
On the Theory of Spatial and Temporal Locality ∗

Marc Snir and Jing Yu

Computer Science Department

University of Illinois ar Urbana-Champaign

Urbana, IL 61801 USA

{snir,jingyu}@uiuc.edu

July 21, 2005

Abstract

This paper studies the theory of caching and temporal and spatial locality. We show the
following results: (1) hashing can be used to guarantee that caches with limited associativity
behave as well as fully associative cache; (2) temporal locality cannot be characterized using
one, or few parameters; (3) temporal locality and spatial locality cannot be studied separately;
and (4) unlike temporal locality, spatial locality cannot be managed efficiently online.

1 Introduction

The performance of modern microprocessors is increasingly constrained by the performance of the
memory subsystem. Memory access speed has increased much more slowly than processor speed,
leading to the well known “memory wall” problem [17]. To palliate this problem, an increasing
fraction of a microprocessor chip is devoted to caches and to buses. Caches are effective for codes
that exhibit good locality in their memory accesses.

The theoretical underpinnings of caches and of locality of accessed have been studied in a large
number of papers – see, e.g., the survey in [2, Chapter 3.9]. Nevertheless, it turns out that many

∗This work was partially supported by DARPA Contract NBCH30390004, and DOE contract DE-FG02-
03ER25560X

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

fundamental issues are still unanswered. It has been known since long that reuse distance (or
stack depth) provides a “correct” characterization of temporal locality in sequences of accesses,
in that it predicts cache misses for fully associative, LRU caches (We discuss terminology and
previous results in Section 2). The seminal paper of Sleator and Tarjan [14] has shown that a fully
associative, LRU cache is a best possible design for a cache, in the sense that no other design can
guarantee a higher hit rate, for the same cache size, and even full knowledge of future memory
accesses cannot improve cache performance much. On the other hand, there is less understanding
of the proper way to characterize spatial locality.

This paper explores the following issues:

• Are the theoretical results discussed above relevant to caches with limited associativity? We
answer affirmatively by showing that by hashing addresses in memory one can insure that a
direct mapped cache provides the same performance guarantees as a fully associative cache.

• Is it possible to characterize temporal locality with one or a few parameters? There have
been recent attempts to do so, and to characterize applications using a two dimensional
temporal/spatial locality space [10]. One approach [16, 15] is to define a parameterized family
of synthetic probabilistic streams of references, and to show that the stream of references
generated by an application can be approximated by a suitable chosen member of this family:
both will generate about the same number of cache misses on any cache system. We show
that such an approach cannot possibly succeed: The “dimensionality” of temporal locality is
unbounded (proportional to total memory size).

• Is it possible to study temporal locality and spatial locality in isolation? We answer in the
negative, by showing that a stream of references can exhibit different temporal locality for
different cache line sizes and different spatial locality for different cache sizes. Thus, one
cannot speak, in general, of applications with good or bad temporal locality or applications
with good or bad spatial locality: the statement on spatial locality needs to be restricted to
a given cache size, and the statement on temporal locality need to be restricted to a given
line size.

• Can spatial locality be managed online, the same way that temporal locality can be managed
online, using suitable cache replacement policies such as LRU? We answer in the negative,
showing that in a model where data can be rearranged so as to improve spatial locality offline
algorithms gain additional power in proportion to the line size.

We introduce in the next section terminology and survey known results. We discuss in Section 3
the effect of limited associativity; address the parametrization of temporal locality in Section 4;

2

address the dependence of temporal and spatial locality in Section 5; and discuss rearrangement in
Section 6.

2 Terminology

We provide in this section a quick survey of cache organization and terminology.

Caches are small but fast stores that hold a copy of parts of the content of memory; they result in
improved performance if a large fraction of memory accesses can be satisfied by the cache. A cache
is typically organized into multi-word cache lines. Whenever a memory location is accessed, the
entire line containing this location is brought into cache, thus amortizing the large memory latency
against multiple word accesses. Caches are divided into sets, each containing a fixed number of
cache line frames. The address of a cache line determines the set that can hold it; it can occupy
any line frame within this set. Thus, a cache is associated with the following parameters:

Size M The total size of the cache (in words)

Line size L The size of each cache line (in words)

Associativity A The number of cache line frames within each associativity set

A cache is fully associative if it consists of only one set (A = M/L), so that a line can be stored
anywhere in the cache; it is direct mapped if each set contains only one cache line (A = 1).

A memory reference is a hit if it is satisfied from the cache, a miss, otherwise. The hit rate is
the fraction of references that are hits, and the miss rate is the fraction that are misses. When a
miss occur, if the accessed set is full, then a line is evicted from the set to make room for the newly
accessed line. Various policies can be used to decide which line to evict from the set:

LRU The least recently referenced cache line is evicted.

FIFO The cache line that was least recently brought into the cache is evicted.

RANDOM A randomly chosen cache line is evicted.

OPT The cache line that is next accessed farthest in the future is evicted.

