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1 INTRODUCTION

In this paper, we provide a summary of a recently developed approach to understanding the
local arithmetic of hyperelliptic curves. This approach revolves around the theory of ‘clusters’,
and enables one to read off many local arithmetic invariants of hyperelliptic curves from explicit
equations 𝑦2 = 𝑓(𝑥). The paper is meant to serve as a user’s guide: our aim has been to make it
accessible to mathematicians interested in applications outside of local arithmetic geometry, or
whomaywish to compute local invariants without having to decipher the theoretical background.
Throughout this article, 𝐾 will be a local field of odd residue characteristic 𝑝 and 𝐶∕𝐾 a hyper-

elliptic curve given by

𝑦2 = 𝑓(𝑥) = 𝑐
∏
𝑟∈

(𝑥 − 𝑟),

where 𝑓 ∈ 𝐾[𝑥] is separable, deg(𝑓) = 2g + 1 or 2g + 2 and g ⩾ 2.

1.1 How to use this guide

The article is structured as follows. We begin in Section 2 by declaring some general notation
which will be used throughout, and proceed to give some background theory on cluster pictures
and BY trees in Sections 3 and 4, respectively. Cluster pictures will be critical background for all
sections of the article; BY trees will be used in Sections 10, 15, 17 and the Appendix.
From there on, each section will be self-contained and independent of the other sections. This

will allow a reader who is concerned with just one topic (Galois representations, say) to be able
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to learn everything they need by reading just the background theory in Sections 3 and 4 and the
relevant section (in our example, Section 11).
From Section 5 onwards, each section will consist of two parts: the first stating the relevant

theorems, and the second providing examples illustrating the theorems. None of the theorems
are original (apart from Theorem A.6, whose proof is given in the Appendix) and we give no
proofs; each section has references at the end where the interested reader can find proofs and
more general statements of the theorems.

1.2 Related work

The key references for the present work are [3, 4, 9, 10, 14, 15, 20].We havemade a blanket assump-
tion that𝐾 is a local field; this is oftenunnecessarily restrictive, andmany results hold for complete
discretely valued fields. The reference [9] also discusses a number of topics that we have omitted,
in particular how to use clusters to check whether a curve is deficient, how one may perturb 𝑓(𝑥)
without changing the standard local invariants, andhow to classify semistable hyperelliptic curves
in a given genus.
As many of our examples will illustrate, the method of cluster pictures is very convenient for

computations. However, it can also be used for more theoretical purposes: for instance, one can
work explicitly with families of hyperelliptic curves for which the genus becomes arbitrarily large
(see, for example, [1, 7]), or prove general results for curves of a given genus by a complete case-
by-case analysis of cluster pictures (see, for example, [13]).
We would like to mention some alternative techniques that have been recently developed for

investigating similar topics. In [6, 16, 21–23], the authors determine different kinds of models, the
conductor exponent, the local 𝐿-factor, compare the Artin conductor to theminimal discriminant
and compute a basis of the integral differentials. In arbitrary residue characteristic (including 2),
but under some technical assumptions, [8, 12, 20] determine the minimal regular model with
normal crossings, a basis of integral differentials, reduction types, conductor and action of the
inertia group on the 𝓁-adic representation.

1.3 Implementation

We have implemented many of the methods described in this guide as a package using the Sage-
Math computer algebra system [24]. The package is available online at [2]. This package includes
implementations of cluster pictures and BY trees as abstract objects, which it can also plot. Given
a hyperelliptic curve, the implementation determines its associated cluster picture and BY tree. It
also determines the Tamagawa number, root number, reduction type, minimal discriminant and
dual graph of the minimal regular model, as described in this article.
We have also computed cluster pictures for all elliptic curves over ℚ and number fields, and

all genus 2 curves present in the L-Functions and Modular Forms Database [19]. The latter is
incorporated in the LMFDB homepages of curves.

2 NOTATION

Here we set out the notation that will be used throughout the paper.
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Formally by a hyperelliptic curve 𝐶 we mean the smooth projective curve associated to
𝑦2 = 𝑓(𝑥), equivalently the gluing of the pair of affine patches

𝑦2 = 𝑓(𝑥) and 𝑣2 = 𝑡2g+2𝑓
(
1

𝑡

)
along the maps 𝑥 = 1

𝑡
and 𝑦 = 𝑣

𝑡g+1
, where 𝑓 ∈ 𝐾[𝑥] is separable, and deg(𝑓) ⩾ 5. We will not

consider double covers of general conics.
We fix the following notation associated to fields and hyperelliptic curves.

𝐾 local field of odd residue characteristic 𝑝
𝐾 ring of integers of 𝐾
𝑘 residue field of 𝐾
𝜋 uniformiser of 𝐾
𝑣 normalised valuation with respect to 𝐾 so that 𝑣(𝜋) = 1

𝐾̄ algebraic closure of 𝐾
𝐾sep separable closure of 𝐾 inside 𝐾̄
𝐾nr maximal unramified extension of 𝐾 inside 𝐾sep

𝑘̄ algebraic closure of 𝑘 and residue field of 𝐾nr

𝐺𝐾 the absolute Galois group Gal(𝐾sep∕𝐾)

𝐼𝐾 inertia subgroup of 𝐺𝐾

Frob a choice of (arithmetic) Frobenius element in 𝐺𝐾

𝑥̄ or 𝑥mod𝔪 image in the residue field 𝑘̄ for 𝑥 ∈ 𝐾̄ with 𝑣(𝑥) ⩾ 0

𝐶 hyperelliptic curve given by 𝑦2 = 𝑓(𝑥)

𝑐 leading coefficient of 𝑓(𝑥)
 set of roots of 𝑓(𝑥) in 𝐾sep

g genus of 𝐶
min minimal regular model of 𝐶∕𝐾nr

min
𝑘̄

special fibre of min

Jac 𝐶 Jacobian of 𝐶

We will say 𝐶 is semistable if 𝐶 has semistable reduction. Similarly 𝐶 is tame if 𝐶 acquires
semistable reduction over a tame extension of 𝐾. If 𝑝 > 2g + 1, 𝐶 is always tame, see Remark 5.7.

3 CLUSTERS

Definition 3.1 (Clusters and cluster pictures). A cluster is a non-empty subset 𝔰 ⊆  of the form
𝔰 = 𝐷 ∩ for some disc 𝐷 = {𝑥 ∈ 𝐾̄ ∣ 𝑣(𝑥 − 𝑧) ⩾ 𝑑} for some 𝑧 ∈ 𝐾̄ and 𝑑 ∈ ℚ.
For a cluster 𝔰 with |𝔰| > 1, its depth 𝑑𝔰 is the maximal 𝑑 for which 𝔰 is cut out by such a disc,

that is 𝑑𝔰 = min𝑟,𝑟′∈𝔰 𝑣(𝑟 − 𝑟′). If moreover 𝔰 ≠ , then its relative depth is 𝛿𝔰 = 𝑑𝔰 − 𝑑𝑃(𝔰), where
𝑃(𝔰) is the smallest cluster with 𝔰 ⊊ 𝑃(𝔰) (the parent cluster).
We refer to this data as the cluster picture of 𝐶.

Remark 3.2. The Galois group acts on clusters via its action on the roots. It preserves depths and
containments of clusters.
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Notation 3.3. We draw cluster pictures by drawing roots 𝑟 ∈  as , and draw ovals around roots
to represent clusters (of size > 1), such as

The subscript on the largest cluster  is its depth, while the subscripts on the other clusters are
their relative depths.

Notation 3.4. For a cluster 𝔰 we use the following terminology.

size of 𝔰 |𝔰|
𝔰′ a child of 𝔰, 𝔰′ < 𝔰 𝔰′ is a maximal subcluster of 𝔰
parent of 𝔰, 𝑃(𝔰) 𝑃(𝔰) is the smallest cluster with 𝔰 ⊊ 𝑃(𝔰)

singleton cluster of size 1
proper cluster cluster of size > 1
even cluster cluster of even size
odd cluster cluster of odd size
übereven cluster even cluster all of whose children are even
twin cluster of size 2
cotwin non-übereven cluster with a child of size 2g
principal cluster 𝔰 if |𝔰| ≠ 2g + 2: 𝔰 is proper, not a twin or a cotwin;

if |𝔰| = 2g + 2: 𝔰 has ⩾ 3 children and is not a cotwin
𝔰∗ if 𝔰 is not a cotwin:

smallest 𝔰∗ ⊇ 𝔰 that does not have an übereven parent;
if 𝔰 is a cotwin: the child of 𝔰 of size 2g

𝔰 ∧ 𝔰′ smallest cluster containing 𝔰 and 𝔰′

𝔰̃ set of odd children of 𝔰
centre 𝑧𝔰 a choice of 𝑧𝔰 ∈ 𝐾sep withmin𝑟∈𝔰 𝑣(𝑧𝔰 − 𝑟) = 𝑑𝔰

𝜃𝔰 a choice of
√

𝑐
∏

𝑟∉𝔰(𝑧𝔰 − 𝑟)

𝜖𝔰 𝜖𝔰 ∶ 𝐺𝐾 → {±1}, 𝜖𝔰(𝜎) =
𝜎(𝜃𝔰∗ )

𝜃(𝜎𝔰)∗
mod𝔪 if 𝔰 even or a cotwin,

𝜖𝔰 = 0 otherwise
𝜈𝔰 = 𝑣(𝑐) + |𝔰|𝑑𝔰 +∑𝑟∉𝔰 𝑑{𝑟}∧𝔰, for a proper cluster 𝔰
𝜆̃𝔰 = 1

2
(𝑣(𝑐) + |𝔰̃|𝑑𝔰 +∑𝑟∉𝔰 𝑑{𝑟}∧𝔰), for a proper cluster 𝔰

Remark 3.5. For even clusters and cotwins, 𝜖𝔰 does not depend on the choice of centre of 𝔰. When
restricted to the stabiliser of 𝔰, it is a homomorphism and does not depend on the choice of square
root of 𝜃2

𝔰
.

Example 3.6. Consider𝐶 ∶ 𝑦2 = (𝑥2 + 72)(𝑥2 − 715)(𝑥 − 76)(𝑥 − 76 − 79) overℚ7. Its cluster pic-
ture is



6 BEST et al.

∙ Depths and relative depths: For each pair of roots 𝑟, 𝑟′ in the picture, 𝑣(𝑟 − 𝑟′) ⩾ 1, and 𝑣(7𝑖 −

76) = 1 so that 𝑑 = 1. Similarly 𝔞 = {7
15
2 , −7

15
2 , 76, 76 + 79} is a cluster of depth 𝑑𝔞 = 6 and

therefore relative depth 𝛿𝔞 = 5. Finally, 𝔱1 = {7
15
2 , −7

15
2 } has depth 𝑑𝔱1 =

15

2
and 𝔱2 = {76, 76 +

79} has depth 𝑑𝔱2 = 9. The only other clusters are singletons hence are not assigned any depth.
∙ Children: The children of  are {7𝑖}, {−7𝑖} and 𝔞, so ̃ = {{7𝑖}, {−7𝑖}}. The children of 𝔞 are 𝔱1
and 𝔱2, so 𝔞̃ is empty.

∙ Types:, 𝔞, 𝔱1, 𝔱2 are proper and even. The only odd clusters are singletons. Both 𝔱1 and 𝔱2 are
twins, 𝔞 is übereven and is a cotwin. The only principal cluster is 𝔞.

∙ 𝔰∗ and 𝔰1 ∧ 𝔰2: 𝔱∗1 = 𝔱∗
2
= 𝔞∗ = ∗ = 𝔞, 𝔱1 ∧ 𝔱2 = 𝔞, 𝔱1 ∧ 𝔞 = 𝔞 and 𝔱1 ∧ {7𝑖} = .

∙ 𝑧𝔰 and 𝜖𝔰: Pick 𝑧 = 𝑧𝔞 = 𝑧𝔱1 = 0 and 𝑧𝔱2 = 76. As 𝔱∗
1
= 𝔱∗

2
= 𝔞∗ = ∗ = 𝔞, we get 𝜖𝔱1 = 𝜖𝔱2 =

𝜖 = 𝜖𝔞. With our choice of 𝑧𝔞 we obtain 𝜃𝔞 =
√
(0 − 7𝑖)(0 + 7𝑖) = ±7. Say we choose 𝜃𝔞 = 7,

then for any 𝜎 ∈ 𝐺𝐾 we have 𝜖𝔞(𝜎) =
𝜎(𝜃𝔞)

𝜃𝜎𝔞
= +1.

Example 3.7. Suppose 𝐶∕ℚ𝑝 ∶ 𝑦2 = 𝑓(𝑥) with 𝑓(𝑥) ∈ ℤ𝑝[𝑥] monic. Suppose also that
𝑓(𝑥)mod𝑝 has at least two distinct roots, equivalently 𝑑 = 0. Consider the reduction 𝐶̄∕𝔽𝑝 ∶

𝑦2 = 𝑓(𝑥).

(i) A child of  consists of roots that have the same image in the residue field. For example
if 𝑝 = 5 and  = {0, 1, 2, 3, 5, 8, 13}, we have the cluster picture and 𝐶̄ ∶ 𝑦2 =

𝑥2(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)3.
(ii) If 𝑓(𝑥)mod𝑝 has a double root and no other repeated roots, then the cluster picture has

a twin 𝔱 and 𝐶̄ has a node. Generally, for semistable curves, twins contribute nodes to the
special fibre of the stable model.

(iii) The normalisation of 𝐶̄ is obtained by removing the maximal square factor in 𝑓(𝑥), so the
new roots are in 1:1 correspondence with the odd clusters. Explicitly, it is the hyperelliptic
curve given by 𝑦2 =

∏
𝔰∈̃(𝑥 − 𝑧̄𝔰). For example, for the curve in (i), the normalisation is

given by 𝑦2 = (𝑥 − 1)(𝑥 − 2)(𝑥 − 3).
(iv) When  is übereven, the normalisation of 𝐶̄ is 𝑦2 = 1, which is a union of two lines. Gen-

erally, for semistable curves, übereven clusters contribute pairs of ℙ1s to the special fibre of
both semistable and regular models of 𝐶∕ℚnr

𝑝 .
(v) Suppose that = {1, 2, 𝑝, 2𝑝, 3𝑝, 4𝑝} so the cluster picture is for 𝑝 > 3. Applying

the change of variable 𝑥′ = 1

𝑥
gives a curve whose cluster picture is . Generally,

changing the model can convert twins to cotwins and vice versa, and the number of twins
plus cotwins is model independent.

(vi) For a curve as in (ii), the node on 𝐶̄ is split if and only if
∏

𝑟∉𝔱(𝑧̄𝑡 − 𝑟) is a square in 𝔽𝑝.
Equivalently, if and only if 𝜖𝔱(Frob) = +1. Generally, 𝜖 keeps track of whether the nodes are
split or non-split and similar data.

Example 3.8. Let 𝐶∕ℚ𝑝 ∶ 𝑦2 = 𝑓(𝑥) with 𝑓(𝑥) ∈ ℤ𝑝[𝑥], deg(𝑓) = 8 and 𝑣(𝑐) ⩾ 0.

(i) Suppose that 𝑓(𝑥)mod 𝑝 has distinct roots, equivalently that the cluster picture of 𝐶 is
. In this case, 𝜈 = 𝑣(𝑐). Here when 𝜈 is even, 𝐶 has good reduction and when

𝜈 is odd it is a quadratic twist of such a curve.
(ii) Suppose that 𝑓(𝑥)mod 𝑝 has a repeated root of multiplicity 5 and the corresponding roots

in ℚ̄𝑝 are equidistant with distance 𝑣(𝑟𝑖 − 𝑟𝑗) = 𝑛, equivalently the cluster picture of 𝐶 is
.
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The substitution 𝑥′ = 𝑥−𝑧𝔰
𝑝𝑛

gives 𝑓(𝑥) = 𝑐
∏

𝑟∈(𝑝
𝑛𝑥′ + 𝑧𝔰 − 𝑟). Observe that 𝑣(𝑧𝔰 − 𝑟) = 𝑑𝔰 =

𝑛 for 𝑟 ∈ 𝔰 and 𝑣(𝑧𝔰 − 𝑟) = 𝑑{𝑟}∧𝔰 = 0 otherwise. The equation for 𝐶 becomes

𝑦2 = 𝑐𝑝5𝑛
∏
𝑟∉𝔰

(𝑝𝑛𝑥′ + 𝑧𝔰 − 𝑟)
∏
𝑟∈𝔰

(𝑥′ +
𝑧𝔰 − 𝑟

𝑝𝑛
).

Note that 𝑣(𝑐𝑝5𝑛) is precisely 𝑣(𝑐) + |𝔰|𝑑𝔰 +∑𝑟∉𝔰 𝑑{𝑟}∧𝔰 = 𝜈𝔰, and by construction each factor of
the above polynomial has integral coefficients.
In general, for any proper cluster 𝔰 the above change of variablewill give an integral equation for

𝐶 of the form 𝑐𝑝𝑚ℎ(𝑥) where 𝑣(𝑐) + 𝑚 = 𝜈𝔰 and ℎ(𝑥) is integral. When 𝑛 ∈ ℤ, 𝑧𝔰 ∈ ℚ𝑝 and 𝜈𝔰 ∈

2ℤ, the substitution 𝑦 = 𝑦′𝑝
𝜈𝔰
2 gives an equation for 𝐶∕ℚ𝑝 whose reduction is of the form

𝑦2 = (constant)
∏
𝑟∈𝔰

(𝑥 − 𝑟′).

When 𝔰 is principal, this is a curve over 𝔽𝑝 of genus at least 1.

Example 3.9. Consider the two curves 𝐶1 ∶ 𝑦2 = 𝑥6 − 𝑝 and 𝐶2 ∶ 𝑦2 = 𝑥(𝑥5 − 𝑝). These have
cluster picture , where 𝑛 = 1

6
for 𝐶1 and 𝑛 = 1

5
for 𝐶2. These curves have 2𝜆̃ = 𝑣(𝑐) +|̃|𝑑 +

∑
𝑟∉ 𝑑{𝑟}∧ = 6𝑛. The denominator of 2𝜆̃ is either 1 or 5. This reflects the different

inertia action on the roots: it has no fixed points for 𝐶1 and one fixed point for 𝐶2.
The general case is more subtle. Roughly, for a proper cluster 𝔰, the denominator of 𝜆̃𝔰 is related

to the inertia action on 𝔰̃ and to the inertia action by geometric automorphisms on the reduced
curve associated to 𝔰 à la Example 3.8.

References. 3.1–3.4: [9, Section 1], [10, Section 3.3]. 3.5: [9, Remark 1.14]. 3.7(ii),(iv): [9, The-
orem 8.5]. 3.7(v): [9, Theorem 14.4], [10, Proposition 5.24]. 3.9: [9, Section 8, Theorem 8.7(i)].

4 BY TREES

Definition 4.1 (BY tree). A BY tree is a finite tree 𝑇 with a genus function g ∶ 𝑉(𝑇) → ℤ⩾0 on
vertices, a length function 𝛿∶ 𝐸(𝑇) → ℝ>0 on edges, and a 2-colouring blue/yellow on vertices
and edges such that

(1) yellow vertices have genus 0, degree ⩾ 3, and only yellow incident edges;
(2) blue vertices of genus 0 have at least one yellow incident edge;
(3) at every vertex, 2g(𝑣) + 2 ≥ # blue incident edges at 𝑣.

