Divisible \mathbb{Z}-modules

Yuichi Futa
Japan Advanced Institute
of Science and Technology
Ishikawa, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Abstract

Summary. In this article, we formalize the definition of divisible \mathbb{Z}-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible \mathbb{Z}-modules are not finitely-generated. We introduce a divisible \mathbb{Z}-module, equivalent to a vector space of a torsion-free \mathbb{Z}-module with a coefficient ring \mathbb{Q}. \mathbb{Z}-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [15, cryptographic systems with lattices 16] and coding theory [8].

MSC: 15A03 16D20 13C13 03B35
Keywords: divisible vector; divisible \mathbb{Z}-module
MML identifier: ZMODUL08, version: 8.1.04 5.36.1267

1. Divisible Module

Let a, b be elements of $\mathbb{F}_{\mathbb{Q}}$ and x, y be rational numbers. We identify $x+y$ with $a+b$. We identify $x \cdot y$ with $a \cdot b$. Let V be a \mathbb{Z}-module and v be a vector of V. We say that v is divisible if and only if
(Def. 1) for every element a of \mathbb{Z}^{R} such that $a \neq 0_{\mathbb{Z}^{\mathrm{R}}}$ there exists a vector u of V such that $a \cdot u=v$.

Let us observe that 0_{V} is divisible and there exists a vector of V which is divisible.

Now we state the propositions:
(1) Let us consider a \mathbb{Z}-module V, and divisible vectors v, u of V. Then $v+u$ is divisible.
(2) Let us consider a \mathbb{Z}-module V, and a divisible vector v of V. Then $-v$ is divisible.
Proof: For every element a of \mathbb{Z}^{R} such that $a \neq 0_{\mathbb{Z}^{\mathrm{R}}}$ there exists a vector w of V such that $-v=a \cdot w$ by [9, (6)]. \square
(3) Let us consider a \mathbb{Z}-module V, a divisible vector v of V, and an element i of \mathbb{Z}^{R}. Then $i \cdot v$ is divisible.
Let V be a \mathbb{Z}-module. We say that V is divisible if and only if
(Def. 2) every vector of V is divisible.
Observe that $\mathbf{0}_{V}$ is divisible and \mathbb{Z}-module \mathbb{Q} is divisible and there exists a \mathbb{Z}-module which is divisible.

Let V be a \mathbb{Z}-module. Let us note that there exists a submodule of V which is divisible and there exists a divisible \mathbb{Z}-module which is non finitely generated.

Now we state the propositions:
(4) (The left integer multiplication of $\left.\mathbb{F}_{\mathbb{Q}}\right) \upharpoonright(\mathbb{Z} \times \mathbb{Z})=$ the left integer multiplication of \mathbb{Z}^{R}.
Proof: Set $a=\left(\right.$ the left integer multiplication of $\left.\mathbb{F}_{\mathbb{Q}}\right) \upharpoonright(\mathbb{Z} \times \mathbb{Z})$. For every object z such that $z \in \operatorname{dom} a$ holds $a(z)=$ (the left integer multiplication of $\left.\mathbb{Z}^{\mathrm{R}}\right)(z)$ by [5, (49)], [13, (15)], [12, (14)].
(5) <the carrier of \mathbb{Z}^{R}, the addition of \mathbb{Z}^{R}, the zero of \mathbb{Z}^{R}, the left integer multiplication of $\left.\mathbb{Z}^{\mathrm{R}}\right\rangle$ is a submodule of \mathbb{Z}-module \mathbb{Q}. The theorem is a consequence of (4).
(6) Let us consider a divisible \mathbb{Z}-module V, and a submodule W of V. Then \mathbb{Z}-ModuleQuot (V, W) is divisible.
Let us note that there exists a divisible \mathbb{Z}-module which is non trivial.
Now we state the proposition:
(7) Let us consider a \mathbb{Z}-module V. Then V is divisible if and only if Ω_{V} is divisible.

Let us consider a \mathbb{Z}-module V and a vector v of V. Now we state the propositions:
(8) If v is not torsion, then $\operatorname{Lin}(\{v\})$ is not divisible.
(9) If v is torsion and $v \neq 0_{V}$, then $\operatorname{Lin}(\{v\})$ is not divisible.

Let V be a non trivial \mathbb{Z}-module and v be a non zero vector of V. Observe that $\operatorname{Lin}(\{v\})$ is non divisible and there exists a submodule of V which is non divisible.

