
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Daniel Rodrigues Carvalho

Extensions To The Base-Delta-Immediate Compression

Extensões Para A Compressão Base-Delta-Imediato

CAMPINAS
2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296890640?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Daniel Rodrigues Carvalho

Extensions To The Base-Delta-Immediate Compression

Extensões Para A Compressão Base-Delta-Imediato

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Rodolfo Jardim de Azevedo

Este exemplar corresponde à versão final da
Dissertação defendida por Daniel Rodrigues
Carvalho e orientada pelo Prof. Dr. Rodolfo
Jardim de Azevedo.

CAMPINAS
2017

Agência(s) de fomento e nº(s) de processo(s): CAPES, 1564395

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Carvalho, Daniel Rodrigues, 1992-
 C253e CarExtensions to the Base-Delta-Immediate compression / Daniel Rodrigues

Carvalho. – Campinas, SP : [s.n.], 2017.

 CarOrientador: Rodolfo Jardim de Azevedo.
 CarDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Car1. Memoria cache. 2. Compressão de dados (Computação). 3. Arquitetura

de computador. I. Azevedo, Rodolfo Jardim de,1974-. II. Universidade Estadual
de Campinas. Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Extensões para a compressão Base-Delta-Imediato
Palavras-chave em inglês:
Cache memory
Data compression (Computer science)
Computer architecture
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Rodolfo Jardim de Azevedo [Orientador]
Guido Costa Souza de Araujo
Philippe Olivier Alexandre Navaux
Data de defesa: 20-07-2017
Programa de Pós-Graduação: Ciência da Computação

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Daniel Rodrigues Carvalho

Extensions To The Base-Delta-Immediate Compression

Extensões Para A Compressão Base-Delta-Imediato

Banca Examinadora:

• Prof. Dr. Rodolfo Jardim de Azevedo
Universidade Estadual de Campinas

• Prof. Dr. Philippe Olivier Alexandre Navaux
Universidade Federal do Rio Grande do Sul

• Prof. Dr. Guido Costa Souza de Araujo
Universidade Estadual de Campinas

A ata da defesa com as respectivas assinaturas dos membros da banca encontra-se no
processo de vida acadêmica do aluno.

Campinas, 20 de julho de 2017

Acknowledgements

Many thanks to Carlos Petry and Emilio Francesquini for their feedback on the writing
of this thesis.

Resumo

Memórias cache há muito têm sido utilizadas para reduzir os problemas decorrentes da
discrepância de desempenho entre a memória e o processador: muitos níveis de caches
on-chip reduzem a latência média de memória ao custo de área e energia extra no die.
Para diminuir o dispêndio desses componentes extras, técnicas de compressão de cache
são usadas para armazenar dados comprimidos e permitir um aumento de capacidade de
cache. Este projeto apresenta extensões para a Compressão Base-Delta-Imediato, várias
modificações da técnica original que minimizam a quantidade de bits de preenchimento
numa compressão através da flexibilização dos tamanhos de delta permitidos para cada
base e do aumento do número de bases. As extensões foram testadas utilizando ZSim,
avaliadas contra métodos estado da arte, e os resultados de desempenho foram comparados
e avaliados para determinar a validade de utilização das técnicas propostas. Foi constatado
um aumento do fator de compressão médio de 1.37x para 1.58x com um aumento de
energia tão baixo quanto 27%.

Abstract

Cache memories have long been used to reduce problems deriving from the memory-
processor performance discrepancy: many levels of on-chip cache reduce the average mem-
ory latency at the cost of extra die area and power. To decrease the outlay of these extra
components, cache compression techniques are used to store compressed data and allow
a cache capacity boost. This project introduces extensions to the Base-Delta-Immediate
Compression, many modifications of the original technique that minimize the quantity of
padding bits by relaxing the allowed delta sizes for each base and increasing number of
bases. The extensions were tested using ZSim, evaluated against state-of-the-art methods,
and the performance results were compared and evaluated to determine the validity of
the proposed techniques. We verified an improvement of the original BDI compression
factor from 1.37x to 1.58x at a energy increase as low as 27%.

List of Figures

2.1 A cache entry consists of a tag, a data block and flags. 19
2.2 Logical organization of a 4-way cache. A cache consists of sets, each of

which contains 4 sequential blocks. 20
2.3 Placement of block 13 on direct mapped, 2-way set associative and fully

associative caches. The caches are limited to 8 blocks. On a direct mapped
cache the memory block can only be placed in block 5 (13 modulo 8).
With a 2-way set associative cache the memory block is mapped to set 1
(13 modulo 4) and can be placed in either way 0 or 1. It can be placed
anywhere when using a fully associative cache. 20

2.4 Data in inclusive and exclusive caches. 23
2.5 MSI state machine. Dashed lines represent bus actions, while the others

represent processor actions. The action in gray is a consequence of the
main action. 25

2.6 MESI state machine. Dashed lines represent bus actions, while the others
represent processor actions. The action in gray is a consequence of the
main action. 26

2.7 MOSI state machine. Dashed lines represent bus actions, while the others
represent processor actions. The action in gray is a consequence of the
main action. 27

2.8 MESIF state machine. Dashed lines represent bus actions, while the others
represent processor actions. The action in gray is a consequence of the
main action. 27

2.9 Thread 0 increments x from 0 to 100 using private cache 0, and thread 1
increments y from 0 to 100 using private cache 1. The cache line presents
false sharing, because each increment of the variables in one of the caches
invalidates the contents of the other cache, despite the variable being un-
necessary to the opposite thread. 30

3.1 Original image and the contrast between its pixels. 32
3.2 Doppelganger’s doubly linked list. Each tag entry has extra metadata to

inform the previous entry, the next entry and the map tag of its corre-
sponding data block. The data block contains a pointer to the head of its
corresponding tag list. 33

3.3 Overview of the Base-Delta-Immediate compressed data. 34
3.4 Example of Base-Delta-Immediate compression. Output of the compressor

that parses the cache line as a sequence of 4-byte entries and uses a delta
size of 1 byte. The first block in the line is selected to be the base, and all
delta values are calculated accordingly. 35

3.4 (cont 1.) Example of Base-Delta-Immediate compression. Output of the
compressor that parses the cache line as a sequence of 4-byte entries and
uses a delta size of 1 byte. The first block in the line is selected to be the
base, and all delta values are calculated accordingly. 36

3.4 (cont 2.) Example of Base-Delta-Immediate compression. Output of the
compressor that parses the cache line as a sequence of 4-byte entries and
uses a delta size of 1 byte. The first block in the line is selected to be the
base, and all delta values are calculated accordingly. 37

3.5 Example of Frequent Pattern Compression. 38
3.6 Example of word compression using C-Pack. The outputs of the compressor

are concatenated to generate the compressed cache line. Initial compressed
cache line is: 0x(01)12341234(01)10110110(01)BBBBAAAA(01)FFFF9543.
Numbers within parenthesis are in binary representation, and are used so
that non-4-bit offsets are not applied, which makes data easier to read. . . 41

3.7 Set 2’s super-block contains a single valid compressed block at sub-block
0 (its respective coherence state is valid, and compression bit is set). The
back pointer array contains 3 entries related to this sub-block: 0, 1 and 5.
The tag ID of each of these BP entries is set to 1 to match the way at which
its respective sub-block can be found, and the block number is set to the
number of the sub-block. The corresponding data entries are highlighted. . 43

3.8 Conventional cache mapping. Blocks are mapped to the same set even on
different ways due to the usage of a single hash function for all ways. . . . 44

3.9 Skewed Associative Caches have different hash functions for each way. . . . 44
3.10 Different mappings for block A for all its different compression factors. . . 45
3.11 Yet Another Compressed Cache example. Blocks A, B, C, D are consecutive

blocks in a super-block. A, C and D compress to 16 bytes and B compressed
to 32 bytes. 46

4.1 Example of wasted space using Base-Delta-Immediate Compression. 48
4.2 Overview of the compressed data using Base-Delta-Immediate Relative to

Bases (BDI-RB). 49
4.3 Overview of the compressed data using Base-Delta-Immediate Relative to

Deltas (BDI-RD). 49
4.4 Saved space using Base-Delta-Immediate Compression with delta sizes rel-

ative to bases. 50
4.5 Saved space using Base-Delta-Immediate Compression with delta sizes rel-

ative to deltas. 50
4.6 Example of compression using one compressor per base size. 52
4.7 Example of compression using multiple compressors per base size. 52
4.8 Original BDI encoding frequency (in %). 56
4.9 Overview of the Base-Delta-Immediate compressor with multiple bases. . . 58

5.1 BDI-RB encoding frequency (in %). 64
5.2 BDI-RB version 1 transition frequency (in %). 64
5.3 BDI-RB version 2 transition frequency (Translated to make it easier to

compress to other encodings) (in %). 65
5.4 BDI-RB version 3 transition frequency (in %). 65
5.5 BDI-RD transition frequency (in %). Transitions fromBase4∆2 toBase2∆1

correspond to only 0,00004% of the Base4∆2 transitions. 66

5.6 MBDI and BDI encoding frequency compared (in %). 67
5.7 MBDI-RD encoding frequency (in %). 67
5.8 BDI-RBLC version 3 transition frequency (in %). 68
5.9 Mean compression ratio for BDI-RB using more (BDI-RB) and less (BDI-

RBLC) compressors. 69
5.10 Mean compression ratio for BDI-RD using more (BDI-RD) and less (BDI-

RDLC) compressors. 69
5.11 Mean compression ratio for MBDI using more (MBDI) and less (MBDI-LC)

compressors. 70
5.12 Mean (geometric) compression ratio of the techniques. 71
5.13 Comparison of BDI, MBDIRD and CPack for all benchmarks (geometric

mean). 71
5.14 Comparison of leakage, dynamic and total power usage. Baseline is BDI

power. _LC is the variant with less compressors, and _slow is the slow
variant. 72

5.15 Power efficiency, that is, compression ratio divided by power consumption
relative to original results. _LC is the variant with less compressors, and
_slow is the slow variant. 73

5.16 Area usage of the techniques. _LC is the variant with less compressors,
and _slow is the slow variant. 74

5.17 Area efficiency, that is, compression ratio divided by area usage relative to
original results. _LC is the variant with less compressors, and _slow is
the slow variant. 74

5.18 Geometric mean of IPC for all techniques normalized on a 2MB baseline
cache without compression. _LC is the variant with less compressors. . . . 75

5.19 Geometric mean of MPKI for all techniques normalized on a 2MB baseline
cache without compression. _LC is the variant with less compressors. . . . 76

List of Tables

2.1 Summary of the policies presented in this chapter. 29

3.1 Frequent pattern encoding. The first column represents the code to be
prefixed to the stored data, the second is the pattern found, and the third
column presents the size of the data after compression (without the code).
The last column shows examples of words with the patterns. 38

3.2 Pattern encoding for C-Pack. Z is a zero byte, X is a byte that does not
match any dictionary entries, M is a dictionary match, and p is the index
of the position of the match. 40

3.3 Cache overhead . 47

4.1 Original BDI encoding. 53
4.2 Encoding for the BDI relative to bases, version 1. 53
4.3 Encoding for the BDI relative to bases, version 2. Num EB is the number

of extra bits needed to store the delta sizes and EB is the value of these
extra bits. 55

4.4 Encoding for the BDI relative to bases, version 3. 55
4.5 Encoding for the BDI relative to deltas. DSS is the size used by a delta

size. Num DS is the number of delta size entries needed by the encoding. . 57
4.6 MBDI Encoding. NBW is the width in bits of the field that stores the

number of bases. BW is the maximum possible value for the width of the
bitmask field in bits. 59

4.7 MBDI encoding using less compressors. NBW is the width in bits of the
NumberBases field. BW is the maximum possible value for the width of
the bitmask field in bits. 60

4.8 Maximum number of non-zero bases so that the compressed size is still
better than the uncompressed data for the MBDI. 60

4.9 Maximum number of non-zero bases so that the compressed size is still
better than the uncompressed data for the MBDI-LC. 60

4.10 Encoding for the MBDI with fixed maximum base sizes. NBW is the width
in bits of the NumberBases field. BW is the maximum possible value for
the width of the bitmask field in bits. 61

4.11 Encoding for the MBDI using less compressors and fixed maximum base
sizes. NBW is the width in bits of the NumberBases field. BW is the
maximum possible value for the width of the bitmask field in bits. 61

Contents

1 Introduction 14

2 Background 17
2.1 Off-chip memories . 17

2.1.1 Virtual Memory . 17
2.1.2 Errors and Error Handling . 18

2.2 Caches . 19
2.2.1 Block Placement . 20
2.2.2 Data Access . 21
2.2.3 Evictions . 21
2.2.4 Writes . 22
2.2.5 Data Inclusion . 23
2.2.6 Data Consistency . 23
2.2.7 Coherence Protocols . 24
2.2.8 False Sharing . 28
2.2.9 Cache Access . 28
2.2.10 Summary . 28

3 Related Work 31
3.1 Cache Compression . 31

3.1.1 Zero-Content Augmented Caches 31
3.1.2 Doppelgänger Cache . 31
3.1.3 Base-Delta-Immediate Compression 33
3.1.4 Frequent Pattern Compression . 34
3.1.5 Statistical Compressed Cache . 39
3.1.6 C-Pack . 39
3.1.7 Manycore-Oriented Compressed Cache 40

3.2 Selective Cache Compression . 40
3.2.1 Adaptive Cache Compression . 41
3.2.2 Selective Code Compression . 42
3.2.3 Hybrid Methods . 42

3.3 Cache Organization . 42
3.3.1 Decoupled Compressed Cache . 42
3.3.2 Skewed Compressed Caches . 43
3.3.3 Yet Another Compressed Cache . 45

3.4 Summary . 47

4 BDI Compression Extensions 48
4.1 Flexible Base-Delta-Immediate Compression 49

4.1.1 Delta sizes relative to bases (BDI-RB) 49
4.1.2 Delta sizes relative to deltas (BDI-RD) 50
4.1.3 Implementation . 51
4.1.4 Encoding . 51
4.1.5 Operations . 57

4.2 Multiple bases (MBDI) . 58
4.2.1 Number of Compressors . 59
4.2.2 Encoding . 59

5 Experimental Results 62
5.1 Methodology . 62
5.2 Data compression . 63

5.2.1 Number of compressors . 68
5.2.2 Compression ratio . 70

5.3 Power efficiency . 72
5.4 Area . 73
5.5 Performance analysis . 75
5.6 Complexity analysis . 76
5.7 Summary . 76

6 Conclusion 77

Bibliography 79

Chapter 1

Introduction

Over the years, electronic hardware has become faster and more efficient, but devices do
not improve at equal rates. Off-chip memories, although increasing in capacity, present
lower bandwidth and latency improvements than what is requested by current micropro-
cessors [21] [43]. Besides, these memories require huge amounts of energy when compared
to local accesses (i.e., register access) [38]. To try to overcome these problems, on-chip
memories, lower level memories with small latency and energy cost, but small storage
capacity and high cost per bit, have been created (caches) [31]. This dichotomy has led
designers to try to increase the effective cache size by compressing and compacting data
blocks before inserting them on caches, a technique called cache compression.

The main goal of cache compression methods is to virtually increase the cache size
without the disadvantages of doing so, that is, improve power consumption and cache
capacity with as low latency, area, and metadata overhead as possible. These overheads
are inherent to such methods due to the extra hardware and wiring required, and the
extra stages every access must go through: decompression on lookups and compression
on writes. Besides, extra metadata is also necessary to inform data compression state
or location. These techniques should also be lossless so as to maintain correct processor
behavior (although some applications may tolerate data modification).

This work presents and describes several cache compression techniques, as well as their
strengths and weaknesses. Decoupled Compressed Caches (DCC) [48], for example, allow
compressed blocks with variable size, but this size freedom comes with extra costs as there
must exist extra metadata to find out a block’s location. This also increases latency due
to the additional indirection level.

Skewed Compressed Caches (SCC) [46], on the other hand, assume 4 fixed compression
factors and use the block’s address to determine its way, set index and byte offset. By
removing the need to access extra metadata they allow lower access latency, reduce die
area and improve energy efficiency. SCC, however, are highly dependent on compression
locality, and thus may have a high rate of internal fragmentation in case a workload’s
neighboring blocks do not compress similarly.

There are also methods that select the most suitable compression decision, as described
in Alameldeen et al. [1], which enables or disables compression when advisable based on
the analysis of the cache misses. Hybrid approaches like HyComp [4] also exist, which
selects the most relevant technique from a pool of methods to compress a given block.

14

CHAPTER 1. INTRODUCTION 15

Other approaches are based on the fact that the data stored in the cache is usually
redundant, as neighbor blocks commonly have identical values, and when that is not the
case they are similar. The Doppelgänger method [36] approximates these close values,
sacrificing data correctness to allow higher capacity. Another possibility is to store the
difference between neighbor values, as in the Base-Delta-Immediate (BDI) Compression
technique [41]. It uses a base value as a cache line guide and parses and translates
the line as a series of deltas relative to it. This allows fast decompression latency, as
the decompressor is a simple sequence of adders. However, this heavily relies on data
similarity, as if data needs more than 2 bases, or the delta values are too far apart,
compression becomes inviable or inefficient.

To try to overcome BDI’s high dependence on data similarity, we propose exten-
sions and modifications: Base-Delta-Immediate Relative to Bases (BDI-RB), Base-Delta-
Immediate Relative to Deltas (BDI-RD), Base-Delta-Immediate with multiple bases (MBDI).
These allow more flexibility on compressed data creation by either granting each base a
delta size, allowing each delta entry to have its own delta size, or increasing the number
of bases. By doing so less space is used with padding bits as the deltas become more
independent of each other.

With BDI the delta size of a compressed line’s deltas is fixed to all deltas. BDI-RB
allows using a delta size for each base entry, therefore if the bases need different delta
sizes the one with smaller delta size does not need to add padding to fit the bigger one.
We propose three encoding schemes to this technique: 1) one to maintain compatibility
with the original scheme; 2) one to separate base from delta size, reducing bit usage when
delta size is not needed, although slighly increasing when that is not true; 3) and one
with variable opcode sizes based on frequency of the opcodes.