Note that all leaves (vertices of degree 1) are necessarily blue.

Notation 4.2. In diagrams, yellow edges are drawn squiggly ( ) and yellow vertices hollow
( ) for the benefit of viewing them in black and white. We write the genus of a blue vertex inside
the vertex ( ); we omit it for blue vertices with genus 0.Wewrite the length of edges next to them.

Definition 4.3. The BY tree 𝑇𝐶 associated to 𝐶 is given by:
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∙ one vertex 𝑣𝔰 for every proper cluster 𝔰, coloured yellow if 𝔰 is übereven and blue otherwise;
∙ for every pair 𝔰′ < 𝔰 with 𝔰′ proper, link 𝑣𝔰′ and 𝑣𝔰 with an edge, yellow of length 2𝛿𝔰′ if 𝔰′ is
even and blue of length 𝛿𝔰′ if 𝔰′ is odd;

∙ ifhas size 2g + 2 and is a union of two proper children, remove 𝑣 andmerge the two remain-
ing edges (adding their lengths);

∙ if  has size 2g + 2 and has a child 𝔰 of size 2g + 1, remove 𝑣 and the edge between 𝑣 and
𝑣𝔰;

∙ the genus g(𝑣𝔰) of a blue vertex 𝑣𝔰 is defined so that |𝔰̃| = 2g(𝑣𝔰) + 2 or 2g(𝑣𝔰) + 1.

Definition 4.4. An isomorphism of BY trees 𝑇 → 𝑇′ is a pair (𝛼, 𝜖) where:

∙ 𝛼 is a graph isomorphism 𝑇 → 𝑇′ that preserves edge lengths, genera of vertices and colours;
and

∙ for every connected component 𝑌 of the yellow part 𝑇𝑦 ⊂ 𝑇, 𝜖(𝑌) ∈ {±1}.

Equivalently, 𝜖 is a collection of signs 𝜖(𝑣) ∈ {±1} and 𝜖(𝑒) ∈ {±1} for every yellow vertex and yel-
low edge, such that 𝜖(𝑣) = 𝜖(𝑒)whenever 𝑒 ends at 𝑣. Isomorphisms are composed by the cocycle
rule

(𝛼, 𝜖𝛼) ◦ (𝛽, 𝜖𝛽) =
(
𝛼 ◦ 𝛽, ∙ ↦ 𝜖𝛽(∙)𝜖𝛼(𝛽(∙))

)
.

An automorphism of 𝑇 is an isomorphism from 𝑇 to itself.

Definition 4.5. The induced action of 𝐺𝐾 is given by 𝜎 ↦ (𝛼𝜎, 𝜀𝜎) ∈ Aut 𝑇𝐶 with 𝛼𝜎(𝑣𝔰) = 𝑣𝜎(𝔰)
for all vertices 𝑣𝔰, and 𝜖𝜎(𝑌) = 𝜖𝔰𝑌 (𝜎) for yellow components 𝑌. Here the cluster 𝔰𝑌 is taken so
that 𝑣𝔰𝑌 is any vertex in the closure of 𝑌, other than the maximal one among these clusters. Note
that 𝜖𝔰𝑌 (𝜎) depends on the choices of square roots of 𝜃

2.

Notation 4.6. We draw arrows between edges and signs above yellow components to repre-
sent automorphisms.

Remark 4.7. For semistable curves, inertia maps to the identity in Aut 𝑇𝐶 , that is 𝛼𝜎 = id and
𝜖𝜎(𝑌) = +1 for all 𝜎 ∈ 𝐼𝐾 and all yellow components 𝑌.

Lemma 4.8. The genus of the curve satisfies

g = #(connected components of the blue part of 𝑇𝐶) − 1 +
∑

𝑣∈𝑉(𝑇𝐶)

g(𝑣).

Example 4.9. Consider the cluster picture from Example 3.6. There are four proper clusters
, 𝔞, 𝔱1 and 𝔱2 so the BY tree has four vertices 𝑣, 𝑣𝔞, 𝑣𝔱1 , 𝑣𝔱2 , where only 𝑣𝔞 is yellow since 𝔞

is übereven. There are three yellow edges corresponding to the three even children 𝔞 < , 𝔱1 <

𝔞, 𝔱2 < 𝔞, of length 2 × 5, 2 × 3

2
, 2 × 3, respectively.
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Remark 4.10.

(i) The depth 𝑑 is not relevant for the BY tree.
(ii) The yellow part forms an open subset (since yellow vertices correspond to übereven clusters,

which are even and only have even children).
(iii) One can reconstruct the cluster picture from the BY tree and 𝑑, provided that there is a

vertex 𝑣 and it is identified.

Example 4.11. Consider the curve 𝐶∕ℚ11 given by 𝑦2 = 𝑓(𝑥) with 𝑓(𝑥)monic with set of roots

 = {0, 1, 2, 𝜁7 − 11, 𝜁7 + 11, 𝜁27 − 11, 𝜁27 + 11, 𝜁47 − 11, 𝜁47 + 11},

where 𝜁77 = 1 and 𝜁37 + 5𝜁27 + 4𝜁7 + 10 ≡ 0mod 11. Its cluster picture and BY tree are

with centres for the twins 𝑧𝔱1 = 𝜁7, 𝑧𝔱2 = 𝜁27 and 𝑧𝔱4 = 𝜁47 . Note that Frob(𝔱1) = 𝔱4, Frob(𝔱4) = 𝔱2
and Frob(𝔱2) = 𝔱1. We find that

𝜃2
𝔱1
= (𝜁7 − 𝜁27)

2(𝜁7 − 𝜁47)
2𝜁7(𝜁7 − 1)(𝜁7 − 2) ≡ 𝜁27 + 3𝜁7 + 7mod 11,

and similarly for 𝜃2
𝔱2
and 𝜃2

𝔱4
. We can pick 𝜃𝔱1 , 𝜃𝔱2 , 𝜃𝔱4 so that Frob(𝜃𝔱1) = 𝜃𝔱4 , Frob(𝜃𝔱4) = 𝜃𝔱2 and

therefore 𝜖𝔱1(Frob) = 𝜖𝔱4(Frob) = +1. Then 𝜖𝔱2(Frob) ≡
Frob3(𝜃𝔱1 )

𝜃𝔱1
mod 11. One checks that 𝜃2

𝔱1
is

not a square in 𝔽11(𝜁7), so 𝜖𝔱2(Frob) = −1.
In terms of the BY tree, Frob permutes the three edges cyclicly. Here the yellow components are

the three edges 𝑣𝑣𝔱1 , 𝑣𝑣𝔱2 , 𝑣𝑣𝔱4 , and 𝜖Frob(𝑣𝑣𝔱1) = 𝜖Frob(𝑣𝑣𝔱4) = +1, while 𝜖Frob(𝑣𝑣𝔱2) =
−1.

Example 4.12. Let 𝐶∕ℚ𝑝 ∶ 𝑦2 = (𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 𝑝2)(𝑥 − 𝑝𝑛+2)(𝑥 + 𝑝𝑛+2) for 𝑝 ⩾ 5

and 𝑛 ⩾ 1. The substitutions (𝑥′, 𝑦′) = ( 1

𝑥−1
,

𝑦

𝑥−1
) and (𝑥′′, 𝑦′′) = ( 1

𝑥
,
𝑦

𝑥
) yield other models. Their

cluster pictures are, respectively,

Note that these all have the same BY tree: Generally, the BY tree is model independent.

Remark 4.13. For semistable curves the special fibre of the minimal regular model is the double
cover of the BY tree ramified over the blue part (with all edge lengths halved). In Example 4.12
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the dual graph is

where the loop has 2𝑛 vertices.

References. 4.3: [10, Table 5.3]. 4.5: [10, Table 4.20]. 4.7: Theorem 5.1. 4.8: [10, Definitions
3.23 and 3.33, Remark 3.24, Theorem 5.1]. 4.12: Theorem 8.3, Theorems 17.3 and 17.4.

5 REDUCTION TYPE

In this section, we explain how to read off information about the reduction of both 𝐶 and its
Jacobian from the cluster picture of 𝐶.

Theorem 5.1 (Semistability criterion). The curve 𝐶, or equivalently Jac 𝐶, is semistable if and only
if the following three conditions are satisfied.

(1) The field extension𝐾()∕𝐾 given by adjoining the roots of 𝑓(𝑥) has ramification degree at most
2.

(2) Every proper cluster is invariant under the action of the inertia group 𝐼𝐾 .
(3) Every principal cluster 𝔰 has 𝑑𝔰 ∈ ℤ and 𝜈𝔰 ∈ 2ℤ.

Remark 5.2. It follows fromTheorem 5.1 that𝐶 is semistable over any ramified quadratic extension
of 𝐾().

Theorem 5.3 (Good reduction of the curve). The curve 𝐶 has good reduction if and only if the
following three conditions are all satisfied.

(1) The field extension 𝐾()∕𝐾 is unramified.
(2) Every proper cluster has size at least 2g + 1.
(3) The (necessarily unique) principal cluster has 𝜈𝔰 ∈ 2ℤ.

Theorem 5.4 (Good reduction of the Jacobian). The Jacobian of 𝐶 has good reduction if and only
if the following three conditions are all satisfied.

(1) The field extension 𝐾()∕𝐾 is unramified.
(2) Every cluster 𝔰 ≠  is odd.
(3) Every principal cluster 𝔰 has 𝜈𝔰 ∈ 2ℤ.

A consequence of Theorems 5.3 and 5.4 is the following criterion for potentially good reduction.

Theorem 5.5 (Potentially good reduction of the curve or the Jacobian).

∙ The curve𝐶 has potentially good reduction if and only if every proper cluster has size at least 2g + 1.
∙ The Jacobian, Jac 𝐶, has potentially good reduction if and only if every cluster 𝔰 ≠  is odd.

Theorem 5.6 (Potential toric rank of the Jacobian).
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∙ The potential toric rank of Jac 𝐶 is equal to the number of even non-übereven clusters 𝔰 ≠ , less
1 if is übereven.

∙ The Jacobian, Jac 𝐶, has potentially totally toric reduction if and only if every cluster has at most
2 odd children.

Remark 5.7 (Tame reduction). The curve 𝐶, or equivalently Jac 𝐶, has tame reduction (semistable
after tamely ramified extension) if and only if 𝐾()∕𝐾 is tamely ramified. In particular, this is
always the case if 𝑝 > 2g + 1 since then the wild inertia group acts trivially on the roots of the
(degree ⩽ 2g + 2) polynomial 𝑓(𝑥).

Example 5.8. As in Example 3.6, we consider the genus 2 hyperelliptic curve

𝐶 ∶ 𝑦2 = (𝑥2 + 72)(𝑥2 − 715)(𝑥 − 76)(𝑥 − 76 − 79)

over ℚ7 with cluster picture

We have 𝑑 = 1. The single principal cluster 𝔰 has 𝑑𝔰 = 6 and |𝔰| = 4. We find:

∙ 𝐶 is semistable. Indeed,ℚ7() = ℚ7(𝑖,
√
7)has ramification degree 2 overℚ7. The inertia group

swaps the roots 7
15
2 and−7

15
2 which lie in a twin, and fixes all others, so that every proper cluster

is fixed by inertia. Finally, 𝑑𝔰 ∈ ℤ and 𝜈𝔰 = 4 ⋅ 𝑑𝔰 + 2𝑑 = 26 ∈ 2ℤ;
∙ 𝐶 does not have potentially good reduction since the cluster 𝔰 has size 4 < 2g + 1 = 5. In fact,
Jac 𝐶 has totally toric reduction. Indeed, 𝐶 is already semistable over ℚ7, and every cluster has
at most 2 odd children ( and the twins 𝔱1 and 𝔱2 each have two odd children, whilst 𝔞 has no
odd children).

Remark 5.9. Any hyperelliptic curve 𝐶 ∶ 𝑦2 = 𝑓(𝑥) with the same cluster picture as the one in
Example 5.8 (same depths, all proper clusters inertia invariant) and such that𝑓(𝑥)has unit leading
coefficient, is necessarily also semistable with totally toric reduction, by the same argument.

Example 5.10. Consider the genus 2 hyperelliptic curve 𝐶 ∶ 𝑦2 = 𝑥6 − 27 over ℚ3. Its cluster
picture is

for a fixed primitive third root of unity 𝜁3. The non-principal cluster  has depth 1

2
, whilst the

principal clusters 𝔰1 and 𝔰2 each have depth 1. We find:

∙ 𝐶 is not semistable since the action of inertia swaps 𝔰1 and 𝔰2;
∙ 𝐶 does not have potentially good reduction, since 𝔰1 and 𝔰2 are both proper clusters of size
< 2g + 1. On the other hand, Jac 𝐶 does have potentially good reduction since 𝔰1 and 𝔰2 are
odd;
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∙ 𝐶 has tame reduction since ℚ3() = ℚ3(
√
3, 𝜁3) has ramification degree 2 over ℚ3. In fact,

the minimal degree extension over which 𝐶 is semistable is 4, realised by any totally ramified
extension of this degree. To see this, note that the inertia group acts on the proper clusters
through its unique order 2 quotient, whilst for 𝑖 = 1, 2, we have 𝑑𝔰𝑖 ∈ ℤ and 𝜈𝔰𝑖 = 3 ⋅ 1 + 3 ⋅
𝑑 = 9∕2, so that 𝐶 satisfies the semistability criterion (Theorem 5.1) over some 𝐹∕ℚ3 if and
only if the ramification degree of this extension is divisible by 4.

References. 5.1: [9, Theorem 1.8, Theorem 7.1, Appendix C]. 5.3–5.7: [9, Theorem 1.8, Theorem
10.3]. Background on reduction types: [9, Section 2] and references therein.

6 SPECIAL FIBRE (SEMISTABLE CASE)

In this section, assuming that 𝐶∕𝐾 is semistable and that  is principal, we describe the special
fibre of the minimal regular model of 𝐶 over𝐾nr . The case where is not principal is dealt with
in [9, Section 8].

Definition 6.1 (Leading terms and reduction maps). For a principal cluster 𝔰, define 𝑐𝔰 ∈ 𝑘̄× and
red𝔰 ∶ 𝑧𝔰 + 𝜋𝑑𝔰𝐾̄ → 𝑘̄ by

𝑐𝔰 =
𝑐

𝜋𝑣(𝑐)

∏
𝑟∉𝔰

𝑧𝔰 − 𝑟

𝜋𝑣(𝑧𝔰−𝑟)
mod 𝔪 and red𝔰(𝑡) =

𝑡 − 𝑧𝔰

𝜋𝑑𝔰
mod 𝔪.

For any cluster 𝔰′ < 𝔰, we define red𝔰(𝔰′) to be red𝔰(𝑟) for any choice of 𝑟 ∈ 𝔰′.

Theorem6.2 (Components). The special fibre min
𝑘̄

contains connected components Γ𝔰 correspond-
ing to principal clusters 𝔰, given by the equations

Γ𝔰 ∶ 𝑌2 = 𝑐𝔰
∏

odd 𝔬<𝔰

(
𝑋 − red𝔰(𝔬)

) ∏
twin 𝔱<𝔰
𝛿𝔱=

1
2

(
𝑋 − red𝔰(𝔱)

)2
.

This component is irreducible when 𝔰 is non-übereven but splits into a pair of irreducible components
Γ+
𝔰
, Γ−

𝔰
otherwise (we write Γ+

𝔰
= Γ−

𝔰
= Γ𝔰 in the non-übereven case). These components are linked

by chains of ℙ1s as described in Theorem 6.3.

Theorem 6.3 (Links). The chains of ℙ1s linking the irreducible components of Theorem 6.2 arise in
exactly one of the following four ways.
If 𝔰′ < 𝔰 with both clusters principal and 𝔰′ is odd, we have a chain containing 1

2
𝛿𝔰′ − 1 com-

ponents, linking Γ𝔰 to Γ𝔰′ . If 𝔰′ < 𝔰 with both clusters principal and 𝔰′ even, we have two chains
containing 𝛿𝔰′ − 1 components each, one linking Γ+

𝔰
to Γ+

𝔰′
and the other Γ−

𝔰
to Γ−

𝔰′
. If 𝔱 < 𝔰 with 𝔰

principal and 𝔱 a twin, we have a chain containing 2𝛿𝔱 − 1 components, linking Γ+
𝔰
to Γ−

𝔰
.

Theorem 6.4 (Frobenius action). The Frobenius element Frob acts by permutation on the compo-
nents of min

𝑘̄
by sending Γ±

𝔰
to Γ±𝜖𝔰(Frob)

Frob(𝔰)
.
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Remark 6.5. There are also formulae describing the Frobenius action on the linking chains. See
Theorem 8.1, and for full details [9, Theorem 8.5].

Theorem 6.6 (Reduction maps). For a principal cluster 𝔰 ≠ , the reduction of a point (𝑥, 𝑦) ∈
𝐶(𝐾nr) lies on Γ𝔰 if and only if

𝑣(𝑥 − 𝑧𝔰) ⩾ 𝑑𝔰 and red𝔰(𝑥) ≠ red𝔰(𝔰
′) for every proper 𝔰′ < 𝔰. (6.7)

When these conditions are satisfied, the reduction is given by

(𝑥, 𝑦) ↦

⎛⎜⎜⎜⎜⎝
red𝔰(𝑥), 𝜋

−
𝜈𝔰
2 𝑦 ⋅
∏
𝔰′<𝔰
𝛿𝔰′>

1
2

(
red𝔰(𝑥) − red𝔰(𝔰

′)
)−⌊ |𝔰′|

2

⌋⎞⎟⎟⎟⎟⎠
. (6.8)

If 𝔰 = , then the reduction of (𝑥, 𝑦) ∈ 𝐶(𝐾nr) lies on Γ if and only if either (6.7) holds, or 𝑣(𝑥 −

𝑧) < 𝑑𝔰. In the former case, the reduction is given by (6.8), whilst in the latter case (𝑥, 𝑦) reduces to
one of the points at infinity on Γ.†

Example 6.9. Consider the genus 2 curve 𝐶∶ 𝑦2 = 𝑥((𝑥 + 1)2 − 5)(𝑥 + 4)(𝑥 − 6) over ℚ5 with
associated cluster picture

Picking 𝑧 = 0, we have red(𝑡) = 𝑡 mod𝔪 and 𝑐 = 1 ∈ 𝔽̄×5 . The special fibre of the minimal
regularmodel has a component coming from theunique principal cluster given by the equation

Γ ∶ 𝑌2 = 𝑐 ⋅ (𝑋 − red(0))(𝑋 − red(−4))
2 = 𝑋(𝑋 + 1)2,

a genus 0 curve with a single node at (𝑋, 𝑌) = (−1, 0). For the twin 𝔱1, we have 2𝛿𝔱1 − 1 = 0

so that 𝔱1 contributes no components (rather, it corresponds to the node on Γ). On the other
hand, the twin 𝔱2 gives rise to a chain of 2𝛿𝔱2 − 1 = 1 projective lines from Γ to itself, as pictured
below.