Now we state the propositions:
(10) Every non trivial, finitely generated, torsion-free \mathbb{Z}-module is not divisible.

Proof: Consider I being a finite subset of V such that I is a basis of V. Consider v being an object such that $v \in I . v$ is not divisible by [9, (92)], [12, (19)], [19, (15)], [9, (9)].
(11) Let us consider a non trivial, finitely generated, torsion \mathbb{Z}-module V. Then there exists an element i of \mathbb{Z}^{R} such that
(i) $i \neq 0$, and
(ii) for every vector v of $V, i \cdot v=0_{V}$.

Proof: Define \mathcal{P} [natural number] \equiv for every finite subset I of V such that $\overline{\bar{I}}=\$_{1}$ there exists an element i of \mathbb{Z}^{R} such that $i \neq 0$ and for every vector v of V such that $v \in \operatorname{Lin}(I)$ holds $i \cdot v=0_{V} . \mathcal{P}[0]$ by [10, (67)], [9, (1)]. For every natural number n such that $\mathcal{P}[n]$ holds $\mathcal{P}[n+1]$ by [7, (40)], [10, (72)], [1, (44)], [7, (31)]. For every natural number $n, \mathcal{P}[n]$ from [2, Sch. 2]. Consider I being a finite subset of V such that $\operatorname{Lin}(I)=$ the vector space structure of V. Consider i being an element of \mathbb{Z}^{R} such that $i \neq 0$ and for every vector v of V such that $v \in \operatorname{Lin}(I)$ holds $i \cdot v=0_{V}$. For every vector v of $V, i \cdot v=0_{V}$.
(12) Let us consider a non trivial, finitely generated, torsion \mathbb{Z}-module V, and an element i of \mathbb{Z}^{R}. Suppose $i \neq 0$ and for every vector v of $V, i \cdot v=0_{V}$. Then V is not divisible.
(13) Every non trivial, finitely generated, torsion \mathbb{Z}-module is not divisible. The theorem is a consequence of (11) and (12).
One can verify that there exists a non trivial, finitely generated, torsion \mathbb{Z}-module which is non divisible.

Now we state the proposition:
(14) Every non trivial, finitely generated \mathbb{Z}-module is not divisible. The theorem is a consequence of (13), (6), and (10).
Let us note that every non trivial, divisible \mathbb{Z}-module is non finitely generated.

Let V be a non trivial, non divisible \mathbb{Z}-module. One can verify that there exists a non zero vector of V which is non divisible.

Let V be a non trivial, finite rank, free \mathbb{Z}-module. Observe that rank V is non zero.

Now we state the propositions:
(15) Let us consider a non trivial, free \mathbb{Z}-module V, a non zero vector v of V, and a basis I of V. Then there exists a linear combination L of I and there exists a vector u of V such that $v=\sum L$ and $u \in I$ and $L(u) \neq 0$. Proof: Consider L being a linear combination of I such that $v=\sum L$. The support of $L \neq \emptyset$ by [10, (23)]. Consider u_{1} being an object such that
$u_{1} \in$ the support of L. Consider u being a vector of V such that $u=u_{1}$ and $L(u) \neq 0$.
(16) Let us consider a non trivial, free \mathbb{Z}-module V. Then every non zero vector of V is not divisible. The theorem is a consequence of (15).
Let us observe that every non trivial, free \mathbb{Z}-module is non divisible.
Let us consider a non trivial, free \mathbb{Z}-module V and a non zero vector v of V.
Now we state the propositions:
(17) There exists an element a of \mathbb{Z}^{R} such that
(i) $a \in \mathbb{N}$, and
(ii) for every element b of \mathbb{Z}^{R} and for every vector u of V such that $b>a$ holds $v \neq b \cdot u$.
Proof: Set $I=$ the basis of V. Consider L being a linear combination of I, w being a vector of V such that $v=\sum L$ and $w \in I$ and $L(w) \neq 0$. Reconsider $a=|L(w)|$ as an element of \mathbb{Z}^{R}. For every element b of \mathbb{Z}^{R} and for every vector u of V such that $b>a$ holds $v \neq b \cdot u$ by [10, (64), (31), (53)], [11, (3)].
(18) There exists an element a of \mathbb{Z}^{R} and there exists a vector u of V such that $a \in \mathbb{N}$ and $a \neq 0$ and $v=a \cdot u$ and for every element b of \mathbb{Z}^{R} and for every vector w of V such that $b>a$ holds $v \neq b \cdot w$.
Proof: Define \mathcal{P} [natural number] \equiv there exists a vector u of V and there exists an element k of \mathbb{Z}^{R} such that $k=\$_{1}$ and $v=k \cdot u$. Consider a being an element of \mathbb{Z}^{R} such that $a \in \mathbb{N}$ and for every element b of \mathbb{Z}^{R} and for every vector u of V such that $b>a$ holds $v \neq b \cdot u$. There exists a natural number k such that $\mathcal{P}[k]$. Consider a_{0} being a natural number such that $\mathcal{P}\left[a_{0}\right]$ and for every natural number n such that $\mathcal{P}[n]$ holds $n \leqslant a_{0}$ from [2, Sch. 6]. Reconsider $a=a_{0}$ as an element of \mathbb{Z}^{R}. Consider u being a vector of V such that $v=a \cdot u . a \neq 0$ by [9, (1)]. For every element b of \mathbb{Z}^{R} and for every vector w of V such that $b>a$ holds $v \neq b \cdot w$ by [18, (3)].

