the cache management policy used. Existing

cache management policies are not designed to prevent cache

pollution or cache monopoly problems, which impacts negatively

on the cache-hit rate. This paper proposes a community-based

caching approach (CC) to address these two problems. CC was

evaluated for performance against thirteen commercially available

cache management policies, and results demonstrate that the

cache-hit rate achieved by CC was between 0.7% and 55% better

than the alternate cache management policies.

Keywords—Cache, Cloud Computing, Clustering, Artificial

Bee Colony

I. INTRODUCTION

A cache holds copies of requested data close to the
source of request, in anticipation of receiving the same
request again. This reduces request to response latency,
network traffic, and workload on web service backend
databases. As shown in Fig. 1, when a user makes a request
from a web service, the supporting cache is first checked for
existence of a response to the request. If a response exists in
the cache (cache-hit), the response is sent to the user. If a
response does not exist in the cache (cache-miss), a response
is extracted from the web service backend database, and a
copy is sent to the cache.

Figure 1. Web Caching. A user makes a request (A) on a web service, and

the supporting cache is checked. If a response exists in the cache (cache-

hit), the response (B) is sent to the user. If a response does not exist in the
cache (cache-miss), a response is extracted from the web service backend

database (C and D) and a copy (E) is sent to the cache.

 In the early 1980s, caches were used to support
computer processing units for improved computer
performance. Caches have since been shown to be useful in
other areas, including in computer disk drive management,

database management systems, web browsers, proxy servers,
and most recently, in cloud computing.

Since the early years of the internet, a lot has changed:
there is a growing world population, the internet is more
widely accessible, there are an increasing number of
applications, and there has been a shift from static to
dynamic content. These factors are responsible for
generating enormous volumes of traffic, putting huge
demands on the databases and cache resources which support
web services. As a result, web service users may experience
delays when retrieving web pages from remote sites. One
obvious solution is to expand resources, and cloud
computing is quickly becoming the preferred option in
achieving this. Cloud computing represents a new shared
consumption and delivery model for information technology
services, and its scalability allows the dynamic expansion of
resources based on demand [1][2][3]. However, the
expansion of resources may involve an increase in economic
cost. This paper presents a community-based caching
approach (CC) which manages caches more intelligently
rather than expanding them.

II. MOTIVATION AND CONTRIBUTION

This work is motivated by the emergence of caching as a
cloud service, supporting web services in keeping up with
the fast-growing demands of internet users on their backend
database servers [4]. Current commercially-available
management policies driving such cloud services were
developed to support other environments, such as computer
processing units and computer storage disks. They were not
developed with the multi-tenant characteristic or
homogeneity of scale of cloud computing in mind.

Also relevant is recent research into data mining,
particularly use of the Artificial Bee Colony clustering
algorithm, and the opportunity for exploiting the advantages
of homogeneity in cloud computing multi-tenancy using data
mining clustering methodology to make cloud computing-
based caches ‘smarter’, producing a better cache-hit rate.

Caches are expensive and limited in size. A cache
requires a policy to ‘manage’ it, or to dictate what is held or
removed [5]. Current commercially-available cache
management policies are prone to two problems: cache
pollution (where users continue to fill the cache with
requests which will not be referenced again) and cache
monopoly (where some users monopolise the cache with a

Cache as
a service

B

A

E

C

D

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/30710757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

higher request rate). To highlight the research questions that
flow from the consideration of these two problems, I
introduce two scenarios based on web use behaviour.

Cache Pollution: A user who issues frequent unique
requests for data objects with zero reusability potential may
evict other users’ cached data objects which have reusable
potential before they are reused.

In Fig. 2 User 1 sends the same request with 13 units of
time between each request, while User 2 sends different
requests each unit of time. Between t1 and t3, requests from
User 1 appeared once and did not survive in the cache for
reuse because User 2’s frequent and non-reusable requests
would always evict it. This leads to cache pollution, where
frequent non-reusable requests flood a cache. Caches are
meant to hold data for reuse, and so the higher the reusability
potential of a data object, the more it contributes to cache-hit
rate and therefore better utilisation of the cache. Cache
pollution prevents this effective use.

Cache Monopoly: In Fig. 2, assuming User 2 makes
some occasional repeat requests, there will be an issue of
cache monopoly, as User 1 yet does not stand a chance of a
cache-hit. If the cache’s shared resources are allocated based
on overlapping interests across all users, the risk of
monopoly can be minimised.