A point (𝑥, 𝑦) ∈ 𝐶(ℚnr
5 ) reduces to a point on Γ if and only if either 𝑥 ∉ ℤnr

5 , in which case it
reduces to the unique point at infinity on Γ, or 𝑥 ∈ ℤnr

5 and 𝑥 ≢ ±1 mod 5. Since 𝜈 = 0, for
points satisfying the second condition the reduction map is given by (𝑥, 𝑦) ↦ (𝑥̄, 𝑦̄(𝑥̄ − 1)−1).

†When there are two points at infinity on Γ the reduction can be pinned down precisely by [9, Proposition 5.23 (i)].
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Example 6.10. Consider 𝐶∶ 𝑦2 = (𝑥4 − 𝑝8)((𝑥 + 1)2 − 𝑝2)((𝑥 − 1)2 − 𝑝) over ℚ𝑝, with associ-
ated cluster picture

Then  and 𝔰 are the only principal clusters. Moreover,  is übereven. Taking 𝑧 = 𝑧𝔰 = 0, we
get associated components of min

𝔽̄𝑝
:

Γ+

∶ 𝑌 = 𝑋 − 1, Γ−


∶ 𝑌 = 1 − 𝑋, and Γ𝔰 ∶ 𝑌2 = 𝑋4 − 1.

The parent-child relation 𝔰 <  gives rise to two chains of length 𝛿𝔰 = 1, one linking Γ+

with

Γ𝔰, and the other linkingΓ−withΓ𝔰. The twin 𝔱1 gives rise to a chain of length 2𝛿𝔱1 − 1 = 1 linking
Γ−

to Γ+


. The twin 𝔱2 has 2𝛿𝔱2 − 1 = 0 so contributes a chain of length 0 from Γ−


to Γ+


, which

is to be interpreted as a point of intersection between these two curves. The configuration of the
components of the special fibre is shown below. Finally, since both  and 𝔰 are 𝐺𝐾-stable, and
𝜖(𝜎) = 1 for all 𝜎 ∈ 𝐺𝐾 , the Frobenius element fixes Γ+, Γ

−

, and Γ𝔰.

References. [9, Definition 8.4, Theorem 8.5].

7 MINIMAL REGULARMODEL (SEMISTABLE CASE)

Throughout this section, we assume that 𝐶 is semistable. We also assume for simplicity that all
proper clusters have integral depth, and that there is no cluster 𝔰 ≠  of size 2g + 1.

Definition 7.1. An integral disc in 𝐾̄ is a subset 𝐷 ⊆ 𝐾̄ of the form 𝐷 = 𝐷(𝑧𝐷, 𝑑𝐷) = {𝑥 ∈ 𝐾̄ ∶

𝑣(𝑥 − 𝑧𝐷) ⩾ 𝑑𝐷} with 𝑑𝐷 ∈ ℤ. The point 𝑧𝐷 is called a centre of 𝐷, and 𝑑𝐷 is called its depth. The
parent disc 𝑃(𝐷) of 𝐷 is the disc with the same centre and depth 𝑑𝐷 − 1. We also write 𝜈𝐷(𝑓) =
𝑣(𝑐) +
∑

𝑟∈min{𝑑𝐷, 𝑣(𝑟 − 𝑧𝐷)}, and 𝜔𝐷(𝑓) ∈ {0, 1} for the parity of 𝜈𝐷(𝑓).
We write 𝐷() for the smallest disc containing. An integral disc 𝐷 is called valid when 𝐷 ⊆

𝐷() and #( ∩ 𝐷) ⩾ 2.

Construction of a regular model 𝐝𝐢𝐬𝐜 over 𝑲𝐧𝐫

Firstly, for each valid disc 𝐷, we let 𝑓𝐷(𝑥𝐷) ∈ 𝐾nr[𝑥𝐷] denote the polynomial 𝑓𝐷(𝑥𝐷) =

𝜋−𝜈𝐷(𝑓)𝑓(𝜋𝑑𝐷𝑥𝐷 + 𝑧𝐷). We set 𝐷 to be the subscheme of 𝔸2
𝐾nr

cut out by 𝑦2
𝐷
= 𝜋𝜔𝐷(𝑓)𝑓𝐷(𝑥𝐷).
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We let ◦
𝐷
denote the open subscheme of𝐷 formed by removing all the points in the special fibre

corresponding to repeated roots of the reduction of 𝑓𝐷 (viewed as points on𝐷 with 𝑦𝐷 = 0).
Next, for the maximal valid disc 𝐷 = 𝐷() we let g𝐷(𝑡𝐷) ∈ 𝐾nr[𝑡𝐷] denote the polynomial

g𝐷(𝑡𝐷) = 𝑡
deg(𝑓)
𝐷

𝑓𝐷(1∕𝑡𝐷). We set𝐷 to be the subscheme of 𝔸2
𝐾nr

cut out by 𝑤2
𝐷
= 𝜋𝜔𝐷(𝑓)g𝐷(𝑡𝐷)

if deg(𝑓) is even, and 𝑤2
𝐷
= 𝜋𝜔𝐷(𝑓)𝑡𝐷g𝐷(𝑡𝐷) if deg(𝑓) is odd. Again, we let ◦

𝐷
denote the open

subscheme of𝐷 formed by removing all the points in the special fibre corresponding to repeated
roots of the reduction of g𝐷 (viewed as points on𝐷 with 𝑤𝐷 = 0).
Finally, for each valid disc 𝐷 ≠ 𝐷(), we let g𝐷(𝑠𝐷, 𝑡𝐷) ∈ 𝐾nr[𝑠𝐷, 𝑡𝐷]∕(𝑠𝐷𝑡𝐷 − 𝜋) be the poly-

nomial satisfying g𝐷(𝜋∕𝑡𝐷, 𝑡𝐷) = 𝑡
𝜈𝐷(𝑓)−𝜈𝑃(𝐷)(𝑓)

𝐷
𝑓𝐷(1∕𝑡𝐷) in 𝐾nr(𝑡𝐷). We set 𝐷 to be the sub-

scheme of 𝔸3
𝐾nr

cut out by the equations 𝑠𝐷𝑡𝐷 = 𝜋 and 𝑤2
𝐷
= 𝑠

𝜔𝐷(𝑓)

𝐷
𝑡
𝜔𝑃(𝐷)(𝑓)

𝐷
g𝐷(𝑠𝐷, 𝑡𝐷). Again, we

let◦
𝐷
denote the open subscheme of𝐷 formed by removing all the points in the special fibre

corresponding to repeated roots of the reduction of g𝐷 (viewed as points on𝐷 with 𝑤𝐷 = 0).

Remark 7.2. An explicit formula for g𝐷 is given in [9, Definition 3.15].

Theorem 7.3. A regular model disc of 𝐶 over𝐾nr is given by gluing each◦
𝐷
to ◦

𝐷
for each valid

𝐷, and to ◦
𝑃(𝐷)

for all valid 𝐷 ≠ 𝐷() via the identifications

𝑡𝐷 = 1∕𝑥𝐷 = 𝜋∕(𝑥𝑃(𝐷) − 𝜋1−𝑑𝐷 (𝑧𝐷 − 𝑧𝑃(𝐷))),

𝑠𝐷 = 𝜋𝑥𝐷 = 𝑥𝑃(𝐷) − 𝜋1−𝑑𝐷 (𝑧𝐷 − 𝑧𝑃(𝐷)),

𝑤𝐷 = 𝑡
⌊𝜈𝐷(𝑓)∕2⌋−⌊𝜈𝑃(𝐷)(𝑓)∕2⌋
𝐷

𝑦𝐷 = 𝑠
⌊𝜈𝑃(𝐷)(𝑓)∕2⌋−⌊𝜈𝐷(𝑓)∕2⌋
𝐷

𝑦𝑃(𝐷).

Remark 7.4. The regular model disc above is not minimal in general: discs with 𝜔𝐷(𝑓) = 1 pro-
duce ℙ1s in the special fibre with multiplicity 2 and self-intersection −1. Blowing down these
components yields the minimal regular model.

Remark 7.5. In the construction of disc in [9, Proposition 5.5] for general semistable𝐶, the scheme
 ◦

𝐷
is defined by removing from the special fibre of 𝐷 all points corresponding to the maximal

valid subdiscs of 𝐷. Under our extra assumptions, this is equivalent to the reduction of 𝑓𝐷 hav-
ing a repeated root at this point. This is untrue when 𝐶 has a twin of half-integral depth; see
Example 7.7.

Example 7.6. Consider 𝐶 ∶ 𝑦2 = (𝑥4 − 𝑝4)(𝑥4 − 1) over ℚ𝑝. Its cluster picture is

Here, there are two valid discs 𝐷 = 𝐷(0, 0) and 𝐷′ = 𝐷(0, 1). These correspond to the two proper
clusters in the cluster picture. Using 𝜈𝐷(𝑓) = 0 and 𝜈𝐷′(𝑓) = 4, we find

𝐷 = Spec

(
ℤnr
𝑝 [𝑥, 𝑦]

(𝑦2 − (𝑥4 − 𝑝4)(𝑥4 − 1))

)
, 𝐷 = Spec

(
ℤnr
𝑝 [𝑡, 𝑤]

(𝑤2 − (1 − 𝑝4𝑡4)(1 − 𝑡4))

)
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and

𝐷′ = Spec

(
ℤnr
𝑝 [𝑥′, 𝑦′]

(𝑦′2 − (𝑥′4 − 1)(𝑝4𝑥′4 − 1))

)
, 𝐷′ = Spec

(
ℤnr
𝑝 [𝑠′, 𝑡′, 𝑤′]

(𝑠′𝑡′ − 𝑝,𝑤′2 − (1 − 𝑡′4)(𝑠′4 − 1))

)
.

We have  ◦
𝐷

= 𝐷 ⧵ {(𝑥, 𝑦, 𝑝)}, whereas  ◦
𝐷′ = 𝐷′ ,  ◦

𝐷
= 𝐷 and  ◦

𝐷′ = 𝐷′ . Using the
identifications 𝑡′ = 1∕𝑥′ = 𝑝∕𝑥, 𝑠′ = 𝑝𝑥′ = 𝑥, 𝑦′ = 𝑦∕𝑝2 and 𝑤′ = 𝑡′2𝑦′, we see that the special
fibre of disc consists of two genus 1 curves which intersect in two points.

Example 7.7. Consider 𝐶 ∶ 𝑦2 = 𝑝(𝑥2 − 𝑝5)(𝑥3 − 𝑝3)((𝑥 − 1)3 − 𝑝9) over ℚ𝑝 for 𝑝 ⩾ 5. Its clus-
ter picture is

There are six valid discs: 𝐷(0, 0), 𝐷(0, 1), 𝐷(0, 2), 𝐷(1, 1), 𝐷(1, 2), 𝐷(1, 3). Not all of these discs
are minimal defining discs for clusters. For example, the cluster of relative depth 3 is cut out by
three different valid discs.
Note that 𝐶 has a proper cluster of non-integral depth, so Theorem 7.3 does not apply verbatim;

we need the more general version from Remark 7.5. We give a few illustrative charts of the model
disc.
For 𝐷 = 𝐷(0, 0), we find

𝐷 = Spec

(
ℤnr
𝑝 [𝑥, 𝑦]

(𝑦2 − 𝑝(𝑥2 − 𝑝5)(𝑥3 − 𝑝3)((𝑥 − 1)3 − 𝑝9))

)

and  ◦
𝐷

= 𝐷 ⧵ {(𝑥, 𝑦, 𝑝), (𝑥 − 1, 𝑦, 𝑝)}. Note that the special fibre of 𝐷 is non-reduced. More
precisely its closure is a projective line of multiplicity 2 with self-intersection −1 and is blown
down when constructing the minimal regular model (see Remark 7.4). The same applies to the
component corresponding to 𝐷(1, 2).
For the disc 𝐷1 = 𝐷(1, 1), we get

𝐷1
= Spec

(
ℤnr
𝑝 [𝑠1, 𝑡1, 𝑤1]

(𝑠1𝑡1 − 𝑝,𝑤2
1
− 𝑡1(1 − 𝑝6𝑡3

1
)((𝑠1 + 1)2 − 𝑝5)((𝑠1 + 1)3 − 𝑝3))

)

and  ◦
𝐷1

= 𝐷1
⧵ {(𝑠1 + 1,𝑤1, 𝑝)}. Similarly, for 𝐷′

1
= 𝐷(0, 1), we have  ◦

𝐷′
1

= 𝐷′
1
⧵ {(𝑠′

1
−

1, 𝑤′
1
, 𝑝)}.

Let 𝐷2 = 𝐷(0, 2), then

𝐷2
= Spec

(
ℤnr
𝑝 [𝑥2, 𝑦2]

(𝑦2
2
− (𝑥2

2
− 𝑝)(𝑝3𝑥3

2
− 1)((𝑝2𝑥2 − 1)3 − 𝑝9))

)
.

Note that although the reduction of 𝑓𝐷2
has a double root at 𝑥2 = 0, this double root does not

correspond to a valid subdisc of 𝐷2. Hence we do not remove this point in forming ◦
𝐷2
, so ◦

𝐷2
=

𝐷2
in this case.
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References. 7.1: [9, Definition 4.4]. 7.3, 7.5: [9, Proposition 5.5]. 7.4: [9, Theorem 5.16].

8 DUAL GRAPH OF SPECIAL FIBRE AND ITS HOMOLOGY
(SEMISTABLE CASE)

In this section, 𝐶 is semistable. Let min be its minimal regular model over 𝐾nr . The dual graph
Υ𝐶 consists of a vertex 𝑣Γ for every irreducible component Γ of the geometric special fibre min

𝑘̄
,

with an edge connecting 𝑣Γ and 𝑣Γ′ for each intersection point of Γ and Γ′ (self-intersections of
Γ correspond to loops based at 𝑣Γ). The action of Frob on min

𝑘̄
induces a corresponding action

on Υ𝐶 .

Theorem8.1. Υ𝐶 consists of one vertex 𝑣𝔰 for every non-übereven principal cluster 𝔰 and two vertices
𝑣+
𝔰
, 𝑣−

𝔰
for each übereven principal cluster 𝔰, connected by chains of edges as follows:

Name Endpoints Length Conditions
𝐿𝔰′ 𝑣𝔰′ 𝑣𝔰

1

2
𝛿𝔰′ 𝔰′ < 𝔰 both principal, 𝔰′ odd

𝐿±
𝔰′

𝑣±
𝔰′

𝑣±
𝔰

𝛿𝔰′ 𝔰′ < 𝔰 both principal, 𝔰′ even
𝐿𝔱 𝑣−

𝔰
𝑣+
𝔰

2𝛿𝔱 𝔰 principal, 𝔱 < 𝔰 twin
𝐿𝔱 𝑣−

𝔰
𝑣+
𝔰

2𝛿𝔱 𝔰 principal, 𝔰 < 𝔱 cotwin
and, if is non-principal
𝐿𝔰1,𝔰2 𝑣𝔰1 𝑣𝔰2

1

2
(𝛿𝔰1 + 𝛿𝔰2 )  = 𝔰1 ⊔ 𝔰2 with 𝔰1, 𝔰2 principal odd

𝐿±
𝔰1,𝔰2

𝑣±
𝔰1

𝑣±
𝔰2

𝛿𝔰1 + 𝛿𝔰2  = 𝔰1 ⊔ 𝔰2 with 𝔰1, 𝔰2 principal even

𝐿𝔱 𝑣−
𝔰

𝑣+
𝔰

2(𝛿𝔰 + 𝛿𝔱)  = 𝔰 ⊔ 𝔱 with 𝔰 principal even, 𝔱 twin

Here, we adopt the convention that 𝑣+
𝔰
= 𝑣−

𝔰
= 𝑣𝔰 if 𝔰 is not übereven, so, for example, if 𝔰′ < 𝔰 are

even non-übereven principal clusters, then there are two chains of edges 𝐿+
𝔰′
, 𝐿−

𝔰′
connecting 𝑣𝔰′ and

𝑣𝔰.
Frobenius acts on Υ𝐶 by Frob(𝑣±

𝔰
) = 𝑣

±𝜖𝔰(Frob)

Frob(𝔰)
, Frob(𝐿±

𝔰′
) = 𝐿

±𝜖𝔰(Frob)

Frob(𝔰′)
and Frob(𝐿𝔱) =

𝜖𝔱(Frob)𝐿Frob(𝔱), where −𝐿 denotes 𝐿 with the opposite orientation.

The homology𝐻1(Υ𝐶, ℤ) is a finite-rank free ℤ-module, carrying an induced Frobenius action
and a length pairing ⟨⋅, ⋅⟩∶ 𝐻1(Υ𝐶, ℤ) ⊗ 𝐻1(Υ𝐶, ℤ) → ℤ where ⟨𝛾1, 𝛾2⟩ is the length of the inter-
section of cycles 𝛾1 and 𝛾2, interpreted in a suitably signed manner. The rank of 𝐻1(Υ𝐶, ℤ) is the
potential toric rank of Jac 𝐶, and the cokernel of the map𝐻1(Υ𝐶, ℤ) → 𝐻1(Υ𝐶, ℤ) induced by the
length pairing is Frobenius-equivariantly isomorphic to the group of geometric components of
the special fibre of the Néron model of Jac 𝐶.

Theorem 8.2. Let 𝐴 be the set of even non-übereven clusters except for.

(1) If  is not übereven, then 𝐻1(Υ𝐶, ℤ) = ℤ[𝐴] is the free ℤ-module generated by symbols 𝓁𝔰 for
𝔰 ∈ 𝐴.

(2) If is übereven, let𝐵 be the set of those clusters 𝔰 ∈ 𝐴 such that 𝔰∗ = . Then𝐻1(Υ𝐶, ℤ) ⩽ ℤ[𝐴]

is the corank 1 submodule of ℤ[𝐴] consisting of those elements
∑

𝔰∈𝐴 𝑎𝔰𝓁𝔰 such that
∑

𝔰∈𝐵 𝑎𝔰 =

0.
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In both cases, Frobenius acts on𝐻1(Υ𝐶, ℤ) is by Frob(𝓁𝔰) = 𝜖𝔰(Frob)𝓁Frob(𝔰), and the length pairing
by

⟨𝓁𝔰1 ,𝓁𝔰2⟩ =
⎧⎪⎨⎪⎩
0 if 𝔰∗

1
≠ 𝔰∗

2
,

2(𝑑𝔰1∧𝔰2 − 𝑑𝑃(𝔰∗
1
)) if 𝔰∗

1
= 𝔰∗

2
≠ ,

2(𝑑𝔰1∧𝔰2 − 𝑑) if 𝔰∗
1
= 𝔰∗

2
= .

Theorem8.3. Υ𝐶 is a double cover of𝑇𝐶 ramified over the blue part, the quotientmap being induced
by the hyperelliptic involution 𝜄. Giving edges on Υ𝐶 length 2 makes the identification Υ𝐶∕⟨𝜄⟩ = 𝑇𝐶
distance preserving. The pre-image of a vertex 𝑣 in 𝑇𝐶 of genus g(𝑣) > 0 is a vertex in Υ𝐶 correspond-
ing to a component of genus g(𝑣) in the special fibre.