2. Divisible Module for Torsion-free \mathbb{Z}-module

Let V be a torsion-free \mathbb{Z}-module. The functor $\operatorname{Embedding}(V)$ yielding a strict \mathbb{Z}-module is defined by
(Def. 3) the carrier of $i t=\operatorname{rng} \operatorname{MorphsZQ}(V)$ and the zero of $i t=\operatorname{zeroCoset}(V)$ and the addition of $i t=\operatorname{addCoset}(V) \upharpoonright \operatorname{rng} \operatorname{MorphsZQ}(V)$ and the left multiplication of $i t=\operatorname{lmult} \operatorname{Coset}(V) \upharpoonright(\mathbb{Z} \times \operatorname{rng} \operatorname{MorphsZQ}(V))$.
Let us consider a torsion-free \mathbb{Z}-module V. Now we state the propositions:
(19) (i) every vector of $\operatorname{Embedding}(V)$ is a vector of $\mathbb{Z}-\operatorname{MQVectSp}(V)$, and
(ii) $0_{\text {Embedding }(V)}=0_{\mathbb{Z}-\operatorname{MQVectSp}(V)}$, and
(iii) for every vectors x, y of $\operatorname{Embedding}(V)$ and for every vectors v, w of $\mathbb{Z}-\operatorname{MQVectSp}(V)$ such that $x=v$ and $y=w$ holds $x+y=v+w$, and
(iv) for every element i of \mathbb{Z}^{R} and for every element j of $\mathbb{F}_{\mathbb{Q}}$ and for every vector x of $\operatorname{Embedding}(V)$ and for every vector v of $\mathbb{Z}-\operatorname{MQVectSp}(V)$ such that $i=j$ and $x=v$ holds $i \cdot x=j \cdot v$.
Proof: Set $Z=\mathbb{Z}-\operatorname{MQVectSp}(V)$. Set $E=\operatorname{Embedding}(V)$. For every vectors x, y of E and for every vectors v, w of Z such that $x=v$ and $y=w$ holds $x+y=v+w$ by [5, (49)]. For every element i of \mathbb{Z}^{R} and for every element j of $\mathbb{F}_{\mathbb{Q}}$ and for every vector x of E and for every vector v of Z such that $i=j$ and $x=v$ holds $i \cdot x=j \cdot v$ by [5, (49)].
(20) (i) for every vectors v, w of $\mathbb{Z}-\operatorname{MQVectSp}(V)$ such that $v, w \in \operatorname{Embedding}(V)$ holds $v+w \in \operatorname{Embedding}(V)$, and
(ii) for every element j of $\mathbb{F}_{\mathbb{Q}}$ and for every vector v of $\mathbb{Z}-\operatorname{MQVectSp}(V)$ such that $j \in \mathbb{Z}$ and $v \in \operatorname{Embedding}(V)$ holds $j \cdot v \in \operatorname{Embedding}(V)$. The theorem is a consequence of (19).
(21) There exists a linear transformation T from V to $\operatorname{Embedding}(V)$ such that
(i) T is bijective, and
(ii) $T=\operatorname{MorphsZQ}(V)$, and
(iii) for every vector v of $V, T(v)=[\langle v, 1\rangle]_{\operatorname{EQRZM}(V)}$.