Figure 2. Cache Pollution and Monopoly.

Our research is aimed at optimising cache performance,
examining the following questions:

(1) Can the reduction of cache pollution and cache
monopoly improve cache-hit rate?

(2) Can identifying data objects with zero or little
potential of being referenced again and proactively
preventing them from being cached reduce cache
pollution?

(3) Can grouping users based on shared interests and
allocating cache resources based on these groups
rather than individual users minimise cache
monopoly?

(4) Can clustering successfully group users into
communities of shared interest and associated
interest levels?

From these questions we arrived at three summary
research objectives:

(1) Design of a new cache management policy which
prevents storage of data objects with little or no

reuse potential, and allocates cache resources based
on groups (communities) of shared interests.

(2) Implementation of this new cache management
policy, integrating a clustering algorithm to provide
community and shared interest ranking information.

(3) Evaluation the performance of the new cache
management policy against current commercially-
available cache management policies.

The result, and the subject of this paper, is a novel

community-based caching approach for cloud computing
environments.

III. DESIGN

Our proposed CC approach for cache management
identifies communities by grouping together users with
common interests, based on their access patterns, using a
clustering algorithm. It then profiles each community’s
interests based on popularity within that community. This
interest profile is used to prevent cache pollution by
determining which data object is allowed into the cache and
which cached data object is evicted. The identified
communities are used to minimise cache monopoly by
partitioning the cache and assigning each community to a
cache partition (Fig. 3).

Figure 3. A community-based caching approach.

CC is inspired by the foraging activity of natural honey
bees. The organisational techniques of foraging honey bees
has been proven to solve many optimisation problems
[6][7][8][9]. Two aspects of honey bee foraging activity in
particular have informed my engineering approach—
profitability-based deployment, and territorial organisation.

Profitability-based deployment: For a bee colony to
gather food efficiently, it deploys ‘employed foragers’ (E) to
identify food sources and their profitability. The colony then
deploys ‘unemployed foragers’ (onlooker bees: U and scout
bees: S) to food sources based on identified profitability, to
ensure that most of its nectar comes from the richest sources.

Territorial organisation: Back at the hive, food-storer
bee (FS) behaviour indicates the hive’s available nutrients—
its level of stockpiled nectar, pollen and water. Bee colonies
practice territorial defence. Hive guards (HG) react based on
the status of the hive: during nectar shortages, they are less
permissive of non-hive bees. But as nectar becomes

abundant guards become more permissive toward non-hive
mates (Fig. 4) [10][11].

Figure 4. Honey bee foraging activity. The employed bee (E) provides its

hive mates with information on identified food sources. The food-storer

bee (FS) provides information about the hive’s status. Onlooker bees (U)
and scout bees (S) use this information to ensure the hive gains the

nutrients it needs. Hive guards (HG) use the information provided by FS to

determine whether to allow non-hive mates through the hive gate.

CC is composed of a cache and a management layer.
Consider the cache—which is partitioned into sub-caches—
as a set of hives: it is supported by a ‘Cache Manager’ (CM),
‘Community Information Provider’ (CI-P) and a
‘Demography Information Provider’ (DI-P) as shown in Fig.
5 and Fig. 6. CC periodically deploys its employed forager
(CI-P) to gather information about food sources (incoming
requests), identifying those belonging to the same patch
(community), and building a profitability profile for each
patch. The storer bee (DI-P) provides status information on
each sub-cache. Unemployed bees (CM) choose which food
source to harvest based on the profitability profile made
available by employed foragers. Guard bees only allow the
use of sub-cache resources if there are surplus unused
resources.

Cache Manager (CM): Unemployed Bees and Hive Guard Bees

M
an

ag
em

en
t

L
ay

er
 Community Information

Provider (CI-P)

Employed Forager

Demography Information

Provider (DI-P)

Food-Storer Bees

Sub-caches: Territories and Hives Cache

Requests: food sources and Hive resources

Figure 5. Mapping CC to Natural Honey Bee Foraging.

The CM is responsible for users’ ‘get’ requests,

partitioning the cache into sub-caches (territories) and
applying the cache replacement policy (insertion and
eviction). It depends on the CI-P and DI-P to achieve these
responsibilities. The CI-P runs a clustering algorithm at set
intervals, providing the CM with community membership
information and interest profiles.