The first three policies are online algorithms: the decision on which line to evict depends only on
the memory accesses performed up to the miss. The OPT policy minimizes the number of cache

3

misses (hence its name). However, unlike the other three policies, it is an offline algorithm, since the
eviction decision depends on future accesses. An online algorithm can be implemented by hardware
that observes memory accesses as they occur. An offline algorithm requires prior knowledge of the
sequence of memory accesses to be performed. It cannot be implemented by a hardware controller
that merely observes the accesses performed by the executing program. However, the OPT policy
is a useful reference point as it achieves the best possible hit rate.

Caches are effective in hiding the memory latency when most of the memory accesses are cache
hits. There two main reasons for this:

Temporal locality If a memory location is accessed then it is likely to be accessed again in the
near future. This results from two effects: (i) some memory locations are accessed more
frequently than others and (ii) for the same memory location, accesses are clustered in time.
As a result, when a word is brought into the cache, there is a good likelihood that it will be
accessed again before it is evicted.

Spatial locality If a memory location is accessed than nearby locations in memory are likely to
be accessed in the near future. This results from the fact that “related” values, such as fields
of the same record, or neighbor elements of a matrix, are often stored in close proximity to
each other. As a result when a cache miss causes a cache line to be brought into the cache,
there is a good likelihood that words in the line other than the one that caused the miss will
be accessed as well.

2.1 Temporal Locality and Stack Depth

The sequence of memory references performed by a processor during a computation is represented
by a sequence of addresses A = a1, a2, . . . , an. We first assume that L = 1: each cache line contains
one word and all accesses are word sized. We assume that the cache is fully associative and LRU .

Consider and unbounded stack containing the referenced words and assume that each word is
moved to the top of the stack when it is referenced. We define the Stack Depth of reference j,
Depth(j), to be the depth in the stack of the word referenced at step j; Depth(j) = ∞ if j is the
first reference to aj . It is easy to see that the M top words on the stack at step j are the same
as the M words held in a fully associative LRU cache at step j. Thus, the j-th access is a hit if
Depth(j) ≤ M , a miss otherwise. Thus, if we define the Miss function as

MissA(m) =
|{j : Depth(j) > m}|

|A|

then MissA(m) is the miss rate of a fully associative, LRU cache of size m on the stream of

4

references A.

The Reuse Distance of reference j, ReuseDist(j), is defined to be the number of distinct
memory locations accessed since the last access to aj , or ∞, if there is no previous access to
aj . Note that if Depth(j) = k < ∞ then there have been exactly k − 1 distinct words accessed
since the last preceding access to aj – the words that are above aj in the stack, so that the
ReuseDist(j) = Depth(j)− 1. Thus, the terms “stack depth” and “reuse distance” are often used
interchangeably.

The association between stack depth and LRU caches shows that Miss() is monotonic non-
increasing: larger caches means fewer misses. The same holds true for the OPT algorithm: this
algorithm can do no worse with a cache of size M + 1 than a cache of size M since it can al-
ways choose to ignore the extra location. Monotonicity does not necessarily hold for other cache
management algorithms.

More generally, we denote by MissAALG(m) the miss rate that occur with the reference stream
A when a cache of size m is managed using algorithm ALG. In particular, MissAOPT (m) denotes
the number of misses when the optimal offline algorithm is used (this algorithm evict the word that
is accessed furthest in the future).

Definition 2.1. A cache management algorithm ALG is c(M,m)-competitive if, for any stream of
references A, MissAALG(M) ≤ c(M,m)MissAOPT (m).

Theorem 2.1. [14]

1. LRU is M/(M −m + 1) competitive.

2. If an online algorithm is c-competitive then c ≥ M/(M −m + 1).

If we take M = 2m, then the theorem claims that the number of cache misses with an LRU

managed cache will be within a factor of 2 of the best possible for a half sized cache, even assuming
a cache management algorithm that has full knowledge of the future.

The upper bound holds not only for LRU , but for a wide variety of cache management algo-
rithms, including FIFO and RANDOM [2, 11]. While LRU often results in fewer cache misses
than FIFO or RANDOM , it does not provide a better guaranteed performance than these other
algorithms.

The last result implies that online cache management is adequate: an LRU managed cache will
take advantage of the temporal locality in the stream of references in order to achieve a cache hit
rate that is competitive; a simply managed larger cache is more effective than a smaller cache with
more elaborate software management.

5

3 Cache Associativity

It is not practical to build large, fully associative caches, because of the complexity of performing
many simultaneous address comparisons. In practice, caches are built to be set-associative, with
relatively small set sizes (1–8). Because of the limited associativity, one encounters conflict misses:
misses that occur because multiple lines are mapped to the same set, but that would be avoided
by a fully associative cache. In the worst case, all addresses in a reference stream may fall within
the same associativity set: the effective capacity of the cache will be the the number of lines within
the associativity set, not the total number of cache lines.