BDI-RD, on the other hand, provides more flexibility by giving each delta entry its
corresponding delta size. This wastes more space with metadata, as although there will
be no need to represent the delta size of the compressed line on the opcode and thus 1 bit
can be saved, it will be necessary to add a delta size for each delta, which can represent 16
bits for a 64-byte cache line. Nonetheless, this completely removes the need for padding,
and thus increases the compression factor by 3% when compared to the original approach.

In the original approach, the number of bases is limited to an explicit base and an
implicit zero-base. Although having more bases would allow more lines to be compressed,
having their number fixed would cause the compression ratio to drop. MBDI focuses
on reducing the number of uncompressed lines by providing a field informing the num-
ber of bases in the compressed line. Therefore, besides allowing more cache lines to be
compressed when two bases are not enough, whenever a single null base is sufficient to
represent the line, the space used by the extra mandatory base is saved.

All proposed techniques but two variations of BDI-RB improved compression factor
when compared to the original BDI. The BDI-RB variants do not differ much from each
other, and had the lowest improvements, as they do not tackle the main cause of padding
generation nor allow more uncompressed data to be compressed. The best compression
ratio results were from an hybrid of the BDI-RD and MBDI methods, the MBDI-RD,
with a ratio 15% better than the original’s. This method generates a compression factor
similar to CPack’s, but with a smaller decompression latency (one cycle).

CHAPTER 1. INTRODUCTION 16

Although both 32 and 64-bytes per block cache are used in this work, none of the
techniques is restricted to these sizes, so this can be changed by applying the corresponding
modifications to the equations provided. We will use the terms compression factor and
compression ratio interchangeably, which is given by the the original block size divided
by the compressed block size.

The main contributions of this work are:

• Creation of techniques to remove padding in the Base-Delta-Immediate compression
to improve its compression ratio;

• Allow using a different number of bases on BDI with marginal metadata overhead;

Chapter 2 provides a background on memories, detailing their history and manner of
operation. On Chapter 3 some cache compression techniques are presented, described, and
explained. Chapter 4 presents the proposed extensions and explains their modus operandi.
The introduced modifications are then scrutinized and the results regarding compression
ratio, area and energy usage are disclosed on Chapter 5. Finally, a conclusion is made on
Chapter 6.

Chapter 2

Background

Memories are devices capable of storing information temporarily or permanently, and
they are used to access data faster than using secondary (i.e., HDD, SDD, FDD) or
offline storage (i.e., CD, USB drive). Typical memory mechanisms include Static Ran-
dom Access Memory (SRAM), Dynamic Random Access Memory (DRAM), Synchronous
DRAM (SDRAM), Flash Memories, and Electrically Erasable Programmable Read-Only
Memory (EEPROM).

These devices are divided into volatile, that is, their contents are erased when power is
interrupted (e.g., random access memory), and non-volatile, which retains their contents
even when the power is turned off (e.g., read-only memory, flash memory, optical discs
and most of the magnetic storage devices).

2.1 Off-chip memories

Computers today use variants of DRAMs as off-chip memories. They have lower access
latency than disk drives, but are considerably slower than processors. Each DRAM bit
is composed of a transistor and a capacitor, and as transistors always leak energy, even
when not doing useful work, the capacitors discharge, and thus data must be refreshed
periodically in order not to loose information.

Each DRAM chip is divided into rows and columns, therefore every access must first
send a Row Address Strobe signal (RAS) to determine the row to be accessed, and then
a Column Address Strobe signal (CAS) to select the desired bits [13]. Memory can also
be divided in multiple banks instead of a monolithic block. Having multiple banks allows
concurrent accesses, which may improve bandwidth in interleaved sequential accesses.
Reading the DRAM is a destructive process, so a read row must always be written back.

2.1.1 Virtual Memory

Due to the various data storage technologies and distinct design objectives, systems usu-
ally have different amounts of memory, and thus allowing programs to map addresses to
a unique physical location would require code modification for each machine. Besides, on
multitasking systems multiple programs map to the same physical address, so conflicts
would arise frequently.

17

CHAPTER 2. BACKGROUND 18

Because of that, compilers and operating systems are designed to use a virtualization
of the address space, that is, on loads and stores the addresses used are purely virtual, and
must be translated to physical addresses before being accessed. Therefore, the physical
addresses used can be chosen in the most suitable location by the operating system.

Virtual memory is divided into fixed-sized blocks (pages), variable-sized blocks (seg-
ments), or a mixed approach (paged segments), which are placed in memory when needed.
This is done because programs may not fit entirely in memory. Besides, since a program
does not need to be completely inside memory, the load time and the amount of I/O
operations are reduced, and the memory may be used by many processes simultaneously
[51].

As all virtual addresses must be translated to physical addresses before data is ac-
cessed, the access latency becomes high and impractical. However, by exploiting the
principle of locality the translation step can be done more efficiently. This is done by
keeping a special cache to keep track of virtual addresses and their physical counterparts,
the Translation Lookaside Buffer (TLB). The TLB, like a conventional cache, is divided
in tags and data, where the tag portion holds the virtual addresses, and the data por-
tion is responsible for storing their corresponding physical page addresses and metadata
(access permissions, storage type, valid bits and dirty bits), allowing faster translation of
frequently/recently accessed addresses.

2.1.2 Errors and Error Handling

Bits in the memory cells are subject to spontaneous flipping due to the interference of
other electrical or magnetic devices inside a computer system. Even when accessing data
within memory, the internal leakage of electrical charges may make the cells cross talk and
alter their contents, an effect known as RowHammer [27]. Besides, in faulty chips, bits
can be stuck to a particular value, so requests to change their state will not be fulfilled.
These behaviors may lead to corruption of data, crashes, and create system vulnerabilities
[49, 26].

A partial solution to these problems is to add a bit to indicate if the number of 1’s
in a binary string is odd. Typically this parity bit is added for every byte in memory
and is set to 1 if the number of 1’s in the byte is odd, and 0 otherwise. For example,
the parity bit for bytes 01100001, 00010000, and 10001000 are, respectively, 1, 1, and 0.
As the parity bit does not tell where the error is, it is an error detection, but not error
correction solution.

This parity bit, however, is not guaranteed to detect errors if the number of flipped
bits is even. For example, suppose byte 10010000 has been stored in memory. Its parity
bit is 0 as there is an even number of 1’s. If bits 2 and 3 become faulty and get stuck to
1, that is, the byte becomes 11110000, the parity bit will still be 0, as there will are 4 1’s,
so it will fail to catch the error.

In order to deal with multiple bit errors, Error-Correction Code (ECC) memory mod-
ules have been researched [42]. These additional chips are added to the memory to
monitor, prevent, detect and fix memory bit errors by generating a multi-bit code for
each data word provided, instead of a single bit as in the parity bit error detection. These

CHAPTER 2. BACKGROUND 19

modules make the memory system fault tolerant [11], that is, they reduce the amount of
crashes and data corruption, at the cost of extra hardware, when compared to non-ECC
memories, and reduce memory performance due to the error checking steps.

2.2 Caches

As mentioned previously, off-chip memories are a few orders of magnitude slower than
the processor. Therefore, if every memory access goes through main memory, the average
number of cycles per instruction becomes higher than the memory latency. Luckily, most
of the time programs exhibit temporal and spatial locality [21], so if the current working
memory data is stored in small buffers with lower access latency this problem can be
significantly reduced. These buffers are called caches, and are typically made of SRAMs.

This idea can be further extended to put middle ground between cache and main
memory. Usually caches are organized in hierarchies of two or three levels, but some
processors, such as Intel Haswell and IBM Power8, contain a 4th level cache [19] [32]. The
first level cache is the fastest and closest to the processor, but is also the smallest cache,
with sizes varying from 8KB to 64KB. The second level is bigger (commonly 256KB), but
slower. The third level has a notably higher capacity (a few megabytes), but is also slower
than the previous levels. This pattern is repeated on the fourth level cache.

Usually, due to the locality found in programs, processors have two first level caches:
one for program instructions, called instruction cache, and one for program data, the data
cache. This is helpful because as instructions are always being fetched to be executed,
data loads/stores are likely to be requested simultaneously, which would have to generate
a stall if only one first level cache was being used. Besides, by using two caches, the
different access patterns for program data and instructions can be exploited and fewer
unnecessary conflicts will be generated.

Each cache entry usually consists of a tag, the data block and flags (Figure 2.1). The
tag is part of the memory address to which the data block corresponds. The data block,
also called cache line, stores either program data or instructions. The flags region contains
a valid bit to determine whether or not the entry encloses valid data, a dirty bit to inform
if the data has been changed since it was read from memory, among others.

Figure 2.1: A cache entry consists of a tag, a data block and flags.

These entries are divided and placed into two logical blocks: the tag and flags portions
are placed in the tag array and the data block in the data array. The arrays are organized
in sets and each set contains n blocks (or ways). Figure 2.2 presents an example of the
logical organization of a 4-way cache with 8 sets.

CHAPTER 2. BACKGROUND 20

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

DataTag

Way 0

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

DataTag

Way 1

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

DataTag

Way 2

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

DataTag

Way 3

Figure 2.2: Logical organization of a 4-way cache. A cache consists of sets, each of which
contains 4 sequential blocks.

2.2.1 Block Placement

When placing a block in the cache, the location at which it will be inserted can be unique,
that is, a given block is always mapped to the same spot (direct mapped cache); undefined,
that is, a given block can be placed anywhere in the cache (fully associative cache); or a
something between these two, i.e., a block can be placed anywhere within a set (n-way set
associative cache). Therefore, a fully associative cache can also be thought of as a n-way
set associative cache where there is only one set and n is the number of blocks in the
cache. Analogously, the direct mapped cache can be thought of as a 1-way set associative
cache. Figure 2.3 presents an example of block placement for these policies.

Figure 2.3: Placement of block 13 on direct mapped, 2-way set associative and fully
associative caches. The caches are limited to 8 blocks. On a direct mapped cache the
memory block can only be placed in block 5 (13 modulo 8). With a 2-way set associative
cache the memory block is mapped to set 1 (13 modulo 4) and can be placed in either
way 0 or 1. It can be placed anywhere when using a fully associative cache.

In a conventional cache the amount of ways in a set determines its associativity. How-
ever, Sanchez et al. [44] have proposed a cache design that modifies the number of
replacement candidates instead of the number of ways in order to vary the associativity.
That is, instead of determining associativity by the amount of locations that a block can
be placed, it is determined through the number of candidate blocks to be replaced on an
eviction.

For direct mapped caches, finding a block is straightforward, as there is only one
location at which the block can be. For n-way set associative caches and fully associative
caches all tags in a set must be parsed to determine the way at which the block can be. This
makes caches with high degree of associativity expensive, and thus direct mapped, 16-way
and 32-way set associative caches are more commonly used on modern architectures.

CHAPTER 2. BACKGROUND 21

2.2.2 Data Access

Whenever a memory access is requested, the place where the entry should be, if it exists,
is scanned to determine if the block is present. If the tag at that position matches the
given tag then the corresponding data block lies in the data array (cache hit). Otherwise,
the data does not reside in the cache and it must be fetched from the higher level caches
(cache miss). If the entry cannot be found in the last level cache, the request is issued to
main memory.

During a memory access, the tag and data arrays can either be parsed serially or in
parallel. In the first approach the tag array is first scanned to find the location of the re-
quested data and then the corresponding data block is fetched. By using parallel accesses,
the access latency is reduced, as both the tag and data array are parsed simultaneously,
but this requires more energy because all the ways of a set must be checked from the data
array before being selected at the end of the request. Besides, if there is a cache miss the
data will not be present and the energy used on the data path will be wasted.

2.2.3 Evictions

To evict a block means to remove a block from cache in order to create space for new
data. Deciding which entry should be removed on an eviction is a compelling task, as
it directly affects processor performance and depends solely on the replacement policy
being used. Some common replacement policies include Least Recently Used (LRU), Most
Recently Used (MRU), Not Most Recently Used (NMRU), Least Frequently Used (LFU),
and Random.

The LRU replacement policy has counters to keep track of entries’ ages, so that the last
recently accessed entry is the next to be removed. Its counterpart, the Most Recently Used
replacement policy, on the other hand, evicts the most recently accessed entry. NMRU has
a different assumption when compared to MRU, as it speculates that a recently accessed
item has a higher likelihood of being accessed soon. Deciding when to use NMRU, MRU
or LRU depends directly on the dataset, i.e., when it is known that an entry that was
just accessed will not be accessed for a long time, MRU would be a better fit.

Both the NMRU, MRU and LRU are expensive due to the amount of extra bits needed
for the counters. In order to reduce this extra cost some implementations only update
the counters every few accesses and thus the counters require less bits. Other approaches,
called Pseudo-LRU (PLRU), keep a bit per entry to indirectly indicate the age. The
bit-PLRU, for example, sets the bit to 1 whenever its corresponding entry is accessed, so
on evictions the first cache line with status bit set to 0 is evicted. When all entries are set
to 1 the process restarts using 0 as the verification bit instead. The tree-PLRU is another
example of PRLU, but it uses a tree to keep track of the least recently used element, and
the status bit indicates the direction to go (left or right) to find it. Whenever an element
is accessed the tree is traversed and updated accordingly to point to it.

The LFU replacement policy has counters to keep track of how often an entry is
accessed, so the entry with the lowest number of accesses is evicted. There are also hybrid
approaches that associate different policies in order to improve efficiency where one of the
policies would fail, such as the Adaptive Replacement Policy [35], which combines both

CHAPTER 2. BACKGROUND 22

a LRU and a LFU list and dynamically decides which policy best suits the payload. The
Random replacement policy is used due to its simplicity, as it randomly selects a candidate
to discard, and thus does not require much hardware.

2.2.4 Writes

What happens on writes is important to determine the system’s speed and complexity,
and three design decisions must be accounted for: where the data should be written, what
to do while writing, and what to do with the data when write misses occur.

Write Policy

Deciding on which cache level the data should be written, also called write policy, usually
takes one of two forms: write-through and write-back [24]. A write-through cache must
keep the information synchronized with the lower memory level all the time. Therefore,
whenever a write happens, the data is written to the block in the cache and the corre-
sponding block on the lower memory level. This design decision focuses on maintaining
coherence between levels, and minimizing data loss in case of unexpected disruptions, at
the expense of system speed, as all writes will be done at the speed of the next level. It
is also easy to implement, as the cache is always up-to-date, so evictions do not require
extra steps.

The write-back policy, on the other hand, only updates the lower level memory when
an eviction happens and the block has been modified. It does so by keeping a dirty bit
for every block. If the block is clean (not modified) it is simply removed from the cache,
otherwise it is written to the lower level before being removed. This allows a reduction of
overall memory traffic because multiple writes to the same block can happen before it is
evicted, and only one write to the lower level will occur.

Processing

The write process can take some time, and deciding whether to try to keep processing or
not can cause great impact on the system. If the processor stalls on every write (write
stall) instructions following the miss that do not depend on the reference are penalized
[28], so processing time is wasted, but there is no extra hardware complexity. However,
if a buffer (write buffer) is used to keep track of on-going writes and the processor keeps
executing until an operation directly depends on the data contained in the write buffer, the
time efficiency is optimized at the cost of extra hardware to keep track of the dependencies
and the buffer.

Write Misses

Regarding the data on write misses, two options can be taken: write allocate, and no-write
allocate [21]. Write-allocate assumes that if the data was written, due to program locality,
it is probably going to be accessed again soon, so the block should be cached in order to
avoid future read and write misses. No-write allocate, on the other hand, does not change
the cache, so the block is modified only in the lower memory level, and is generally used

CHAPTER 2. BACKGROUND 23

with write-through policies, as there will be no advantages to keep data in the cache when
write operations happen sequentially.

2.2.5 Data Inclusion

The data contained inside the caches can relate in two manners: a block in a higher level
cache is always present in the lower level caches (inclusive cache), or is only present in
one of the caches levels (exclusive cache).

Baer et al. [7] state that a multilevel cache hierarchy has the inclusion property if
the contents of a lower level cache is a superset of the contents of all its children caches.
Therefore, all data contained in cache L1 is also present in L2, all data in L2 is also present
in L3, and so forth (Figure 2.4a). This eases searches incoming from other processors or
external devices, as they only need to search for the data in the last level cache. However,
on evictions, data in all cache levels must be evicted in order to enforce the inclusion
property. Also, due to the storage of duplicated data, this scheme is highly dispendious
regarding cache capacity.

Exclusive caches have different address spaces (Figure 2.4b), so their use provides
higher effective storage of data in the caches, but it requires more work on searches, as
all cache levels must be scanned. Besides, when executing an eviction, data is swapped
between cache levels, instead of copied from the lower level as in the inclusive approach,
which is costlier energy-wise. This approach is generally used when the cache sizes have
low discrepancy and thus storage efficiency is essential, or when there are many large inner
levels in a memory hierarchy and thus cross-level replication lowers performance [17].

(a) Inclusive caches. Higher level caches are sub-
sets of the lower level caches.

(b) Exclusive caches. All caches have different
address spaces.

Figure 2.4: Data in inclusive and exclusive caches.

2.2.6 Data Consistency

When designing a many-core system, special care must be taken regarding the cache
hierarchy. Generally the cache system for such architectures relies on a combination of two

CHAPTER 2. BACKGROUND 24

approaches: keeping a private cache for each core and maintaining a shared cache between
all processors. The first method may either restrict multiple caches from containing a copy
of the same memory location, or allow numerous copies to occur and suffer from the data
consistency (or cache coherence) problem, that is, if multiple copies of a block exist, each
at a different private cache, any changes to one of the copies must be forwarded to the
other copies in order to keep the computation correct.

Shared caches, on the other hand, are slower and require a significant amount of wires,
as all cores must connect to them. Besides, a moderate number of processors can generate
high bus traffic, which may turn the bus into the system’s bottleneck. Nonetheless they
allow an alternative way of communication between the processors, reduce the complexity
of cache coherence protocols, and allow a more efficient space utilization, as there will be
less data redundancy. Besides, in case a core goes idle, the other cores can take its
space and thus reduce resource underutilization. Typical many-core architectures take
advantage of both approaches and use local caches for the L1 caches in order to keep
access latency low, shared caches between pairs of cores as L2 caches, and a L3 cache
shared by all cores.

