21 research outputs found

    K-groups of the quantum homogeneous space SU<SUB>q</SUB>(n)∕SU<SUB>q</SUB>(n− 2)

    Get PDF
    Quantum Stiefel manifolds were introduced by Vainerman and Podkolzin, who classified the irreducible representations of the C∗-algebras underlying such manifolds. We compute the K-groups of the quantum homogeneous spaces SUq(n)∕SUq(n− 2) for n ≥ 3. In the case n = 3, we show that K1 is a free ℤ-module, and the fundamental unitary for quantum SU(3) is part of a basis for K1

    ON THE STRUCTURE OF THE MORDELL-WEIL GROUPS OF THE JACOBIANS OF CURVES DEFINED BY y<sup>n</sup> = f(x)

    Get PDF
    Let A be an abelian variety defined over a number field K. It is proved that for the composite field Kn of all Galois extensions over K of degree dividing n, the torsion subgroup of the Mordell-Weil group A(Kn) is finite. This is a variant of Ribet’s result ([7]) on the finiteness of torsion subgroup of A(K(ζ∞)). It is also proved that for the Jacobians of superelliptic curves yn = f(x) defined over K the Mordell-Weil group over the field generated by all nth roots of elements of K is the direct sum of a finite torsion group and a free ℤ-module of infinite rank

    Classification of the Mumford--Tate Groups of Rational Polarizable Hodge Structures

    Full text link
    In their 2012 book, Mumford-Tate Groups and Domains, Green, Griffiths, and Kerr asked for a classification of the Mumford-Tate groups of polarized rational Hodge structures. Since at least early 2014, I have been explaining to people that the answer to this question could be found already in the literature. I have finally written out an explanation of this.Comment: 11 pages. arXiv admin note: text overlap with arXiv:1105.088

    A user's guide to the local arithmetic of hyperelliptic curves

    Get PDF
    A new approach has been recently developed to study the arithmetic of hyperelliptic curves y2=f(x)y^2=f(x) over local fields of odd residue characteristic via combinatorial data associated to the roots of ff. Since its introduction, numerous papers have used this machinery of "cluster pictures" to compute a plethora of arithmetic invariants associated to these curves. The purpose of this user's guide is to summarise and centralise all of these results in a self-contained fashion, complemented by an abundance of examples.Comment: Minor changes. To appear in the Bulletin of the London Mathematical Societ

    Divisible ℤ-modules

    Get PDF
    In this article, we formalize the definition of divisible ℤ-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible ℤ-modules are not finitely-generated.We introduce a divisible ℤ-module, equivalent to a vector space of a torsion-free ℤ-module with a coefficient ring ℚ. ℤ-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [15], cryptographic systems with lattices [16] and coding theory [8].Futa Yuichi - Japan Advanced Institute of Science and Technology Ishikawa, JapanShidama Yasunari - Shinshu University Nagano, JapanGrzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. ℤ-modules. Formalized Mathematics, 20(1):47-59, 2012. doi:10.2478/v10037-012-0007-z.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of ℤ-module. Formalized Mathematics, 20(3):205-214, 2012. doi:10.2478/v10037-012-0024-y.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Free ℤ-module. Formalized Mathematics, 20(4):275-280, 2012. doi:10.2478/v10037-012-0033-x.Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, and Yasunari Shidama. Torsion ℤ-module and torsion-free Z-module. Formalized Mathematics, 22(4):277-289, 2014. doi:10.2478/forma-2014-0028.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Torsion part of ℤ-module. Formalized Mathematics, 23(4):297-307, 2015. doi:10.1515/forma-2015-0024.Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 1982.Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective. The International Series in Engineering and Computer Science, 2002.Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990