In practice, it is relatively easy to avoid a frequent incidence of conflict misses, by padding
arrays and avoiding “bad” distances between references that occur in close proximity in a loop
[6, 13, 1]. We provide below theoretical results that make the same point: compiler and run-time
transformations can be used to ensure that caches with limited associativity essentially generate
the same miss rates as fully associative caches.

LetH be a class of functions from A to B. H is a universal hash function, if, for randomly chosen
h ∈ H, for any a, a′ ∈ A, Pr(h(a) = h(a′)) = 1/|B|. Easy to compute universal hash functions from
{0, 1}n to {0, 1}m are defined in [4]. For example, the family of functions hr,s(x) = rx+ s mod 2m

is a universal hash function.

We assume a programming model where a fixed amount of memory (a fixed address range) is
allocated at the beginning of program execution. The program executes using a direct mapped
cache of size M ; addresses are mapped onto cache locations using a hash function h randomly
chosen from a class of universal hash functions, before program execution.

This model can be implemented in a variety of ways: Hashing can be done in hardware; programs
generate unhashed memory references that are hashed before they are used to address caches.
Hardware hashing of memory addresses has been used in the past to avoid conflicts in multibanked
memory systems; see, e.g., [8, 12]. The obvious downside of such a design is the added delay for
cache access; this could be circumvented by using hashing only for second and third level caches.
Hashing could reduce the efficiency of prefetching, but this can be circumvented by using the
unhashed addresses in the prefetch predictor logic. Finally, hashing could reduce locality at the
next level of the memory hierarchy, e.g., at the level of pages; this can be circumvented by hashing
only the displacement within each page.

Alternatively, one can imagine that “hashing” is achieved by a remapping of variables that is
performed by the compiler; a simple example is to pad arrays so as to avoid “bad” extents [6, 13, 1].

Let MissAHash(M) be the number of misses generated by the reference stream A = a1, . . . , an

6

when these references are hashed, and a direct mapped cache of size M is used

Theorem 3.1.

E
(
MissAHash(M)

)
≤ M

M −m + 1
(
MissAOPT (m) + m

)
for any sequence of references A = a1, . . . , an.

The theorem shows that a direct mapped cache, when coupled with memory hashing, provides
the same performance guarantee as a fully associative cache.

Proof. We use the same potential function used in [11] to analyze RANDOM cache management.
Let Si

Hash be the (random) set of words in the (size M) cache maintained by Hash after step i, and
let Si

OPT be the (deterministic) set of words in the (size m) cache maintained by OPT after step i;
S0

Hash = S0
OPT = ∅; let Φi = |Si

OPT ∩ Si
Hash| and let ∆Φi = Φi − Φi−1. Let δi

OPT be the indicator
function that is equal to 1 if OPT has a miss at step i, 0 otherwise. Let δi

Hash be similarly defined,
for the Hash algorithm. Finally, let

Xi = δi
Hash −

M

M −m + 1
δi
OPT −

M

M −m + 1
∆Φi.

Then

n∑
i=1

Xi = MissAHash(M)− M

M −m + 1
MissAOPT (m)− M

M −m + 1
(Φn − Φ0) ≥

MissAHash(M)− M

M −m + 1
MissAOPT (m)− M

M −m + 1
m.

Thus, it suffices to show that E(
∑

Xi)) =
∑

E(Xi) ≤ 0.

There are four cases to consider.

Case 1. Neither OPT nor Hash have a miss at step i. Then Xi = 0.

Case 2. OPT has a miss, but Hash has a hit. Then δi
Hash = 0, δi

OPT = 1 and ∆Φi = 0 if OPT

evicts an word from Si−1
OPT ∩ Si−1

Hash, 1, otherwise. Thus

Xi ≤ − M

M −m + 1
< 0.

Case 3. Hash has a miss but OPT has a hit. Then δi
OPT = 0 and δi

Hash = 1. ∆Φi = 0 if
Hash evicts an word from Si−1

OPT ∩ Si−1
Hash, 1, otherwise. But Si−1

OPT ∩ Si−1
Hash ⊂ Si−1

OPT − {ai}, so
that ∆Φi = 0 only if ai maps to the same cache location as some word in Si−1

OPT − {ai}. Since

7

|Si−1
OPT − {ai}| = m− 1, this happens with probability of at most (m− 1)/M . Thus

E(Xi|Case 3) ≤ 1− M

M −m + 1
(1− m− 1

M
) = 0.

Case 4. Both Opt and Hash have a miss. Then δi
OPT = δi

Hash = 1. Let b be the word evicted
by OPT . We have ∆Φi ≥ 0 unless OPT evicts an word that is not in Si−1

Hash, while Hash evicts an
word from Si−1

Hash ∩ Si−1
OPT , in which case ∆Φi = −1. This can happen only if ai conflicts with an

word in Si−1
OPT − {b}, so happens with probability ≤ (m− 1)/M . Thus,

E(Xi|Case 4) ≤ 1− M

M −m + 1
− M

M −m + 1
(−m− 1

M
) = 0.