The clustering algorithm used by CI-P is a modified

ABC algorithm: Q2ABC [12]. The ABC clustering

algorithm was chosen because of the simplicity of

implementing and modifying it, the research interest it has

drawn since its introduction, the ease of incorporating other

metaheuristic algorithms into it, its good performance

against other population-based algorithms, and because its

representation is centroid-based. DI-P provides CM with

content quality and the availability status of each sub-cache.

Each cluster identified by the clustering algorithm

represents a community of users with shared interests. The

centroid of each cluster represents the popularity levels of

requests made within each cluster.

Figure 6. Relationship between Cache Manager (CM), Demography

Information Provider (DI-P) and Community Information Provider (CI-P).
The CM makes decisions based on the information provided by the DI-P

and CI-P. The CM captures historic data for the CI-P.

Under the CC policy, the number of sub-caches is set to

the given maximum number of communities plus one
additional sub-cache assigned to requests with an unknown
or unestablished community identity. When a cache
insertion request is made, the CM retrieves the request’s
community identification and associated sub-cache, then
carries out actions as described in Fig. 7.

Unloading

Create

nectar

history

Log

Food store

Provide Cache Manager

Dancing

with communities’' identity

area

and membership

Food source

Use history log to

identify communities

Begin

Foraging

Cache

HG

Manager

E

(CM)

E

010000100011110

100000111100010

FS

011110010111101

110000100001111

O

110

010000001000

S

111111000010001

111010000100011

R

110100000111100

a

ndom se

Community

arch for

a

Information

food source

Provider

Field

(CI

Hive

-

P)

O

S

Memory

(Cache)

 Demography
Information

Provider

(DI - P)

What item
to return,
cache,
evict and
where.

Partition
cache into
community
territories.

Provides Cache
Manager with details
about communities
and territorial usage

Use communities’
memory usage
distribution to provide
demography

Figure 7. Community-based Caching Replacement Policy. When a cache

request is made, the associated territory (sub-cache or partition) of the
incoming data object is identified. The data object is cached firstly based

on space availability in its associated territory before that in other

territories, and secondly based on the comparison of interest levels between
the incoming and the incumbent data objects.

IV. IMPLEMENTATION AND EVALUATION

We evaluated CC against Adaptive Replacement Cache
(ARC), Clock, First-in-first-out (FIFO), Greedy Dual (GD),
Greedy Dual Size Frequency (GDSF), Hybrid, Least
Frequently Used (LFU), Low Inter-reference Recency Set
(LIRS), Least Recently Used (LRU), Most Recently Used
(MRU), Two Queue (2Q) and Random Replacement (RR)
cache management policies using cache-hit rate, cache-
acceptance count and cache-rejection count as metrics. To

carry out the evaluation, we implemented CC within a
simulation environment.

A. Simulation Environment

I installed a Memcached 1.2.6 server, Ncache express
server, and Oracle coherence 12.1.3 server, alongside
libraries for ARC, Clock, FIFO, GD, GDSF, Hybrid, LFU,
LIRS, MRU, 2Q and RR cache management policies on a
virtual machine with 2.4 GHz Intel Core 2 Duo, 2Gb base
memory and 40Gb of storage. To ensure consistency, I set
all caches to the same size, starting at 20Mb then scaling up
to 40Mb and finally 80Mb. I also turned off the compression
capabilities of the memcached and ncache cache servers.
The CC cache-partition-count parameter was set to 3, the
decay-age parameter to 10 times the cache size, and the
community identification process trigger was set to go off
after every one hundred cache requests. Datasets used for
the evaluation included those of ClarkNet, EPA, Google
Plus, Hyperreal, MemeTracker, MSNBC, NASA, Twitter,
University of Saskatchewan (UOS) and USA.gov
[13][14][15]. The simulation was repeated ten times
independently for each dataset. Reported values from the
simulation are averages of the values obtained from the
repetitions.

B. Simulation Results

The simulation results have been divided into three
groups. The first group shows results from the simulation
based on a 20Mb cache size, while the second and third
groups are based on a 40Mb and 80Mb cache size
respectively.

Each group consists of tables showing cache-hit rate
performances. Fig. 8–12 are charts showing cache
monopoly management and cache pollution avoidance.