Example 8.4. Consider 𝐶 over ℚ𝑝 given by the equation

𝑦2 = 𝑥(𝑥 − 𝑝)(𝑥 − 2𝑝)(𝑥 − 3𝑝)(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 4)

for 𝑝 ⩾ 5. Its cluster picture is . Write 𝔰 for the cluster of size 4. According to The-
orem 8.1, the dual graph Υ𝐶 consists of two vertices 𝑣𝔰 and 𝑣, connected by two edges 𝐿

±
𝔰
. The

action of Frobenius on Υ𝐶 fixes the two vertices, and acts on edges via Frob(𝐿
±
𝔰
) = 𝐿

±( 6
𝑝
)

𝔰
where

( 6
𝑝
) is the Legendre symbol. In other words, the action on Υ𝐶 is trivial if 𝑝 ≡ ±1 or ±5 mod 24,

and interchanges the two edges 𝐿+
𝔰
and 𝐿−

𝔰
if 𝑝 ≡ ±7 or ±11mod 24. In particular, the Frobenius

action on Υ𝐶 can be non-trivial even when the action on is trivial. Pictorially, Υ𝐶 is

From this, we see that𝐻1(Υ𝐶, ℤ) = ℤ, the induced action of Frobenius is multiplication by ( 6
𝑝
),

and the length pairing is ⟨𝑚, 𝑛⟩ = 2𝑚𝑛. This agrees with Theorem 8.2.

Example 8.5. Consider 𝐶∶ 𝑦2 = (𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 𝑝2)(𝑥 − 𝑝𝑛+2)(𝑥 + 𝑝𝑛+2) overℚ𝑝 for
𝑝 ⩾ 5 (cf. Example 4.12). Its cluster picture is

According to Theorem 8.1, the dual graph Υ𝐶 consists of two vertices 𝑣 and 𝑣𝔰, connected by a
single edge 𝐿𝔰 and with a loop 𝐿𝔱 of 2𝑛 edges connecting 𝑣𝔰 to itself. Pictorially, Υ𝐶 is

Example 8.6. Consider 𝐶∶ 𝑦2 = (𝑥2 − 𝑝𝑎)((𝑥 − 1)2 − 𝑝𝑏)(𝑝𝑐𝑥2 − 1) over ℚ𝑝, for some positive
integers 𝑎, 𝑏, 𝑐. Its cluster picture is
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We compute the homology𝐻1(Υ𝐶, ℤ) using Theorem 8.2, without first computing Υ𝐶 . Except for
 the even non-übereven clusters are the two twins 𝔱1 and 𝔱2, so 𝐻1(Υ𝐶, ℤ) is free of rank 2,
generated by 𝓁𝔱1 and 𝓁𝔱2 . Frobenius acts on 𝐻1(Υ𝐶, ℤ) by multiplication by (

−1

𝑝
), and the length

pairing has matrix𝑀 =
( 𝑎 + 𝑐 𝑐

𝑐 𝑏 + 𝑐

)
.

From this, we see that the potential toric rank of Jac 𝐶 is 2 (potentially totally toric reduction),
and that the group of geometric components of the special fibre of the Néron model of Jac 𝐶 has
size det(𝑀) = 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎. By computing the Smith normal form of𝑀, we find that the group
structure is ℤ∕𝐴ℤ⊕ ℤ∕𝐵ℤ, with 𝐴 = gcd(𝑎, 𝑏, 𝑐) and 𝐵 = (𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎)∕ gcd(𝑎, 𝑏, 𝑐).

References. 8.1: [9, Theorem 8.5]. 8.2: [9, Theorem 1.14]. 8.3: [9, Theorem 5.18, Defini-
tions D.6, D.9]. 8.6: Theorem 5.6, [9, Lemma 2.22].

9 SPECIAL FIBRE OF THEMINIMAL REGULAR SNCMODEL
(TAME CASE)

Assume 𝐶 has tame reduction. We give a qualitative description of the special fibre of the minimal
regular model of 𝐶 with strict normal crossings (SNC), over𝐾nr . Denote this model 𝑠𝑛𝑐, special
fibre 𝑠𝑛𝑐

𝑘̄
. We assume is principal.†

Notation 9.1. Let 𝑋 be an 𝐼𝐾-orbit of clusters with 𝔰 ∈ 𝑋. We say that 𝑋 is
proper/principal/odd/even/übereven/twin/singleton if 𝔰 is. If 𝑋′ is another orbit, write
𝑋′ < 𝑋 if 𝔰′ < 𝔰 for some 𝔰′ ∈ 𝑋′, and call 𝑋′ stable if |𝑋′| = |𝑋|. Write 𝔰sing for the set of size
1 children of 𝔰. Define gss(𝑋) = 0 if 𝑋 is übereven, and so that |𝔰̃| ∈ {2gss(𝑋) + 2, 2gss(𝑋) + 1}

otherwise. For𝑋 (henceforth) proper, write 𝑑𝑋 = 𝑑𝔰, 𝛿𝑋 = 𝛿𝔰 (for 𝔰 ≠ ), 𝜆𝑋 = 𝜆̃𝔰, and for𝑋 even
𝜖𝑋 = (−1)|𝑋|(𝜈𝔰∗−|𝔰∗|𝑑𝔰∗ ) ∈ {±1}.‡ Let 𝑒𝑋 ∈ ℤ⩾1 be minimal with 𝑒𝑋|𝑋|𝑑𝔰 ∈ ℤ and 𝑒𝑋|𝑋|𝜈𝔰 ∈ 2ℤ.
Write 𝑑𝑋 =

𝑎𝑋
𝑏𝑋

in lowest terms, and set 𝑏′
𝑋
= 𝑏𝑋∕gcd(|𝑋|, 𝑏𝑋). Finally, define g(𝑋) as ⌊gss(𝑋)∕𝑏′𝑋⌋

if |𝑋|𝜆𝑋 ∈ ℤ, ⌊gss(𝑋)∕𝑏′𝑋 + 1∕2⌋ if |𝑋|𝜆𝑋 ∉ ℤ and 𝑏′
𝑋
is even, and 0 otherwise.

Definition 9.2. Let 𝑡1, 𝑡2 ∈ ℚ and 𝜇 ∈ ℕ. Let 𝑛 be minimal such that there exist coprime pairs
𝑚𝑖, 𝑑𝑖 ∈ ℤ with 𝜇𝑡1 =

𝑚0

𝑑0
>

𝑚1

𝑑1
> … >

𝑚𝑛+1

𝑑𝑛+1
= 𝜇𝑡2 and with𝑚𝑖𝑑𝑖+1 − 𝑚𝑖+1𝑑𝑖 = 1 for each 0 ⩽ 𝑖 ⩽

𝑛. A sloped chain of rational curves with parameters (𝑡2, 𝑡1, 𝜇) is a chain of ℙ1s 𝐸1, … , 𝐸𝑛 with mul-
tiplicities 𝜇𝑑𝑖 , intersecting transversally. A crossed tail is a sloped chain with 𝜇 ∈ 2ℕ and two addi-
tional (disjoint) ℙ1s of multiplicity 𝜇∕2 intersecting 𝐸𝑛 transversally.

Theorem 9.3. Each principal 𝐼𝐾-orbit 𝑋 of clusters gives rise to two ‘central’ components Γ±
𝑋
of

𝑠𝑛𝑐
𝑘̄

if𝑋 is übereven and 𝜖𝑋 = 1, and one central component Γ𝑋 (= Γ+
𝑋
= Γ−

𝑋
) otherwise. These have

genus g(𝑋), and multiplicity |𝑋|𝑒𝑋 unless 𝑋 is übereven with 𝜖𝑋 = −1 when they have multiplicity
2|𝑋|𝑒𝑋 . These components are linked by (one or two) sloped chains of rational curveswith parameters
(𝑡2, 𝑡1, 𝜇) indexed by pairs 𝑋′ < 𝑋 with 𝑋 principal as follows:

† This only serves to simplify the statements, see the references given for the general case.
‡ Let 𝐼𝔰 be the stabiliser of 𝔰 inside the inertia group 𝐼𝐾 . Then the restriction of 𝜖𝔰 to 𝐼𝔰 is a character 𝐼𝔰 → {±1}, and
𝜖𝑋 = −1 if and only if this character is non-trivial.
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Name From To 𝑡1 𝑡2 𝜇 Condition
𝐿𝑋,𝑋′ Γ𝑋 Γ𝑋′ −𝜆𝑋 −𝜆𝑋 − 1

2
𝛿𝑋′ |𝑋′| 𝑋′ odd principal

𝐿+
𝑋,𝑋′ Γ+

𝑋
Γ+
𝑋′ −𝑑𝑋 −𝑑𝑋′ |𝑋′| 𝑋′ even principal, 𝜖𝑋′ = 1

𝐿−
𝑋,𝑋′ Γ−

𝑋
Γ−
𝑋′ −𝑑𝑋 −𝑑𝑋′ |𝑋′| 𝑋′ even principal, 𝜖𝑋′ = 1

𝐿𝑋,𝑋′ Γ𝑋 Γ𝑋′ −𝑑𝑋 −𝑑𝑋′ 2|𝑋′| 𝑋′ even principal, 𝜖𝑋′ = −1

𝐿𝑋′ Γ−
𝑋

Γ+
𝑋

−𝑑𝑋 −𝑑𝑋 − 2𝛿𝑋′ |𝑋′| 𝑋′ twin, 𝜖𝑋′ = 1

The central components Γ𝑋 with 𝑒𝑋 > 1 are intersected by (the first curve of one or more) sloped
chains with parameters ( 1

𝜇
⌊𝜇𝑡1 − 1⌋, 𝑡1, 𝜇) as follows:

From No. 𝑡1 𝜇 Condition
Γ 1 (g + 1)𝑑 − 𝜆 1 || = 2g + 1

Γ±


2 −𝑑 1 || = 2g + 2, 𝜖 = 1

Γ 1 −𝑑 2 || = 2g + 2, 𝑒 > 2, 𝜖 = −1

Γ𝑋
|𝑋||𝔰sing|

𝑏𝑋
−𝜆𝑋 𝑏𝑋 𝑒𝑋 > 𝑏𝑋∕|𝑋|, |𝔰sing| ⩾ 2 ∀ 𝔰 ∈ 𝑋

Γ𝑋 1 −𝑑𝑋 2|𝑋| No 𝑋′ < 𝑋 is stable, and either 𝜆𝑋 ∉ ℤ, 𝑒𝑋 > 2

Γ±
𝑋

2 −𝑑𝑋 |𝑋| 𝑋 übereven or gss(𝑋) > 0 𝜆𝑋 ∈ ℤ

Γ𝑋 1 −𝜆𝑋 |𝑋| 𝑋 is not übereven, no odd proper 𝑋′ < 𝑋 is stable,
and gss(𝑋) = 0 or some singleton 𝑋′ < 𝑋 is stable

Finally (regardless of whether 𝑒𝑋 > 1 or not), each Γ𝑋 is intersected by the (first curve of) a crossed
tail 𝑇𝑋′ with parameters (−𝑑𝑋′ , −𝑑𝑋 + 1

2|𝑋| , 2|𝑋|) for each 𝐼𝐾-orbit of twins 𝑋′ < 𝑋 with 𝜖𝑋′ = −1.

Remark 9.4. There is also a description of the action of Gal(𝑘̄∕𝑘) on the special fibre in terms of
clusters. Moreover, one can in principle find equations for the components of the special fibre.
We refer to the references below.

Example 9.5 (A type II∗ elliptic curve). Take 𝐸 ∶ 𝑦2 = 𝑥3 − 𝑝5 over ℚ𝑝 for 𝑝 ⩾ 5, and 𝜁3 a primi-
tive third root of unity.† The cluster picture is

𝑑 = 5∕3, 𝜈 = 5, 𝑒 = 6 and 𝜆 = 5∕2. Asℚ𝑝()∕ℚ𝑝 is tamely ramified, 𝐸 has tame reduction.
The cluster is principal and fixed by 𝐼𝐾 , but the roots lie in a single 𝐼𝐾-orbit. The special fibre of
the minimal regular SNCmodel (displayed right) has a single central component Γ of multiplic-
ity 6 and genus 0, intersected by sloped chains with parameters (−1, 5∕6, 1), (−3, −5∕2, 3), and
(−5∕2, −5∕3, 2) coming from the first, fourth, and fifth rows of the (second) table in Theorem 9.3

† The material in this section applies verbatim to elliptic curves of the form 𝑦2 = cubic.
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respectively. By considering the sequences

5

6
>

4

5
>

3

4
>

2

3
>

1

2
> 0 > −1, −

15

2
> −8 > −9, and −

10

3
> −

7

2
> −4 > −5,

which are each minimal† satisfying the determinant condition of Definition 9.2. We find that the
special fibre has the pictured form, so the Kodaira type of 𝐸 is II∗.

Remark 9.6. The other Kodaira types arise similarly to the above example, with one central com-
ponent met by several sloped chains.

Example 9.7. Take 𝐶∕ℚ𝑝 ∶ 𝑦2 = ((𝑥2 − 𝑝)2 − 𝑝4)(𝑥2 + 1)(𝑥 − 1), cluster picture

The special fibre of the minimal regular SNC model (displayed below") has three central com-
ponents Γ and Γ±

𝔰
(𝔰 is übereven and 𝜖{𝔰} = 1). The component Γ+

𝔰
(respectively, Γ−

𝔰
) intersects

Γ as they are linked by a chain with parameters (0, 1
2
, 1) which is empty. The Γ±

𝔰
are linked by

a chain with parameters (−1∕2, 3∕2, 2), consisting of three curves of multiplicity 2, coming from
the inertia orbit 𝑋 = {𝔱1, 𝔱2} with 𝜖𝑋 = 1.

The Γ±
𝔰
are each intersected by one further chain with parameters (−2, −1∕2, 1) arising from

the sixth row of the second table in Theorem 9.3.

References. 9.1: [14, Table 3]. 9.2: [14, Section 4.3]. 9.3: [14, Theorems 7.12 and 7.18]. 9.4: [14,
Theorem 1.17, Remark 7.13]. 9.5, 9.6: [14, Example 1.13].

Erratum. In [14] Theorems 1.12 and 7.18, there is a typo : the column ‘𝑡2’ in the second table
of each should be ‘𝑡2 + 𝛿’. Similarly in Theorem 6.3 in the first table. For example, the curve

† See [8, Remark 3.15] for criteria guaranteeing minimality.
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𝐶 ∶ 𝑦2 = (𝑥3 − 𝑝2)(𝑥4 − 𝑝11) has cluster picture and special fibre shown below.

10 TAMAGAWANUMBER (SEMISTABLE CASE)

Let𝐶∕𝐾 ∶ 𝑦2 = 𝑓(𝑥) be a semistable hyperelliptic curve. TheTamagawanumber 𝑐Jac 𝐶 of the Jaco-
bian of 𝐶 is the number of 𝑘-points of the component group-scheme of the special fibre of the
Néron model of Jac 𝐶. We explain how to read off 𝑐Jac 𝐶 from the cluster picture of 𝐶.

Theorem 10.1. Suppose that 𝐶 has no übereven clusters. For even clusters 𝔰 ≠ , write 𝑐𝔰 ={
2𝛿𝔰 if 𝜖𝔰(Frob𝑞𝔰 )=+1

gcd(2𝛿𝔰,2) if 𝜖𝔰(Frob𝑞𝔰 )=−1
, where 𝑞𝔰 is the size of the Frob-orbit of 𝔰. The Tamagawa number of Jac 𝐶

is given by

𝑐Jac 𝐶 =
∏

𝔰
𝑐𝔰,

the product taken over representatives of Frob-orbits of even clusters 𝔰 ≠ .

In general, when𝐶 has übereven clusters, the formula becomes significantlymore complicated,
and is best phrased in the language of BY trees.

Notation 10.2. Let 𝑇 = 𝑇𝐶 be the BY tree associated to 𝐶 (Definition 4.3), with edge-length func-
tion 𝛿. Let 𝐵 be the subgraph of 𝑇 consisting of blue vertices and blue edges, and (𝐹, 𝜖) ∈ Aut 𝑇

(see Definition 4.5) the induced action of Frob on 𝑇.
For a vertex 𝑣 ∈ 𝑇 ⧵ 𝐵, we write 𝑞𝑣 for the size of the 𝐹-orbit containing 𝑣. We write 𝜖𝑣 =∏𝑞𝑣−1

𝑗=0
𝜖(𝐹𝑗𝑋), where𝑋 is the connected component of 𝑇 ⧵ 𝐵 containing 𝑣. If 𝑒 ∈ 𝑇 ⧵ 𝐵 is an edge,

then we define 𝑞𝑒 and 𝜖𝑒 similarly. We write 𝐵̂ ⊆ 𝑇 for the subgraph consisting of 𝐵 together with
all vertices 𝑣with 𝜖𝑣 = −1 and edges 𝑒with 𝜖𝑒 = −1. Finally, we write 𝐵′ ⊆ 𝐵̂′ ⊆ 𝑇′ for the respec-
tive quotients of𝐵 ⊆ 𝐵̂ ⊆ 𝑇 by the action of𝐹, with length function 𝛿′(𝑒′) = 𝛿(𝑒) andwith 𝑞𝑒′ = 𝑞𝑒
for any edge 𝑒 ∈ 𝑇 mapping to 𝑒′.

Theorem 10.3. The Tamagawa number of Jac 𝐶 is given by

𝑐Jac 𝐶 = 𝑄 ⋅ 𝑐 ⋅
∑

{𝑒′
1
,…,𝑒′𝑟}∈𝑅

𝑟∏
𝑗=1

𝛿′(𝑒′
𝑗
)

𝑞𝑒′
𝑗

, where:

(1) 𝑄 is the product of the sizes of all 𝐹-orbits of connected components of 𝐵̂;
(2) 𝑐 =

∏
𝑋 𝑐(𝑋) is a product over the connected components 𝑋 of 𝐵̂′ ⧵ 𝐵′ with

(𝑎) 𝑐(𝑋) = 2𝛼−1 if the closure of 𝑋 contains 𝛼 > 0 points of 𝐵′ lying an even distance from a
vertex of 𝐵̂′ of degree ⩾ 3;



A USER’S GUIDE TO THE LOCAL ARITHMETIC OF HYPERELLIPTIC CURVES 23

(𝑏) 𝑐(𝑋) = gcd(𝑙, 2) if the closure of 𝑋 consists of 2 points of 𝐵′ distance 𝑙 apart;
(𝑐) 𝑐(𝑋) = gcd(𝑏, 2) otherwise, where 𝑏 is the number of points of 𝐵′ in the closure of 𝑋;

(3) 𝑟 = #𝜋0(𝐵̂
′) − 1 is the number of connected components of 𝐵̂′, minus 1;

(4) 𝑅 is the set of unordered 𝑟-tuples of edges of 𝑇′ ⧵ 𝐵̂′ whose removal disconnects the 𝑟 + 1 compo-
nents of 𝐵̂′ from one another.