The proof assumes and oblivious adversary : the sequence of references is independent from the
hashing function chosen by the algorithm.

The last theorem, while showing that a direct mapped cache will provide the same performance
guarantee when used with hashed addresses as a fully associative cache does, does not imply that
such a cache will perform as well as a fully associative cache on each sequence of accesses. To prove
such a result, we need a stronger independence property from the hashing function: The class of
hashing functions H is strongly independent if, for any a1, . . . ak ∈ A, b1, . . . bk ∈ B

Pr(h(a1) = b1& . . .&h(ak) = bk) =
1

|B|k
.

Note that usual constructions for universal hash functions provide pairwise independence, or
k-wise independence, for fixed k [5]; we are not aware of constructions that work for arbitrary k.
On the other hand, results proved under stronger independence conditions are likely to hold, in
practice.

Suppose that a system uses a direct mapped cache of size M , where addresses are hashed using
a strongly independent hash function. Suppose that reference i has a stack depth of Depth(i) =
d < ∞. Then reference j is a cache hit if none of the d − 1 distinct addresses accessed since the
previous reference to ai mapped into the same set as ai. This happens with probability

(1− 1
M

)d−1 ≈ (
1
e
)

d−1
M .

If the cache were fully associative of size m, we would have a hit if d ≤ m, a miss, otherwise. We
now have a high probability of a hit if d is significantly smaller than M . Thus, by picking M to be

8

large relative to m we can ensure that the miss rate of the direct mapped cache is not much larger
than the miss rate of the fully associative cache. This is expressed by the following theorem.

Theorem 3.2. Assume that a reference stream A generates a miss rate of r when executed with
a fully associative cache of size m. Then, if addresses are hashed using a strongly independent
universal hash function, a direct cache of size

M ≥ 1− m− 1
ln(1− r)

will generate an expected miss rate of ≤ 2r.

Proof. We use the inequality

1− 1
M

≥ e−
1

M−1

Let Depth(i) = d. If d > m then reference i is a miss when executed with the fully associative
cache. On the other hand, if d ≤ m then the probability that reference i is a hit when executed
with the direct mapped cache is at most

(1− 1
M

)d−1 ≥ (1− 1
M

)m−1 ≥ e
1−m
M−1 ≥ 1− r.

Thus, hits of the execution with the fully associative cache become misses on the direct mapped
cache with probability ≤ r. The claim follows.

Note that for small r we have
1− m− 1

ln(1− r)
≈ m

r

so that the condition of the theorem becomes M ≥ m/r.

4 On the Dimensionality of Temporal Locality

The Miss function provides a complete characterization of temporal locality in a sequence of memory
accesses, in the sense that it predict cache misses for caches of any size. The function is defined
by an unbounded sequence of parameters, one for each possible cache size. It would be desirable
to provide a more concise characterization of temporal locality – one might want to have only one
parameter that characterizes locality on [0 − 1] scale (where 0 stands for no locality and 1 stands
for most locality). Unfortunately, such information compression is not possible, as indicated by the
following theorem.

9

Theorem 4.1. Let 0 < m1 < m2 < . . . < mk be a monotonic increasing sequence of positive
integers; let 1 ≥ p1 ≥ p2 ≥ . . . ≥ pk ≥ 0 be a monotonic nonincreasing sequence and let ε be a
positive constant. One can design a sequence of accesses A so that ∀i |MissA(mi)− pi| < ε.

Proof. Let qk+1 = pk, qi = pi−1 − pi, for i = 2, . . . , k, and q1 = 1 − p1. Then pi =
∑

j>i qj , for
i = 1, . . . , k, and

∑
qi = 1. Let mk+1 > mk be an integer. We are going to build a sequence of

accesses so that a fraction of approximately qi of the accesses hit in a cache of size mi, but not in
a smaller cache.

Let ri, si be positive integers chosen so that |qi − ri/si| < ε/(2k), and
∑

ri/si = 1. Let n be a
common multiple of m1, . . . ,mk+1, s1, . . . , sk+1, chosen so that mi/n < ε/(2k), for i = 1, . . . , k + 1.
Finally, let ni = (rin)/(simi), for i = 0, . . . , k + 1. Consider the sequence of accesses

A = (a1
1 . . . a1

m1
)n1 . . . (ak+1

1 . . . ak+1
mk+1

)nk+1

where all locations ai
j are distinct. It is easy to see that, for each i = 1, . . . , k + 1, stack depth mi

occurs exactly mi(ni− 1) times; no other stack depth occurs, except ∞. The total sequence length
is

∑k+1
i=1 mini. Therefore

Pr(Depth(j) = mi) =
mi(ni − 1)

m1n1 + · · ·+ mk+1nk+1
=

rin/si −mi

n
∑k+1

j=1 rj/sj

=
ri

si
− mi

n

Consequently
|Pr(Depth(j) = mi)− qi| < ε/k

and

|Miss(mi)− pi| = |
∑

d>mi

Pr(Depth(j) = d)− pi| = |
∑
s>i

Pr(Depth(j) = ms)−
∑
s>i

qs| < ε.