It is important to notice that one of the factors that generate data inconsistency is when
caches update local copies of the data without updating other copies, so caches following
the write-through protocol will automatically handle this cache coherence problem as they
always keep data synchronized on all memory levels by broadcasting all writes to the bus.

The usage of inclusive caches greatly simplifies cache coherence. This is due to the fact
that in inclusive caches searching for a block can be done by checking its presence only on
the last level cache, unlike exclusive caches, which require all caches to be accessed and
checked.

2.2.7 Coherence Protocols

In order to manage cache coherence, many solutions have been proposed, either through
software or hardware [33]. A simple approach to deal with this problem is to broadcast the
address for every memory access and let the caches listen (snoop) to these, so that each
cache can check its contents for a copy and invalidate it, if such copy exists (broadcast-
invalidate). Another possibility is to update all copies of the block with the new value
(broadcast-update). Although functional, these solutions may not be practical, as they
can easily saturate system traffic due to high write frequencies.

More elaborated approaches consist of having state machine cache controllers that
snoop on bus transactions and take actions depending on the block’s state and the data
consistency protocol being used [3], or specialized controllers (directories) to keep track
of the holders of the copies of each block [30], which remove the obligation to broadcast
data. These directories can be distributed among the caches, be placed centralized, or
even designed in hierarchies They can also contain a list of all caches sharing the block,
or may be designed as a linked list, so each controller keeps track of the next holder.

The cache coherence protocols usually contain a subset of these six different states:
Modified, Shared, Invalid, Exclusive, Owned and Forward. A block in the invalid state is
not valid, and thus must be fetched from the lower level memories before being used. The

CHAPTER 2. BACKGROUND 25

modified state describes a cache line that is the only up to date copy of the data and that
the data in the memory is stale. A cache line in the exclusive state implies that its cache
has the only copy of it, and that its contents match its correspondent in main memory,
i.e., it has not been modified. The shared state represents a cache that has one of the
current unmodified copies of a block. The owned state assigns a cache line to a cache.
A cache that has a cache line in the forward state works as if in the shared state, but is
responsible to respond to all requests to that given line.

MSI

The MSI protocol is the state machine of a basic protocol consisting of a valid and a dirty
bit. A cache line can be in either the modified, shared or invalid state. Figure 2.5 shows
the transitions of the MSI state machine.

Modified

SharedInvalid

Proc R
Bus R

Proc W
Bus W

Proc W
Bus W

Proc R, W

Proc RBus R, W
Bus R

Bus W

Bus R
Write Back

Bus W
Write Back

Figure 2.5: MSI state machine. Dashed lines represent bus actions, while the others
represent processor actions. The action in gray is a consequence of the main action.

MESI

The exclusive state was added by the MESI protocol to reduce bus traffic generated by
writes of blocks that are present in a single cache only (i.e., there is only one active copy)
[39]. Whenever a cache is in the exclusive state and an eviction happens, there is no
need to broadcast to the other caches, as they are unaffiliated with that data. Figure 2.6
presents the MESI state machine.

CHAPTER 2. BACKGROUND 26

Exclusive

SharedInvalid

Proc R
Bus R

Proc W
Bus W

Proc W
Bus W

Proc R, W

Proc RBus R, W
Bus R

Bus W

Bus R
Write Back

Bus W
Write Back

Modified

Proc R
Bus R

Proc W

Proc R

Bus W

Bus R

Figure 2.6: MESI state machine. Dashed lines represent bus actions, while the others
represent processor actions. The action in gray is a consequence of the main action.

MOSI

The MOSI protocol adds the owned state. The owned state is similar to the shared
state in a sense that it indicates that the cache line has a shared read access, but it
differs from the shared state because its contents may be either clean or dirty. Therefore,
although other caches may have valid copies of the line, only the cache in the owned state
is responsible for maintaining main memory correctness, changing the value of the line,
substituting main memory in data transfers, and exchanging its ownership status with
other caches. Figure 2.7 shows the MOSI protocol transitions.

MESIF

The forward state was introduced by the MESIF protocol [18]. This state acts like the
shared state, that is, the cache line is clean and being shared with other caches, but it
optimizes data transfers by forwarding the data whenever a read request arrives. This
allows faster transfers, as there is no need to access main memory. As in the owned state,
at most one cache can be in the forward state. Whenever a read request is supplied by
the cache in this state, it goes to the shared state, and the cache that received the line is
set to be the new forwarder. The MESIF state machine is shown on Figure 2.8.

CHAPTER 2. BACKGROUND 27

Owned

SharedInvalid

Proc R
Bus R

Proc W
Bus W

Proc W
Bus W

Proc R, W

Proc RBus R, W
Bus R

Bus W

Bus R
Provide Data

Bus W
Write Back

Modified

Proc R

Bus W
Write Back

Bus R
Provide Data

Proc W
Bus W

Figure 2.7: MOSI state machine. Dashed lines represent bus actions, while the others
represent processor actions. The action in gray is a consequence of the main action.

Forward

SharedInvalid

Proc W
Bus W

Proc W
Bus W

Proc R, W

Proc RBus R, W

Bus R

Bus W

Bus R
Write Back

Bus W
Write Back

Modified

Proc R

Bus W

Bus R
Provide Data

Proc W
Bus W

Exclusive

Proc R
Bus R

Bus W

Proc R

Bus R

Proc W

Proc R
Bus R

Figure 2.8: MESIF state machine. Dashed lines represent bus actions, while the others
represent processor actions. The action in gray is a consequence of the main action.

CHAPTER 2. BACKGROUND 28

2.2.8 False Sharing

A major problem when dealing with coherence is false sharing. False sharing occurs when
multiple cores try to write to a cache line at different locations. As the addresses being
written to are not equal, there’s no real coherence problem, but some cache coherence
protocols would mark the whole line as dirty, and thus the second access would require
an update from memory. This problem can severely degrade system performance, as it
will add latency to memory operations and generate unnecessary bus traffic.

For example, let us assume there are two threads, T0 incrementing a variable x from
0 to 100, and T1 incrementing variable y from 0 to 100. x and y are located in the
same cache line. Assuming that the executions are interleaved, and that T0 is the first
to execute, x is read to cache 0 and incremented to 1, and thus x’s value on cache 1 is
incorrect, so a signal is sent to invalidate its contents. When T1 requests a memory write
to y, the cache line containing y is invalid, and thus it must be fetched from memory. After
y is incremented, the corresponding cache line at cache 0 must be invalidated analogously.
This process is repeated until the end of the loops. Figure 2.9 illustrates this example.
As can be seen, there is false sharing, as both threads only use one of the variables in the
line, so there would be no need to refresh its contents on every update of the variables.

Typically, false sharing can be avoided by optimizing the data layout either through
programmer-aware or programmer-transparent (compiler generated) changes [52]. Exam-
ples of such modifications include allocating shared space from different heap regions in
consonance with the processor that requested the space; copying the global variable that
will be accessed several times to a local variable, and copying back the modified variable at
the end of computation; allocating non-shared data to different cache lines; and aligning
shared blocks to cache lines.

2.2.9 Cache Access

Modern caches are subdivided into banks, and architectures may be classified as Uniform
Cache Access (UCA) and Non-Uniform Cache Access (NUCA) [25]. If the bank access
time is the same for all banks in a cache level, that is, there is a uniform access time,
the architecture is said to be an UCA. Thus, the access time of a cache level will always
match the worst-case time (i.e., the time to access the furthest bank). However, the hit
time of a single bank is highly dependent of its distance from the processor due to the
wire delays, so as cache capacity grows, so does the average access latency [20], which
makes cache stalls a major bottleneck for such architectures.

A solution to this problem is to allow each bank to be accessed at a different speed,
proportional to its distance to the cores. This approach negatively impacts coherence,
but the overall latency is reduced when compared to a conventional UCA design. Further
optimization can be achieved if data is placed so that its access frequency is inversely
proportional to its distance [25].

2.2.10 Summary

Table 2.1 presents a summary of the policies detailed in this chapter.

CHAPTER 2. BACKGROUND 29

Policy Options Description
Block Placement Direct Mapped, n-way Set Asso-

ciative, Fully Associative
Determine the locations at which
a block can be inserted on a
block placement

Tag/Data access Serial, Parallel Decide whether the tag and data
arrays are accessed sequentially
or simultaneously

Eviction LRU, MRU, LFU Clinch the block that should be
evicted when the cache is full

Write Write-through, Write-back Arbitrate whether the cache lev-
els should be kept synchronized

Processing Write Stall, Write Buffer Decide if the processor should
wait until a write operation is
complete or if it should try to
keep processing

Write Miss Write-allocate, No-write Allo-
cate

Determine if the data written
should be cached in the higher
level cache or not

Data Inclusion Inclusive, Exclusive Resolve if the data contained in a
cache level must be also present
in all lower levels or not

Cache Access UCA, NUCA Decide whether banks in the
cache have different access
speeds

Table 2.1: Summary of the policies presented in this chapter.

CHAPTER 2. BACKGROUND 30

Figure 2.9: Thread 0 increments x from 0 to 100 using private cache 0, and thread 1
increments y from 0 to 100 using private cache 1. The cache line presents false sharing,
because each increment of the variables in one of the caches invalidates the contents of
the other cache, despite the variable being unnecessary to the opposite thread.

Chapter 3

Related Work

This chapter provides an overview of some cache compression techniques that have been
proposed over the years. Table 3.3, at the end of this chapter, presents a comparison
of these techniques regarding extra metadata storage, energy savings, compression ratio,
matching scheme used and remarkable features. Compression ratio is calculated using
Equation 3.1.

CR =
original block size

compressed block size
(3.1)

3.1 Cache Compression

3.1.1 Zero-Content Augmented Caches

It has been observed that applications deal with a large amount of null data, and most
of it usually shows spatial locality. Ekman et al. [16] experimented with 16 different
benchmarks and discovered that on average 55% of all bytes in the memory are zero.
Thus, caches tend to waste a lot of their limited capacity storing void data.

In order to reduce the amount of wasted space, Dusser et al. propose Zero-Content
Augmented Caches (ZCA) [15], which consists of a conventional cache and a cache that is
specialized for memorizing null blocks (Zero Content cache - ZC). On reads, both caches
are checked in parallel, and if there’s a hit in the main cache, a conventional cache read
happens. If the hit is in the ZC, zero is returned. In the case of a miss, the read from
memory happens normally, and when the data arrives at the cache, it passes through a
zero detector to find out on which cache it will be stored. During writes, the zero detector
is also used, and special care is taken in order to maintain coherency between both caches
(i.e., when data that was in the conventional cache becomes zero, or vice-versa). By
keeping track of all zeros in a special cache, the ZCA manages to reduce the cache miss
rate by up to 81% on the SPEC 2000 benchmarks.

3.1.2 Doppelgänger Cache

Another important observation is that cache values usually exhibit approximate similarity,
that is, they are approximately equal across many blocks. This can be seen, for example,

31

CHAPTER 3. RELATED WORK 32

in images with low overall color gradient, where neighbor pixels exhibit similar values,
as in Figure 3.1a. Its histogram of differences is shown on Figure 3.1c, where it can be
seen that most of the adjacent pixels present similar values. Approximate similarity can
also happen due to worst case scenarios, as programmers use data structures bigger than
the average value, and thus the extra bytes tend to be zero. Besides that, as previously
stated, zero is a frequent value in applications, as it is commonly used to initialize data
and nullify pointers.

(a) Original image. (b) Pixels whose difference with their adjacent pixels
is higher than 10 units are shown in black.

(c) Histogram of differences between pixels. The hori-
zontal axis represents the difference between the values
of two neighbor pixels and the vertical axis presents the
total number of pixels with such difference. Adjacent
pixels tend to exhibit approximately equal values.

Figure 3.1: Original image and the contrast between its pixels.

These remarks are exploited in the Doppelgänger cache, created by Miguel et al. [36].
It uses an error tolerance threshold to determine values that should be considered equal
and thus reduce the amount of data that the cache needs to store. In order to allow precise
calculations, the Doppelgänger cache is divided into two areas: precise and approximate.

As in a conventional design, the Doppelgänger cache consists of a tag and a data
array, but they are decoupled so that there can be more tags than data blocks. The tag
arrays entries contain extra bits to store information regarding a doubly linked list of
blocks that map to a particular data entry, and each data block contains a pointer to its

CHAPTER 3. RELATED WORK 33

corresponding tag list’s head (Figure 3.2). This way, when a block is evicted, this linked
list can be accessed to find out which entries should be invalidated without applying a
full tag array scan.

Figure 3.2: Doppelganger’s doubly linked list. Each tag entry has extra metadata to
inform the previous entry, the next entry and the map tag of its corresponding data
block. The data block contains a pointer to the head of its corresponding tag list.

The data array stores approximate values in a way that if two blocks in the cache
exhibit similar values, their tags are mapped to the same data block using a specialized
hash function. When a block is inserted or there is a lookup, the block’s map value is
generated and the cache is searched for matches, first in the tag array, and then in the
map tag array (hash value), to find the corresponding data block position.

During writes and insertions, special care must be taken as the removal of a block
implies on the removal of several tag entries. Therefore, previous to removing an entry,
the cache is searched for similar values, and if there’s a match, it is simply appended to
the match’s linked list. If not, all tag entries referencing the data block to be evicted must
be invalidated and cleared.

3.1.3 Base-Delta-Immediate Compression

Also based on the observation that cache values tend to exhibit approximate similarity, the
Base-Delta-Immediate compression (BDI) [41] stores arrays of relative differences between
blocks instead of real values, which allows high compression ratio and low decompression
latency. Unlike most of the compression techniques, it has a cache line granularity, that
is, it compresses whole cache lines when their values have low dynamic range. When that
is not the case it leaves the data uncompressed.

Each compressed cache line in BDI is composed of metadata, one base value and an
array of deltas (differences between base and a block’s value) (Figure 3.3). There is also
an implicit base with null value (which we will call Base Zero). The use of this second
base is essential to improve efficiency, as one base can be used to store the common value
of the line, and the other to store values approximately equal to zero, due to their high
frequency on the cache. The deltas relative to Base Zero can be thought of as immediate
values, which completes the naming of the method.

During data compression, several factors must be accounted for: delta sizes, as choos-
ing sizes greater than a block’s size would not be beneficial; compression factor, as setting

CHAPTER 3. RELATED WORK 34

it fixed would narrow the possibilities; and hardware complexity to find the best base
value, as applying a maximum or minimum logic operation would decrease performance
and increase latency and complexity. In order to fulfill these requirements, BDI com-
pression chooses the first value found to be the base, since it only reduces the average
compression rate by 0.4%, and a compressor for each combination of base size and delta
size is created. Note that the delta size must be smaller than the base size in order to
have any advantage over an uncompressed line. Data decompression for this scheme is as
simple as an adder operating on a base and its corresponding delta value.

The metadata area consists of an encoding and a bitmask. The encoding value can be
one of the following: Zeros, that is, a cache line consisting only of null data; Rep Values,
a cache line consisting only of a repeated 8-byte value; Uncompressed, which states that
the cache line could not be compressed; Base8∆1 informs that the base size is 8 bytes
and the delta size (size of each delta entry) is 1 byte; and Base8∆2, Base8∆4, Base4∆1,
Base4∆2, and Base2∆1, which are all analogous to Base8∆1. As there is more than
one base, there must be a way to inform to which base a delta refers. This is done in the
bitmask area, where a set bit means that the delta uses the saved base, and a clear bit
that the delta refers to Base Zero.

Figure 3.4 shows an example of a cache line being compressed using BDI, as seen from
the compressor that parses the cache line as 4-byte entries with a delta size of 1 byte. The
first block is selected to be the base value, and all delta values are calculated based on it
and the zero-base, i.e., the first block is the base, and thus its difference is 0x00 (Figure
3.4b), the second block’s difference from the base (delta) is 0x02 (Figure 3.4c), the third
block value’s is 0x10 higher than the base (Figure 3.4d), and so on. Entry 6, however,
has a delta value of 0x04 relative to the zero-base, and so its metadata is set accordingly
(Figure 3.4g). As the delta values don’t require more than 1 byte to be represented this
encoding manages to save approximately 18 bytes.

Compressed cache line

BasesEncoding DeltasBitmask

Figure 3.3: Overview of the Base-Delta-Immediate compressed data.

3.1.4 Frequent Pattern Compression

Frequent Pattern Compression (FPC), proposed by Alameldeen et al. [2] is a simple
cache compression technique that takes into account the significance of the values stored
in blocks to compress the cache in a word-per-word basis, detecting and compressing
patterns based on their frequency on common workloads. For example, it is common to
store in words data that could possibly fit in a smaller data structure, and thus its high
order bits are usually set to zero (or one if sign-extended). Therefore space can be saved
by encoding words that match these special patterns.

They have shown that the patterns listed on Table 3.1 have high frequency on inte-
ger workloads, so if a block matches a pattern, its relevant portion is extracted and a

CHAPTER 3. RELATED WORK 35

4 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (~14 bytes)

Deltas

Base4-Δ1
Metadata (MD)

4 bits 1 bit

1 byte

Deltas Saved SpaceMD

4 bytes 8 bytes ~18 bytes

0x01234567 0x01234569 0x01234577 0x0123456A 0x01234642 0x00000004 0x01234571 0x01234580

Base

(a) Initial state.

4 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (~14 bytes)

Deltas

Base4-Δ1
Metadata (MD)

4 bits 1 bit

1 byte

Deltas Saved SpaceMD

4 bytes 8 bytes ~18 bytes

0x01234567 0x01234569 0x01234577 0x0123456A 0x01234642 0x00000004 0x01234571 0x01234580

0x01234567

0x00

1

(b) Entry 0x01234567 is parsed and set as the base. Delta is set relative to base with a value of 0x00.

4 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (~14 bytes)

Deltas

Base4-Δ1
Metadata (MD)

4 bits 1 bit

1 byte

Deltas Saved SpaceMD

4 bytes 8 bytes ~18 bytes

0x01234567 0x01234569 0x01234577 0x0123456A 0x01234642 0x00000004 0x01234571 0x01234580

0x01234567

0x00

1

0x02

1

(c) Entry 0x01234569 is parsed. Delta relative to base is 0x02.