Remark 10.4. Theorem 10.1 follows from Theorem 10.3. Since there are no übereven clusters there
are no yellow vertices, and hence all yellow edges are disjoint and in bijection with even clus-
ters. This implies that the closures of connected components of 𝐵̂′ ⧵ 𝐵′ will always consist of two
vertices, distance 2𝛿𝔰 apart, and the 𝑐(𝑋) all fall in situation (2)(b). This is the contribution of
orbits of even clusters with 𝜖𝔰(Frob

𝑞𝔰) = −1 in the formula of 10.3. Furthermore, 𝑅 has size 1, the
𝑟-tuple of edges of 𝑇′ ⧵ 𝐵̂′ which correspond to orbits of even clusters with 𝜖𝔰(Frob𝑞𝔰) = 1, and so
𝑄
∏

𝛿′(𝑒′
𝑗
)∕𝑞𝑒′

𝑗
is the contribution from clusters with 𝜖𝔰(Frob

𝑞𝔰) = 1.

Example 10.5. Consider

𝐶 ∶ 𝑦2 = (𝑥2 − 5)(𝑥 − 1)(𝑥 − 2)(𝑥 + 1),

over ℚ5. Its cluster picture is with = {
√
5, −
√
5, 1, 2, −1} and 𝔰 = {

√
5, −
√
5}. Then

𝜃𝔰 =
√
2, and 𝜖𝔰(Frob) = −1, as

√
2 ∉ ℚ5. According to Theorem 10.1, the Tamagawa number of

Jac 𝐶 is gcd(1, 2) = 1. The same value can be read off from the more general Theorem 10.3, using
that the BY tree of 𝐶 is with trivial 𝐹-action.

Example 10.6. Suppose that the cluster picture of𝐶 is , withFrob acting trivially
on clusters and 𝜖𝔰(Frob) = +1 for all clusters. In particular, 𝐵̂ = 𝐵 and the quotients 𝐵′, 𝑇′ can be
identified respectively with𝐵, 𝑇. Using Theorem 10.3, we find that the Tamagawa number of Jac 𝐶
is 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 (we leave details to the reader).

Example 10.7. Let 𝐶∕ℚ𝑝 be a curve with BY tree as below. A concrete example would be 𝐶∕ℚ𝑝

with 𝑝 ≡ 3mod 4 and

𝐶 ∶ 𝑦2 = ((𝑥2 + 1)2 − 𝑝𝑢)((𝑥 − 1)2 − 𝑝𝑧)(𝑥 − 𝑝𝑤∕2)(𝑥 − 𝑝𝑤∕2+2)((𝑥2 + 𝑝𝑤+4)2 − 𝑝2(𝑤+4)+𝑎),

with 𝑤 ≡ 2mod 4 and 𝑎 > 𝑤 + 4.

Label the edges 𝑒±𝑢 , 𝑒𝑤, 𝑒𝑧, 𝑒
±
𝑎 where 𝑒𝑤 has length𝑤 and so on. Since 𝜖𝑣 = 𝜖𝑒 = 1 for all vertices

𝑣 and edges 𝑒, 𝐵̂ = 𝐵, and 𝑇′ and 𝐵′ are given by the following picture, with 𝐵̂′ = 𝐵′:

There are four 𝐹-orbits in 𝐵̂, two of size 1 and two of size 2. Therefore, 𝑄 = 4. The set 𝐵̂′ ⧵ 𝐵′ is
empty and so 𝑐 = 1. Finally, 𝑟 = 3, and the set 𝑅 = {{𝑒′𝑎, 𝑒

′
𝑢, 𝑒

′
𝑧}, {𝑒

′
𝑎, 𝑒

′
𝑧, 𝑒

′
𝑤}, {𝑒

′
𝑎, 𝑒

′
𝑤, 𝑒

′
𝑢}} where 𝑒

′
𝑎 is
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the image of 𝑒±𝑎 and so on. Putting this together, we see

𝑐Jac 𝐶 = 2 ⋅ 1 ⋅
(
𝑎

2
⋅
𝑢

2
⋅ 𝑧 +

𝑎

2
⋅ 𝑧 ⋅ 𝑤 +

𝑎

2
⋅
𝑢

2
⋅ 𝑤
)
= 𝑎(uz + 2zw + uw).

Example 10.8. Consider the BY tree as in Example 10.7, but where 𝜖 = −1 for each component
instead of 1. The edges 𝑒±𝑎 and 𝑒

±
𝑢 lie in 𝐹-orbits of size 2 so 𝜖𝑒±𝑎 = 𝜖𝑒±

𝑏
= 1, and 𝑒𝑧 and 𝑒𝑤 lie in an

orbit of size 1 so 𝜖𝑒𝑤 = 𝜖𝑒𝑧 = −1. The graphs 𝐵′ and 𝑇′ are as above, and 𝐵̂′ is given by

There are three 𝐹-orbits of components in 𝐵̂, one of size 1 and two of size 2, and hence 𝑄 = 4.
There is one connected component𝑋′ ∈ 𝐵̂′ ⧵ 𝐵′ and so 𝑐 = 𝑐(𝑋′) is non-trivial. We have assumed
that 𝑤 is even, and so 𝑐 = gcd(𝑧 + 𝑤, 2) = gcd(𝑧, 2) as 𝑋′ consists of two points of 𝐵′ a distance
𝑧 + 𝑤 apart. Finally, 𝑟 = 2 and 𝑅 = {{𝑒𝑎, 𝑒𝑢}}. Putting this all together

𝑐Jac 𝐶 = 4 ⋅
𝑎

2
⋅
𝑢

2
⋅ gcd(𝑧, 2) = 𝑎𝑢 gcd(𝑧, 2).

References. 10.3:[3, Theorem 3.0.2, Section 2.3.13].

11 GALOIS REPRESENTATION

In this section, we will describe the Galois action on the 𝓁-adic étale cohomology of the curve
(equivalently its Jacobian) when 𝓁 ≠ 𝑝. For an arbitrary curve (or abelian variety), there always
exists a decomposition of 𝓁-adic Galois representations

𝐻1
ét(𝐶∕𝐾̄, ℚ𝓁) = 𝐻1

ét(Jac 𝐶∕𝐾̄, ℚ𝓁) = 𝐻1
ab ⊕
(
𝐻1

𝑡 ⊗ sp(2)
)

into ‘abelian’ and ‘toric’ parts, where for 𝜎 ∈ 𝐼𝐾 , sp(2)(Frob𝑛𝜎) =
(
1 𝑡𝓁(𝜎)
0 𝑞−𝑛

)
for a choice of tame

𝓁-adic character 𝑡𝓁 , and with 𝑞 = |𝑘|. We will describe the abelian and toric parts in terms of the
cluster picture.

Theorem 11.1. Let 𝐶∕𝐾 be a hyperelliptic curve and let 𝓁 ≠ 𝑝 be prime. Let

𝑋 = {proper, non-übereven clusters 𝔰},

𝑌 = {principal, non-übereven clusters 𝔰} ⊆ 𝑋.

Write 𝜖̄𝔰 for the restriction of 𝜖𝔰 to 𝐺𝔰.

(1) For all 𝔰 ∈ 𝑌, there exists a continuous 𝓁-adic representation, 𝑉𝔰, with finite image of inertia
such that:

𝐻1
𝑎𝑏

=
⨁

𝔰∈𝑌∕𝐺𝐾

Ind
𝐺𝐾

𝐺𝔰
𝑉𝔰,
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𝐻1
𝑡 =
⨁

𝔰∈𝑋∕𝐺𝐾

Ind
𝐺𝐾

𝐺𝔰
𝜖̄𝔰 ⊖ 𝜖̄,

where 𝐺𝔰 = Stab𝐺𝐾
(𝔰) is the Galois stabiliser of 𝔰, and⊖ is the inverse of the direct sum⊕.

(2) Let 𝐼𝔰 = Stab𝐼𝐾 (𝔰) be the inertia stabiliser of 𝔰 and let 𝛾𝔰 ∶ 𝐼𝔰 → ℚ̄×
𝓁 be any character whose

order is the prime-to-𝑝 part of the denominator of [𝐼𝐾 ∶ 𝐼𝔰]𝜆̃𝔰. Then for all 𝔰 ∈ 𝑌, there is an
isomorphism

𝑉𝔰 ≅ 𝛾𝔰 ⊗ (ℚ𝓁[𝔰̃] ⊖ 𝟏) ⊖ 𝜖̄𝔰 as 𝐼𝔰-representations,

where 𝔰̃ is the set of odd children of 𝔰 with 𝐼𝔰-action.

Remark 11.2. The full Galois module structure of 𝑉𝔰 cannot be determined by the cluster picture
alone; indeed two curves with good reduction can have the same cluster picture but different
Galois representations. It is, however, computable via a form of point-counting over finite fields;
see [11, Theorem 1.5 and Example 1.9] for the statement and a worked example.
On the other hand, Theorem 11.1(2) gives an explicit description of the inertia representation.

For tame curves, it is completely determined by the underlying abstract cluster picture (in the
sense of Section 17) without needing to know the inertia action on the roots a priori.

Remark 11.3. The Jacobian Jac 𝐶 (equivalently 𝐶) is semistable if and only if both 𝐻1
𝑎𝑏
and 𝐻1

𝑡

are unramified. If moreover𝐻1
𝑡 is the zero representation, then this is equivalent to Jac 𝐶 having

good reduction. Recall from Section 5 that these conditions are easy to read off from the cluster
picture of 𝐶.

Notation 11.4. For a cluster 𝔰, we let 𝐼𝔰 denote the inertia stabiliser. If 𝑛 is coprime to 𝑝, we
further write ℚ̄𝓁[𝐶𝑛,𝔰] to mean the 𝐼𝔰-representation ℚ̄𝓁[𝐼𝔰∕𝐼𝑛] where [𝐼𝔰 ∶ 𝐼𝑛] = 𝑛, and let 𝜒𝑛,𝔰

be a fixed faithful character of 𝐼𝔰∕𝐼𝑛. We shall omit the cluster subscript when 𝔰 = .

Example 11.5. Let 𝜁3 be a primitive cube root of unity and consider the curve𝐶∕ℚ7 ∶ 𝑦2 = 𝑥((𝑥 −

71∕2)3 − 75∕2)((𝑥 + 71∕2)3 + 75∕2), with cluster picture

and = 𝔰1 ∪ 𝔰2 ∪ {0}. In this case, inertia acts on through a 𝐶6-quotient and permutes 𝔰1 and
𝔰2. We shall compute the inertia action on 𝐻1

ét(𝐶∕ℚ̄7, ℚ̄𝓁). Note that every cluster is odd: this
implies that there is no contribution from the toric part, that is, 𝐻1

𝑡 = 0, and also that 𝑉𝔰 ≅ 𝛾𝔰 ⊗

(ℚ̄𝓁[𝔰̃] ⊖ 𝟏) by definition of 𝜖𝔰. Moreover, every proper cluster is principal and hence we choose
representatives for 𝑌∕𝐼ℚ7

to be 𝔰1 and.
First consider 𝑉. We compute that 𝜆̃ = 3∕4 hence 𝛾 is an order 4 character 𝜒4. Therefore

ℚ̄𝓁[̃] ≅ 𝟏 ⊕ ℚ̄𝓁[𝐶2] and hence 𝑉 ≅ 𝜒4 ⊗ ℚ̄𝓁[𝐶2] ≅ 𝜒4 ⊕ 𝜒−1
4
.

Next we compute 𝑉𝔰1
. In this case, 𝜆̃𝔰1 = 9∕4 and hence 𝛾𝔰1 is an order 2 character 𝜒2,𝔰1

since [𝐼ℚ7
∶ 𝐼𝔰1] = 2. Now 𝐼𝔰1 cyclically permutes the children of 𝔰1 so ℚ̄𝓁[𝔰̃1] ≅ ℚ̄𝓁[𝐶3,𝔰1

] ≅

𝟏 ⊕ 𝜒3,𝔰1
⊕ 𝜒−1

3,𝔰1
, hence 𝑉𝔰1

≅ 𝜒6,𝔰1
⊕ 𝜒−1

6,𝔰1
.
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We must now induce this to 𝐼ℚ7
; since 𝐼ℚ7

∕𝐼𝔰1 ≅ 𝐶2 we find that Ind
𝐼ℚ7
𝐼𝔰1

𝑉𝔰1
≅ 𝜒12 ⊕ 𝜒5

12
⊕

𝜒7
12
⊕ 𝜒11

12
. One therefore has that for all 𝓁 ≠ 7,

𝐻1
ét(𝐶∕ℚ̄7, ℚ̄𝓁) = 𝜒4 ⊕ 𝜒−1

4 ⊕ 𝜒12 ⊕ 𝜒5
12 ⊕ 𝜒7

12 ⊕ 𝜒11
12, as 𝐼ℚ7

-representations.

Example 11.6. Let 𝐶∕ℚ3 be the curve 𝑦2 = (𝑥 − 1)((𝑥 − 3)2 + 81)((𝑥 + 3)2 + 81), whose cluster
picture is

and 𝑖 is a fixed square root of −1. One can check that 𝐶 is semistable (see Theorem 5.1) and we
shall confirm this on Galois representation side via Remark 11.3.
Note that Galois acts trivially on the proper clusters and the only übereven cluster is 𝔰 so

𝑋∕𝐺ℚ3
= {𝔱1, 𝔱2,}. Moreover, none of these are principal ( is a cotwin) hence the abelian

part is 0; this is expected as the Jacobian has totally toric reduction (cf. Theorem 5.6), and so
𝐻1
ét(𝐶∕ℚ̄3, ℚ𝓁) = (𝜖𝔱1 ⊕ 𝜖𝔱2) ⊗ sp(2).
Using 𝑧𝔱1 = 3 as a centre of 𝔱1, one computes that 𝜃2𝔱1 = 234 = 2 ⋅ 32 ⋅ 13. This implies that 𝜃𝔱1 is

fixed by inertia and negated by Frobenius and therefore 𝜖𝔱1 is the unramified quadratic character
𝜂. Similarly, we find that 𝜃2

𝔱2
= −468 (using the centre−3) and hence 𝜖𝔱2 = 𝜖𝔱1 = 𝜂. Since𝐻1

𝑎𝑏
and

𝐻1
𝑡 are both unramified, the curve is semistable (as expected) and we have that for all 𝓁 ≠ 3,

𝐻1
ét(𝐶∕ℚ̄3, ℚ𝓁) = 𝜂⊕2 ⊗ sp(2) as 𝐺ℚ3

-representations.

References. 11.1: [9, Theorem 1.19]. 11.2 ¶2, recovering the inertia action on roots: [5, Corollary
1.5].

12 CONDUCTOR

In this section, we describe the conductor exponent of Jac 𝐶, which we shall denote by 𝑛𝐶 .

Theorem 12.1. Suppose 𝐶∕𝐾 is semistable. Then

𝑛𝐶 =

{
#𝐴 − 1 if is übereven,
#𝐴 else,

where 𝐴 = {even clusters 𝔰 ≠  ∣ 𝔰 is not übereven}.

For general 𝐶, the formula for the conductor is more involved.

Notation 12.2. For a proper cluster 𝔰wedefine 𝜉𝔰(𝑎) to be the 2-adic valuation of the denominator
of [𝐼𝐾 ∶ 𝐼𝔰]𝑎, where 𝐼𝔰 is the stabiliser of 𝔰 under 𝐼𝐾 , with the convention that 𝜉𝔰(0) = 0. More
formally, it is 𝜉𝔰(𝑎) = max{−ord2([𝐼𝐾 ∶ 𝐼𝔰]𝑎), 0}.
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For a cluster picture associated to a curve 𝐶∕𝐾, we further define

𝑈 = {odd clusters 𝔰 ≠  ∣ 𝜉𝑃(𝔰)(𝜆̃𝑃(𝔰)) ⩽ 𝜉𝑃(𝔰)(𝑑𝑃(𝔰))},

𝑉 = {proper non-übereven clusters 𝔰 ∣ 𝜉𝔰(𝜆̃𝔰) = 0}.

Theorem 12.3. Let 𝐶∕𝐾 be a hyperelliptic curve. Decompose the conductor exponent 𝑛𝐶 of Jac 𝐶
into tame and wild parts as 𝑛𝐶 = 𝑛tame + 𝑛wild. Then:

(1) 𝑛tame = 2g − #(𝑈∕𝐼𝐾) + #(𝑉∕𝐼𝐾) +
{
1 if || and 𝑣(𝑐) are even,
0 else;

(2) 𝑛wild =
∑

𝑟∈∕𝐺𝐾
(𝑣(Δ𝐾(𝑟)∕𝐾) − [𝐾(𝑟) ∶ 𝐾] + 𝑓𝐾(𝑟)∕𝐾), where Δ𝐾(𝑟)∕𝐾 and 𝑓𝐾(𝑟)∕𝐾 are the dis-

criminant and residue degree of 𝐾(𝑟)∕𝐾, respectively.

Remark 12.4. If 𝑝 > 2g + 1, then𝐶 is tame so that 𝑛wild = 0 and 𝑛𝐶 = 𝑛tame. Moreover, in this case
𝑛𝐶 is completely determined by the underlying abstract cluster picture (in the sense of Section 17)
without needing to know the Galois action on the roots a priori.

Example 12.5. Let 𝐶∕ℚ𝑝 ∶ 𝑦2 = (𝑥2 − 𝑝2)((𝑥 − 1)2 − 𝑝2)((𝑥 − 2)2 − 𝑝2) with cluster picture

One can check that the curve is semistable (Theorem 5.1) sowe can apply Theorem 12.1. Observe
that 𝐴 = {𝔰1, 𝔰2, 𝔰3} from which we obtain that 𝑛𝐶 = 2 since is übereven.

Example 12.6. Let 𝐶∕ℚ5 ∶ 𝑦2 = 𝑥5 + 256 and let 𝜁5 be a primitive fifth root of unity. Then the
cluster picture is

We begin with 𝑛wild and observe that the roots form a single orbit under inertia. For all 𝑟 ∈ ,
we have that ℚ5(𝑟)∕ℚ5 has discriminant 50000, degree 5, residue degree 1 hence 𝑛wild = 1.
It remains to compute 𝑛tame. Now 𝜆̃ = 5

8
so 𝜉(𝜆̃) = 3 and 𝜉(𝑑) = 2 hence 𝑈 and 𝑉 are

both empty. Therefore 𝑛tame = 2g = 4 and 𝑛𝐶 = 4 + 1 = 5.

Example 12.7. In this example, we compute the conductor directly from the cluster picture with-
out reference to a curve. Let 𝑝 ⩾ 7 and let 𝐶∕𝐾 be a genus two hyperelliptic curve with 𝑐 = 1, with
cluster picture

and inertia acts by cyclically permuting the roots† in 𝔰.

† This is actually the only possible action due to the depths. An example of such a curve is 𝐶∕ℚ7 ∶ 𝑦2 = 𝑥5 + 5𝑥4 + 40𝑥3 +

80𝑥2 + 256𝑥.
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Now we compute that 𝜆̃ = 0 and 𝜆̃𝔰 =
1

2
hence 𝜉(𝜆̃) = 𝜉(𝑑) = 0, 𝜉(𝜆̃𝔰) = 1 and

𝜉(𝑑𝔰) = 2. This means that 𝑈∕𝐼ℚ5
= {{𝑟1}, {𝑟5}} (since 𝑟2, 𝑟3, 𝑟4 are conjugate to 𝑟1) and 𝑉∕𝐼ℚ5

=

{}. Thus 𝑛𝐶 = 4 − 2 + 1 = 3 by Remark 12.4.