Informally, the theorem states that reference streams can exhibit arbitrary cache miss rates for
increasing cache sizes – the only constraint is that cache miss rates decrease with increasing cache
size. Thus, if a measure of locality is supposed to predict cache miss rates for caches of arbitrary
sizes, then a fixed number of “locality parameters” cannot provide such a measure. Of course, if
one is interested only in specific cache sizes, then one can compute miss rates only for those sizes.
Similarly, information compression might be possible if one considers not all possible reference
streams, but only those occurring in a small number of applications. However, one must be careful
with such an approach: the miss rates for various cache sizes are often related to the size of the

10

problem solved, and may depend on the input values. A successful characterization of temporal
locality for a set of benchmarks using one or few parameters may reflect the limited dimensionality
of the benchmark set, and may not capture anything meaningful for the application set represented
by these benchmarks.

5 Spatial Locality

We turn now to discuss spatial locality and caches with longer cache lines. The usual model used,
which correspond to how hardware caches are organized, is one where memory is organized in frames
of size L, the size of a cache line; frame j contains words with addresses jL, jL+1, . . . , (j +1)L−1.
When a cache miss occurs the frame containing the missed word is brought into a cache line, and
the frame previously contained in this line is evicted.

We define MissAALG(M,L) to be the miss rate of a cache of size M with cache lines of size L

that is managed by algorithm ALG on the sequence of accesses A (we always assume that cache size
is a multiple of cache line size). An additional useful measure is provided by the miss bandwidth,
defined as

MissBwA(M,L) = L×MissA(M,L).

MissBwA(M,L) is the amount of memory traffic generated by misses in a (fully associative, LRU)
cache of size M , with line size L.

The results of the previous sections can be easily extended by replacing “words” everywhere
with “frames”. We thus have

Theorem 5.1. 1. LRU is (M/L)/((M/L)− (m/L) + 1) = M/(M −m + L) competitive.

2. If an online algorithm is c-competitive, then c ≥ M/(M −m + L).

In order to study temporal locality we studied the behavior of the function Miss(M,L) as a
function of M , with L fixed: A sequence of references has good temporal locality if the the miss
rate decreases fast as M increases. In order to study spatial locality, we need to study the behavior
of the function Miss(M,L) as a function of L, with M fixed: A sequence of references has good
spatial locality if the miss rate decreases fast when L increases.

Unfortunately it turns out that “temporal locality” depends on cache line size: a sequence
of accesses can have good temporal locality for small cache lines and bad temporal locality for
long cache lines; and vice-versa. Similarly, spatial locality depends on cache size: a sequence of
accesses can have good spatial locality for small caches and bad spatial locality for large caches;
and vice-versa.

11

m M

1 m min(α, 1) + M(β + γ) + (M + 1)δ) m min(α, 1) + M min(β, 1) + M min(γ, 1) + (M + 1)δ

L mα + M
L (β + δ) + Mγ + δ m min(α, 1) + M min(β, 1) + Mγ + (M

L + 1)δ

Table 1: Number of misses for sequence A for small and large caches and short and long lines

To illustrate this, let us consider two cache sizes m and M > m and two line sizes 1 and L > 1;
we assume that mL < M and L divides m and M . Consider the sequence of accesses

A = (a, a+L, . . . , a+(m−1)L)α(b, b+1, . . . , b+M−1)β(c, c+L, . . . , c+L(M−1))γ(d, d+1, . . . , d+M)δ.

The displacements a, b, c and d are multiple of L chosen so that all accessed addresses are distinct.
The total number of accesses is

σ = mα + M(β + γ + δ) + δ.

The number of misses for the four possible combinations of cache sizes and line sizes is shown in
Table 1.

Assume that α = β = δ = 0, while γ � 0. Then σ = Mγ and

Miss(m, 1) = 1 Miss(M, 1) = 1
γ

Miss(m,L) = 1 Miss(M,L) = 1

The sequence of accesses exhibits good temporal locality for line size 1 and bad temporal locality
for line size L.

Conversely, let β = γ = δ = 0 while α � 0. Then σ = mα and

Miss(m, 1) = 1
α Miss(M, 1) = 1

α

Miss(m,L) = 1 Miss(M,L) = 1
α

The sequence exhibits bad temporal locality for line size 1 and good temporal locality for line size
L.

12

Let α = δ = 0, while β � γ � 0. Then σ = M(β + γ) and

Miss(m, 1) = 1 Miss(M, 1) = 2
β+γ

Miss(m,L) = β/L+γ
β+γ Miss(M,L) = 1+γ

β+γ

The sequence exhibits good spatial locality for cache size m, as increasing line size to L reduces the
number of cache misses by a factor of approximately L; it has bad spatial locality for cache size m

as increasing line size to L significantly increases the miss rate.