Figure 3.4: Example of Base-Delta-Immediate compression. Output of the compressor
that parses the cache line as a sequence of 4-byte entries and uses a delta size of 1 byte.
The first block in the line is selected to be the base, and all delta values are calculated
accordingly.

CHAPTER 3. RELATED WORK 36

4 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (~14 bytes)

Deltas

Base4-Δ1
Metadata (MD)

4 bits 1 bit

1 byte

Deltas Saved SpaceMD

4 bytes 8 bytes ~18 bytes

0x01234567 0x01234569 0x01234577 0x0123456A 0x01234642 0x00000004 0x01234571 0x01234580

0x01234567

0x00

1

0x02

1

0x10

1

(d) Entry 0x01234577 is parsed. Delta relative to base is 0x10.

4 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (~14 bytes)

Deltas

Base4-Δ1
Metadata (MD)

4 bits 1 bit

1 byte

Deltas Saved SpaceMD

4 bytes 8 bytes ~18 bytes

0x01234567 0x01234569 0x01234577 0x0123456A 0x01234642 0x00000004 0x01234571 0x01234580

0x01234567

0x00

1

0x02

1

0x10

1

0x03

1

(e) Entry 0x0123456A is parsed. Delta relative to base is 0x03.

4 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (~14 bytes)

Deltas

Base4-Δ1
Metadata (MD)

4 bits 1 bit

1 byte

Deltas Saved SpaceMD

4 bytes 8 bytes ~18 bytes

0x01234567 0x01234569 0x01234577 0x0123456A 0x01234642 0x00000004 0x01234571 0x01234580

0x01234567

0x00

1

0x02

1

0x10

1

0x03

1

0xDB

1

(f) Entry 0x01234642 is parsed. Delta relative to base is 0xDB.

Figure 3.4: (cont 1.) Example of Base-Delta-Immediate compression. Output of the
compressor that parses the cache line as a sequence of 4-byte entries and uses a delta size
of 1 byte. The first block in the line is selected to be the base, and all delta values are
calculated accordingly.

CHAPTER 3. RELATED WORK 37

4 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (~14 bytes)

Deltas

Base4-Δ1
Metadata (MD)

4 bits 1 bit

1 byte

Deltas Saved SpaceMD

4 bytes 8 bytes ~18 bytes

0x01234567 0x01234569 0x01234577 0x0123456A 0x01234642 0x00000004 0x01234571 0x01234580

0x01234567

0x00

1

0x02

1

0x10

1

0x03

1

0xDB

1

0x04

0

(g) Entry 0x00000004 is parsed. Delta relative to zero-base is 0x04.

4 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (~14 bytes)

Deltas

Base4-Δ1
Metadata (MD)

4 bits 1 bit

1 byte

Deltas Saved SpaceMD

4 bytes 8 bytes ~18 bytes

0x01234567 0x01234569 0x01234577 0x0123456A 0x01234642 0x00000004 0x01234571 0x01234580

0x01234567

0x00

1

0x02

1

0x10

1

0x03

1

0xDB

1

0x04

0

0x0A

1

(h) Entry 0x01234571 is parsed. Delta relative to base is 0x0A.

4 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (~14 bytes)

Deltas

Base4-Δ1
Metadata (MD)

4 bits 1 bit

1 byte

Deltas Saved SpaceMD

4 bytes 8 bytes ~18 bytes

0x01234567 0x01234569 0x01234577 0x0123456A 0x01234642 0x00000004 0x01234571 0x01234580

0x01234567

0x00

1

0x02

1

0x10

1

0x03

1

0xDB

1

0x04

0

0x0A

1

0x19

1

(i) Entry 0x01234580 is parsed. Delta relative to base is 0x19. Compressor successfully finished compressing
the line.

Figure 3.4: (cont 2.) Example of Base-Delta-Immediate compression. Output of the
compressor that parses the cache line as a sequence of 4-byte entries and uses a delta size
of 1 byte. The first block in the line is selected to be the base, and all delta values are
calculated accordingly.

CHAPTER 3. RELATED WORK 38

compressed block is created. Otherwise the code for uncompressed word is used, and the
block is stored uncompressed.

Prefix Pattern Data Size Example
000 Zero run (one or more zero words) 3 bits1 0x00000000
001 4-bit sign extended 4 bits 0x00000002
010 1-byte sign-extended 8 bits 0xFFFFFF8D
011 Halfword sign-extended 16 bits 0xFFFFABCD
100 Halfword padded with zero 16 bits 0x0000A43B
101 Two halfwords, each 1-byte sign-extended 16 bits 0x0010FF99
110 Repeated bytes 8 bits 0x15151515
111 Uncompressed word 32 bits 0x12345678

Table 3.1: Frequent pattern encoding. The first column represents the code to be prefixed
to the stored data, the second is the pattern found, and the third column presents the
size of the data after compression (without the code). The last column shows examples
of words with the patterns.

The compression and decompression steps are simple. During compression, each data
block in the cache line is analyzed to determine if it matches a pattern, its corresponding
encoding is generated and saved in a prefix array, and the compressed block is stored. The
decompression stage requires more time, as the words can only be parsed sequentially due
to the variable data size. First the prefix array is checked to find the data sizes. Then
the data word position is determined using an accumulator on these previously calculated
sizes. A register array is then shifted to match the positions of the blocks. Finally, a
pattern decoder decodes the contents of each of the registers based on their respective
prefixes. Due to its simplicity this approach allows a low compression and decompression
latency (up to 5 cycles) while keeping as high as a 2.4 compression ratio. Figure 3.5 shows
an example of cache line compression using FPC.

Figure 3.5: Example of Frequent Pattern Compression.

1For a cache with 8 words/cache line

CHAPTER 3. RELATED WORK 39

3.1.5 Statistical Compressed Cache

Most of the previously mentioned schemes are based on simple pattern matching com-
pression algorithms, and thus are limited to low compression ratios [5]. Arelakis et al.
[6] propose Statistical Compressed Cache (SC2), a cache compression technique that uses
Huffman coding [23] to increase compressibility at the cost of greater compression and
decompression overheads, in order to achieve higher cache utilization.

Due to its statistical nature, the SC2 requires a short phase to collect statistics about
the code before code compression can be started. It does so by storing the frequency of
all unique values in a Value-Frequency Table (VFT). After the sampling phase is done
the VFT is frozen, and the codewords are generated. When a block is inserted, the
codewords are checked, and if there is no match, the value is left uncompressed, and a
special codeword is used to inform the decompressor.

In case the compression ratio becomes unsatisfactory (i.e., it becomes lower than a
threshold), another sampling stage can be started concurrently using a second decoder, as
the data inside the cache may have two encodings, and whenever a compressed block using
the old encoding is decompressed, the new encoding is applied to it. The authors have
shown that the sampling stage does not have to be frequent, due to the little variation in
value locality over time, even if multiple applications are being executed, and thus it can
be managed by software to reduce compression latency. Due to the higher compression
ratios achieved on the SPEC 2006 benchmarks (2.2X, on average) it can achieve better
performance than simpler methods, despite its higher decompression latency.

3.1.6 C-Pack

C-Pack+Z is a pattern matching and partial dictionary decoding, i.e., an entry in the
dictionary can be matched completely or partially matched, that detects frequently ap-
pearing data and does not generate much hardware complexity while keeping an effective
compression ratio (61%) and a low decompression latency [12], and zero-block detection
[15].

Table 3.2 presents the patterns used on the original paper. The first column indicates
the code generated if the respective pattern in the second column is found. The Data
Size column shows the block’s size after compression without code and position index.
The last column presents the generated compressed block with code and position index.
The size of the position index is directly proportional to the dictionary size, i.e., if the
dictionary has 16 entries, the position index is 4 bits long. It is important to notice that
the compressed block doesn’t need to be decompressed to find out the compression factor,
as it can be determined from parsing the code, and therefore it can be done in 1 cycle.

Whenever a word is compressed it is parsed to find a pattern. If a ZZZZ or ZZZX
pattern is found, where Z denotes a zero byte and X denotes no dictionary match, its
code is generated and the dictionary remains intact. Otherwise, there’s either a dictionary
match (denoted by M) or no match, and the dictionary must be updated with the new
word. When there’s a match, the position of the match within the dictionary is indicated
through a position index placed between the code and the data. Figure 3.6 demonstrates
how C-Pack effectuates word compression. For the sake of simplicity we assume the

CHAPTER 3. RELATED WORK 40

Code Pattern Data Size Output - (Code)Data
00 ZZZZ 0 (00)
01 XXXX 32 (01)XXXX
10 MMMM 0 (10)p
1100 MMXX 16 (1100)pXX
1101 ZZZX 8 (1101)X
1110 MMMX 8 (1110)pX

Table 3.2: Pattern encoding for C-Pack. Z is a zero byte, X is a byte that does not match
any dictionary entries, M is a dictionary match, and p is the index of the position of the
match.

dictionary supports 8 entries and thus the position index is 3 bits long and that it initially
contains 4 entries. The outputs of the compressor are concatenated to generate the
compressed cache line.

During decompression the code is read to define the pattern. If the pattern is ZZZZ,
ZZZX or XXXX the decompression is straightforward. When there’s a dictionary
match in the pattern, the dictionary must be consulted using the position index to discover
the data that is not present in the compressed word.

3.1.7 Manycore-Oriented Compressed Cache

All previous compression schemes are single-thread oriented, that is, they focus on im-
proving performance for single stream applications. MORC, proposed by Nguyen et al.,
aims on future manycore architectures, which will have thousands of cores and smaller
bandwidth per core, and thus is focused on improving throughput [38].

MORC was designed based on the insight that “compressing larger blocks of data [...]
is likely to yield higher compression ratios”. While conventional designs exploit intra-line
compression, that is, each block is isolatedly compressed, regardless of its surrounding
blocks, the Manycore-Oriented Compressed Cache adds inter-line compression by using
pointers to previously compressed data in order to avoid compression duplication. To
achieve this, MORC uses a log-based cache, on which data is appended based on data
commonality patterns, instead of data address, as in typical set-based caches. Besides,
tags are also compressed, by using Base-Delta encoding, so that higher compression ratios
can be attained.

Even though its decompression step requires more energy and access latency, less cache
misses are generated because of the improved compression ratio, that is, the number
of accesses to off-chip memories are reduced, and thus this method manages to save
bandwidth and lower overall energy.

3.2 Selective Cache Compression

Cache compression has the advantage of increasing cache capacity without proportionally
increasing energy and area, but its decompression stage may degrade cache performance

CHAPTER 3. RELATED WORK 41

(a) Input word 0xBBBB5678 is parsed for patterns. It matches MMXX at dictionary entry 2, so the
compressor outputs 0x(1100)25678. The word is appended to the dictionary and the compressed cache line
now contains: 0x(01)12341234(01)10110110(01)BBBBAAAA(01)FFFF9543(1100)25678.

(b) Input word 0xC24A9122 is parsed for patterns. It matches XXXX (no
match with dictionary entries), so the compressor outputs 0x(1110)C24A9122. The
word is appended to the dictionary and the compressed cache line now contains:
0x(01)12341234(01)10110110(01)BBBBAAAA(01)FFFF9543(1100)25678(1110)C24A9122.

(c) Input word 0x000000CD is parsed for patterns. It matches ZZZX, so the compressor outputs
0x(1101)CD. The word is not appended to the dictionary and the compressed cache line now contains:
0x(01)12341234(01)10110110(01)BBBBAAAA(01)FFFF9543(1100)25678(1110)C24A9122(1101)CD.

Figure 3.6: Example of word compression using C-Pack. The outputs of the compressor
are concatenated to generate the compressed cache line. Initial compressed cache line is:
0x(01)12341234(01)10110110(01)BBBBAAAA(01)FFFF9543. Numbers within parenthe-
sis are in binary representation, and are used so that non-4-bit offsets are not applied,
which makes data easier to read.

due to an increase in access latency. Selective methods turn on and off compression by
analyzing overall system performance.

3.2.1 Adaptive Cache Compression

Alameldeen et al. [1] proposed an adaptive compression scheme for a two-level cache
hierarchy where L1 is uncompressed to avoid hits overhead, as they are usually critical,
and L2 can be compressed. L2’s compression state is decided dynamically, depending
whether its advantageous to allow compression for a line or not.

Although this approach allows a performance speedup of up to 26%, the extra bits
needed for each tag to store the lines’ compressed size and compression status along
with the small compression factor (a compressed line can store twice as much as an

CHAPTER 3. RELATED WORK 42

uncompressed one) may outweight its usage if memory performance is not the limiting
factor.

3.2.2 Selective Code Compression

Selective Code Compression methods selectively choose regions of the cache to be com-
pressed based on execution profile [8] [14] [53] and instruction frequency [29] in order to
minimize this decompressor impact. The Dual Selective Code Compression scheme [37],
for example, creates a dictionary for frequently executed instructions (called Dynamic
Dictionary by the authors), such as in instructions within loops, and a dictionary for
instructions based on their frequency (called Static Dictionary), that is, the remaining
instructions.

This idea is based on the fact that inner-loop instructions are generally different from
the ones surrounding them, and thus they will produce different dictionaries. Then the
code is scanned and, for each dictionary, the instructions are selected in order to find out
which ones should be stored compressed, and which shouldn’t as to increase processor
performance.

3.2.3 Hybrid Methods

Hybrid methods also exist, such as HyComp [4], which was created based on the obser-
vation that a cache compression method is not the best for every workload, and thus
it should be chosen from a pool of methods. It does the compression in a two phase
approach: first it inspects the block to predict its contents and then it selects the most
suitable compression technique.

3.3 Cache Organization

Compressed data has to be placed properly, as if the data is compressed but allocated
to the same amount of space the compression would be useless. This is called cache
organization or cache compaction. Some techniques focus on determining where to put
compressed data, and how organizing the compressed cache in order to benefit from
the compression. Note that although some of the previously mentioned techniques may
address this problem, its not their main proposal.

3.3.1 Decoupled Compressed Cache

The Decoupled Compressed Cache [48] uses decoupled super-blocks, a group of four
aligned neighbor 64-byte cache blocks that share a single tag, where each block can be
divided in a variable number of 16-byte sub-blocks (from 0 to 4). The DCC consists of
a super-block tag array, a sub-blocked back pointer array and a sub-blocked data array.
Each entry in the back pointer array maps to a single entry in the data array, and consists
of a tag id representing the way number and a block number.

CHAPTER 3. RELATED WORK 43

When a block is compressed, a variable number of sub-blocks is generated, and due to
the decoupled nature of the method, they do not need to be placed contiguously (Figure
3.7). This creates extra area and latency overhead, but removes the need to relocate the
block whenever its compression changes. On lookups both the tag and back pointer arrays
are accessed in parallel, and the sub-blocks corresponding to the block are determined by
the back pointer array.

Ta
g
 I
D

B
lo

ck
 #

C
o
h
e
r

3

C
o
h
e
r

2

C
o
h
e
r

1

C
o
h
e
r

0

C
o
m

p
 3

C
o
m

p
 2

C
o
m

p
 1

C
o
m

p
 0

SB Tag I U I U V CI U 1 0

Way 0

BP Array DataTagTag

Way 1

Figure 3.7: Set 2’s super-block contains a single valid compressed block at sub-block 0 (its
respective coherence state is valid, and compression bit is set). The back pointer array
contains 3 entries related to this sub-block: 0, 1 and 5. The tag ID of each of these BP
entries is set to 1 to match the way at which its respective sub-block can be found, and
the block number is set to the number of the sub-block. The corresponding data entries
are highlighted.

3.3.2 Skewed Compressed Caches

Skewed Associative Caches (SAC) [50] are caches that allow overcoming one of the prob-
lems of cache associativity: conflict misses. Conflict misses happen when a quantity of
blocks higher than the number of ways map to the same set. These misses can be reduced
by increasing the number of ways or the number of replacement candidates [44], but this
is costly, both latency and energy-wise.

By indexing each way with a different hash function, conflict misses are reduced with-
out the drawbacks of increasing associativity. i.e., without using Skewed Associative

CHAPTER 3. RELATED WORK 44

Caches, blocks that conflict in a way will conflict in all other ways, as the hash function
will be the same. If Skewed Associative Caches are used, blocks that conflict in a way
most likely won’t conflict in other ways. For example, in a conventional cache, a block A
would be mapped to set 1 on all ways (Figure 3.8), but in a SAC each hash maps A to a
different set (Figure 3.9).

DataTag

SB Tag I I I I I III

Way 0

h0

DataTag

SB Tag I I I I I II I

h1

Way 1

DataTag

SB Tag I I I I I III

h2

Way 2

DataTag

SB Tag I I I I I II I

h3

Way 3

AAAA

Figure 3.8: Conventional cache mapping. Blocks are mapped to the same set even on
different ways due to the usage of a single hash function for all ways.

DataTag

SB Tag I I I I I III

Way 0

h0

DataTag

SB Tag I I I I I II I

h1

Way 1

DataTag

SB Tag I I I I I III

h2

Way 2

DataTag

SB Tag I I I I I II I

h3

Way 3

AAAA

Figure 3.9: Skewed Associative Caches have different hash functions for each way.

Skewed Compressed Caches are based on Skewed Associative Caches and use the C-
PACK + Z compression algorithm [12]. SCC use the fact that most workloads tend
to have compression and spatial locality, that is, neighboring blocks tend to have similar
compressibility and be inside the cache simultaneously, respectively, to gather neighboring
blocks with the same compressibility in a single physical entry.

It does so by grouping up to 8 adjacent blocks (super-blocks), each with its correspond-
ing super-block tag. These super-blocks are sparse, so they can be distributed along many
data entries, according to its blocks’ compressibilities (blocks with the same compressibil-
ity are placed on the same data entry). When they are placed in a data entry, a state tag
informs the validness of each of the data entry’s 8 sub-blocks (8 bytes each, totaling 64
bytes).