    Torsion Part of ℤ-module

    Get PDF
    In this article, we formalize in Mizar [7] the definition of “torsion part” of ℤ-module and its properties. We show ℤ-module generated by the field of rational numbers as an example of torsion-free non free ℤ-modules. We also formalize the rank-nullity theorem over finite-rank free ℤ-modules (previously formalized in [1]). ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [23] and cryptographic systems with lattices [24].Yuichi Futa - Japan Advanced Institute of Science and Technology, Ishikawa, JapanHiroyuki Okazaki - Shinshu University, Nagano, JapanYasunari Shidama - Shinshu University, Nagano, JapanJesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137–142, 2007. doi:10.2478/v10037-007-0015-6. [Crossref]Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543–547, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17. [Crossref]Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. ℤ-modules. Formalized Mathematics, 20(1):47–59, 2012. doi:10.2478/v10037-012-0007-z. [Crossref]Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of ℤ-module. Formalized Mathematics, 20(3):205–214, 2012. doi:10.2478/v10037-012-0024-y. [Crossref]Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Free ℤ-module. Formalized Mathematics, 20(4):275–280, 2012. doi:10.2478/v10037-012-0033-x. [Crossref]Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Gaussian integers. Formalized Mathematics, 21(2):115–125, 2013. doi:10.2478/forma-2013-0013. [Crossref]Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Submodule of free ℤ-module. Formalized Mathematics, 21(4):273–282, 2013. doi:10.2478/forma-2013-0029. [Crossref]Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, and Yasunari Shidama. Torsion ℤ-module and torsion-free ℤ-module. Formalized Mathematics, 22(4):277–289, 2014. doi:10.2478/forma-2014-0028. [Crossref]Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841–845, 1990.Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829–832, 1990.A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 1982.Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. The International Series in Engineering and Computer Science, 2002.Michał Muzalewski. Rings and modules – part II. Formalized Mathematics, 2(4):579–585, 1991.Kazuhisa Nakasho, Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Rank of submodule, linear transformations and linearly independent subsets of ℤ-module. Formalized Mathematics, 22(3):189–198, 2014. doi:10.2478/forma-2014-0021. [Crossref]Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559–564, 2001.Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29–34, 1999.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115–122, 1990.Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.Wojciech A. Trybulec. Operations on subspaces in real linear space. Formalized Mathematics, 1(2):395–399, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865–870, 1990.Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871–876, 1990.Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1 (5):877–882, 1990.Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883–885, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186, 1990

    Isomorphism Theorem on Vector Spaces over a Ring

    Get PDF
    SummaryIn this article, we formalize in the Mizar system [1, 4] some properties of vector spaces over a ring. We formally prove the first isomorphism theorem of vector spaces over a ring. We also formalize the product space of vector spaces. ℤ-modules are useful for lattice problems such as LLL (Lenstra, Lenstra and Lovász) [5] base reduction algorithm and cryptographic systems [6, 2].Futa Yuichi - Tokyo University of Technology, Tokyo, JapanShidama Yasunari - Shinshu University, Nagano, JapanGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Submodule of free ℤ-module. Formalized Mathematics, 21(4):273–282, 2013. doi:10.2478/forma-2013-0029.Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982. doi:10.1007/BF01457454.Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: a cryptographic perspective. The International Series in Engineering and Computer Science, 2002.Yasunari Shidama. Differentiable functions on normed linear spaces. Formalized Mathematics, 20(1):31–40, 2012. doi:10.2478/v10037-012-0005-1.25317117

    Lattice of ℤ-module

    Get PDF
    In this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9].Futa Yuichi - Japan Advanced Institute of Science and Technology Ishikawa, JapanShidama Yasunari - Shinshu University Nagano, JapanGrzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3): 537-541, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. ℤ-modules. Formalized Mathematics, 20(1):47-59, 2012. doi:10.2478/v10037-012-0007-z.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of ℤ-module. Formalized Mathematics, 20(3):205-214, 2012. doi:10.2478/v10037-012-0024-y.Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, and Yasunari Shidama. Torsion ℤ-module and torsion-free ℤ-module. Formalized Mathematics, 22(4):277-289, 2014. doi:10.2478/forma-2014-0028.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Matrix of ℤ-module. Formalized Mathematics, 23(1):29-49, 2015. doi:10.2478/forma-2015-0003.A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 1982.Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective. The International Series in Engineering and Computer Science, 2002.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990

    Holomorphic Bisectional Curvature and Applications to Deformations and Rigidity for Variations of Mixed Hodge Structure

    Get PDF
    In this article, we prove a rigidity criterion for period maps of admissible variations of graded-polarizable mixed Hodge structure, and establish rigidity in a number of cases, including families of quasi-projective curves, projective curves with ordinary double points, the complement of the canonical curve in families of Kynev--Todorov surfaces, period maps attached to the fundamental groups of smooth varieties and normal functions.Comment: 63 page
    corecore