Finally, let β = γ = 0, while α � δ � 0. Then σ = mα + (M + 1)δ and

Miss(m, 1) = m+(M+1)δ
mα+(M+1)δ Miss(M, 1) = m+(M+1)δ

mα+(M+1)δ

Miss(m,L) = mα+(M/L+1)δ
mα+(M+1)δ Miss(M,L) = m+(M/L+1)δ

mα+(M+1)δ

The sequence exhibits bad spatial locality for cache size m, with a significant increase in miss rate
when line size increases, and good spatial locality for cache size M , with a reduction in cache miss
rate that is approximately proportional to L.

Thus, one cannot speak, in general, of applications with good or bad temporal locality or
applications with good or bad spatial locality: one can speak of spatial locality for a given given
cache size, and of temporal locality for a given line size. This behavior has been observed by us in
actual codes, in particular in the HPC Challenge benchmarks [18].

Changing the cache line length, while leaving the total cache size and the replacement algorithm
unchanged may have more extreme effects. On one hand, it is possible to exhibit sequences where
the miss bandwidth actually decreases with increasing line length: the line length has a superlinear
effect on the miss rate. Consider a repetitive of accesses of the form a0a1, . . . , am, a0, a1, On
a cache of even size m with word size lines this sequence will generate 100% misses (cold misses
ignored). Assume now that the cache has two words per line. If consecutive locations in the
sequence belong to the same line, so that (a2i−1, a2i) are on the same line, for i = 1, . . . ,m/2, then
the miss rate is 50%; every second access is a miss, and the miss bandwidth has not changed. If,
in the other hand, the locations are paired in lines as (a0, am), (a1, am−1), (a2, am−2), . . ., then the
miss rate is 2/m and the miss bandwidth is 4/m – a very significant reduction.

13

6 Spatial Locality with Rearrangement

The model we used in the last section to study spatial locality does not capture the possibility
of dynamically rearranging variables in memory during execution. Such rearrangement is done as
part of garbage collection, in languages such as Java, and can be used to reduce cache misses [7].
Compilers may also modify the layout of data in memory in order to reduce cache misses [9, 3]. To
address this, we define an alternative model, which we call Caching with Rearrangement. In this
model the location of variables in memory can be dynamically changed. We assume that memory
is partitioned into disjoint frames each consisting of L consecutive memory locations. When a word
that is not in cache is accessed, the frame containing the word is brought into the cache. If the
cache is full, then a line consisting of L words is evicted from the cache and stored in a memory
frame. The cache controller can choose an arbitrary subset of L words in cache for eviction.

The difference between this formalism and the previous formalism is that one can change the
layout of variables in memory during execution. This model is more general than what can be
supported efficiently with current hardware mechanisms, but is very appropriate for disk caches,
since disk blocks are addressed indirectly. The model captures changes in memory layout done by
compiler and runtime. Note that this model has no additional power if L = 1; rearrangements only
help with spatial locality, when cache lines contain more than one element.

We shall assume w.l.o.g. that when a frame is evicted it replaces in memory the frame that was
just loaded. It is easy to see that this does not change the power of the model.

We denote by RMissAALG(M,L) the miss rates under this model when a cache of size M with
lines of size L is managed by algorithm ALG (R stands for “Rearrangement”). The LRU algorithm
is defined to be the (online) algorithm that always evicts the L least recently used words from the
cache and stores them in one memory frame. The OPT algorithm is the (offline) algorithm that
minimizes the number of cache misses. It is easy to see that the algorithm that always evict
the L entries that are accessed further in the future is not optimal. We do not have a simple
characterization of the optimal algorithm.

Theorem 6.1. 1. LRU is L(M−L)/(M−m) competitive in the rearrangeable model, for L > 1.

2. Assume that m > L2 − L. If an online algorithm is c-competitive, then c ≥ L(M − L2 +
2L)/(M −m + L)

Proof. The proof is a refinement of the original proof of Theorem 2.1 (see also [2, Section 3.5]). Let
A be a sequence of accesses. We divide the accesses into successive phases, where at each phase
(with the possible exception of the last) LRU has exactly M − L misses. None of locations where
a miss occurred is evicted from the LRU cache during a phase, so that each miss occurred at a

14

distinct address. When a phase starts then the last address accessed at the previous phase is in the
cache of both LRU and OPT ; this location stays in the LRU cache up to the last LRU miss in the
phase, so that this address does not cause an LRU miss during the phase. It follows that at least
(M −L)− (m−1) = M −m−L+1 of the addresses accessed during the phase are not in the cache
of OPT at the beginning of the phase, so that OPT has at least d(M−m−L+1)/Le = (M−m)/L

misses. Therefore, LRU is (M − L)/((M −m)/L) = L(M − L)/(M −m) competitive.

Let F = {F1, . . . , Fr} and F ′ = {F ′
1, . . . , F

′
s} be two sets of memory frames. We say that F and

F ′ are orthogonal if |Fi ∩ F ′
j | ≤ 1, for all i, j.