To execute cache lookups, first the compression factor must be determined, which is
done using Equation 3.2 with all cache ways. Then, for each way, Equations 3.3 and 3.4

CHAPTER 3. RELATED WORK 45

are used to find out the set index and byte offset, respectively. hi represent the hash
functions used for each compression factor. The tags of each of the possible data entries
are then checked to verify if the super-block tag matches and the offset is valid. By using
the state tag and the address of the block to determine the offset information, the block’s
location within the data entry will be known without using many extra bits, as in DCC
[48]. Figure 3.10 shows an example of possible mappings for block A for all its different
compression factors using SCC.

DataTag

SB Tag I I I I I III

Way 0

h0

DataTag

SB Tag I I I I I II I

h1

Way 1

DataTag

SB Tag I I I I I III

h2

Way 2

DataTag

SB Tag I I I I I II I

h3

Way 3

AAAA

Figure 3.10: Different mappings for block A for all its different compression factors.

CF1CF0 = A10A9 ∧W1W0 (3.2)

SetIndex =

h0({A47 − A11, A8, A7, A6}); CF == 0

h1({A47 − A11, A8, A7}); CF == 1

h2({A47 − A11, A8}); CF == 2

h3(A47 − A11); CF == 3

(3.3)

ByteOffset =

none; CF == 0

A6 << 4; CF == 1

A7A6 << 3; CF == 2

A8A7A6 << 2; CF == 3

(3.4)

For cache writes the computation of the set index, byte offset and way can be done
in parallel using Equations 3.3, 3.4 and 3.5, respectively. As can be seen, unlike regular
skewed associative caches, which allow a block to be allocated to any way, the compression
factor of a block determines the way to be used.

W1W0 = A10A9 ∧ CF1CF0 (3.5)

3.3.3 Yet Another Compressed Cache

Skewing the cache may lead to complicated tag array design, due to the need of extra
decoders and wiring. Besides, it limits the choice of replacement policies. Based on these

CHAPTER 3. RELATED WORK 46

observations, and trying to overcome the problems in the SCC design, Sardashti et al.
propose Yet Another Compressed Cache (YACC) [47].

As in the SCC, YACC uses sparse super-block tags and relies on spatial and compres-
sion locality, but it does not skew the cache, therefore a block can be easily found by
its index. Each super-block can track up to 4 16-byte blocks, and there are only 3 valid
compression factors: 4 (each block is compressed to 16 bytes), 2 (the block is compressed
to 2 bytes), and 1 (the block is uncompressed).

Each tag entry consists of a super-block tag, a CF4 bit and an optional CF2 bit
informing, respectively, if the compression factor of the blocks is 4 and 2. It also contains
the coherence state for each of the valid entries, and, if the compression factor is not 4,
an extra entry is needed to reference the index of the super-block block stored. This last
information allows non consecutive blocks of a super-block to be mapped to the same tag,
as opposed to SCC’s behavior.

Assume blocks ABCD belong to a super-block, and A, C and D compress to 16 bytes,
and B compresses to 32 bytes. When allocating these blocks, first the super-block tag is
checked to find the set to which it belongs. Then A, C and D are mapped to a free way
(in this case, 0), and its tag’s CF4 bit is set and their corresponding coherence states are
set. B is mapped to another way (in this example, 2) due to its different compression
factor, so the entry’s tag’s CF4 is set to 0, the CF2 bit is set to 1, the block index is set to
2 (B’s index within the super-block) and its corresponding coherence state is set. Figure
3.11 illustrates this example.

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

DataTag

Way 0

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

DataTag

Way 1

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

DataTag

Way 2

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

DataTag

Way 3

A C DB

CS0CS1CS2CS3CF4

SB Tag 210 I V

CS0BI0CS1BI1CF4

CF2

SB Tag 1 I VV V

Figure 3.11: Yet Another Compressed Cache example. Blocks A, B, C, D are consecutive
blocks in a super-block. A, C and D compress to 16 bytes and B compressed to 32 bytes.

Reading and writing data in the YACC design is similar to what happens in a con-
ventional cache. The super-block tag is searched for on all possible ways, and if there
is an entry with the given tag the coherence state and block index must be scanned for
a match. Recompressions are kept simple, as if the block is the only valid entry it only
requires a tag and data update. Otherwise, the previous entry is invalidated and the block
is written to another place in the same set.

CHAPTER 3. RELATED WORK 47

Technique Metadata Decompression
Latency (cy-
cles)

Compression
Ratio

Other features

ZCA < 1% 1 - Multicore aware
Doppelganger High 6 1.43x Decoupled tag and

data
BDI Low 1 1.4x Multicore aware
FPC Low 5 1.0-2.4x Significance based

C-Pack Low 8 1.61x Dictionary based
MORC 17% Highly Variable 3x Multicore oriented

SC2 10% 14 2.2x Huffman matching
scheme

Adaptive 11% 5 1.25-1.75x Selective compres-
sion

Dual Selective High 1 1.7x Selective code
compression

DCC 16.7% 9 2.6x Decoupled tag and
data

SCC 3.5% 9 1.8x Superblocks
YACC 2% 9 1.84x Flexible replace-

ment policies

Table 3.3: Comparison of the techniques described in this chapter. "-" has been inserted
on cells at which data is not known or has not been explored by the authors of the method.
The compression ratios were extracted from the original papers and were calculated using
different benchmarks, therefore they should not be compared between themselves.

3.4 Summary

Table 3.3 presents a summary of the techniques presented in this chapter. Values were
extracted from original papers using various benchmarks, so they should not be compared
between themselves.

Chapter 4

BDI Compression Extensions

The Base-Delta-Immediate compression constrains all bases and deltas to a single delta
size. This means that even if almost all deltas can be represented using a small delta size,
if there exists one difference value that needs a large delta size, then all deltas will be
padded to accommodate that size.

An example of compression that wastes space with padding is given on Figure 4.1.
For simplicity the cache line consists of 32 bytes, but the idea can be applied to any
cache size. All entries of the uncompressed cache line but the third can be compressed
to a delta size of 1 byte, and the exception needs 4 bytes due to its higher discrepancy.
As in BDI all deltas are compressed using a single delta size we have to waste 3 bytes
in padding for every other entry, totaling 9 wasted bytes (in red). We evaluated BDI
using the SPEC2006 benchmarks, and the mean amount of space wasted with padding
corresponds to 28% and 9% of the space used by the delta array for the entries with base
size 8 and 4 bytes, that is, 28% of the compressed line generated by a base 8 compressor’s
data, on average, is padding.

In this work we make two proposals that remove the paddings by allowing multiple
delta sizes, instead of a fixed one: BDI Relative to Bases (BDI-RB) keeps a delta size for
each base, and BDI Relative to Deltas (BDI-RD) has a delta size for each delta entry. We
also present a technique to allow BDI to use multiple bases, the MBDI.

0x1234567800000000

Deltas Saved Space

8 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (25 bytes)
MD

Deltas

Base8-Δ4 1 0 1 1
Metadata (MD)

4 bits 1 bit

0x0000000000000010 0x1234567840000005 0x1234567800000034

0x1234567800000000

8 bytes 16 bytes

0x00000000 0x00000010 0x40000005 0x00000034

4 bytes

7 bytes

Figure 4.1: Example of wasted space using Base-Delta-Immediate Compression.

48

CHAPTER 4. BDI COMPRESSION EXTENSIONS 49

Cache Organization

We maintain the original approach regarding cache organization: use twice as many tags
per data entry, and divide each data entry in segments. Pointer are also added for each
tag entry to provide the starting segment of its corresponding compressed cache line.
Therefore, the storage cost for the tag-store is the same as BDI’s.

4.1 Flexible Base-Delta-Immediate Compression

We propose two approaches to solve the padding problem, all of them increasing the com-
pression flexibility by allowing more delta sizes. Figures 4.2 and 4.3 present an overview
of the compressed data using the solutions that will be presented in this section. The
encoding, bitmask, bases and deltas fields keep the values as in the original BDI, but the
provided expansions use different encodings, and the deltas are not restricted to a single
delta size.

Compressed cache line

BasesEncoding+Extra Bits DeltasBitmask

Figure 4.2: Overview of the compressed data using Base-Delta-Immediate Relative to
Bases (BDI-RB).

Compressed cache line

BasesEncoding DeltasBitmask Delta Sizes

Figure 4.3: Overview of the compressed data using Base-Delta-Immediate Relative to
Deltas (BDI-RD).

4.1.1 Delta sizes relative to bases (BDI-RB)

One solution to this problem is to set a delta size for each base. Therefore every entry that
refers to a base uses its delta size. This extra information can be stored in the metadata
area by adding new encodings (discussed in Section 4.1.4).

In the example given in Figure 4.1, if each base was mapped to a delta size then Base
Zero would have a delta size of 1 byte, as all differences referring to it (immediate values)
are smaller than 1 byte, and all entries referring to the stored base would be stored in 4
bytes. This would save 3 extra bytes when compared to the original compression, as seen
in Figure 4.4.

Whenever Base Zero does not have entries, its delta size is set to be the same as the
saved base’s delta size. This is done because some of the encodings proposed require more
metadata to be stored in case delta sizes differ.

CHAPTER 4. BDI COMPRESSION EXTENSIONS 50

0x1234567800000000

Deltas Saved Space

8 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (~22 bytes)
MD

Deltas

Base8-Δ1Δ4 1 0 1 1
Metadata (MD)

5 bits 1 bit

0x0000000000000010 0x1234567840000005 0x1234567800000034

0x1234567800000000

8 bytes 13 bytes

0x00000000 0x10 0x40000005 0x00000034

4 bytes

~10 bytes

1 byte

Figure 4.4: Saved space using Base-Delta-Immediate Compression with delta sizes relative
to bases.

4.1.2 Delta sizes relative to deltas (BDI-RD)

Other viable approach is to associate the delta sizes with the delta values themselves, that
is, every delta entry has a corresponding delta size entry. This technique wastes more
space with metadata, but has a better compression ratio than the previous methods when
entries referring to a base are not constrained to a single delta size. For example, when
using the uncompressed cache line of Figure 4.1 this approach manages to save 8 extra
bytes when compared to the original compression, as seen in Figure 4.5

Again, whenever Base Zero does not have entries, its delta size is set to be the same as
the first delta size. This is done because the encoding proposed for this approach requires
more metadata (i.e., the delta size for each delta) to be stored in case delta sizes differ.
To complement that, whenever all delta sizes are equal the delta sizes array is substituted
by a single delta size entry, so the cases covered by the original encoding are not worsened
by more than 2 bits. In the case of a compression with a 2-byte base, there is only one
possible delta, so there is no need to store delta size.

0x1234567800000000

Deltas Saved Space

8 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (~17 bytes)
MD

Deltas

Base8D 1 0 1 1
Metadata (MD)

3 bits 1 bit

0x0000000000000010 0x1234567840000005 0x1234567800000034

0x1234567800000000

8 bytes 7 bytes

4 bytes

~15 bytes

1 byte

DS

0x00 0x10 0x40000005 0x34 00 10
Delta Sizes (DS)

00 00

2 bits

Figure 4.5: Saved space using Base-Delta-Immediate Compression with delta sizes relative
to deltas.

CHAPTER 4. BDI COMPRESSION EXTENSIONS 51

4.1.3 Implementation

So far we discussed how deltas should be stored, but not how the compressors work. As
in the BDI idea, the proposed method consists of having multiple compressors, each with
a different combination of base and delta sizes. Each compressor operates on entries with
size given by base size, and the delta limits are given by its delta size. However, in the
flexible delta size BDI solutions the delta size is not fixed, and thus the compressors try
all possible delta sizes up to the compressor’s delta size.

For example, the compressor with base size equal to 8 and maximum delta size of 4 has
to test if the entry is within limits using delta sizes 1, 2 and 4. If it is not out of bounds
the respective delta and delta size are inserted in the compressed data according to the
aforementioned ways. When neither is possible, if the maximum amount of bases has not
been reached the entry is added as a new base. If the base array is full, the compressor
fails. If all compressors fail then the line is marked as incompressible. Otherwise, the
compressed line of the compressor that generates the lowest compression size is used.

Number of Compressors

By using Flexible BDI each compressor operates at multiple delta sizes, so instead of
creating 6 compressors, as in the original approach (Base8∆1, Base8 − ∆2, Base8 −
∆4, Base4−∆1, Base4−∆2, Base2−∆1), one might be tempted to use 3 compressors
(Base8−∆4, Base4−∆2, Base2∆1). Although this is viable, it reduces the compression
ratio.

This happens because when the compressor still has not acquired its first non-zero
base, if the difference between the current entry and the Base Zero is less or equal to the
maximum delta of the compressor, it will add this delta with a high delta size, instead of
using an empty base slot for it.

Let us assume the cache line of Figure 4.6. The first four entries require a delta size of
1 byte relative to the Base Zero. The fifth entry, however, has a delta 2 bytes away from
zero. The dynamic compressor will then add this entry as a new entry relative to Base
Zero instead of using the unused base slot. Consequently all entries relative to zero must
now use 2 bytes instead of one.

Nonetheless, if more compressors are used, all using different maximum delta sizes,
the compressor with smaller maximum delta size will not be able to use Base Zero as the
base for the fifth entry, and therefore will add the entry to the base slot, resulting in a
better compression (Figure 4.7).

We compare the effects of using different number of compressors in Chapter 5.

4.1.4 Encoding

BDI-RB

The original encoding for the Base-Delta-Immediate compression (presented in Table 4.1)
must be expanded or modified to allow the extra metadata to be read correctly. We
propose 3 new encodings for the Base-Delta-Immediate Relative to Bases and 1 for the
Base-Delta-Immediate Relative to Deltas.

CHAPTER 4. BDI COMPRESSION EXTENSIONS 52

0x00000033

Deltas Saved Space

4 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (~22 bytes)
MD

Deltas

Base4-Δ2 0 0 0 0 0 0 0 0
Metadata (MD)

5 bits 1 bit

Not used

4 bytes 16 bytes

2 bytes

~10 bytes

0x00000027 0x00000012 0x00000000 0x00005553 0x00000010 0x00005554 0x0000007B

0x0033 0x0027 0x0012 0x0000 0x5553 0x0010 0x5554 0x007B

Figure 4.6: Example of compression using one compressor per base size.

0x00000033

Deltas Saved Space

4 bytes

Uncompressed cache line (32 bytes)

Compressed cache line (~14 bytes)
MD

Deltas

Base4-Δ1 0 0 0 0 1 0 1 0
Metadata (MD)

5 bits 1 bit

0x00005553

4 bytes 8 bytes

1 byte

~18 bytes

0x00000027 0x00000012 0x00000000 0x00005553 0x00000010 0x00005554 0x0000007B

0x33 0x27 0x12 0x00 0x00 0x10 0x01 0x7B

Figure 4.7: Example of compression using multiple compressors per base size.

The variables used in this section are described as follows: N is the number of entries
in the cache line, and is given by N = CacheLineSize/BaseSize; BS is the base size;
DS is the list of delta sizes, each entry respective to a base when using BDI-RB, and the
possible values for delta sizes when using BDI-RD; The Min Size and Max Size entries
take into account metadata bits, represent the minimum and maximum compressed data
sizes in bits, respectively, and are relative to a 32/64-byte cache line. Value is the encoding
opcode.

If only two bases are used, the number of possible combinations of bases and deltas is
14: 9 relative to base 8, 4 relative to base 4, and 1 relative to base 2. There are also 3
encodings that are not represented by the previous combinations: Zeros, Rep Values and
Uncompressed. Therefore, 17 encodings are needed to represent all these possibilities.
The original encoding uses 4 bits, but there are 7 unused entries, so we can use these
entries to store the new encodings. In order to simplify comprehension, the encodings
given in table 4.2 were chosen.

All possibilities are represented using four bits, but whenever a compression uses a
4-byte base and different delta sizes, an extra bit is used to inform whether Base Zero
has a delta size of 1 byte and the other base of 2 bytes (0), or if the opposite is true (1).

CHAPTER 4. BDI COMPRESSION EXTENSIONS 53

Name BS DS Min Size Max Size Value
Zeros 0 0 4/4 4/4 0000

Rep Values 64 0 68/68 68/68 0001
Base8-∆1 64 8 104/140 104/140 0010
Base8-∆2 64 16 136/204 136/204 0011
Base8-∆4 64 32 200/332 200/332 0100
Base4-∆1 32 8 108/180 108/180 0101
Base4-∆2 32 16 172/308 172/308 0110
Base2-∆1 16 8 164/308 164/308 0111

Uncompressed 64 0 260/516 260/516 1000

Table 4.1: Original BDI encoding.

This is done due to the fact that there is one more encoding than possible values in 4-bit
representation. The equations to calculate Min Size and Max Size are given by Equations
4.1 and 4.2, respectively.

Name BS DS EB Min Size Max Size Value
Zeros 0 0 N/A 4/4 4/4 0000

Rep Values 64 0 N/A 68/68 68/68 0001
Base8-∆1 64 8 N/A 104/140 104/140 0010
Base8-∆2 64 16 N/A 136/204 136/204 0011
Base8-∆4 64 32 N/A 200/332 200/332 0100
Base4-∆1 32 8 N/A 108/180 108/180 0101
Base4-∆2 32 16 N/A 172/308 172/308 0110
Base2-∆1 16 8 N/A 164/308 164/308 0111

Uncompressed 64 0 N/A 260/516 260/516 1000
Base8-∆1∆2 64 8, 16 N/A 112/148 128/196 1001
Base8-∆2∆1 64 16, 8 N/A 112/148 128/196 1010
Base8-∆1∆4 64 8, 32 N/A 128/164 176/308 1011
Base8-∆4∆1 64 32, 8 N/A 128/164 176/308 1100
Base8-∆2∆4 64 16, 32 N/A 152/220 184/316 1101
Base8-∆4∆2 64 32, 16 N/A 152/220 184/316 1110

Base4D 32 8, 16 0 117/189 165/301 1111
Base4D 32 16, 8 1 117/189 165/301 1111

Table 4.2: Encoding for the BDI relative to bases, version 1.