The theorem is a consequence of (19).
Now we state the proposition:
(22) Let us consider a torsion-free \mathbb{Z}-module V, and a vector v_{1} of $\operatorname{Embedding}(V)$. Then there exists a vector v of V such that $(\operatorname{MorphsZQ}(V))(v)=v_{1}$. The theorem is a consequence of (21).
Let V be a torsion-free \mathbb{Z}-module. The functor $\operatorname{DivisibleMod}(V)$ yielding a strict \mathbb{Z}-module is defined by
(Def. 4) the carrier of $i t=$ Classes $\operatorname{EQRZM}(V)$ and the zero of $i t=\operatorname{zeroCoset}(V)$ and the addition of $i t=\operatorname{addCoset}(V)$ and the left multiplication of $i t=$ $\operatorname{lmult} \operatorname{Coset}(V) \upharpoonright(\mathbb{Z} \times \operatorname{Classes} \operatorname{EQRZM}(V))$.
Now we state the proposition:
(23) Let us consider a torsion-free \mathbb{Z}-module V, a vector v of $\operatorname{DivisibleMod}(V)$, and an element a of \mathbb{Z}^{R}. Suppose $a \neq 0$. Then there exists a vector u of DivisibleMod (V) such that $a \cdot u=v$.

Proof: For every vector v of $\operatorname{DivisibleMod}(V)$ and for every element a of \mathbb{Z}^{R} such that $a \neq 0$ there exists a vector u of $\operatorname{DivisibleMod}(V)$ such that $a \cdot u=v$ by [5, (49)], [7, (87)].
Let V be a torsion-free \mathbb{Z}-module. Let us observe that $\operatorname{DivisibleMod}(V)$ is divisible.

Now we state the proposition:
(24) Let us consider a torsion-free \mathbb{Z}-module V. Then $\operatorname{Embedding}(V)$ is a submodule of DivisibleMod (V).
Proof: Set $E=\operatorname{Embedding}(V)$. Set $D=\operatorname{DivisibleMod}(V)$. For every object x such that $x \in$ the carrier of E holds $x \in$ the carrier of D by [6, (11), (5)]. The left multiplication of $E=$ (the left multiplication of $D) \upharpoonright\left(\left(\right.\right.$ the carrier of $\left.\left.\mathbb{Z}^{\mathrm{R}}\right) \times \operatorname{rng} \operatorname{MorphsZQ}(V)\right)$ by [20, (74)], [7, (96)].
Let V be a finitely generated, torsion-free \mathbb{Z}-module. One can check that Embedding (V) is finitely generated.

Let V be a non trivial, torsion-free \mathbb{Z}-module. Observe that Embedding (V) is non trivial.