Results from the first set of experiments (cache size
20Mb) show that CC had a cache-hit rate between 0.7% and
55% better than the compared policies in six of the ten traffic
data used (Table I). The second experiment shows that CC
had a cache-hit rate between 1% and 49% better with seven
of the ten trace traffic data used (Table II). The third
experiment shows CC having a cache-hit rate between 1%
and 21% better with six of the ten trace traffic data used
(Table III). A t-Test (Paired Two Sample for Means) shows
that CC cache-hit rate performance over the other cache
policies (with the exception of GD, GDSF and LIRS) is
statistically significant. Google Plus trace traffic data under
CC showed a higher standard deviation and standard error
compared with other cache policies.

Fig. 8–10 show average cache-hit rate against expected
cache-hit rate (average repeated requests rate) for cache size
20Mb. CC maintained a cache-hit rate above the expected
rate across most frequency groups. There were two
exceptions: (1) where all tested cache policies had an
average cache-hit rate below the expected cache-hit rate, CC
performance was closest to the expected cache-hit rate. This
is because CC excludes data objects with no cache-hit
potential from being cached, while managing those with
cache-hit potential in order to minimise cache monopoly and
optimise cache-hit rate. In our experiment there was one

TABLE I AVERAGE HIT RATE FOR 20MB CACHE MEMORY SIZE

Cache
Policy ClarkNet EPA

Google
Plus Hyperreal MemeTracker MSNBC NASA Twitter UOS USAGov

2Q 6.9% 35.6% 1.9% 45.0% 17.7% 98.3% 45.9% 1.2% 38.3% 14.4%

ARC 6.9% 33.9% 2.0% 40.5% 17.9% 89.8% 38.4% 1.2% 37.6% 15.3%

BCC 14.2% 46.7% 2.4% 50.4% 15.8% 98.3% 56.9% 2.0% 51.4% 13.7%

Clock 9.9% 42.2% 0.1% 34.5% 11.4% 98.3% 45.2% 1.3% 32.3% 6.9%

GD 7.6% 38.5% 2.5% 44.9% 17.9% 98.3% 43.5% 1.0% 40.2% 17.6%

GDSF 9.9% 43.6% 2.4% 45.8% 18.0% 98.3% 50.0% 1.3% 49.5% 17.6%

LIRS 7.7% 36.7% 1.9% 45.5% 17.9% 98.3% 44.0% 1.5% 39.6% 17.8%

LRU 3.5% 19.1% 1.7% 31.1% 17.6% 98.3% 24.9% 1.5% 28.4% 11.8%

MRU 6.1% 12.4% 0.1% 16.9% 11.4% 98.3% 16.2% 0.9% 19.5% 5.4%

FIFO 1.1% 1.6% 0.4% 2.6% 1.8% 97.5% 1.8% 0.4% 2.3% 1.3%

HYBRID 7.8% 39.7% 1.4% 25.8% 15.4% 98.3% 37.5% 1.3% 41.6% 9.3%

LFU 5.8% 39.5% 0.6% 26.7% 15.2% 98.3% 34.9% 0.8% 38.0% 8.1%

RR 7.0% 33.2% 2.3% 39.3% 17.4% 98.3% 36.6% 0.9% 37.0% 16.2%

CC had a cache-hit rate between 0.7% and 55% better in six of the ten trace traffic data used.