Example 12.8. Let 𝐶∕ℚ97 ∶ 𝑦2 = (𝑥3 − 97)(𝑥 − 1)(𝑥 − 2)(𝑥 − 3) with cluster picture

Again by Remark 12.4, 𝑛𝐶 = 𝑛tame. Now 𝜆̃ = 0 and 𝜆̃𝔰 =
1

2
from which we see that 𝑈∕𝐼ℚ97

=

{𝔰, {1}, {2}, {3}} and 𝑉∕𝐼ℚ97
= {}. Therefore 𝑛𝐶 = 4 − 4 + 1 + 1 = 2 since || and 𝑣(𝑐) are

both even.

Remark 12.9. As the first and last examples show, the conductor does not determine whether a
curve is semistable, in contrast to the elliptic curve setting.

References. 12.1, 12.3 : [9, Theorem 1.20]. 12.4: Remark 5.7, [5, Corollary 1.5].

13 ROOT NUMBER (TAME CASE)

We give a description of the local root number 𝑊(𝐴∕𝐾) of an abelian variety 𝐴 (for example,
𝐴 = Jac 𝐶), first in the case of semistable reduction, then in the case of tame reduction. For Jac 𝐶,
we give this description in terms of the cluster picture.

Notation 13.1. Throughout, 𝜒𝑛 will denote a fixed character of 𝐼𝐾 of order 𝑛, and for an abelian
variety𝐴∕𝐾 we shall decompose𝐻1

ét(𝐴∕𝐾̄, ℚ𝓁) = 𝐻1
𝑎𝑏

⊕ (𝐻1
𝑡 ⊗ sp(2)) as in Section 11. For a clus-

ter 𝔰, let 𝐺𝔰 = Stab𝐺𝐾
(𝔰) and 𝐼𝔰 = Stab𝐼𝐾 (𝔰) be its Galois and inertia stabilisers, respectively, and

let 𝑛𝔰 = [𝐼𝐾 ∶ 𝐼𝔰]. We write 𝑋 for the set of all cotwins and all even, non-übereven clusters of 𝐶.

Theorem 13.2. Let 𝐴∕𝐾 be an abelian variety with semistable reduction. Then

𝑊 (𝐴∕𝐾) = (−1)⟨𝟏,𝐻1
𝑡 ⟩.

When 𝐶∕𝐾 is semistable,𝑊(Jac 𝐶∕𝐾) may then be computed from the cluster picture as fol-
lows.

Proposition 13.3. Let 𝐶∕𝐾 be a (not necessarily semistable) hyperelliptic curve. The toric part 𝜌𝑡 of
the representation of Jac 𝐶 satisfies

⟨𝟏, 𝜌𝑡⟩ = #{𝔰 ∈ (𝑋 ⧵)∕𝐺𝐾 ∶ Res𝐺𝔰
𝜖𝔰 = 𝟏} −

{
1 übereven and𝑐 ∈ 𝐾×2,

0 else.

Theorem 13.4. Let 𝐴∕𝐾 be an abelian variety with tame reduction. Let

𝑚𝑡 = ⟨𝐻1
𝑡 |𝐼𝐾 , 𝜒2⟩, 𝑚𝑒 = ⟨𝐻1

ab|𝐼𝐾 , 𝜒𝑒⟩for𝑒 ≥ 2.
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Then

𝑊 (𝐴∕𝐾) =

(∏
𝑒≥3

𝑊
𝑚𝑒
𝑞,𝑒

)
(−1)⟨𝟏,𝐻1

𝑡 ⟩𝑊𝑚𝑡+
1
2
𝑚2

𝑞,2
,

where 𝑞 = |𝑘| and

𝑊𝑞,𝑒 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
𝑞

𝑙

)
if 𝑒 = 𝑙𝑛 for some odd prime 𝑙 and integer 𝑛 ≥ 1;(

−1

𝑞

)
if 𝑒 = 2𝑙𝑛 for some prime 𝑙 ≡ 3mod 4, 𝑛 ≥ 1, or if 𝑒 = 2;(

−2

𝑞

)
if 𝑒 = 4;(

2

𝑞

)
if 𝑒 = 2𝑛 for some integer 𝑛 ≥ 3;

1 else.

In the case of Jacobians of hyperelliptic curves with tame reduction, ⟨𝟏,𝐻1
𝑡 ⟩ can be calculated

as in Proposition 13.3 and𝑚𝑡 can be read off the cluster picture.

Proposition 13.5. Let 𝐶∕𝐾 be a hyperelliptic curve with tame reduction and deg(𝑓) even. Then

𝑚𝑡 ≡ 𝑣(𝑐) + #{𝔰 ∈ 𝑋∕𝐼𝐾 ∶ 𝑛𝔰
(
𝜈𝔰 − |𝔰|𝑑𝔰) even } + ∑

𝔰∈𝑋∕𝐼𝐾

𝑛𝔰 mod 2.

The final quantities which are required are the 𝑚𝑒, the multiplicities of the eigenvalues of the
abelian part of the representation. These are straightforward to calculate by hand in terms of the
Galois representation from Section 11. An explicit but rather messy description in terms of the
cluster pictures exists; see [5, Theorem 4.5, Section 4.1.2].

Remark 13.6. The root number of curves 𝐶 with potentially totally toric reduction (possibly wild)
can be calculated via [4, Lemma 3.8, 4.1].

Example 13.7. First we give three cases where the curve is semistable (this can be checked using
Theorem 5.1), and the calculation simplifies by Theorem 13.2.

(i) Let 𝐶1∕ℚ23 be given by†

with  = {232, −232, 1 + 232, 1 − 232, 2, 3}. Note that 𝔰1 and 𝔰2 lie in their own orbits, and
𝜖𝔰1 = 𝜖𝔰2 = 𝟏. Therefore by Proposition 13.3, ⟨𝟏,𝐻1

𝑡 ⟩ = 2 and

𝑊(Jac 𝐶1∕ℚ23) = (−1)⟨𝟏,𝐻1
𝑡 ⟩ = (−1)2 = 1.

(ii) Now let 𝐶2∕ℚ23 be given by

𝑦2 = ((𝑥 − 𝑖)2 − 234)((𝑥 + 𝑖)2 − 234)(𝑥 − 2)(𝑥 − 3),

†We picked 𝑝 = 23 as it is the smallest prime 𝑝 such that ( 2
𝑝
) = ( 3

𝑝
) = 1 and ( −1

𝑝
) = −1.
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with  = {𝑖 + 232, 𝑖 − 232, −𝑖 + 232, −𝑖 − 232, 2, 3}. The cluster picture of 𝐶2 is the same as
𝐶1, but nowFrobenius swaps 𝔰1 and 𝔰2. One checks thatRes𝐺𝔰

𝜖𝔰1 = 𝟏. Therefore, ⟨𝟏,𝐻1
𝑡 ⟩ = 1

and hence

𝑊(Jac 𝐶2)∕ℚ23) = (−1)⟨𝟏,𝐻1
𝑡 ⟩ = (−1)1 = −1.

(iii) Now let 𝐶3∕ℚ23 be given by

𝑦2 = −(𝑥2 − 234)((𝑥 − 1)2 − 234)(𝑥 − 2)(𝑥 − 3),

so the roots and cluster picture are the same as (i), but now the leading coefficient is−1. Now
𝔰1 and 𝔰2 are in their own orbits again but 𝜖𝔰1 and 𝜖𝔰2 have order 2. Therefore ⟨𝟏,𝐻1

𝑡 ⟩ = 0

and hence

𝑊(Jac 𝐶3∕ℚ23) = (−1)⟨𝟏,𝐻1
𝑡 ⟩ = (−1)0 = 1.

Example 13.8. Let 𝐶∕ℚ7 be given by

Since there are no principal, non-übereven clusters, the abelian part of the representation is trivial.
We calculate 𝔰∗

1
= , 𝜃2

𝔰∗
1

= 7 and hence 𝜖𝔰1 is a character of order 2. Similarly, 𝜖𝔰2 and 𝜖𝔰3 are

characters of order 2. Therefore, since 𝑐 ∉ ℚ×2
7 , ⟨𝟏,𝐻1

𝑡 ⟩ = 0 by Proposition 13.3. Furthermore, 𝜇 =

1 and for 𝑖 = 1, 2, 3, 𝑛𝔰𝑖 = 1 and 𝑛𝔰𝑖 (𝜈𝔰𝑖 − |𝔰𝑖|𝑑𝔰𝑖 ) = 1. By Proposition 13.5, 𝑚𝑡 ≡ 4mod 2, so by
Theorem 13.4

𝑊(Jac 𝐶∕ℚ7) = 𝑊4
7,2 = 1.

Example 13.9. Let 𝐶∕ℚ7 be given by

Since the only even cluster is , the toric part of the representation is trivial (Theorem 5.6) and
hence only the abelian part contributes to the root number. On inertia, 𝐻1

ab = 𝜒3 ⊕ 𝜒−1
3

⊕ 𝜒4 ⊕

𝜒−1
4

and so 𝑚3 = 1, 𝑚4 = 1 and 𝑚𝑒 = 0 for all other 𝑒 ∈ ℕ. We calculate𝑊7,3 = (7
3
) = 1,𝑊7,4 =

(−2
7
) = −1 and

𝑊(Jac 𝐶∕ℚ7) = 𝑊7,3𝑊7,4 = −1.

References. 13.2, 13.4: [4, Theorem 1.5]. 13.3: Theorem 11.1. 13.5: [5, Corollary 4.9, Remark 4.10].

14 DIFFERENTIALS (SEMISTABLE CASE)

Let Ω1
𝐶∕𝐾

(𝐶) be the g-dimensional 𝐾-vector space of regular differentials of 𝐶. It is spanned by

𝜔0, … , 𝜔g−1, where 𝜔𝑖 = 𝑥𝑖 𝑑𝑥
𝑦
.
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Fix a regular model ∕𝐾 of 𝐶 (see Section 7), and consider the global sections of the relative
dualising sheaf 𝜔∕𝐾

.

Remark 14.1.

(i) 𝜔∕𝐾
() can be thought of as the space of those differentials that are regular not only along

𝐶 (the generic fibre of ) but also along every irreducible component of the special fibre of
.

(ii) 𝜔∕𝐾
() can be viewed as an 𝐾-lattice in Ω1

𝐶∕𝐾
(𝐶).

(iii) 𝜔∕𝐾
() is independent of the choice of the regular model .

Definition 14.2. A basis of integral differentials of 𝐶, denoted 𝜔◦
0
, … , 𝜔◦

g−1
, is an 𝐾-basis of

𝜔∕𝐾
() as an 𝐾-lattice in Ω1

𝐶∕𝐾
(𝐶).

Theorem 14.3. Suppose 𝐶∕𝐾 is semistable. For 𝑖 = 0, … , g − 1 inductively

∙ compute 𝑒𝔱,𝑖 =
𝜈𝔱
2
− 𝑑𝔱 −
∑𝑖−1

𝑗=0 𝑑𝔰𝑗∧𝔱 for every proper cluster 𝔱;
∙ choose a proper cluster 𝔰𝑖 so that 𝑒𝔰𝑖 ,𝑖 = max𝔱{𝑒𝔱,𝑖}.† Denote 𝑒𝔰𝑖 ,𝑖 by 𝑒𝑖 .

Fix a centre 𝑧𝔰 ∈ 𝐾𝑛𝑟 for every proper cluster 𝔰,‡ then choose a finite unramified extension 𝐹∕𝐾 such
that 𝑧𝔰 ∈ 𝐹 for all 𝔰. Let 𝛽 ∈ ×

𝐹
be any element such that Tr𝐹∕𝐾(𝛽) ∈ ×

𝐾
. Then the differentials

𝜔◦
𝑖 = 𝜋𝑒𝑖 ⋅ Tr𝐹∕𝐾

(
𝛽

𝑖−1∏
𝑗=0

(𝑥 − 𝑧𝔰𝑗 )

)
𝑑𝑥

𝑦
, 𝑖 = 0, … , g − 1,

form a basis of integral differentials of 𝐶.

Remark 14.4. If 𝐹 = 𝐾, then in Theorem 14.3 we can choose 𝛽 = 1 and the trace is just the identity.
One can take 𝐹 = 𝐾 if and only if Frob does not permute clusters.

Consider 𝜔 = 𝜔0 ∧⋯ ∧ 𝜔g−1, 𝜔
◦ = 𝜔◦

0
∧⋯ ∧ 𝜔◦

g−1
∈ detΩ1

𝐶∕𝐾
(𝐶) =
⋀g Ω1

𝐶∕𝐾
(𝐶). As

detΩ1
𝐶∕𝐾

(𝐶) is a 1-dimensional 𝐾-vector space, there exists 𝜆 ∈ 𝐾 such that 𝜔◦ = 𝜆 ⋅ 𝜔. We

will denote this element by 𝜔◦

𝜔
.

Remark 14.5. Note that 𝜔◦

𝜔
is only well defined up to a unit. Moreover, it depends on the choice of

Weierstrass equation for 𝐶.

Theorem 14.6. Suppose 𝐶∕𝐾 is semistable. With the notation above,

8 ⋅ 𝑣
(
𝜔◦

𝜔

)
= 4g ⋅ 𝑣(𝑐) +

∑
𝔰 even

𝛿𝔰(|𝔰| − 2)|𝔰| + ∑
𝔰 odd

𝛿𝔰(|𝔰| − 1)2, where 𝛿 = 𝑑.

† Suppose the maximal value is obtained by two different clusters 𝔰 and 𝔰′. If 𝔰′ ⊆ 𝔰, choose 𝔰𝑖 = 𝔰, if 𝔰 ⊆ 𝔰′, choose
𝔰𝑖 = 𝔰′, otherwise choose freely any of the two.
‡ This is always possible by Theorem 5.1 and [9, Lemma B.1] since 𝐶 is semistable.
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Proposition 14.7. Let Δ𝐶 be the discriminant of 𝐶 (see Section 15). Then

g ⋅ 𝑣(Δ𝐶) − (8g + 4) ⋅ 𝑣
(
𝜔◦

𝜔

)
is independent of the choice of equation for 𝐶. If 𝐶∕𝐾 is semistable, it is given by

∑
𝔰 even

1<|𝔰|<2g+1
𝛿𝔰
2
|𝔰|(2g + 2 − |𝔰|) + ∑

𝔰 odd
1<|𝔰|<2g+1

𝛿𝔰
2
(|𝔰| − 1)(2g + 1 − |𝔰|).

Example 14.8. Consider the semistable genus 3 curve

𝐶 ∶ 𝑦2 = ((𝑥 − 72)2 + 1)((𝑥 − 2 ⋅ 72)2 + 1)((𝑥 − 3 ⋅ 72)2 + 1)(𝑥2 − 1) over ℚ7.

Its cluster picture is with 𝔱1 = {𝑖 + 72, 𝑖 + 2 ⋅ 72, 𝑖 + 3 ⋅ 72}, 𝔱2 = {−𝑖 + 72, −𝑖 + 2 ⋅
72, −𝑖 + 3 ⋅ 72} and = 𝔱1 ∪ 𝔱2 ∪ {±1}, where 𝑖2 = −1. Wewant to find a basis of integral differen-
tials of𝐶 using Theorem 14.3. First compute 𝑒𝔱,0 for 𝔱1, 𝔱2, and note that 𝑒𝔱1,0 = 𝑒𝔱2,0 = max𝔱{𝑒𝔱,0}

(see table below). Since neither 𝔱1 ⊂ 𝔱2 nor 𝔱2 ⊂ 𝔱1, we are free to choose any of the two as 𝔰0. Set
𝔰0 = 𝔱2. We repeat this procedure for 𝑒𝔱,1 and 𝑒𝔱,2 as shown in the following table.

𝑧𝔱 𝑑𝔱 𝜈𝔱∕2 𝑒𝔱,0 (= 𝜈𝔱∕2 − 𝑑𝔱) 𝑒𝔱,1 (= 𝑒𝔱,0 − 𝑑𝔰0∧𝔱) 𝑒𝔱,2 (= 𝑒𝔱,1 − 𝑑𝔰1∧𝔱)
𝔱1 𝑖 2 3 1 1 −1

𝔱2 −𝑖 2 3 1 −1 −1

 0 0 0 0 0 0

The numbers coloured in red are the quantities 𝑒𝑖 . Choosing 𝐹 = ℚ7(𝑖), 𝛽 = 1, we have

𝜔◦
0
= 71Trℚ7(𝑖)∕ℚ7

(1)𝑑𝑥
𝑦

= 14𝑑𝑥
𝑦
,

𝜔◦
1
= 71Trℚ7(𝑖)∕ℚ7

(𝑥 + 𝑖)𝑑𝑥
𝑦

= 14𝑥 𝑑𝑥

𝑦
,

𝜔◦
2
= 70Trℚ7(𝑖)∕ℚ7

((𝑥 + 𝑖)(𝑥 − 𝑖)) 𝑑𝑥
𝑦

= 2(𝑥2 + 1)𝑑𝑥
𝑦
,

⎛⎜⎜⎜⎝
𝜔◦
0

𝜔◦
1

𝜔◦
2

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎝
14 0 0

0 14 0

2 0 2

⎞⎟⎟⎠
⎛⎜⎜⎝
𝜔0

𝜔1

𝜔2

⎞⎟⎟⎠,
form a basis of integral differentials. In particular,𝜔◦ = 8 ⋅ 72𝜔 and so 𝑣(𝜔

◦

𝜔
) = 2. Finally, we check

this result agrees with what the formula in Theorem 14.6 predicts

𝑣
(
𝜔◦

𝜔

)
= 1

8

(
4g ⋅ 𝑣(𝑐) + 𝑑(|| − 2)|| + 𝛿𝔱1(|𝔱1| − 1)2 + 𝛿𝔱2(|𝔱2| − 1)2

)
= 1

8

(
12 ⋅ 0 + 0(8 − 2)8 + 2(3 − 1)2 + 2(3 − 1)2

)
= 2.

Example 14.9. Let 𝑓(𝑥) = 72(𝑥6 − 1) ∈ ℚ7[𝑥] and 𝐶𝑛 ∶ 𝑦2 = 76𝑛𝑓(𝑥∕7𝑛), 𝑛 ∈ ℤ, a family of
isomorphic semistable hyperelliptic curves of genus 2. The cluster picture of 𝐶𝑛 is
with = {7𝑛, 𝜁37

𝑛, 𝜁2
3
7𝑛, −7𝑛, −𝜁37

𝑛, −𝜁2
3
7𝑛}. Since we have only one cluster, 𝔰0 = 𝔰1 = . Then

𝑒0 = 1 + 2𝑛 and 𝑒1 = 1 + 𝑛. As 0 is a centre of , we are in the situation of Remark 14.4, and so
𝜔◦
0
= 71+2𝑛 𝑑𝑥

𝑦
,𝜔◦

1
= 71+𝑛𝑥 𝑑𝑥

𝑦
. This shows that 𝑣(𝜔◦∕𝜔) = 2 + 3𝑛 does depend on 𝑛, that is, on the

choice of equation.
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On the other hand, from the formula in Proposition 14.7 we immediately see that g ⋅ 𝑣(Δ𝐶) −

(8g + 4) ⋅ 𝑣(𝜔◦∕𝜔) = 0, which is independent of 𝑛.