Let G be a field, V be a vector space over G, W be a subset of V, and a be an element of G. The functor $a \cdot W$ yielding a subset of V is defined by the term
(Def. 5) $\quad\{a \cdot u$, where u is a vector of $V: u \in W\}$.
Let V be a torsion-free \mathbb{Z}-module and r be an element of $\mathbb{F}_{\mathbb{Q}}$. The functor Embedding (r, V) yielding a strict \mathbb{Z}-module is defined by
(Def. 6) the carrier of $i t=r \cdot r n g \operatorname{MorphsZQ}(V)$ and the zero of $i t=\operatorname{zeroCoset}(V)$ and the addition of $i t=\operatorname{addCoset}(V) \upharpoonright(r \cdot$ rng $\operatorname{MorphsZQ}(V))$ and the left multiplication of $i t=$
$\operatorname{lmultCoset}(V) \upharpoonright\left(\left(\right.\right.$ the carrier of $\left.\left.\mathbb{Z}^{\mathrm{R}}\right) \times(r \cdot \operatorname{rng} \operatorname{MorphsZQ}(V))\right)$.
Let us consider a torsion-free \mathbb{Z}-module V and an element r of $\mathbb{F}_{\mathbb{Q}}$. Now we state the propositions:
(25) (i) every vector of $\operatorname{Embedding}(r, V)$ is a vector of \mathbb{Z} - $\operatorname{MQVectSp}(V)$, and
(ii) $0_{\text {Embedding }(r, V)}=0_{\mathbb{Z}-\operatorname{MQVectSp}(V)}$, and
(iii) for every vectors x, y of $\operatorname{Embed} \operatorname{ding}(r, V)$ and for every vectors v, w of \mathbb{Z}-MQVectSp (V) such that $x=v$ and $y=w$ holds $x+y=v+w$, and
(iv) for every element i of \mathbb{Z}^{R} and for every element j of $\mathbb{F}_{\mathbb{Q}}$ and for every vector x of Embedding (r, V) and for every vector v of \mathbb{Z} - $\operatorname{MQVectSp}(V)$ such that $i=j$ and $x=v$ holds $i \cdot x=j \cdot v$.
Proof: Set $Z=\mathbb{Z}$-MQVectSp (V). Set $E=\operatorname{Embedding}(r, V)$. For every vectors x, y of E and for every vectors v, w of Z such that $x=v$ and
$y=w$ holds $x+y=v+w$ by [5, (49)]. For every element i of \mathbb{Z}^{R} and for every element j of $\mathbb{F}_{\mathbb{Q}}$ and for every vector x of E and for every vector v of Z such that $i=j$ and $x=v$ holds $i \cdot x=j \cdot v$ by [5, (49)].
(i) for every vectors v, w of $\mathbb{Z}-\operatorname{MQVectSp}(V)$ such that $v, w \in \operatorname{Embedding}(r, V)$ holds $v+w \in \operatorname{Embedding}(r, V)$, and
(ii) for every element j of $\mathbb{F}_{\mathbb{Q}}$ and for every vector v of \mathbb{Z} - $\operatorname{MQVectSp}(V)$ such that $j \in \mathbb{Z}$ and $v \in \operatorname{Embedding}(r, V)$ holds $j \cdot v \in \operatorname{Embedding}(r, V)$. The theorem is a consequence of (25).
(27) Suppose $r \neq 0_{\mathbb{F}_{\mathbb{Q}}}$. Then there exists a linear transformation T from Embedding (V) to Embedding (r, V) such that
(i) for every element v of \mathbb{Z} - $\operatorname{MQVectSp}(V)$ such that $v \in \operatorname{Embedding}(V)$ holds $T(v)=r \cdot v$, and
(ii) T is bijective.

Proof: Set $Z=\mathbb{Z}$-MQVectSp (V). Define \mathcal{F} (vector of $Z)=r \cdot \$_{1}$. Consider T being a function from the carrier of Z into the carrier of Z such that for every element x of the carrier of $Z, T(x)=\mathcal{F}(x)$ from [6, Sch. 4]. Set $T_{0}=T \upharpoonright$ (the carrier of Embedding $\left.(V)\right)$. For every object $y, y \in \operatorname{rng} T_{0}$ iff $y \in$ the carrier of Embedding (r, V) by [5, (49)]. T_{0} is additive by (19), (20), [5, (49)], (25). For every element x of $\operatorname{Embedding}(V)$ and for every element i of $\mathbb{Z}^{\mathrm{R}}, T_{0}(i \cdot x)=i \cdot T_{0}(x)$ by (19), (20), [5, (49)], (25). For every element v of $\mathbb{Z}-\operatorname{MQVectSp}(V)$ such that $v \in \operatorname{Embedding}(V)$ holds $T_{0}(v)=r \cdot v$ by [5, (49)]. For every objects x_{1}, x_{2} such that $x_{1}, x_{2} \in$ the carrier of Embedding (V) and $T_{0}\left(x_{1}\right)=T_{0}\left(x_{2}\right)$ holds $x_{1}=x_{2}$ by [14, (20)].
Now we state the propositions:
(28) Let us consider a torsion-free \mathbb{Z}-module V, and a vector v of V. Then $[\langle v, 1\rangle]_{\operatorname{EQRZM}(V)} \in \operatorname{Embedding}(V)$.
(29) Let us consider a torsion-free \mathbb{Z}-module V, and a vector v of DivisibleMod (V). Then there exists an element a of \mathbb{Z}^{R} such that
(i) $a \neq 0$, and
(ii) $a \cdot v \in \operatorname{Embedding}(V)$.

The theorem is a consequence of (28).
Let V be a torsion-free \mathbb{Z}-module. One can check that $\operatorname{DivisibleMod}(V)$ is torsion-free and Embedding (V) is torsion-free.