Let ALG be an online algorithm. We define by induction a sequence of addresses A0,A1, . . . and
define an offline caching algorithm ADV so that in each phase Ai, i > 0, ADV has (M −m+L)/L

misses, while ALG has M − L2 + 2L misses; the lower bound follows.

The algorithm ADV uses L2 − L locations in the cache as write buffer and uses m − L2 + L

locations as a core cache. When a location needs to be evicted from the core cache then it is moved
to the write buffer. If the write buffer is full then a frame is written back to memory. The L entries
of the frame are chosen from among the L(L−1) entries in the write buffer and the one entry being
evicted from the core cache. If F = F1, . . . , Fr is a set of memory frames, then one can always
choose the evicted frame to be orthogonal to F .

We assume that the memory used by ADV and ALG has m + (M + 1)(M −m + L) locations.
The memory of ADV is divided into a segment S0 of m locations and M +1 segments S1, . . . , SM+1

of M −m + L locations each. In phase zero ADV accesses sequentially all locations in memory.

In the first part of each phase j > 0 a set Ai of M −m + L locations is accessed. The set Ai

has the following properties:

1. The elements of Ai are all contained in one segment Sf(i) of the memory of ADV at the
beginning of the phase (1 ≤ f(i) ≤ M + 1).

2. No element of Ai is in the cache of ALG at the beginning of the phase.

3. Ai is orthogonal to the frames in the memory of ALG at the beginning of the phase.

If the set Ai fulfills these three properties, then the M −m + L accesses to the elements of Ai

can be ordered so that they will cause (M −m + L)/L misses of ADV and M −m + L misses of
ALG.

let Bi be the set of M elements that where either in the cache of ADV at the beginning of
phase i, or were accessed during the first part of phase i. Since |Bi| = M + L then Bi contains an

15

element that is not in the cache of ALG at the end of the first part of phase i. We can continue
and define a sequence of elements b1, . . . , bm−L2+L ∈ Bi so that if bj is accessed at the j-th step
following the first part of phase i then bj is not in the cache of ALG. ALG will suffer m− L2 + L

misses, while ADV can avoid any miss in this second part by keeping all these elements in its core
cache. Overall during phase i ADV has (M−m+L)/L misses, while ALG has M−L2 +2L misses

We show now that a set Ai with the desired properties can be found. The first two properties
can be satisfied since that are more than M segments. Assume that segment Sf(i) was last accessed
(and updated) by ADV at phase j < i. Let F = F1, . . . , Fr be the frames in the memory of ALG

at the beginning of phase i. We require that when ADV writes back into Sf(i) at phase j than
all frames written back are orthogonal to F . This is well-defined, since the accesses performed at
phases j, j + 1, . . . , i − 1 and hence the value of F does not depend on the layout of the elements
written back by ADV at phase j.

If M > m � L then both the upper bound and the lower bound are ≈ LM/(M − m). If we
compare this to the result in Theorem 5.1, we see that the ability to rearrange data increases the gap
between online and offline algorithms by a factor of L. Note that L(M−L2 +2L)/(M−m+L) ≥ L

when m > L2−L. Even if the online algorithm uses a cache that is arbitrarily larger than the cache
of the offline algorithm, there are sequence of accesses where it will have L times more cache misses
than the offline algorithm. This result show that spatial locality cannot, in general, be managed
by online policies.

7 Conclusion

This paper discussed measures of temporal and spatial locality. The results in Sections 2 and
3 indicate that stack depth captures well temporal locality: it predicts cache misses for fully
associative caches and, with some compiler or runtime help, it predicts well misses for realistic
caches. The approach proposed, namely hashing addresses to prevent conflict misses, may not
be practical to implement as described. However, caches with limited associativity are known to
perform in practice nearly as well as fully associative caches, and compiler transformations have
been effectively used to limit conflict misses in caches with low associativity [6, 13, 1]. Thus, the
theoretical results are indicative of practice.

The well-known results of [14] shows that online cache management for temporal locality is sat-
isfactory in that one can compensate for the inferior performance of online algorithms, as compared
to offline algorithms, by using larger caches.

The results in Sections 4 and 5 show that temporal locality cannot be characterized by one or

16

few parameters, and that spatial locality and temporal locality cannot be studied in isolation of
each other. While we have not pursued this direction in this paper, a similar approach can be used
to show that spatial locality cannot be characterized by a fixed number of parameters.

Finally, the results in Section 6 show that online cache management for spatial locality is not
possible, in general: it is not possible to compensate for the inferior performance of online algorithms
by using larger caches; full prior knowledge of the sequence of accesses can reduce the miss rate by
factor that equals the line size.