Example 14.10. Let 𝐶 ∶ 𝑦2 = 𝑓(𝑥) be a semistable curve with 𝑓(𝑥)monic. Suppose

is its cluster picture, with 𝑑𝑡1 = 𝑢∕2, 𝑑𝑡2 = 𝑎, 𝑑 = 𝑏, for some 𝑢, 𝑎, 𝑏 ∈ ℤ, 𝑢∕2 > 𝑎 > 𝑏.
As in Example 14.8, to compute 𝑒𝑖 for 𝑖 = 0, … g − 1, we draw the following table

𝑑𝔱 𝑒𝔱,0 𝑒𝔱,1 … 𝑒𝔱,𝑚−1 𝑒𝔱,𝑚 …

𝔱1 𝑢∕2
|𝔱2|−|𝔱1|

2
𝑎 +
||−|𝔱2|

2
𝑏 𝑒𝔱1,0 − 𝑎 … 𝑒𝔱1,0 − (𝑚 − 1)𝑎 𝑒𝔱1,0 − 𝑚𝑎 …

𝔱2 𝑎
|𝔱2|−|𝔱1|

2
𝑎 +
||−|𝔱2|

2
𝑏 𝑒𝔱2,0 − 𝑎 … 𝑒𝔱2,0 − (𝑚 − 1)𝑎 𝑒𝔱2,0 − 𝑚𝑎 …

 𝑏
||−|𝔱1|

2
𝑏 𝑒,0 − 𝑏 … 𝑒,0 − (𝑚 − 1)𝑏 𝑒,0 − 𝑚𝑏 …

where 𝑚 is the least positive integer such that 𝑒,0 − 𝑚𝑏 ⩾ 𝑒𝔱2,0 − 𝑚𝑎. Then 𝑚 = ⌊ |𝔱2|−1
2
⌋

and 𝔰0 = ⋯ = 𝔰𝑚−1 = 𝔱2, 𝔰𝑚 = ⋯ = 𝔰g−1 = . Note that the twin 𝔱1 is never selected, and
𝜔◦
0
, … , 𝜔◦

𝑚−1
form a basis of integral differentials of 𝐶𝔱2

∶ 𝑦2 =
∏

𝑟∈𝔱2
(𝑥 − 𝑟). These are general

phenomena (see [15, Lemma 4.2]).

References. 14.1: [18, Corollaries 8.3.6(d), 5.2.27, 9.2.25]. 14.3: [20, Theorem 6.4], [15, Theorem
4.1], Theorem 5.1, [9, Lemma B.1]. 14.5, 14.6: [15, Theorem 3.1]. 14.7: [15, Proposition 3.8],
Theorem 14.6, Theorem 15.1.

15 MINIMAL DISCRIMINANT (SEMISTABLE CASE)

The discriminant Δ𝐶 of 𝐶 is given by

Δ𝐶 = 16g 𝑐4g+2 disc
(
1

𝑐
𝑓(𝑥)
)
.

The following theorem provides a formula to compute the valuation of the discriminant in
terms of cluster pictures.

Theorem 15.1. The valuation of the discriminant of 𝐶 is given by

𝑣(Δ𝐶) = 𝑣(𝑐)(4g + 2) +
∑

𝔰 proper
𝛿𝔰|𝔰|(|𝔰| − 1),

where 𝛿𝔰 = 𝑑 when 𝔰 = .

Let 𝑣(Δmin
𝐶

) denote the valuation of the minimal discriminant† of the curve 𝐶. If 𝐶 has
semistable reduction, one may read off this quantity from the cluster picture or from the centred
BY tree associated to the equation.

† The valuation of the minimal discriminant is the minimum of 𝑣(Δ) amongst all integral Weierstrass equations for 𝐶.
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Theorem 15.2. If 𝐶∕𝐾 is semistable and |𝑘| > 2g + 1, then

𝑣(Δ𝐶) − 𝑣(Δmin
𝐶

)

4g + 2
= 𝑣(𝑐) − 𝐸 +

∑
g+1<|𝔰| 𝛿𝔰(|𝔰| − g − 1),

where 𝛿𝔰 = 𝑑 when 𝔰 = , and 𝐸 = 0 unless there are two clusters of size g + 1 that are permuted
by Frobenius and 𝑣(𝑐) is odd, in which case 𝐸 = 1.

Definition 15.3. For a connected subgraph 𝑇 of a BY tree, we define a genus function by g(𝑇) =
#(connected components of the blue part) − 1 +

∑
𝑣∈𝑉(𝑇) g(𝑣).

If there is an edge 𝑒 ∈ 𝐸(𝑇𝐶) such that both trees in 𝑇𝐶 ⧵ {𝑒} have equal genus (that is, genus⌊ g
2
⌋), then we insert a vertex 𝑧𝑇 on the midpoint of 𝑒 and call it the centre of 𝑇𝐶 . Otherwise,

there exists a unique vertex 𝑣 ∈ 𝑉(𝑇𝐶) such that all trees in 𝑇𝐶 ⧵ {𝑣} have genus smaller than
g∕2. In this case, 𝑧𝑇 = 𝑣 is the centre of 𝑇𝐶 . In both cases, the centred BY tree 𝑇∗

𝐶
is the tree with

vertex set 𝑉(𝑇𝐶) ∪ {𝑧𝑇}; we denote by ⪯ the partial ordering on 𝑉(𝑇∗
𝐶
) with maximal element

𝑧𝑇 .

Notation 15.4. Define a weight function on 𝑉(𝑇∗
𝐶
) by

𝑆(𝑣) =
∑

𝑣′⪯𝑣 blue
(2g(𝑣′) + 2 − #blue edges at 𝑣′).

For each 𝑣 ≠ 𝑧𝑇 , write 𝑒𝑣 for the edge connecting 𝑣 with its parent, that is, the vertex connected to
𝑣 lying on the path to the centre of 𝑇∗

𝐶
. Let 𝛿𝑣 = length(𝑒𝑣) if 𝑒𝑣 is blue, and 𝛿𝑣 = 1∕2 ⋅ length(𝑒𝑣)

if 𝑒𝑣 is yellow.

Theorem 15.5. Suppose that 𝐶 is semistable and |𝑘| > 2g + 1. Let 𝑇∗
𝐶
be the centred BY tree asso-

ciated to 𝐶. Then the valuation of the minimal discriminant of 𝐶 is given by

𝑣(Δmin
𝐶 ) = 𝐸 ⋅ (4g + 2) +

∑
𝑣≠𝑧𝑇

𝛿𝑣𝑆(𝑣)(𝑆(𝑣) − 1),

where 𝐸 = 0 unless 𝑧𝑇 has exactly two children 𝑣1, 𝑣2 with 𝑆(𝑣1) = 𝑆(𝑣2) = g + 1 that are permuted
by Frobenius and (g + 1)𝛿𝑣1 , (g + 1)𝛿𝑣2 are odd, in which case 𝐸 = 1.

Example 15.6. Consider 𝐶 ∶ 𝑦2 = 𝑝(𝑥2 − 𝑝5)(𝑥3 − 𝑝3)((𝑥 − 1)3 − 𝑝9) over ℚ𝑝 for 𝑝 > 7. This is
a genus 3 hyperelliptic curve with cluster picture

Using the formula from Theorem 15.1, we get that the valuation of the discriminant of the equa-
tion is

𝑣(Δ𝐶) = 1 ⋅ (4 ⋅ 3 + 2) + 3∕2 ⋅ 2 ⋅ 1 + 1 ⋅ 5 ⋅ 4 + 3 ⋅ 3 ⋅ 2 = 55.
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Since𝐶 has semistable reduction and |𝔽𝑝| > 7, wemay now apply Theorem 15.2 in order to find
the valuation of the minimal discriminant. The right-hand side of the equation in that theorem is
𝑣(𝑐) − 𝐸 +

∑
g+1<|𝔰| 𝛿𝔰(|𝔰| − g − 1) = 2, hence 𝑣(Δmin

𝐶
) = 𝑣(Δ𝐶) − 2 ⋅ (4g + 2) = 27.

Alternatively, we could have used the associated BY tree 𝑇𝐶 :

In this example, 𝑉(𝑇∗
𝐶
) = 𝑉(𝑇𝐶) and 𝑣𝔰2 is the centre of 𝑇

∗
𝐶
. Then 𝑆(𝑣𝔰1) = 2, 𝑆(𝑣𝔰3) = 3, 𝛿𝑣𝔰1 =

3∕2 and 𝛿𝑣𝔰3 = 4. It follows from Theorem 15.5 that 𝑣(Δmin
𝐶

) = 3∕2 ⋅ 2 ⋅ 1 + 4 ⋅ 3 ⋅ 2 = 27.

Example 15.7. Consider the curve 𝐶 ∶ 𝑦2 = 7(𝑥2 + 1)(𝑥2 + 36)(𝑥2 + 64) defined over ℚ7. This
is a genus 2 hyperelliptic curve with cluster picture Using one of the formulas from
Theorem 15.1, we get 𝑣(Δ𝐶) = 22.
Since 𝐶 has semistable reduction, we can apply Theorem 15.2. Note that the two clusters 𝔰1 =

{𝑖, 𝑖 ± 7𝑖}, 𝔰2 = {−𝑖, −𝑖 ± 7𝑖} are permuted by Frobenius. Therefore 𝐸 = 1 here and the right-hand
side of the formula vanishes. In particular, we find that 𝑣(Δmin

𝐶
) = 𝑣(Δ𝐶) = 22. The minimality of

the equation is also implied by Theorem 16.3, since Condition (1) of that theorem is satisfied.
Theminimal discriminant is not invariant under unramified extensions. Let𝐶𝐾 denote the base

change of 𝐶 to 𝐾 = ℚ7(𝑖). Since the extension is unramified, the cluster picture does not change.
However, the two clusters 𝔰1 and 𝔰2 are no longer swapped by Frobenius, hence 𝐸 = 0 and by
Theorem 15.1, 𝑣(Δmin

𝐶𝐾
) = 𝑣(Δ𝐶𝐾

) − (4g + 2) = 12. A minimal Weierstrass equation over 𝐾 can be
attained by the change of variables 𝑥 = 𝑖(𝑥′ + 6)∕(𝑥′ − 1) and 𝑦 = 49𝑦′∕(𝑥′ − 1)3:

𝑦′2 = −𝑥′(𝑥′ − 2)(2𝑥′ + 5)(5𝑥′ − 12)(9𝑥′ − 2).

The cluster picture corresponding to this equation is .
In both of the above cases, the associated BY trees consist of two blue vertices joined by a blue

edge of length 2: . The centred BY trees are obtained by adding an additional vertex in
the midpoint of the edge joining 𝑣𝔰1 and 𝑣𝔰2 : . From the formula in Theorem 15.5, we
see that the valuation of the minimal discriminant is given by 12 + 10 ⋅ 𝐸. The only difference
between the (centred) BY trees corresponding to 𝐶 and 𝐶𝐾 is the action of Frobenius, and we
have 𝐸 = 1 for 𝐶 and 𝐸 = 0 for 𝐶𝐾 . As before, we find 𝑣(Δmin

𝐶
) = 22 and 𝑣(Δmin

𝐶𝐾
) = 12.

References. 15.1: [9, Theorem 16.2, Lemma 16.5], 15.2: [9, Theorem 16.2]. 15.3: Definitions A.1,
A.2, Remark A.4. 15.5: Theorem A.6.

16 MINIMALWEIERSTRASS EQUATION

Here we explain how one can tell if a Weierstrass equation is minimal. Recall that a Weierstrass
equation of a curve 𝐶∕𝐾 ∶ 𝑦2 = 𝑓(𝑥) is integral if 𝑓(𝑥) ∈ 𝐾[𝑥]. It is minimal if the valuation of
its discriminant is minimal amongst all integral Weierstrass equations.
We first characterise when the equation is integral in terms of the cluster picture. Note that the

cluster picture of hyperelliptic curve is unchanged by a substitution 𝑥 ↦ 𝑥 − 𝑡. As a result, for a
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hyperelliptic curve 𝐶∕𝐾 ∶ 𝑦2 = 𝑓(𝑥) it is not possible to check whether 𝑓(𝑥) ∈ 𝐾[𝑥] from the
cluster picture of 𝐶, but up to these shifts in the 𝑥-coordinate this is possible.

Theorem 16.1. Let 𝐶∕𝐾 ∶ 𝑦2 = 𝑓(𝑥) be a hyperelliptic curve and suppose that 𝐺𝐾 acts tamely on
. Then 𝑓(𝑥 − 𝑧) ∈ 𝐾[𝑥] for some 𝑧 ∈ 𝐾 if and only if either

∙ 𝑣(𝑐) ⩾ 0 and 𝑑 ⩾ 0; or
∙ there is a 𝐺𝐾-stable proper cluster 𝔰 with 𝑑𝔰 ⩽ 0 and

𝑣(𝑐) + (|𝔰| − |𝔰′|)𝑑𝔰 +∑
𝑟∉𝔰

𝑑{𝑟}∧𝔰 ⩾ 0,

for some 𝔰′ that is either empty or a 𝐺𝐾-stable child 𝔰′ < 𝔰 with either |𝔰′| = 1 or 𝑑𝔰′ ⩾ 0.

We are further able to give a criterion for checking whether a given Weierstrass equation is in
fact minimal.

Theorem16.2. Let𝐶 ∶ 𝑦2 = 𝑓(𝑥) be ahyperelliptic curve over𝐾with𝑓(𝑥) ∈ 𝐾[𝑥]. If𝑑 = 𝑣(𝑐) =

0 and the cluster picture of 𝐶 has no cluster 𝔰 ≠  with |𝔰| > g + 1, then 𝐶 is a minimal Weier-
strass equation.

For semistable hyperelliptic curves, we can give a full characterisation of minimal Weierstrass
equations in terms of cluster pictures:

Theorem 16.3. Suppose 𝐶 ∶ 𝑦2 = 𝑓(𝑥) is a semistable hyperelliptic curve over 𝐾 with 𝑓(𝑥) ∈

𝐾[𝑥], and that |𝑘| > 2g + 1. Then 𝐶 defines a minimal Weierstrass equation if and only if one
of the following conditions hold.

(1) There are two clusters of size g + 1 that are swapped by Frobenius, 𝑑 = 0 and 𝑣(𝑐) ∈ {0, 1}.
(2) There is no cluster of size > g + 1 with depth > 0, but there is some 𝐺𝐾-stable cluster 𝔰 with|𝔰| ⩾ g + 1, 𝑑𝔰 ⩾ 0 and 𝑣(𝑐) = −

∑
𝑟∉𝔰 𝑑{𝑟}∧𝔰.

Using examples we now illustrate how one can easily use cluster pictures and the results of this
section to check whether a Weierstrass equation is integral and/or minimal.

Example 16.4. Consider 𝐶 ∶ 𝑦2 = 𝑓(𝑥) = 𝑝(𝑥 − 1

𝑝2
)((𝑥 − 1

𝑝2
)3 − 𝑝9)(𝑥 − 1

𝑝2
− 1

𝑝
), a genus 2

hyperelliptic curve over ℚ𝑝, for some prime 𝑝 > 3. Let us use the cluster picture of 𝐶 to test
whether there exists some 𝑧 ∈ 𝐾 such that 𝑓(𝑥 − 𝑧) ∈ 𝐾[𝑥]. The cluster picture of 𝐶 is as fol-
lows:

Note that and 𝔰 are both proper and𝐺ℚ𝑝
-stable, 𝔰 < ,𝑑 ⩽ 0, and𝑑𝔰 ⩾ 0. A simple calculation

gives that

𝑣(𝑐) + (|| − |𝔰|)𝑑 +
∑
𝑟∉

𝑑{𝑟}∧ = 0.
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Therefore, by Theorem 16.1, we conclude that there exists some 𝑧 ∈ 𝐾 such that𝑓(𝑥 − 𝑧) ∈ 𝐾[𝑥].
Indeed, we can take 𝑧 = − 1

𝑝2
.

Example 16.5. Consider 𝐶 ∶ 𝑦2 = (𝑥2 − 1)(𝑥3 − 𝑝)((𝑥 − 2)3 − 𝑝7), a genus 3 hyperelliptic curve
over ℚ𝑝, for some prime 𝑝 > 3. The cluster picture of 𝐶 is as follows:

Note that 𝑑 = 𝑣(𝑐) = 0 and every cluster 𝔰 ≠  has size< 4, so by Theorem 16.2 we can conclude
that 𝐶 is a minimal Weierstrass equation.

Example 16.6. Consider 𝐶 ∶ 𝑦2 = 𝑝2(𝑥 − 1

𝑝2
)(𝑥5 − 1), a genus 2 hyperelliptic curve over ℚ𝑝 for

some prime 𝑝 > 5. The cluster picture of 𝐶 is as follows:

Note that 𝑑, 𝑣(𝑐) ≠ 0 and cluster |𝔰| = 5 > 3, so we are unable to conclude by Theorem 16.2
whether𝐶 is aminimalWeierstrass equation.However, one can easily check that the semistability
criterion in Section 5 is satisfied (see the examples in that section for further details of how to check
this), so 𝐶 is semistable. Now, there is no cluster of size > 3 with depth > 0, but 𝔰 is 𝐺ℚ𝑝

-stable
with |𝔰| = 5 ⩾ 3, 𝑑𝔰 = 0, and 2 = 𝑣(𝑐) = −

∑
{𝑟}∉𝔰 𝑑{𝑟}∧𝔰. So, by Theorem 16.3 we can conclude that

𝐶 defines a minimal Weierstrass equation.

Example 16.7. Consider the hyperelliptic curve 𝐶 ∶ 𝑦2 = (𝑥3 − 𝑝15)(𝑥2 − 𝑝6)(𝑥3 − 𝑝3) over ℚ𝑝

for some prime 𝑝 > 7. We claim that the substitutions 𝑥 = 𝑝3𝑥′ and 𝑦 = 𝑝9𝑦′, result in a minimal
Weierstrass equation

𝐶′ ∶ 𝑦′2 = (𝑥′3 − 𝑝6)(𝑥′2 − 1)(𝑝6𝑥′3 − 1),

whose cluster picture is as follows:

We are able to verify that 𝐶′ is indeed minimal. Note that its cluster picture has no cluster of size
> g + 1with depth> 0, but 𝔰2 is fixed by 𝐺ℚ𝑝

, |𝔰2| = 5 ⩾ 4, 𝑑𝔰2 = 0, and 𝑣(𝑐) = −
∑

𝑟∉𝔰2
𝑑{𝑟}∧𝔰2 =

6. So, since 𝐶′ is semistable, by Theorem 16.3 (2) we have that 𝐶′ is minimal.

References. 16.1: [9, Theorem 13.3]. 16.2, 16.3: [9, Theorems 17.1, 17.2].