Let V be a free \mathbb{Z}-module. Let us note that $\operatorname{Embedding}(V)$ is free.
Let us consider a torsion-free \mathbb{Z}-module V. Now we state the propositions:
(i) every vector of \mathbb{Z} - $\operatorname{MQVectSp}(V)$ is a vector of $\operatorname{DivisibleMod}(V)$, and
(ii) every vector of $\operatorname{DivisibleMod}(V)$ is a vector of $\mathbb{Z}-\operatorname{MQVectSp}(V)$, and
(iii) $0_{\text {DivisibleMod }(V)}=0_{\mathbb{Z}-\operatorname{MQVectSp}(V)}$.
(31) (i) for every vectors x, y of $\operatorname{DivisibleMod}(V)$ and for every vectors v, u of $\mathbb{Z}-\operatorname{MQVectSp}(V)$ such that $x=v$ and $y=u$ holds $x+y=v+u$, and
(ii) for every vector z of $\operatorname{DivisibleMod}(V)$ and for every vector w of $\mathbb{Z}-\operatorname{MQVectSp}(V)$ and for every element a of \mathbb{Z}^{R} and for every element a_{1} of $\mathbb{F}_{\mathbb{Q}}$ such that $z=w$ and $a=a_{1}$ holds $a \cdot z=a_{1} \cdot w$, and
(iii) for every vector z of $\operatorname{DivisibleMod}(V)$ and for every vector w of $\mathbb{Z}-\operatorname{MQVectSp}(V)$ and for every element a_{1} of $\mathbb{F}_{\mathbb{Q}}$ and for every element a of \mathbb{Z}^{R} such that $a \neq 0$ and $a_{1}=a$ and $a \cdot z=a_{1} \cdot w$ holds $z=w$, and
(iv) for every vector x of $\operatorname{DivisibleMod}(V)$ and for every vector v of $\mathbb{Z}-\operatorname{MQVectSp}(V)$ and for every element r of $\mathbb{F}_{\mathbb{Q}}$ and for every elements m, n of \mathbb{Z}^{R} and for every integers m_{1}, n_{1} such that $m=m_{1}$ and $n=n_{1}$ and $x=v$ and $r \neq 0_{\mathbb{F}_{\mathbb{Q}}}$ and $n \neq 0$ and $r=\frac{m_{1}}{n_{1}}$ there exists a vector y of $\operatorname{DivisibleMod}(V)$ such that $x=n \cdot y$ and $r \cdot v=m \cdot y$.
Proof: For every vector z of $\operatorname{DivisibleMod}(V)$ and for every vector w of \mathbb{Z}-MQVectSp (V) and for every element a of \mathbb{Z}^{R} and for every element a_{1} of $\mathbb{F}_{\mathbb{Q}}$ such that $z=w$ and $a=a_{1}$ holds $a \cdot z=a_{1} \cdot w$ by [5, (49)], [7, (87)]. For every vector z of $\operatorname{DivisibleMod}(V)$ and for every vector w of $\mathbb{Z}-\mathrm{MQVectSp}(V)$ and for every element a_{1} of $\mathbb{F}_{\mathbb{Q}}$ and for every element a of \mathbb{Z}^{R} such that $a \neq 0$ and $a_{1}=a$ and $a \cdot z=a_{1} \cdot w$ holds $z=w$ by (30), [9, (8)], [19, (15), (21)]. For every vector x of $\operatorname{DivisibleMod(~} V$) and for every vector v of \mathbb{Z}-MQVectSp (V) and for every element r of $\mathbb{F}_{\mathbb{Q}}$ and for every elements m, n of \mathbb{Z}^{R} and for every integers m_{1}, n_{1} such that $m=m_{1}$ and $n=n_{1}$ and $x=v$ and $r \neq 0_{\mathbb{F}_{\mathbb{Q}}}$ and $n \neq 0$ and $r=\frac{m_{1}}{n_{1}}$ there exists a vector y of $\operatorname{DivisibleMod}(V)$ such that $x=n \cdot y$ and $r \cdot v=m \cdot y$.
Now we state the proposition:
(32) Let us consider a torsion-free \mathbb{Z}-module V, and an element r of $\mathbb{F}_{\mathbb{Q}}$. Then Embedding (r, V) is a submodule of $\operatorname{DivisibleMod}(V)$. The theorem is a consequence of (25) and (30).
Let V be a finitely generated, torsion-free \mathbb{Z}-module and r be an element of $\mathbb{F}_{\mathbb{Q}}$. Observe that Embedding (r, V) is finitely generated.