TABLE II AVERAGE HIT RATE FOR 40MB CACHE MEMORY SIZE
Cache
Policy ClarkNet EPA

Google
Plus Hyperreal MemeTracker MSNBC NASA Twitter UOS USAGov

 2Q 6.9% 35.6% 1.9% 45.0% 17.7% 98.3% 45.9% 1.2% 38.3% 14.4%

 ARC 6.9% 33.9% 2.0% 40.5% 17.9% 89.8% 38.4% 1.2% 37.6% 15.3%

 BCC 16.3% 49.6% 3.1% 54.8% 16.8% 98.3% 59.0% 2.1% 54.2% 15.5%

 Clock 9.9% 42.2% 0.1% 34.5% 11.4% 98.3% 45.2% 1.3% 32.3% 6.9%

 GD 7.6% 38.5% 2.5% 44.9% 17.9% 98.3% 43.5% 1.0% 40.2% 17.6%

 GDSF 9.9% 43.6% 2.4% 45.8% 18.0% 98.3% 50.0% 1.3% 49.5% 17.6%

 LIRS 7.7% 36.7% 1.9% 45.5% 17.9% 98.3% 44.0% 1.5% 39.6% 17.8%

 LRU 7.0% 28.0% 2.5% 41.3% 18.0% 98.3% 35.5% 2.0% 37.6% 16.8%

 MRU 6.1% 12.4% 0.1% 16.9% 11.4% 98.3% 16.2% 0.9% 19.5% 5.4%

 FIFO 2.2% 3.1% 1.0% 5.2% 3.5% 97.6% 3.6% 0.7% 4.6% 2.4%

 HYBRID 10.4% 43.2% 2.1% 37.7% 17.0% 98.3% 49.0% 1.8% 46.6% 15.0%

 LFU 9.6% 43.7% 1.1% 36.6% 16.9% 98.3% 49.4% 1.0% 44.7% 14.1%

 RR 7.5% 33.0% 2.3% 39.6% 17.4% 98.3% 37.6% 1.0% 36.9% 16.1%

 CC had a cache-hit rate between 1% and 49% better in seven of the ten trace traffic data used.

group consisting of 7% of the total users that showed a high
level of repeated requests (66% of repeated requests came
from this group). CC saw this as cache monopoly and
attempted to minimise it, resulting in a poor performance.
The second exception (2) is where CC performed generally
poorly. In one scenario, CC performance was below
expected cache-hit rate and the cache-hit rate of some of the
other cache management policies like ARC, GD, GDSF,
LIRS and RR. This was because the USAGov traffic trace
data had only a few repeated requests, with frequency group

1-10 accounting for 96% of users and 41% of repeated
requests.

TABLE III AVERAGE HIT RATE FOR 80MB CACHE MEMORY SIZE

Cache
Policy ClarkNet EPA

Google
Plus Hyperreal MemeTracker MSNBC NASA Twitter UOS USAGov

2Q 15.1% 47.1% 2.9% 52.4% 18.0% 98.3% 55.6% 1.4% 51.3% 20.3%

ARC 12.8% 47.4% 3.0% 48.2% 18.5% 98.3% 49.7% 1.6% 48.2% 20.5%

BCC 24.2% 54.0% 4.8% 60.0% 17.6% 98.3% 63.1% 2.7% 60.3% 21.0%

Clock 11.5% 46.7% 0.1% 51.4% 12.5% 98.3% 54.6% 1.7% 41.0% 8.3%

GD 15.2% 48.9% 3.6% 53.6% 18.4% 98.3% 56.6% 1.9% 54.6% 21.8%

GDSF 17.6% 51.2% 3.6% 54.3% 18.3% 98.3% 58.7% 2.1% 58.2% 21.5%

LIRS 14.0% 51.2% 2.5% 52.5% 18.3% 98.3% 57.9% 2.0% 54.0% 22.9%

LRU 14.1% 41.5% 3.8% 48.7% 18.2% 98.3% 51.4% 2.5% 48.7% 21.6%

MRU 8.8% 23.3% 0.1% 27.0% 12.0% 98.3% 26.0% 1.3% 30.2% 8.8%

FIFO 8.6% 12.5% 4.1% 20.8% 13.9% 97.6% 14.6% 2.8% 18.4% 9.4%

HYBRID 17.5% 49.2% 3.0% 52.5% 18.5% 98.3% 57.9% 2.1% 56.6% 19.1%

LFU 15.0% 46.4% 2.1% 50.0% 17.4% 98.3% 56.6% 1.5% 55.8% 17.6%

RR 13.0% 44.1% 3.4% 49.7% 18.0% 98.3% 49.6% 1.9% 49.5% 20.3%

CC had a cache-hit rate between 1% and 21% better with six of the ten trace traffic data used.

Figure 8. ClarkNet 1-10 frequency group actual and expected cache-hit rate
(request-repeat rate). CC incurred an overhead of 0.09Mb (to store

community membership and profile information) for this frequency group.

Figure 9. ClarkNet 11-20 frequency group actual and expected cache-hit

rate (request-repeat rate). CC incurred an overhead of 0.07Mb (to store

community membership and profile information) for this frequency group.

Figure 10. ClarkNet 21-30 frequency group actual and expected cache-hit
rate (request-repeat rate). CC incurred an overhead of 0.06Mb (to store

community membership and profile information) for this frequency group.

A key difference between CC and other cache policies is

its ability to determine whether or not to cache a data object,
based on that data object’s cache-hit potential. Other cache
policies cache data objects irrespective of their cache hit
potential. This poses a risk for cache pollution. CC
prevented at least 80% of data objects (barring MSNBC trace
traffic data) with no cache potential from entering the cache,
reducing the chance of cache pollution (Fig. 11). The
number of rejected data objects with cache-hit potential was
under 6% compared with those accepted (Fig. 12).