MinSize

4 + BS Zeros,RepV alues

4 + N + BS + min(DS) ∗ (N − 1) + 1 ∗max(DS) BaseZ −X

4 + 1 + N + BS + min(DS) ∗ (N − 1) + 1 ∗max(DS) Base4D

4 + BS ∗N Uncompressed

(4.1)

CHAPTER 4. BDI COMPRESSION EXTENSIONS 54

MaxSize

4 + BS Zeros,RepV alues

4 + N + BS + max(DS) ∗ (N − 1) + 1 ∗min(DS) BaseZ −X

4 + 1 + N + BS + max(DS) ∗ (N − 1) + 1 ∗min(DS) Base4D

4 + BS ∗N Uncompressed

(4.2)

Another possibility is to encode the base sizes and whether the delta sizes are equal or
different, and represent the delta sizes apart from the encoding. This allows the encoding
size to be reduced to 3 bits, as there will only be 8 possible encodings: Zeros, Repeated Val-
ues, Uncompressed, base 8 with equal deltas (Base8E), base 4 with equal deltas (Base4E),
base 2 with equal deltas (Base2E), base 8 with different deltas (Base8D), and base 4 with
different deltas (Base4D).

In order to represent the delta size both base 8 and base 4 encodings must have
extra bits (EB). This is not necessary for base 2 because it only has one possible delta
size value: 1 byte. There are 2 delta sizes for Base4E, which can be represented by 1
bit. Base8E, however, has 3 possible delta sizes, so it needs 2 extra bits. Base4D has 2
possible combinations of delta sizes: Base Zero with a delta size of 1 byte and the other
base with a delta size of 2, and its inverse, therefore it also only needs 1 extra bit. Lastly,
Base8D has 6 possible combinations and therefore needs 3 extra bits. These encodings
and combinations are shown in Table 4.3, and Equations 4.3 and 4.4 demonstrate how
the compressed sizes were calculated.

By using 3 bits for the encoding, all occurrences of Zeros, Rep Values, Base2 − ∆1

and Uncompressed are compressed more (by 1 bit). As the Base4X encodings need 1
extra bit for delta size representation, its size will always be less or equal to the original
BDI’s Base4 −∆1 and Base4 −∆2. Base8E, however is the equivalent of Base8 −∆1,
Base8−∆2 and Base8−∆4 and uses 1 extra bit when compared to it. The 2 extra bits
needed by the Base8D are compensated by the bytes saved by the dynamic compression.

MinSize

3 + BS Zeros,RepV alues

3 + EB + N + BS + min(DS) ∗ (N − 1) + 1 ∗max(DS) BaseZDiff,BaseZEqual

3 + BS ∗N Uncompressed
(4.3)

MaxSize

3 + BS Zeros,RepV alues

3 + EB + N + BS + max(DS) ∗ (N − 1) + 1 ∗min(DS) BaseZDiff,BaseZEqual

3 + BS ∗N Uncompressed
(4.4)

From Figure 4.8 we can see that the samples that remain uncompressed and that
consist of zero entries represent 68% of the total encoding frequency for the original BDI.
Therefore, if we substitute the fixed-length encodings by variable-length ones that favor
these encodings, we can increase the overall compression ratio.

Table 4.4 explores that observation by using two bits to represent the encoding of
these two most frequent encodings. We maintain the 4 bits needed by the original base-
delta encodings to simplify comparison and add the encodings with different deltas with
7 bits-long opcodes. Equations 4.5 and 4.6 calculate the minimum and maximum size for
each encoding, respectively.

CHAPTER 4. BDI COMPRESSION EXTENSIONS 55

Name BS DS Min Size Max Size Value Num EB EB
Zeros 0 0 3/3 3/3 000 0 N/A

Rep Values 64 0 67/67 67/67 001 0 N/A
Base8D 64 8, 16 114/150 130/198 010 3 000
Base8D 64 16, 8 114/150 130/198 010 3 001
Base8D 64 8, 32 130/166 178/310 010 3 010
Base8D 64 32, 8 130/166 178/310 010 3 011
Base8D 64 16, 32 154/222 186/318 010 3 100
Base8D 64 32, 16 154/222 186/318 010 3 101
Base4D 32 8, 16 116/188 164/300 011 1 0
Base4D 32 16, 8 116/188 164/300 011 1 1
Base8E 64 8 105/141 105/141 100 2 00
Base8E 64 16 137/205 137/205 100 2 01
Base8E 64 32 201/333 201/333 100 2 10
Base4E 32 8 108/180 108/180 101 1 0
Base4E 32 16 172/308 172/308 101 1 1
Base2E 16 8 163/307 163/307 110 0 N/A

Uncompressed 64 0 259/515 259/515 111 0 N/A

Table 4.3: Encoding for the BDI relative to bases, version 2. Num EB is the number of
extra bits needed to store the delta sizes and EB is the value of these extra bits.

Name BS DS Min Size Max Size Value
Zeros 0 0 2/2 2/2 00

Uncompressed 64 0 258/514 258/514 01
Rep Values 64 0 68/68 68/68 1000
Base8-∆1 64 8 104/140 104/140 1001
Base8-∆2 64 16 136/204 136/204 1010
Base8-∆4 64 32 200/332 200/332 1011
Base4-∆1 32 8 108/180 108/180 1100
Base4-∆2 32 16 172/308 172/308 1101
Base2-∆1 16 8 164/308 164/308 1110

Base8-∆1∆2 64 8, 16 115/151 131/199 1111000
Base8-∆2∆1 64 16, 8 115/151 131/199 1111001
Base8-∆1∆4 64 8, 32 131/167 179/311 1111010
Base8-∆4∆1 64 32, 8 131/167 179/311 1111011
Base8-∆2∆4 64 16, 32 155/223 187/319 1111100
Base8-∆4∆2 64 32, 16 155/223 187/319 1111101
Base4-∆1∆2 32 8, 16 119/191 167/303 1111110
Base4-∆2∆1 32 16, 8 119/191 167/303 1111111

Table 4.4: Encoding for the BDI relative to bases, version 3.

CHAPTER 4. BDI COMPRESSION EXTENSIONS 56

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Fr
e
q

u
e
n
cy

Encoding Frequency (BDI)

Zeros
Rep Values

Base8-1
Base8-2
Base8-4
Base4-1
Base4-2
Base2-1

Uncompressed

Figure 4.8: Original BDI encoding frequency (in %).

MinSize

2 Zeros

4 + BS RepV alues

4 + N + BS + min(DS) ∗ (N − 1) + 1 ∗max(DS) BaseZ −∆X

7 + N + BS + min(DS) ∗ (N − 1) + 1 ∗max(DS) BaseZ −∆X∆Y

2 + BS ∗N Uncompressed

(4.5)

MaxSize

2 Zeros

4 + BS RepV alues

4 + N + BS + max(DS) ∗ (N − 1) + 1 ∗min(DS) BaseZ −∆X

7 + N + BS + max(DS) ∗ (N − 1) + 1 ∗min(DS) BaseZ −∆X∆Y

2 + BS ∗N Uncompressed

(4.6)

BDI-RD

Table 4.5 presents the encoding used by the BDI relative to deltas. Only 3 bits are needed
for the encoding representation. The minimum size for a encoding is given by Equation
4.7 and the maximum size is given by Equation 4.8, where hDS is the highest possible
delta size and shDS is the second highest possible delta size for that given encoding. For
example, for Base8Diff the hDS is 32, and shDS is 16.

MinSize

3 + BS Zeros,RepV alues

3 + N + BS + DSS ∗NumDS + (NumDS − 1) ∗ 8 + 1 ∗ 16 BaseZDiff

3 + N + BS + DSS + N ∗ 8 BaseZEqual

3 + BS ∗N Uncompressed

(4.7)

CHAPTER 4. BDI COMPRESSION EXTENSIONS 57

Name BS DS DSS Num DS Min Size Max Size Value
Zeros 0 0 0 0 3/3 3/3 000

Rep Values 64 0 0 0 67/67 67/67 001
Base8D 64 8/16/32 2 8 119/163 191/331 010
Base4D 32 8/16 1 16 123/203 171/323 011
Base8E 64 8/16/32 2 1 111/141 207/333 100
Base4E 32 8/16 1 1 108/180 172/308 101
Base2E 16 8 0 0 163/307 163/307 110

Uncompressed 64 0 0 0 259/515 259/515 111

Table 4.5: Encoding for the BDI relative to deltas. DSS is the size used by a delta size.
Num DS is the number of delta size entries needed by the encoding.

MaxSize

3 + BS Zeros,RepV alues

3 + N + BS + DSS ∗NumDS + (NumDS − 1) ∗ hDS + 1 ∗ shDS BaseZDiff

3 + N + BS + DSS + N ∗ hDS BaseZEqual

3 + BS ∗N Uncompressed
(4.8)

4.1.5 Operations

Compression

The compressors for the BDI-RB technique are more complex than the ones used in BDI,
as the delta size of each delta is not known until the last delta is parsed. They can be
divided in two steps: delta calculation and output generation. Delta calculation is done
in N steps, N being the number of entries in the cache line. If an entry is within one of
the possible delta sizes then it is added to the delta array, and the lowest of the successful
delta sizes is compared to the current delta size of the successful base, and if it is bigger
the current delta size is updated with the new delta size. If the entry is not within the
delta limits the base is added to the base array, if there is still a vacant slot. Otherwise
the compressor fails.

When all entries are parsed the output generation step starts by using one of the
following two approaches: use N cycles and a shift adder to insert the deltas obeying their
delta sizes, or use a mapper to simultaneously insert all deltas in the compressed output.

BDI-RD is simpler than BDI-RB, and its compressors are similar to BDI’s. Their
main difference is that when parsing the last entry it has to check whether the deltas are
equal or not to decide if the delta sizes array will contain one or N entries. The deltas are
set using a shifter during compression.

Decompression

As in the original BDI, the decompressor is composed of adders that, for each entry,
adds the corresponding base and delta. However, the location of the deltas is not fixed
according to the encoding in the BDI-RB, so the position of each delta must be mapped

CHAPTER 4. BDI COMPRESSION EXTENSIONS 58

from the sum of delta sizes up to its position. This can be done using a shift adder and
N cycles, where N is the number of deltas, or by using more hardware in a single cycle.
BDI-RD’s compressor is as simple as BDI’s, so decompression can easily be done in a
single cycle. A comparison of the hardware needed both approaches will be shown in
Chapter 5.

4.2 Multiple bases (MBDI)

As noted in Figure 4.8, 51% of the data is still left uncompressed using BDI. This happens
because applications have data from different types and sizes spread all over the cache
lines, so a single cache line is not constrained to a single representation with a variation.
The original BDI authors mentioned that if BDI is applied to multiple bases then the
applications for which that condition exists can have improved compressibility, however
their results showed that having more than two bases did not further improve compression.

The main problem with their approach is that all compressed data had the same
amount of bases for all cases. Therefore, applications that could use more than two bases
had a higher compression ratio, but the ones that did not suffered with the extra space
used by the unnecessary bases. This can be overcome by allowing the amount of bases
to be dynamic, that is, if we store only the bases used we can have all the advantages of
multiple bases without the unwanted wasted space.

To do so extra metadata is needed to store the amount of bases, and this fixed space
used is dependent of the number of entries present in the cache line, as calculated by
Equation 4.10. Besides, as bitmask width is dependent of the number of bases, its size is
not fixed anymore and is given by Equation 4.11. Figure 4.9 presents an overview of the
MBDI compressed data.

As before, we maintain the implicit Base Zero, so in case only references to Base Zero
exists in a cache line, there are no bitmask entries and the number of bases is set to 0. If
there is a single non-zero base and no references to Base Zero, the number of bases is set
to 1, and each bitmask entry has a width of 1 bit. For a higher number of non-zero bases
the bitmask width is increases accordingly, but the space used by the number of bases is
always the same.

NumEntries = CacheLineWidth/BaseSize (4.9)

NumBasesWidth = log(NumEntries) (4.10)

BitmaskWidth = log(NumBases) ∗NumEntries (4.11)

Compressed cache line

BasesEncoding DeltasBitmaskNB

Figure 4.9: Overview of the Base-Delta-Immediate compressor with multiple bases.

CHAPTER 4. BDI COMPRESSION EXTENSIONS 59

4.2.1 Number of Compressors

As in the Flexible BDI solution, we can have a compressor for each base size vs delta
size combination, however, due to the fact that the compressors are not constrained to
two bases, we can reduce this extra hardware cost by having a compressor for each base
size that uses the minimal delta size (1 byte). This saves the space used by the hardware
compressors using higher delta sizes at the cost of compression ratio.

4.2.2 Encoding

Table 4.6 presents MBDI’s encoding, and Table 4.7 presents the encoding used by MBDI
using less compressors. The minimum and maximum size in bits of each encoding are
given by Equations 4.12 and 4.13, respectively, where EncodingWidth is the width in bits
of the encoding field, BS is the base size, DS is the delta size, N is the number of entries in
the cache line, NBW is the width in bits of the field that stores the number of bases. BW
is the maximum possible value for the width of the bitmask field in bits, and NumBases
is the number of bases.

MinSize

EncodingWidth + BS Zeros,RepV alues

EncodingWidth + NBW + N ∗DS BaseX

EncodingWidth + BS ∗N Uncompressed

(4.12)

MaxSize

EncodingWidth + BS Zeros,RepV alues

EncodingWidth + NBW + BS ∗NumBases + BW + N ∗DS BaseX

EncodingWidth + BS ∗N Uncompressed
(4.13)

Name BS DS NBW BW Min Size Max Size Value
Zeros 0 0 0 0/0 4/4 4/4 0000

Rep Values 64 0 0 0/0 68/68 68/68 0001
Base8−∆1 64 8 3/4 12/32 39/72 307/616 0010
Base8−∆2 64 16 3/4 12/32 71/136 339/680 0011
Base8−∆4 64 32 3/4 12/32 135/264 403/808 0100
Base4−∆1 32 8 4/5 32/80 72/137 360/729 0101
Base4−∆2 32 16 4/5 32/80 136/265 424/857 0110
Base2−∆1 16 8 5/6 80/192 137/266 473/970 0111
Uncompressed 64 0 0 0/0 259/515 259/515 1000

Table 4.6: MBDI Encoding. NBW is the width in bits of the field that stores the number
of bases. BW is the maximum possible value for the width of the bitmask field in bits.

Notice that for both methods the maximum possible sizes for the base encodings are
bigger than the uncompressed cache line, therefore they will never use an amount of bases
equal to the number of entries. Tables 4.8 and 4.9 show the maximum number of bases
that still allow the compressor to have a better compression size than the original cache
line.

CHAPTER 4. BDI COMPRESSION EXTENSIONS 60

Name BS DS NBW BW Min Size Max Size Value
Zeros 0 0 0 0/0 3/3 3/3 000

Rep Values 64 0 0 0/0 67/67 67/67 001
Base8 64 8 3/4 12/32 38/71 306/615 010
Base4 32 8 4/5 32/80 71/136 359/728 011
Base2 16 8 5/6 80/192 136/265 472/969 100

Uncompressed 64 0 0 0/0 259/515 259/515 101

Table 4.7: MBDI encoding using less compressors. NBW is the width in bits of the
NumberBases field. BW is the maximum possible value for the width of the bitmask field
in bits.

Name MaxNumBases
Zeros N/A

Rep Values N/A
Base8−∆1 3/6
Base8−∆2 2/5
Base8−∆4 1/3
Base4−∆1 5/9
Base4−∆2 3/6
Base2−∆1 4/7
Uncompressed N/A

Table 4.8: Maximum number of non-zero bases so that the compressed size is still better
than the uncompressed data for the MBDI.

Name MaxNumBases
Zeros N/A

Rep Values N/A
Base8 3/6
Base4 5/9
Base2 4/7

Uncompressed N/A

Table 4.9: Maximum number of non-zero bases so that the compressed size is still better
than the uncompressed data for the MBDI-LC.

CHAPTER 4. BDI COMPRESSION EXTENSIONS 61

Therefore, the sizes of the NBW and BW fields should change to accommodate these
maximum values in order not to waste space, as shown in Tables 4.10 and 4.11.

Name BS DS NBW BW Min Size Max Size Value
Zeros 0 0 0 0/0 4/4 4/4 0000

Rep Values 64 0 0 0/0 68/68 68/68 0001
Base8−∆1 64 8 2/3 8/24 38/71 238/479 0010
Base8−∆2 64 16 2/3 8/24 70/135 206/479 0011
Base8−∆4 64 32 1/2 4/16 133/262 201/470 0100
Base4−∆1 32 8 3/4 24/64 71/136 255/488 0101
Base4−∆2 32 16 2/3 16/48 134/263 246/503 0110
Base2−∆1 16 8 2/3 48/96 135/263 247/471 0111
Uncompressed 64 0 0 0/0 259/515 259/515 1000

Table 4.10: Encoding for the MBDI with fixed maximum base sizes. NBW is the width
in bits of the NumberBases field. BW is the maximum possible value for the width of
the bitmask field in bits.

Name BS DS NBW BW Min Size Max Size Value
Zeros 0 0 0 0/0 3/3 3/3 000

Rep Values 64 0 0 0/0 67/67 67/67 001
Base8 64 8 2/3 8/24 37/70 237/478 010
Base4 32 8 3/4 24/64 70/135 254/487 011
Base2 16 8 3/3 48/96 134/262 246/470 100

Uncompressed 64 0 0 0/0 259/515 259/515 101

Table 4.11: Encoding for the MBDI using less compressors and fixed maximum base sizes.
NBW is the width in bits of the NumberBases field. BW is the maximum possible value
for the width of the bitmask field in bits.

Note that the dynamic base-delta-immediate relative to deltas and the multiple base-
delta-immediate solutions could be combined to further improve compression. We call it
MBDI-RD, and its results are shown in the next chapter.

Chapter 5

Experimental Results

5.1 Methodology

In order to emulate typical working conditions, ZSim [45], a x86-64 simulator, was used.
ZSim is a fast, scalable and accurate multi-core architectural simulator that uses dynamic
binary translation to perform instruction decoding and timing analysis during the instru-
mentation phase and thus reduce the amount of tasks to be repeated during simulation.
We chose ZSim because it outperforms current popular simulators like Sniper [10], which
uses approximation techniques to do timed interval instead of instruction-wise simulation,
and gem5 [9], which emulates the instructions, that is, it decodes and invokes functional
and timing models for every instruction.

All the compression methods were implemented in C++ and Verilog, and these imple-
mented classes and modules provide ways to perform compression and decompression of
cache lines. The validation stage was performed at the Computer Systems Laboratory of
the Institute of Computing at Unicamp, as it provides ZSim and a cluster, which allows
high parallel computation, and thus faster results.