This last result provides a theoretical justification to the view that spatial locality must be
handled, to some extent, as part of algorithm design, and cannot be left to the hardware and run-
time. Note that this view runs counter current trends in language design: In modern languages
such as Java data layout is totally opaque and cannot be controlled by the programmer. Even older
languages such a C or Fortran provide only partial control of data layout, as one cannot easily align
variables at cache line boundaries; data layout is not part of the programming model. Yet our
analysis shows that some level of control on data layout is desirable. Furthermore, a change in
the layout of a data structure such as an array requires “name” changes, since the names (indices)
of elements in an array determines their displacement. Thus, if a user transposes an array in the
middle of an FFT computation to improve locality, then variable a[i,j] becomes variable a[j,i].
A more satisfactory design would allow the data layout to change, without changing the names of
the variables. Rather than transposing the array and using new indices to access array elements,
the user could simply specify that the array layout should be modified from row-major to column-
major. This would allow to optimize for spatial locality without obfuscating the computation
logic.

Our paper leaves several open problems: We do not have a simple characterization of the
OPT cache management algorithm in the model of a rearrangeable cache. Also, we have a gap
between the upper bound and the lower bound on the competitiveness of online algorithms in the
rearrangeable model.

The LRU algorithm does not seem, intuitively, to be a very good algorithm for the management
of caches with long cache lines: This algorithm will evict entries not accessed in a line that was
just brought from memory as soon as a new line is brought from memory. For example, if the
computation has two interleaved streams of sequential accesses, then LRU will take no advantage
of spatial locality. It would be interesting to define an online algorithm for the rearrangeable model
that take better advantage of spatial locality than LRU , while providing the same guarantees as
LRU in the worse case.

Finally, while our terminology is borrowed from the that of hardware caches, the theory applies
to other situations where caches are used, such as algorithms for virtual memory management or

17

algorithms for managing disk or database caches.

References

[1] David F. Bacon, Jyh-Herng Chow, Dz ching R. Ju, Kalyan Muthukumar, and Vivek Sarkar. A
compiler framework for restructuring data declarations to enhance cache and TLB effectiveness.
In CASCON ’94: Proceedings of the 1994 conference of the Centre for Advanced Studies on
Collaborative research, page 3. IBM Press, 1994.

[2] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

[3] Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng. Compiler optimizations for improving
data locality. In ASPLOS-VI: Proceedings of the sixth international conference on Architectural
support for programming languages and operating systems, pages 252–262, New York, NY,
USA, 1994. ACM Press.

[4] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions (extended
abstract). In STOC ’77: Proceedings of the ninth annual ACM symposium on Theory of
computing, pages 106–112. ACM Press, 1977.

[5] Martin Dietzfelbinger. Universal hashing and k-wise independent random variables via integer
arithmetic without primes. In STACS ’96: Proceedings of the 13th Annual Symposium on
Theoretical Aspects of Computer Science, pages 569–580. Springer-Verlag, 1996.

[6] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache miss equations: a compiler
framework for analyzing and tuning memory behavior. ACM Trans. Program. Lang. Syst.,
21(4):703–746, 1999.

[7] Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J Eliot B. Moss, Zhenlin
Wang, and Perry Cheng. The garbage collection advantage: improving program locality. In
OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN Conference on Object-oriented
programming, systems, languages, and applications, pages 69–80, New York, NY, USA, 2004.
ACM Press.

[8] BBN Laboratories. Butterfly parallel processor overview. Technical Report 6148, Version 1,
BBN Laboratories, Cambridge, 1986.

[9] Monica S. Lam and Michael E. Wolf. A data locality optimizing algorithm. SIGPLAN Not.,
39(4):442–459, 2004.

18

[10] Piotr Luszczek, Jack J. Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas, Jeremy
Kepner, John McCalpin, David Bailey, and Daisuke Takahashi. Introduction to the HPC
challenge benchmark suite. Technical report, UTK, 2005.

[11] Prabhakar Raghavan and Marc Snir. Memory versus randomization in on-line algorithms.
IBM J. of Research and Development, 38(6):683–708, 1994.

[12] Randall D. Rettberg, William R. Crowther, Philip P. Carvey, and Raymond S. Tomlinson.
The Monarch parallel processor hardware design. Computer, 23(4):18–28, 30, 1990.

[13] Gabriel Rivera and Chau-Wen Tseng. Data transformations for eliminating conflict misses.
SIGPLAN Not., 33(5):38–49, 1998.

[14] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules.
Commun. ACM, 28(2):202–208, 1985.

[15] E. Strohmaier and Hongzhang Shan. Architecture independent performance characterization
and benchmarking for scientific applications. In The IEEE Computer Society’s 12th Annual
International Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munications Systems (MASCOTS 2004), pages 467 – 474, 2004.

[16] Joel L. Wolf, Harold S. Stone, and Dominique Thiebaut. Synthetic traces for trace-driven
simulation of cache memories. IEEE Trans. Comput., 41(4):388–410, 1992.

[17] W. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of the obvious.
SIGARCH Comput. Archit. News, 23(1):20–24, 1995.

[18] Jing Yu, Sara Baghsorkhi, and Marc Snir. A new locality metric and case studies for hpcs
benchmarks. Technical Report UIUCDCS-R-2005-2564, Computer Science, UIUC, 2005.

19