Figure 11. CC rejection and acceptance of data objects with no cache-hit

potential. CC kept at least 80% of data objects with no cache potential
away from the cache, reducing the chance of cache pollution (except with

regard to MSNBC trace traffic data).

Figure 12. CC rejection and acceptance of data objects with cache-hit
potential. The number of rejected data objects with cache-hit rate

potentials was under 6% compared with those accepted.

V. CONCLUSION

We propose taking a community-based caching (CC)
approach. CC manages caching as a cloud services
intelligently. It eliminates cache pollution and minimises
monopoly problems inherent in other cache management
policies, improving overall cache-hit rate. In our
experiment, the cache-hit rate achieved by CC was between
0.7% and 55% better than that of other tested cache policies.
Our t-Tests demonstrate that these improvements are
statistically significant.

The simulation results and tests of statistical significance
show that CC manages caches intelligently, achieving extra
value for a server providing caching as a cloud service.

Future investigations should focus on how the size of
historic data used in CC and the pre-set community count
affect cache-hit rate.

ACKNOWLEDGMENTS

U. Idachaba would like to thank Professor Leon Chua, in
his role as an EC Marie Curie Fellow at the University of
Kent’s School of Computing, for his support.

REFERENCES

[1] M. Armbrust, “Above the clouds: A Berkeley view of cloud
computing,” University of California, Berkeley, EECS Department.
California: UCB/EECS, 2009.

[2] D. Dash, V. Kantere, and A. Ailamaki, “An economic model for self-
tuned cloud caching,” IEEE International Conference on Data
Engineering, pp. 1687–1693, Shanghai: IEEE, 2009.

[3] G. Pallis, A. Vakali, and J. Pokorny, “A clustering-based prefetching
scheme on a Web cache environment,” Computers and Electrical
Engineering, 34(4), pp. 309–323, 2008.

[4] J. Wang, “A survey of web caching schemes for the internet,” ACM
SIGCOMM Computer Communication Review, 29(5), pp. 36–46,
1999.

[5] Y. Liangzhong, C. Guohong and C. Ying, “A generalized target-
driven cache replacement policy for mobile environments,” IEEE
Applications and the Internet, pp. 14–21, 2003.

[6] E. Bonabeau, and C. Meyer, “Swarm intelligence,” Harvard Business
Review, 79(5), pp. 106–114, 2001.

[7] D. Pham, “Data Clustering Using the Bee Algorithm,” Proceedings of
the 40th CIRP International Manufacturing Systems Seminar, pp.
233–358, Liverpool: CIRP, 2007.

[8] A. Jain, “Data clustering: a review,” ACM computing surveys
(CSUR), 31(3), pp. 264–323, 1999.

[9] D. Karaboga, and C. Ozturk, “A novel clustering approach: Artificial
Bee Colony (ABC) algorithm,” Applied Soft Computing, 11(1), pp.
652–657, 2011.

[10] T. Seeley, S. Camazine and J. Sneyd, “Collective decision-making in
honey bees: how colonies choose among nectar sources,” Behavioral
Ecology and Sociobiology, 28(4), pp. 277–290, 1991.

[11] T. Seeley, “The Honey Bee Colony as a Super Organism,” American
Scientist, pp. 546–553, 1989.

[12] U. Idachaba, F. Z. Wang and N. Helian, “Quantity and Quality Aware
Artificial Bee Colony Algorithm for Clustering,” International
Journal of Computer, Information, Systems and Control Engineering,
7, pp. 341–344, 2013.

[13] A. Frank and A. Asuncion, “UCI Machine Learning Repository,”
California: University of California, 2010.

[14] J. Leskovec, “Stanford Large Network Dataset Collection,” Retrieved
January 1, 2013, from Stanford Network Analysis Project:
http://snap.stanford.edu/data/index.html, 2009.

[15] P. Danzig, “Traces,” Retrieved January 1, 2013, from Internet Traffic
Archive: http://ita.ee.lbl.gov/html/traces.html, 2008.

	I. Introduction
	II. Motivation and Contribution
	III. Design
	IV. Implementation and Evaluation
	A. Simulation Environment
	B. Simulation Results

	V. Conclusion
	Acknowledgments
	References