The processor design was the same for all compression schemes: single core, two cache
levels, compressors only on LLC. L1 and L2 cache configuration was 32KB and 2MB,
respectively, and both caches consist of 16 ways, as in the original BDI paper. The
systems were simulated using ZSim and tested using Simpoints [40] on the benchmarks
from SPEC 2006 [22]. Tests focused on common computer operations under the same
environmental conditions.

As a final step the results from the systems were compared regarding 1) data compres-
sion, that is, which system compressed more; 2) power efficiency, that is, which system
used the least amount of power to finish the tasks; 3) chip die area used, in other words,
how much space is required to synthesize each compressor; 4) performance: difference in
IPC and MPKI for simulated executions; and 5) implementation complexity, a compari-
son between the difficulties and trade-offs of the systems. Usage validness of the Dynamic
Base-Delta-Immediate Compressor was determined via an analysis of these factors to ver-
ify at which conditions it could be a better scheme than the ones being used in processors
nowadays.

To test data compression, the benchmarks from SPEC2006 were executed using Sim-
Points, and for every cache access, all techniques were applied simultaneously to the cache

62

CHAPTER 5. EXPERIMENTAL RESULTS 63

line in order to find their compression ratio. For area and power efficiency evaluation we
used Cadence RTL Compiler to synthesize the verilog modules implemented. We left
the synthesis and evaluation of the MBDI-RD module to future work, as we only have a
behavioral model of the technique. We used a 15nm technology [34] and a clock frequency
of 500MHz (although most of the methods can achieve higher clock frequencies, BDI-RB
is limited to this value, so we used it as default), and compared the techniques regard-
ing number of compressors, and evaluated BDI-RD using slow and fast decompression,
that is, same amount of cycles as compression vs 1-cycle. We only evaluated BDI-RB
using a slow (multiple-cycle) decompression due to the higher complexity of the faster
approach and the low compression ratio improvement presented by this technique. To
test the performance improvements (IPC and MPKI), we ran ZSim with all SimPoints
using each of the compression methods and compared the results. In order to calculate
system performance, all SimPoints were executed for each of the compression techniques,
and the resulting MPKI and IPC were taken.

The benchmark means were calculated by applying a geometric mean among the
benchmark’s Simpoint results. The general means were calculated by applying a geometric
mean among the benchmark mean values.

5.2 Data compression

Figure 5.1 presents the encoding frequency for all the encoding versions proposed for the
Base-Delta-Immediate Relative to Bases. They do not differ much from each other, as the
likelihood of changing encoding due to the saved/extra 1-3 bits difference is low. Notice
that although the real encoding values for version 2 is completely different from the others,
it has been translated to allow comparison. This was done by applying the delta sizes
directly to the encoding, i.e. a cache line with encoding Base8D, and delta sizes of 16
and 32 is mapped to Base8−∆2∆4.

There has been a significant reduction on the frequency ofBase8−∆2, Base8−∆4, and
Base4−∆2 when compared to the original results (Figure 4.8), and a minor reduction for
the Base4−∆1 and Base2−∆1 encodings. As expected, Zeros, Rep Values, Base8−∆1,
and Uncompressed did not suffer any modifications due to the fact that Base8 − ∆1 is
already the best compression with a base for a 64-byte cache line and that the other three
encodings are not affected by the method (except for a minor encoding size change).

The transitions from the original encodings to the dynamic encodings are shown on
Figures 5.2, 5.3, and 5.4, and represent the percentage of original opcode (horizontal axis)
that became another opcode using the proposed encoding. For example, in Figure 5.2,
19% of the compressed lines that originally used the Base8−∆2 became Base8−∆2∆1

using BDI-RB version 1, as the second base did not need the second byte to represent its
deltas.

CHAPTER 5. EXPERIMENTAL RESULTS 64

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Z
e
ro
s

R
e
p
V
a
lu
e
s

B
a
se
8
-1

B
a
se
8
-2

B
a
se
8
-4

B
a
se
4
-1

B
a
se
4
-2

B
a
se
2
-1

U
n
co
m
p
re
sse

d

B
a
se
8
-1
_2

B
a
se
8
-2
_1

B
a
se
8
-1
_4

B
a
se
8
-4
_1

B
a
se
8
-2
_4

B
a
se
8
-4
_2

B
a
se
4
-1
_2

B
a
se
4
-2
_1

Fr
e
q

u
e
n
cy

Encoding Frequency (BDI-RB)

Version 1
Version 2
Version 3

Figure 5.1: BDI-RB encoding frequency (in %).

 0

 0.2

 0.4

 0.6

 0.8

 1

Z
e
ro

s

R
e
p
 V

a
lu

e
s

B
a
se

8
-1

B
a
se

8
-2

B
a
se

8
-4

B
a
se

4
-1

B
a
se

4
-2

B
a
se

2
-1

U
n
co

m
p
re

sse
d

Fr
e
q

u
e
n
cy

Transition Frequency (BDI-RB version 1)

Zeros
Rep Values

Base8-1
Base8-2
Base8-4
Base4-1
Base4-2
Base2-1

Uncompressed
Base8-1_2
Base8-2_1
Base8-1_4
Base8-4_1
Base8-2_4
Base8-4_2
Base4-1_2
Base4-2_1

Figure 5.2: BDI-RB version 1 transition frequency (in %).

CHAPTER 5. EXPERIMENTAL RESULTS 65

 0

 0.2

 0.4

 0.6

 0.8

 1

Z
e
ro

s

R
e
p
 V

a
lu

e
s

B
a
se

8
-1

B
a
se

8
-2

B
a
se

8
-4

B
a
se

4
-1

B
a
se

4
-2

B
a
se

2
-1

U
n
co

m
p
re

sse
d

Fr
e
q

u
e
n
cy

Transition Frequency (BDI-RB version 2)

Zeros
Rep Values

Base8-1
Base8-2
Base8-4
Base4-1
Base4-2
Base2-1

Uncompressed
Base8-1_2
Base8-2_1
Base8-1_4
Base8-4_1
Base8-2_4
Base8-4_2
Base4-1_2
Base4-2_1

Figure 5.3: BDI-RB version 2 transition frequency (Translated to make it easier to com-
press to other encodings) (in %).

 0

 0.2

 0.4

 0.6

 0.8

 1

Z
e
ro

s

R
e
p
 V

a
lu

e
s

B
a
se

8
-1

B
a
se

8
-2

B
a
se

8
-4

B
a
se

4
-1

B
a
se

4
-2

B
a
se

2
-1

U
n
co

m
p
re

sse
d

Fr
e
q

u
e
n
cy

Transition Frequency (BDI-RB version 3)

Zeros
Rep Values

Base8-1
Base8-2
Base8-4
Base4-1
Base4-2
Base2-1

Uncompressed
Base8-1_2
Base8-2_1
Base8-1_4
Base8-4_1
Base8-2_4
Base8-4_2
Base4-1_2
Base4-2_1

Figure 5.4: BDI-RB version 3 transition frequency (in %).

BDI-RD takes advantage of its smaller encoding width and improves compression
of all Zeros, Rep Values, Base2∆1 and Uncompressed entries by 1 bit. Besides, by
allowing each delta size to be stored separately, only the necessary space for a delta entry

CHAPTER 5. EXPERIMENTAL RESULTS 66

is used, which removes all the extra padding created by BDI. Rare Base4∆2 entries
become Base2∆1 because in the original compression, when compression sizes are equal
for multiple compressors, the compressor with higher base size is preferred due to its faster
compression. As Base2∆1 is always at least 1 bit smaller in the BDI-RD encoding for a
64-byte cache line, there is no tie between these encodings anymore. The cache lines that
were compressible by both the Base4∆1, Base4∆2, Base8∆2 and Base8∆4 can now use
the compression benefits of the Base8∆1 compressor if there are few entries with a higher
delta size. All transitions from BDI to BDI-RD for the benchmarks are shown in Figure
5.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

Z
e
ro

s

R
e
p
 V

a
lu

e
s

B
a
se

8
-1

B
a
se

8
-2

B
a
se

8
-4

B
a
se

4
-1

B
a
se

4
-2

B
a
se

2
-1

U
n
co

m
p
re

sse
d

Fr
e
q

u
e
n
cy

Transition Frequency (BDI-RD)

Zeros
Rep Values

Base8
Base4
Base2

Uncompressed

Figure 5.5: BDI-RD transition frequency (in %). Transitions from Base4∆2 to Base2∆1
correspond to only 0,00004% of the Base4∆2 transitions.

The previous methods aim on improving compression for the lines that were already
compressible. MBDI, however, tackles the cache lines that remain uncompressed using
the original Base-Delta-Immediate compressor. This can be seen on Figure 5.6, where the
frequency of uncompressed data reduced 36%.

CHAPTER 5. EXPERIMENTAL RESULTS 67

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Zeros

RepValues

Base8-1

Base8-2

Base8-4

Base4-1

Base4-2

Base2-1

Uncom
pressed

Fr
e
q

u
e
n
cy

Encoding Frequency (MBDI vs BDI)

BDI
MBDI

Figure 5.6: MBDI and BDI encoding frequency compared (in %).

As mentioned previously, MBDI and BDI-RD can be combined to improve compression
ratio (we call it MBDI-RD). This reduces the number of uncompressed samples by 38%
(Figure 5.7) when compared to the original BDI.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

Zeros

RepValues

Base8D

Base4D

Base8E

Base4E

Base2E

Uncom
pressed

Fr
e
q
u
e
n
cy

Encoding Frequency (MBDI-RD)

Figure 5.7: MBDI-RD encoding frequency (in %).

CHAPTER 5. EXPERIMENTAL RESULTS 68

5.2.1 Number of compressors

As stated previously, using less compressors reduces the compression ratio. This can be
seen on Figure 5.8, which represents the transitions from the original BDI compression
to the BDI-RBLC version 3. The entries that were originally compressed to Base8∆1

were compressed to Base8∆2, Base8∆4, and even Base4∆1. This happens because the
wrong base was saved, so the base8 compressor failed when the base that really needed
to be stored was limited by the lack of base space.

 0

 0.2

 0.4

 0.6

 0.8

 1

Z
e
ro

s

R
e
p
 V

a
lu

e
s

B
a
se

8
-1

B
a
se

8
-2

B
a
se

8
-4

B
a
se

4
-1

B
a
se

4
-2

B
a
se

2
-1

U
n
co

m
p
re

sse
d

Fr
e
q

u
e
n
cy

Transition Frequency (BDI-RBLC version 3)

Zeros
Rep Values

Base8-1
Base8-2
Base8-4
Base4-1
Base4-2
Base2-1

Uncompressed
Base8-1_2
Base8-2_1
Base8-1_4
Base8-4_1
Base8-2_4
Base8-4_2
Base4-1_2
Base4-2_1

Figure 5.8: BDI-RBLC version 3 transition frequency (in %).

Varying the number of compressors does not significantly affect the compression ratio
for the BDI-RB and BDI-RD (less than 1%), as can be seen on Figures 5.9 and 5.10, but
it produces a difference of almost 7% for the MBDI technique (Figure 5.11).

CHAPTER 5. EXPERIMENTAL RESULTS 69

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

Gem
sFDTD

astar

bwaves

bzip2

cactusADM

calculix

dealII

gam
ess

gcc
gobm

k

grom
acs

h264ref

hm
m
er

lbm
leslie3d

libquantum

m
cf
m
ilc
nam

d

om
netpp

perlbench

povray

sjeng
soplex

sphinx3

tonto
wrf

xalancbm
k

zeusm
p

GeoM
ean

C
o
m

p
re

ss
io

n
 R

a
ti

o
 (

x
)

Mean Compression Ratio (BDI-RB vs BDI-RBLC)

BDI-RB 1
BDI-RB 2
BDI-RB 3

BDI-RBLC 1
BDI-RBLC 2
BDI-RBLC 3

Figure 5.9: Mean compression ratio for BDI-RB using more (BDI-RB) and less (BDI-
RBLC) compressors.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

Gem
sFDTD

astar

bwaves

bzip2

cactusADM

calculix

dealII

gam
ess

gcc
gobm

k

grom
acs

h264ref

hm
m
er

lbm
leslie3d

libquantum

m
cf
m
ilc
nam

d

om
netpp

perlbench

povray

sjeng
soplex

sphinx3

tonto
wrf

xalancbm
k

zeusm
p

GeoM
ean

C
o
m

p
re

ss
io

n
 R

a
ti

o
 (

x
)

Mean Compression Ratio (BDI-RD vs BDI-RDLC)

BDI-RD
BDI-RDLC

Figure 5.10: Mean compression ratio for BDI-RD using more (BDI-RD) and less (BDI-
RDLC) compressors.

CHAPTER 5. EXPERIMENTAL RESULTS 70

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

Gem
sFDTD

astar

bwaves

bzip2

cactusADM

calculix

dealII

gam
ess

gcc
gobm

k

grom
acs

h264ref

hm
m
er

lbm
leslie3d

libquantum

m
cf
m
ilc
nam

d

om
netpp

perlbench

povray

sjeng
soplex

sphinx3

tonto
wrf

xalancbm
k

zeusm
p

GeoM
ean

C
o
m

p
re

ss
io

n
 R

a
ti

o
 (

x
)

Mean Compression Ratio (MBDI vs MBDI-LC)

MBDI
MBDI-LC

Figure 5.11: Mean compression ratio for MBDI using more (MBDI) and less (MBDI-LC)
compressors.

5.2.2 Compression ratio

Figure 5.12 presents the compression ratio for CPack, FPC, BDI and the proposed tech-
niques. As can be seen, all the methods, except BDI-RBLC_1 and BDI-RBLC_2, manage
to outperform the original Base-Delta-Immediate compressor. Among the proposed algo-
rithms, MBDI-RD exhibit the best results, with a mean compression ratio of 1.58x, and
the BDI-RB variants have the lowest improvements, increasing the original compression
factor from 1.37x to 1.39x.

Cache organization techniques sometimes try to fit the compressed lines in fixed sized
blocks [46][47]. The Skewed Compressed Cache, for example, stores the compressed data
in superblocks of 64 bytes divided in either one 64-byte, two 32-byte, four 16-byte, or
eight 8-byte blocks. This means that the compressed data is padded to fit these blocks,
loosing some of its compression ratio.

Therefore, if we assume that a compressed data is padded to fit these block sizes, that
is, a 24 bit compressed data uses a 8-byte block, a 100 bit compressed line uses a 16-byte
block, and so on, the compression ratio for all algorithms decrease (Figure 5.12). MBDI-
RD manages to keep a good compression ratio when compared to the other techniques for
both maximum and block compression, so we compare it to the original BDI and C-Pack,
which presented the best compression results, in Figure 5.13.

CHAPTER 5. EXPERIMENTAL RESULTS 71

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 1.65

CPack

FPC
BDI

M
BDI

M
BDILC

M
BDI-RD

M
BDI-RDLC

BDI-RB_1

BDI-RB_2

BDI-RB_3

BDI-RBLC_1

BDI-RBLC_2

BDI-RBLC_3

BDI-RD

BDI-RDLC

C
o
m

p
re

ss
io

n
 R

a
ti

o
 (

x
)

Geometric Mean Compression Ratio

Compression Ratio
Block Compression Ratio

Figure 5.12: Mean (geometric) compression ratio of the techniques.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

Gem
sFDTD

astar

bwaves

bzip2

cactusADM

calculix

dealII

gam
ess

gcc
gobm

k

grom
acs

h264ref

hm
m
er

lbm
leslie3d

libquantum

m
cf
m
ilc
nam

d

om
netpp

perlbench

povray

sjeng
soplex

sphinx3

tonto
wrf

xalancbm
k

zeusm
p

GeoM
ean

C
o
m

p
re

ss
io

n
 R

a
ti

o
 (

x
)

Mean Compression Ratio (CPack vs BDI vs MBDI-RD)

CPack
BDI

MBDI-RD

Figure 5.13: Comparison of BDI, MBDIRD and CPack for all benchmarks (geometric
mean).

CHAPTER 5. EXPERIMENTAL RESULTS 72

5.3 Power efficiency

We implemented each compression method in Verilog and used Cadence RTL Compiler
tool to evaluate the power consumption. The techniques increase power usage when
compared to BDI, but by using less compressors both MBDI and BDI-RD manage to stay
under 2x the original power (Figure 5.14). Figure 5.15 presents the power consumption
ratio of using the techniques over BDI, that is, how much compression ratio a microwatt
provides compared to the original BDI. MBDI with less compressors has the lowest power
cost increase without using a slow decompressor.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

BDIRB

BDIRB_LC

BDIRD

BDIRD_slow

BDIRD_LC

BDIRD_LC_slow

M
BDI

M
BDI_LC

T
e
ch

n
iq

u
e
/B

D
I
(x

)

Power (15nm)

Leakage
Dynamic

Total

Figure 5.14: Comparison of leakage, dynamic and total power usage. Baseline is BDI
power. _LC is the variant with less compressors, and _slow is the slow variant.

CHAPTER 5. EXPERIMENTAL RESULTS 73

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

BDIRB

BDIRB_LC

BDIRD

BDIRD_slow

BDIRD_LC

BDIRD_LC_slow

M
BDI

M
BDI_LC

P
o
w

e
r

E
ffi

ci
e
n
cy

 (
x
/u

W
)

Power Efficiency (Compression Ratio / Power) (15nm)

Figure 5.15: Power efficiency, that is, compression ratio divided by power consumption
relative to original results. _LC is the variant with less compressors, and _slow is the
slow variant.

5.4 Area

Figure 5.16 presents a comparison of area usage by CPack, FPC, BDI, BDI-RB and BDI-
RD. As expected, using less compressors significantly reduces area usage, and doing a
multi-cycle decompression on BDI-RD reduces die area, as operations can be done seri-
ally, so the integrated circuits can be reused. Figure 5.17 presents the area improvement
ratio of using the techniques over BDI, that is, the amount of compression ratio per area
unit compared to the original BDI. Both BDI-RD and MBDI using less compressors pro-
vide an area cost close to the original results without sacrificing system performance as
opposed to the slow variants, which may even be better at the cost of extra latency in
the critical decompression step. It is important to notice that although the compres-
sors/decompressors can be up to 3 times the size of the original BDI compressors, the
original BDI compressors represent an increasal of only 2.3% to the area of a
16-way 2MB cache.