17 ISOMORPHISMS OF CURVES AND CANONICAL CLUSTER
PICTURES

Definition 17.1. Let 𝑋 be a finite set, Σ a collection of non-empty subsets of 𝑋 (called clusters),
and some 𝑑𝔰 ∈ ℚ for every 𝔰 ∈ Σ of size > 1, called the depth of 𝔰. Then Σ (or (Σ, 𝑋, 𝑑)) is a cluster
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picture if:𝑋 ∈ Σ and {𝑥} ∈ Σ for every 𝑥 ∈ 𝑋; two clusters are either disjoint or one is contained in
the other; for 𝔰, 𝔰′ ∈ Σ, if 𝔰′ ⊊ 𝔰 then 𝑑𝔰′ > 𝑑𝔰. For a hyperelliptic curve 𝐶∕𝐾 ∶ 𝑦2 = 𝑓(𝑥), denote
the cluster picture by Σ𝐶 = (Σ𝐶,, 𝑑), the collection of all clusters of with depths.
Cluster pictures (Σ𝑖, 𝑋𝑖, 𝑑𝑖), 𝑖 = 1, 2, are isomorphic (Σ1 ≅ Σ2) if there is a bijection 𝜙 ∶ 𝑋1 → 𝑋2

which induces a bijection from Σ1 to Σ2 and 𝑑1
𝔰
= 𝑑2

𝜙(𝔰)
.

Definition 17.2. We say Σ = (Σ, 𝑋, 𝑑) and Σ′ = (Σ′, 𝑋′, 𝑑′) are equivalent if Σ′ is isomorphic to a
cluster picture obtained from Σ in a finite number of the following steps.

(1) Increase the depth of all clusters by𝑚 ∈ ℚ: 𝑑′
𝔰
= 𝑑𝔰 + 𝑚 for all 𝔰 ∈ Σ.

(2) Add a root 𝑟 if 𝑋 is odd: 𝑋′ = 𝑋 ∪ {𝑟}, Σ′ = (Σ ∪ {{𝑟}, 𝑋′}) ⧵ {𝑋}, 𝑑′
𝔰
= 𝑑𝔰 for all proper 𝔰 ∈ Σ′ ⧵

{𝑋′} and 𝑑′
𝑋′ = 𝑑𝑋 .

(3) Remove a root 𝑟 ∈ 𝑋 if 𝑋 is even, {𝑟} < 𝑋 and 𝑋 ⧵ {𝑟} ∉ Σ: 𝑋′ = 𝑋 ⧵ {𝑟}, Σ′ = (Σ ∪ {𝑋′}) ⧵

{𝑋, {𝑟}}, 𝑑′
𝔰
= 𝑑𝔰 for 𝔰 ∈ Σ′ ⧵ {𝑋′} proper and 𝑑′

𝑋′ = 𝑑𝑋 .
(4) Redistribute the depth between child 𝔰 < 𝑋 and 𝔰c = 𝑋 ⧵ 𝔰 when 𝑋 is even: pick 𝑚 ∈ ℚ with

−𝛿𝔰 ⩽ 𝑚 ⩽ 𝛿𝔰c (if |𝔰| = 1 there is no lower bound on 𝑚, and similarly for 𝔰c) and set 𝑋′ =

𝑋, Σ′ = Σ ∪ {𝔰, 𝔰c}, 𝑑′
𝑋′ = 𝑑𝑋 , 𝑑′𝔱 = 𝑑𝔱 + 𝑚 for proper clusters 𝔱 ⊆ 𝔰, 𝑑′

𝔱
= 𝑑𝔱 − 𝑚 for proper

clusters 𝔱 ⊆ 𝔰c. Here we consider 𝛿𝔰c = 0 if 𝔰c ∉ Σ, and remove 𝔰c from Σ′ if 𝛿′
𝔰c

= 0.

For a pictorial description of these moves, see Example 17.7.

Theorem 17.3. If 𝐶1 and 𝐶2 are isomorphic hyperelliptic curves over 𝐾, then their cluster pictures
are equivalent. Furthermore, if a cluster picture Σ′ is equivalent to Σ𝐶1 , then there is a 𝐾̄-isomorphic
hyperelliptic curve 𝐶′∕𝐾̄ with Σ𝐶′ ≅ Σ′.

Theorem 17.4. Let 𝐶1 and 𝐶2 be semistable hyperelliptic curves over 𝐾. Then Σ𝐶1 and Σ𝐶2 are
equivalent if and only if the BY trees 𝑇𝐶1 and 𝑇𝐶2 are isomorphic.

It turns out that, provided |𝑘| > 2g + 1, every equivalence class of cluster pictures of semistable
hyperelliptic curves has an ‘almost canonical’ representative.

Theorem 17.5. Let 𝐶′∕𝐾 be a semistable hyperelliptic curve and suppose that |𝑘| > 2g + 1. Then
there is a 𝐾-isomorphic curve 𝐶 ∶ 𝑦2 = 𝑓(𝑥) with 𝑓(𝑥) ∈ 𝐾[𝑥], deg(𝑓) = 2g + 2 such that:

(1) 𝑑 = 0;
(2) the cluster picture of 𝐶 has no cluster of size > g + 1 other than; and
(3) either there is at most one cluster in Σ𝐶 of size g + 1 and 𝑣(𝑐) = 0, or Frob swaps two clusters of

size g + 1 and 𝑣(𝑐) ∈ {0, 1}.

Furthermore, if 𝐶′ has even genus, then we may replace (3) by the following.

(3’) either 𝑣(𝑐) = 0 and there is no cluster of size g + 1, or 𝑣(𝑐) ∈ {0, 1} and there are two clusters of
size g + 1 with equal depths.

In the even genus case, any other 𝐾-isomorphic curve satisfying (1), (2), and (3’) has the same cluster
picture and valuation of leading term as 𝐶.

For a semistable hyperelliptic curve 𝐶∕𝐾, to practically use BY trees to find the canonical rep-
resentative of the equivalence class of Σ𝐶 , attach an open yellow edge to the centre ([10, Definition
5.13]) of 𝑇𝐶 . For a more detailed explanation of this, see Remarks A.8 and A.9.
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Example 17.6. Consider the hyperelliptic curve 𝐶∶ 𝑦2 = 𝑥6 − 1 over ℚ𝑝, for some prime 𝑝 ≠ 3,
where Σ𝐶 = . By Definition 17.2 (1), we may increase the depth of by𝑚 = 1

3
to obtain

an equivalent cluster picture. Theorem 17.3 tells us there is some ℚ̄𝑝-isomorphic curve 𝐶′∕ℚ̄𝑝

with this cluster picture. In particular, we find that under the transformations 𝑥 = 𝑥′∕𝑝1∕3 and
𝑦 = 𝑦′∕𝑝, 𝐶 is ℚ𝑝(

3
√
𝑝)-isomorphic to 𝐶′∕ℚ𝑝(

3
√
𝑝) ∶ 𝑦′2 = 𝑥′6 − 𝑝2.

Example 17.7. Consider the hyperelliptic curve𝐶∕ℚ7 ∶ 𝑦2 = (𝑥2 − 1)(𝑥4 − 78). It has cluster pic-
ture Σ𝐶 = with = {1, −1, 72, −72, 72𝑖, −72𝑖}. Definition 17.2 gives us that the equiva-
lence class of Σ𝐶 is as follows:

Here the top clusters’ depths are not written as these can take any value, due to Definition 17.2 (1),
and 𝑛, 𝑎, 𝑏 ∈ ℚ>0 with 𝑎 + 𝑏 = 2. Vertical lines indicate that a root has been added or removed as
in Definition 17.2 (2) and (3). Horizontal lines indicate that the depth of a child 𝔰 <  has been
redistributed to ⧵ 𝔰 as described in Definition 17.2 (4).
Let 𝐶1∕ℚ7 ∶ 𝑦2 = (𝑥2 − 74)(𝑥4 − 1), this is isomorphic to 𝐶 over ℚ7 and has

So, Σ𝐶1 is in the equivalence class of Σ𝐶 , verifying the first part of Theorem 17.3.

Consider the transformation 𝑥 →
5
√
7

𝑥+ 5
√
7
. It gives a model 𝐶2 for 𝐶∕ℚ7(

5
√
7) with roots

5
√
7

1+ 5
√
7
,

5
√
7

−1+ 5
√
7
, 1

1+ 5
√
7
9 ,

1

1− 5
√
7
9 ,

1

1+𝑖 5
√
7
9 ,

1

1−𝑖 5
√
7
9 , and cluster picture

This illustrates how to obtain the middle picture with 𝑎 = 1

5
and 𝑏 = 9

5
over ℚ̄7.

All of 𝐶, 𝐶1, and 𝐶2 have the following BY tree: . Indeed, so does any other hyperel-
liptic curve with a cluster picture in the equivalence class of Σ𝐶 . Conversely, any hyperelliptic
curve 𝐶′ with BY tree 𝑇𝐶′ = 𝑇𝐶 would need to have its cluster picture in the equivalence class
of Σ𝐶 .

Remark 17.8. It is useful to note that the steps described in Definition 17.2 can bemade by applying
the following Möbius transformations to the roots in:

(1) 𝜙(𝑧) = 𝜋𝑚𝑧 (for𝑚 ∈ ℚ),
(2) 𝜙(𝑧) = 1

𝑧
(after first shifting by 𝑧 ∈ 𝐾, that is, applying 𝜙′(𝑧) = 𝑧 − 𝑧),

(3) 𝜙(𝑧) = 1

𝑧
(first shifting by 𝑟 and using (1) to assume that 𝑧 = 𝑟 = 𝑑 = 0),

(4) 𝜙(𝑧) = 𝜋𝑎

𝑧
(first scaling so 𝑑 = 0, and shifting so 𝑣(𝑟) = 𝑎 for 𝑟 ∈ 𝔰).
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Example 17.9. By Theorem 17.5, any semistable genus 2 hyperelliptic curve, where |𝑘| > 2g + 1,
has a model with one of the following cluster pictures with𝑚, 𝑛, 𝑡 ∈ ℤ:

References. 17.2, 17.3, 17.5: [9, Sections 14 and 15]. 17.4: [10, Sections 4.2, 5.2]. 17.8: [9, Proposition
14.6].

APPENDIX A: MINIMAL DISCRIMINANT AND BY TREES (SEMISTABLE CASE)

Throughout this section, it is assumed that 𝐶 is semistable. We give a proof for how to read off
𝑣(Δmin

𝐶
) from the BY tree 𝑇𝐶 associated to 𝐶.

Definition A.1. For a connected subgraph 𝑇 of a BY tree, we define a genus function by g(𝑇) =
#(connected components of the blue part) − 1 +

∑
𝑣∈𝑉(𝑇) g(𝑣).

Note that g(𝑇𝐶) = g as per Lemma 4.8.

Definition A.2. If there is an edge 𝑒 ∈ 𝐸(𝑇𝐶) such that both trees in 𝑇𝐶 ⧵ {𝑒} have equal genus
(that is, genus ⌊ g

2
⌋), then we insert a genus-0 vertex 𝑧𝑇 on the midpoint of 𝑒, colour it the same as

𝑒, and call it the centre of 𝑇𝐶 . Otherwise, choose 𝑧𝑇 ∈ 𝑉(𝑇𝐶) such that all trees in 𝑇𝐶 ⧵ {𝑧𝑇}
† have

genus smaller than g∕2. In both cases, the centred BY tree 𝑇∗
𝐶
is the tree with vertex set 𝑉(𝑇∗

𝐶
) =

𝑉(𝑇𝐶) ∪ {𝑧𝑇}; we denote by ⪯ the partial order on 𝑉(𝑇∗
𝐶
) with maximal element 𝑧𝑇 . For a vertex

𝑣 ∈ 𝑉(𝑇∗
𝐶
), we say that the vertex connected to 𝑣 lying on the path to the centre of 𝑇∗

𝐶
is its parent.

All other vertices connected to 𝑣 are called children of 𝑣. The centre itself does not have a parent.

Definition A.3. Define a weight function on the vertex set 𝑉(𝑇𝐶) by

𝑠(𝑣) =

{
2g(𝑣) + 2 − #blue edges at 𝑣 if 𝑣 is blue,
0 if 𝑣 is yellow.

For a connected subgraph 𝑇 of 𝑇𝐶 , we set 𝑠(𝑇) =
∑

𝑣∈𝑇 𝑠(𝑣).

Remark A.4. Observing that 𝑠(𝑇𝐶) = 2g + 2, it follows from [10, Lemma 5.12] that exactly one of
the following is true.

∙ There is a unique vertex 𝑣 ∈ 𝑉(𝑇𝐶) with the property that 𝑠(𝑇) < g + 1 for all trees in 𝑇𝐶 ⧵ {𝑣}.
∙ There is a unique edge 𝑒 ∈ 𝐸(𝑇𝐶) with the property that 𝑠(𝑇) = g + 1 for both trees in 𝑇𝐶 ⧵ {𝑒}.

Further, g(𝑇) = ⌊ 𝑠(𝑇)−1
2
⌋ for any connected subgraph 𝑇 of a BY tree (see [10, Remark 5.14]). This

shows that the centre of a BY tree is indeed well defined.

Definition A.5. Define a weight function on 𝑉(𝑇∗
𝐶
) by 𝑆(𝑣) =

∑
𝑣′⪯𝑣 𝑠(𝑣

′).

† 𝑇𝐶 ⧵ {𝑧𝑇} is obtained from 𝑇𝐶 by removing 𝑧𝑇 together with the incident edges.
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For each 𝑣 ≠ 𝑧𝑇 , write 𝑒𝑣 for the edge connecting 𝑣 with its parent and let

𝛿𝑣 =

{
length(𝑒𝑣) if 𝑒𝑣 is blue,
1∕2 ⋅ length(𝑒𝑣) if 𝑒𝑣 is yellow.

Theorem A.6. Let 𝑇∗
𝐶
be the centred BY tree associated to 𝐶. Suppose |𝑘| > 2g + 1. Then the valu-

ation of the minimal discriminant of 𝐶 is given by

𝑣(Δmin
𝐶 ) = 𝐸 ⋅ (4g + 2) +

∑
𝑣≠𝑧𝑇

𝛿𝑣𝑆(𝑣)(𝑆(𝑣) − 1),

where 𝐸 = 0 unless 𝑧𝑇 has exactly two children 𝑣1, 𝑣2 with 𝑆(𝑣1) = 𝑆(𝑣2) = g + 1 that are permuted
by Frobenius and 𝛿𝑣𝑖 (g + 1) is odd for 𝑖 ∈ {1, 2}. In this case 𝐸 = 1.

Proof. Let Σ = Σ𝐶 be the cluster picture associated to 𝐶, see Definition 17.1 for the definition of
abstract cluster pictures. We associate a cluster picture Σ1 = (Σ1, 𝑋1, 𝑑1) to the centred tree 𝑇∗

𝐶
in

the following way.
For every vertex 𝑣 ∈ 𝑇∗

𝐶
, define

𝔰𝑣 =
⋃

𝑣′≺𝑣 maximal
𝔰𝑣′ ∪

𝑠(𝑣)⋃
𝑖=1

{𝑟𝑣,𝑖},

where {𝑟𝑣,𝑖} are singletons. For 𝑣 ≠ 𝑧𝑇 , the relative depth of the cluster 𝔰𝑣 is given by 𝛿𝔰𝑣 = 𝛿𝑣. We
have 𝔰𝑧𝑇 = 𝑋1 and assign to it depth 𝑑𝑋1

= 0.
The construction of the cluster picture coincides with Construction 4.15 in [10], although

phrased in a slightly different language (cf. Remark A.9). Therefore, the BY tree associated to this
cluster picture is 𝑇𝐶 . Moreover, it is clear from the construction that for every vertex 𝑣 ∈ 𝑉(𝑇∗

𝐶
),

we have 𝑆(𝑣) = |𝔰𝑣| and that every cluster 𝔰 ≠  has size ⩽ g + 1.
FromTheorems 17.3 and 17.4, it follows that there is a hyperelliptic curve𝐶1 ∶ 𝑦2 = 𝑓1(𝑥)which

is 𝐾̄-isomorphic to 𝐶 and has cluster picture Σ1. Applying the formula of Theorem 15.1, we find
that

𝑣(Δ𝐶1
) = 𝑣(𝑐1)(4g + 2) +

∑
𝑣≠𝑧𝑇

𝛿𝑣𝑆(𝑣)(𝑆(𝑣) − 1), (A.1)

where 𝑐1 denotes the leading coefficient of 𝑓1. We will nowmodify the cluster picture Σ1 in order
to find a curve 𝐶2 which is isomorphic to 𝐶 over 𝐾.
Let us first consider the case where 𝑧𝑇 ∈ 𝑉(𝑇𝐶). In that case, we moreover have that |𝔰𝑣| <

g + 1 for all clusters 𝔰𝑣 ≠ . It follows from Theorem 17.5 and the uniqueness of the centre 𝑧𝑇
that there is a 𝐾-isomorphic curve 𝐶2 ∶ 𝑦2 = 𝑓2(𝑥) with cluster picture Σ𝐶2 = Σ1 and 𝑣(𝑐2) = 0,
where 𝑐2 is the leading coefficient of 𝑓2. This completes the first case.
Now consider the case 𝑧𝑇 ∉ 𝑉(𝑇𝐶). Then = 𝔰1 ⊔ 𝔰2, where |𝔰1| = |𝔰2| = g + 1. In this case,

it might be necessary to redistribute depth between the clusters 𝔰1 and 𝔰2, see Definition 17.2.
However, this does not change the valuation of the discriminant since the two clusters have equal
size. Hence, we may still use equation (A.1). If the two clusters 𝔰1 and 𝔰2 are not permuted by
Frobenius, let Σ2 be the cluster picture obtained by redistributing all depth from 𝔰1 to 𝔰2 (or vice
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versa). It follows from 17.5 that there is a 𝐾-isomorphic curve 𝐶2 with this cluster picture and
𝑣(𝑐2) = 0.
In the other case, where the two clusters 𝔰1, 𝔰2 are permuted by Frobenius, we know that there

exists a curve 𝐶2 which is isomorphic to 𝐶 with 𝑣(𝑐2) ∈ {0, 1} and Σ𝐶2 = Σ2, where Σ2 is obtained
from Σ1 by shifting depth 𝑚 ∈ ℚ from 𝔰1 to 𝔰2. It remains to compute 𝑣(𝑐2). For that purpose
denote by 𝛿1 = 𝛿𝔰1 − 𝑚 and 𝛿2 = 𝛿𝔰2 + 𝑚 the new relative depths of the clusters 𝔰1 and 𝔰2. It
follows from the semistability criterion (Theorem 5.1) that 𝑣(𝑐2) ≡ 𝛿1(g + 1) ≡ 𝛿2(g + 1) (mod 2).
If g is odd, this implies 𝑣(𝑐2) = 0. On the other hand, if g is even, wemay assume that 𝛿1 = 𝛿2 (see
Theorem 17.5). Hence, 𝑣(𝑐2) = 1 if and only if 𝛿𝔰𝑖 (g + 1) is odd.
In all cases, we have seen that there is a 𝐾-isomorphic curve for which 𝑣(𝑐2) = 𝐸 and the valu-

ation of the discriminant is given by the formula in the theorem. By Theorem 15.2, this is indeed
the valuation of the minimal discriminant. □

Remark A.8. The cluster picture Σ1 constructed in the proof presents a canonical representative
for the equivalence class of the cluster picture associated to 𝐶 (see Definition 17.2).

Remark A.9. Instead of working with the centred BY tree 𝑇∗
𝐶
, one could also consider the open

BY tree [10, Definition 3.21] obtained by gluing an open yellow edge to the centre of 𝑇𝐶 . The order
on the vertices of this tree and the construction of the cluster picture Σ1 described in the proof of
the theorem then coincide exactly with the definitions in Construction 4.15 in [10].
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