CHAPTER 5. EXPERIMENTAL RESULTS 74

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

CPack

FPC
BDI

BDIRB

BDIRB_LC

BDIRD

BDIRD_slow

BDIRD_LC

BDIRD_LC_slow

M
BDI

M
BDI_LC

A
re

a
 (

n
m

2
)

Area (15nm)

Figure 5.16: Area usage of the techniques. _LC is the variant with less compressors, and
_slow is the slow variant.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

BDIRB

BDIRB_LC

BDIRD

BDIRD_slow

BDIRD_LC

BDIRD_LC_slow

M
BDI

M
BDI_LC

A
re

a
 E
ffi

ci
e
n
cy

 (
x
/n

m
)

Area Efficiency (Compression Ratio / Area) (15nm)

Figure 5.17: Area efficiency, that is, compression ratio divided by area usage relative to
original results. _LC is the variant with less compressors, and _slow is the slow variant.

CHAPTER 5. EXPERIMENTAL RESULTS 75

5.5 Performance analysis

Figures 5.18 and 5.19 show the performance improvements of the techniques relative to
a baseline 2MB L2 cache without compression, simulated on ZSim running single-core
SimPoint benchmarks. All proposed methods, except for the BDI-LC and BDIRB-LC
manage to increase system IPC and MPKI, when compared to the original BDI. MBDIRD
provides 95.2% of the IPC and 12.85% more MPKI than an uncompressed cache with the
double of its capacity (4MB), at a minimal area and energy cost.

1.00

1.02

1.04

1.06

1.08

1.10

1.12

BDI
BDIRB

BDIRD

M
BDI

M
BDIRD

BDILC

BDIRBLC

BDIRDLC

M
BDILC

M
BDIRDLC

SetAssociative4M
B

N
o
rm

a
liz

e
d

 I
P
C

Normalized IPC

Figure 5.18: Geometric mean of IPC for all techniques normalized on a 2MB baseline
cache without compression. _LC is the variant with less compressors.

CHAPTER 5. EXPERIMENTAL RESULTS 76

0.75

0.80

0.85

0.90

0.95

1.00

BDI
BDIRB

BDIRD

M
BDI

M
BDIRD

BDILC

BDIRBLC

BDIRDLC

M
BDILC

M
BDIRDLC

SetAssociative4M
B

N
o
rm

a
liz

e
d

 M
P
K

I
Normalized MPKI

Figure 5.19: Geometric mean of MPKI for all techniques normalized on a 2MB baseline
cache without compression. _LC is the variant with less compressors.

5.6 Complexity analysis

BDI-RB, due to its high power consumption and low improvement on compression ratio,
is not efficient for any of its variants, even using a slow decompressor. MBDI and BDI-RD,
however, manage to increase compression ratio with a small area and power cost, so they
can be used to improve the original BDI. The BDI-RD with less compressors manages to
keep a similar compression ratio to the full BDI-RD compressor while lowering its power
consumption to 57%. MBDI-RD provides the best compression ratios among the BDI
extensions, achieving results similar to CPack with a 1 cycle decompression latency.

5.7 Summary

All proposed techniques but BDI-RBLC versions 1 and 2 manage to improve the compres-
sion ratio when compared to the original BDI. BDI-RB, however, does not provide sig-
nificant improvement. MBDI-RD has the best compression factor, comparable to CPack,
with the advantage of having a one-cycle decompression. MBDI presents the best cost-
efficiency in system performance. The less compressor (LC) variants manage to greatly
reduce hardware and power needed by their full version, at the cost of compression ratio.

Chapter 6

Conclusion

In this dissertation we propose extensions and modifications to the Base-Delta-Immediate
cache compression technique. Due to the diversity of data and delta sizes generalization,
that is, using the highest delta size needed for compression for all delta values, BDI
generates a high padding rate. The expansions presented in this work remove this delta
padding by using flexible delta sizes and multiple bases to improve data compaction at a
low-moderate power cost.

The main contributions of this work are: 1) creation of techniques to remove padding
in the Base-Delta-Immediate compression to improve its compression ratio; and 2) allow
using a different number of bases on BDI with marginal metadata overhead.

The first technique, BDI with delta sizes Relative to the Bases (BDI-RB), keeps a
different delta size for each base instead of keeping a single delta size that is valid for all
bases. Therefore, removing dependency between the bases. We suggest three encoding
possibilities: one to maintain compatibility with the original encoding, which adds a single
extra bit due to the number of possible combinations base-delta; one to dissociate base
from delta size in the encoding area, therefore removing one bit from the encodings that
do not need delta size representation; and one scheme with a variable opcode size based
on opcode frequency.

In order to completely remove the need of padding we suggest keeping a delta size
for each delta entry, the BDI with delta sizes Relative to Deltas (BDI-RD). This method
requires extra metadata to store the delta size, but compensates with the area saved from
the unnecessary paddings, resulting in a compression ratio of 1.42x (3% better than the
original BDI results).

The last technique focuses on allowing the use of a number of bases different from
two: Multiple bases BDI (MBDI). By adding a field to keep track of the number of bases,
the compression ratio becomes slightly worse (due to the 4 extra bits) for compressed
lines that in fact need two bases, but it may save up to 70 bits when only one base
is needed, and allows compression of previously incompressible lines. An hybrid of the
MBDI and the BDI-RD, the MBDI-RD, has also been simulated and compared to the
previous techniques.

The formerly mentioned techniques, as expansions of the original Base-Delta-Immediate
compression, require more hardware, and thus consume more power and die area. In or-
der to reduce these undesired effects, we propose using a single compressor for each base

77

CHAPTER 6. CONCLUSION 78

size, totaling three, instead of the original six compressors. Although this marginally re-
duces the compression factor due to the reduction of number of compression possibilities,
hardware usage is almost halved.

Most of the presented methods manage to increase compression ratio, with the worst
reaching an 1% improvement (BDI-RB), and the best 15% (MBDI-RD). The power con-
sumption varies from 0.87x to 3.89x the original results. It has been validated that using
some of the extensions with a reduced number of compressors manages to increase the
compression factor at a low cost, mainly MBDI if a low overall cost design is intended.

We leave applying the techniques to a multi-core processor, and synthesizing MBDI-
RD and verifying its power and area consumption for future work.

Bibliography

[1] Alaa R Alameldeen, David Wood, et al. Adaptive cache compression for high-
performance processors. In Computer Architecture, 2004. Proceedings. 31st Annual
International Symposium on, pages 212–223. IEEE, 2004.

[2] Alaa R Alameldeen and David A Wood. Frequent pattern compression: A
significance-based compression scheme for l2 caches. Dept. Comp. Scie., Univ.
Wisconsin-Madison, Tech. Rep, 1500, 2004.

[3] James Archibald and Jean-Loup Baer. Cache coherence protocols: Evaluation using a
multiprocessor simulation model. ACM Transactions on Computer Systems (TOCS),
4(4):273–298, 1986.

[4] Angelos Arelakis, Fredrik Dahlgren, and Per Stenstrom. Hycomp: a hybrid cache
compression method for selection of data-type-specific compression methods. In Pro-
ceedings of the 48th International Symposium on Microarchitecture, pages 38–49.
ACM, 2015.

[5] Angelos Arelakis and Per Stenstrom. A case for a value-aware cache. Computer
Architecture Letters, 13(1):1–4, 2014.

[6] Angelos Arelakis and Per Stenstrom. Sc2: A statistical compression cache scheme. In
Proceeding of the 41st annual international symposium on Computer architecuture,
pages 145–156. IEEE Press, 2014.

[7] J-L Baer and W-H Wang. On the inclusion properties for multi-level cache hierar-
chies, volume 16. IEEE Computer Society Press, 1988.

[8] Luca Benini, Alberto Macii, Enrico Macii, and Massimo Poncino. Selective instruc-
tion compression for memory energy reduction in embedded systems. In Proceedings
of the 1999 international symposium on Low power electronics and design, pages
206–211. ACM, 1999.

[9] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti,
et al. The gem5 simulator. ACM SIGARCH Computer Architecture News, 39(2):1–7,
2011.

79

BIBLIOGRAPHY 80

[10] Trevor E Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: exploring the level
of abstraction for scalable and accurate parallel multi-core simulation. In Proceed-
ings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, page 52. ACM, 2011.

[11] Chin-Long Chen and MY Hsiao. Error-correcting codes for semiconductor memory
applications: A state-of-the-art review. IBM Journal of Research and Development,
28(2):124–134, 1984.

[12] Xi Chen, Lei Yang, Robert P Dick, Li Shang, and Haris Lekatsas. C-pack: A high-
performance microprocessor cache compression algorithm. Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions on, 18(8):1196–1208, 2010.

[13] Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor Mudge. High-performance
drams in workstation environments. IEEE Transactions on Computers, 50(11):1133–
1153, 2001.

[14] Saumya Debray and William Evans. Profile-guided code compression. In ACM
SIGPLAN Notices, volume 37, pages 95–105. ACM, 2002.

[15] Julien Dusser, Thomas Piquet, and André Seznec. Zero-content augmented caches.
In Proceedings of the 23rd international conference on Supercomputing, pages 46–55.
ACM, 2009.

[16] Magnus Ekman and Per Stenstrom. A robust main-memory compression scheme.
In ACM SIGARCH Computer Architecture News, volume 33, pages 74–85. IEEE
Computer Society, 2005.

[17] Jayesh Gaur, Mainak Chaudhuri, and Sreenivas Subramoney. Bypass and insertion
algorithms for exclusive last-level caches. In Proceedings of the 38th Annual Inter-
national Symposium on Computer Architecture, ISCA ’11, pages 81–92, New York,
NY, USA, 2011. ACM.

[18] JR Goodman and HHJ Hum. Mesif: A two-hop cache coherency protocol for point-
to-point interconnects (2004). 2004.

[19] Per Hammarlund, Rajesh Kumar, Randy B Osborne, Ravi Rajwar, Ronak Sing-
hal, Reynold D’Sa, Robert Chappell, Shiv Kaushik, Srinivas Chennupaty, Stephan
Jourdan, et al. Haswell: The fourth-generation intel core processor. IEEE Micro,
(2):6–20, 2014.

[20] Nikos Hardavellas, Ippokratis Pandis, Ryan Johnson, Naju Mancheril, Anastassia
Ailamaki, and Babak Falsafi. Database servers on chip multiprocessors: Limitations
and opportunities. In Proceedings of the Biennial Conference on Innovative Data
Systems Research, number DIAS-CONF-2007-008, 2007.

[21] John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011.

BIBLIOGRAPHY 81

[22] John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 34(4):1–17, 2006.

[23] David A Huffman et al. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[24] Norman P. Jouppi. Cache write policies and performance. In Proceedings of the
20th Annual International Symposium on Computer Architecture, ISCA ’93, pages
191–201, New York, NY, USA, 1993. ACM.

[25] Changkyu Kim, Doug Burger, and Stephen W Keckler. An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches. In Acm Sigplan Notices,
volume 37, pages 211–222. ACM, 2002.

[26] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris
Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without access-
ing them: An experimental study of dram disturbance errors. In ACM SIGARCH
Computer Architecture News, volume 42, pages 361–372. IEEE Press, 2014.

[27] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. Rowhammer: Reliability analysis
and security implications. arXiv preprint arXiv:1603.00747, 2016.

[28] David Kroft. Lockup-free instruction fetch/prefetch cache organization. In Proceed-
ings of the 8th annual symposium on Computer Architecture, pages 81–87. IEEE
Computer Society Press, 1981.

[29] Haris Lekatsas, Jörg Henkel, and Venkata Jakkula. Design of an one-cycle decom-
pression hardware for performance increase in embedded systems. In Proceedings of
the 39th annual Design Automation Conference, pages 34–39. ACM, 2002.

[30] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John
Hennessy. The directory-based cache coherence protocol for the DASH multiprocessor,
volume 18. ACM, 1990.

[31] Nihar R Mahapatra and Balakrishna Venkatrao. The processor-memory bottleneck:
problems and solutions. Crossroads, 5(3es):2, 1999.

[32] Christian Märtin. Multicore processors: challenges, opportunities, emerging trends.
In Proc. Embedded World Conference, pages 1–9, 2014.

[33] Milo MK Martin, Mark D Hill, and Daniel J Sorin. Why on-chip cache coherence is
here to stay. Communications of the ACM, 55(7):78–89, 2012.

[34] Mayler Martins, Jody Maick Matos, Renato P. Ribas, André Reis, Guilherme
Schlinker, Lucio Rech, and Jens Michelsen. Open cell library in 15nm freepdk technol-
ogy. In Proceedings of the 2015 Symposium on International Symposium on Physical
Design, ISPD ’15, pages 171–178, New York, NY, USA, 2015. ACM.

BIBLIOGRAPHY 82

[35] Nimrod Megiddo and Dharmendra S Modha. Arc: A self-tuning, low overhead re-
placement cache. In FAST, volume 3, pages 115–130, 2003.

[36] Joshua San Miguel, Jorge Albericio, Andreas Moshovos, and Natalie Enright Jerger.
Doppelgänger: a cache for approximate computing. In Proceedings of the 48th Inter-
national Symposium on Microarchitecture, pages 50–61. ACM, 2015.

[37] Eduardo BWanderley Netto, Eduardo A Billo, and Rodolfo J Azevedo. Dual selective
code compression.

[38] Tri M Nguyen and David Wentzlaff. Morc: a manycore-oriented compressed cache. In
Proceedings of the 48th International Symposium on Microarchitecture, pages 76–88.
ACM, 2015.

[39] Mark S Papamarcos and Janak H Patel. A low-overhead coherence solution for mul-
tiprocessors with private cache memories. ACM SIGARCH Computer Architecture
News, 12(3):348–354, 1984.

[40] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
Pinplay: a framework for deterministic replay and reproducible analysis of parallel
programs. In Proceedings of the 8th annual IEEE/ACM international symposium on
Code generation and optimization, pages 2–11. ACM, 2010.

[41] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B Gibbons, Michael A
Kozuch, and Todd C Mowry. Base-delta-immediate compression: practical data
compression for on-chip caches. In Proceedings of the 21st international conference
on Parallel architectures and compilation techniques, pages 377–388. ACM, 2012.

[42] Feng Qin, Shan Lu, and Yuanyuan Zhou. Safemem: Exploiting ecc-memory for
detecting memory leaks and memory corruption during production runs. In 11th
International Symposium on High-Performance Computer Architecture, pages 291–
302. IEEE, 2005.

[43] Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei Jiang, and Yan
Solihin. Scaling the bandwidth wall: Challenges in and avenues for cmp scaling. In
Proceedings of the 36th Annual International Symposium on Computer Architecture,
ISCA ’09, pages 371–382, New York, NY, USA, 2009. ACM.

[44] Daniel Sanchez and Christos Kozyrakis. The zcache: Decoupling ways and associa-
tivity. In Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM International
Symposium on, pages 187–198. IEEE, 2010.

[45] Daniel Sanchez and Christos Kozyrakis. Zsim: Fast and accurate microarchitectural
simulation of thousand-core systems. In Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA ’13, pages 475–486, New York, NY,
USA, 2013. ACM.

BIBLIOGRAPHY 83

[46] Somayeh Sardashti, André Seznec, David Wood, et al. Skewed compressed caches.
In Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM International Sympo-
sium on, pages 331–342. IEEE, 2014.

[47] Somayeh Sardashti, André Seznec, and David A Wood. Yet Another Compressed
Cache: a Low Cost Yet Effective Compressed Cache. PhD thesis, Inria, 2016.

[48] Somayeh Sardashti and David AWood. Decoupled compressed cache: Exploiting spa-
tial locality for energy-optimized compressed caching. In Proceedings of the 46th An-
nual IEEE/ACM International Symposium on Microarchitecture, pages 62–73. ACM,
2013.

[49] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. Dram errors in the
wild: a large-scale field study. In ACM SIGMETRICS Performance Evaluation Re-
view, volume 37, pages 193–204. ACM, 2009.

[50] André Seznec. A case for two-way skewed-associative caches. In ACM SIGARCH
Computer Architecture News, volume 21, pages 169–178. ACM, 1993.

[51] Abraham Silberschatz, Peter B Galvin, Greg Gagne, and A Silberschatz. Operating
system concepts, volume 4. Addison-Wesley Reading, 1998.

[52] Josep Torrellas, HS Lam, and John L. Hennessy. False sharing and spatial locality
in multiprocessor caches. IEEE Transactions on Computers, 43(6):651–663, 1994.

[53] Yuan Xie, Wayne Wolf, and Haris Lekatsas. Profile-driven selective code compression.
In Proceedings of the conference on Design, Automation and Test in Europe-Volume
1, page 10462. IEEE Computer Society, 2003.

	Introduction
	Background
	Off-chip memories
	Virtual Memory
	Errors and Error Handling

	Caches
	Block Placement
	Data Access
	Evictions
	Writes
	Data Inclusion
	Data Consistency
	Coherence Protocols
	False Sharing
	Cache Access
	Summary

	Related Work
	Cache Compression
	Zero-Content Augmented Caches
	Doppelgänger Cache
	Base-Delta-Immediate Compression
	Frequent Pattern Compression
	Statistical Compressed Cache
	C-Pack
	Manycore-Oriented Compressed Cache

	Selective Cache Compression
	Adaptive Cache Compression
	Selective Code Compression
	Hybrid Methods

	Cache Organization
	Decoupled Compressed Cache
	Skewed Compressed Caches
	Yet Another Compressed Cache

	Summary

	BDI Compression Extensions
	Flexible Base-Delta-Immediate Compression
	Delta sizes relative to bases (BDI-RB)
	Delta sizes relative to deltas (BDI-RD)
	Implementation
	Encoding
	Operations

	Multiple bases (MBDI)
	Number of Compressors
	Encoding

	Experimental Results
	Methodology
	Data compression
	Number of compressors
	Compression ratio

	Power efficiency
	Area
	Performance analysis
	Complexity analysis
	Summary

	Conclusion
	Bibliography