Let V be a non trivial, torsion-free \mathbb{Z}-module and r be a non zero element of $\mathbb{F}_{\mathbb{Q}}$. One can verify that Embedding (r, V) is non trivial.

Let V be a torsion-free \mathbb{Z}-module and r be an element of $\mathbb{F}_{\mathbb{Q}}$. Observe that Embedding (r, V) is torsion-free.

Let V be a free \mathbb{Z}-module and r be a non zero element of $\mathbb{F}_{\mathbb{Q}}$. One can check that Embedding (r, V) is free.

Now we state the propositions:
(33) Let us consider a non trivial, free \mathbb{Z}-module V, and a vector v of DivisibleMod (V). Then there exists an element a of \mathbb{Z}^{R} such that
(i) $a \in \mathbb{N}$, and
(ii) $a \neq 0$, and
(iii) $a \cdot v \in \operatorname{Embedding}(V)$, and
(iv) for every element b of \mathbb{Z}^{R} such that $b \in \mathbb{N}$ and $b<a$ and $b \neq 0$ holds $b \cdot v \notin \operatorname{Embedding}(V)$.

Proof: Consider a_{1} being an element of \mathbb{Z}^{R} such that $a_{1} \neq 0$ and $a_{1} \cdot v \in$ $\operatorname{Embedding}(V) .\left|a_{1}\right| \cdot v \in \operatorname{Embedding}(V)$ by (24), [9, (16), (30)]. Define \mathcal{P} [natural number] \equiv there exists an element n of \mathbb{Z}^{R} such that $n=\$_{1}$ and $n \in \mathbb{N}$ and $n \neq 0$ and $n \cdot v \in \operatorname{Embedding}(V)$. There exists a natural number k such that $\mathcal{P}[k]$ and for every natural number n such that $\mathcal{P}[n]$ holds $k \leqslant n$ from [2, Sch. 5]. Consider a_{0} being a natural number such that $\mathcal{P}\left[a_{0}\right]$ and for every natural number b_{0} such that $\mathcal{P}\left[b_{0}\right]$ holds $a_{0} \leqslant b_{0}$.
(34) Let us consider a finite rank, free \mathbb{Z}-module V. Then $\operatorname{rank} \operatorname{Embedding}(V)=$ rank V. The theorem is a consequence of (21).
Let us consider a finite rank, free \mathbb{Z}-module V and a non zero element r of $\mathbb{F}_{\mathbb{Q}}$. Now we state the propositions:
(35) $\operatorname{rank} \operatorname{Embedding}(r, V)=\operatorname{rank} \operatorname{Embedding}(V)$. The theorem is a consequence of (27).
(36) $\operatorname{rank} \operatorname{Embedding}(r, V)=\operatorname{rank} V$. The theorem is a consequence of (35) and (34).
Observe that every non trivial, torsion-free \mathbb{Z}-module is infinite.
Now we state the propositions:
(37) Let us consider a \mathbb{Z}-module V. Then there exists a subset A of V such that
(i) A is linearly independent, and
(ii) for every vector v of V, there exists an element a of \mathbb{Z}^{R} such that $a \in \mathbb{N}$ and $a>0$ and $a \cdot v \in \operatorname{Lin}(A)$.

Proof: Consider A being a subset of V such that $\emptyset \subseteq A$ and A is linearly independent and for every vector v of V, there exists an element a_{1} of \mathbb{Z}^{R} such that $a_{1} \neq 0$ and $a_{1} \cdot v \in \operatorname{Lin}(A)$. For every vector v of V, there exists
an element a of \mathbb{Z}^{R} such that $a \in \mathbb{N}$ and $a>0$ and $a \cdot v \in \operatorname{Lin}(A)$ by [17, (2)], [4, (46)], [18, (3)], [9, (16), (38)].
(38) Let us consider a non trivial, torsion-free \mathbb{Z}-module V, a non zero vector v of V, a subset A of V, and an element a of \mathbb{Z}^{R}. Suppose $a \in \mathbb{N}$ and A is linearly independent and $a>0$ and $a \cdot v \in \operatorname{Lin}(A)$. Then there exists a linear combination L of A and there exists a vector u of V such that $a \cdot v=\sum L$ and $u \in A$ and $L(u) \neq 0$.
Proof: Consider L being a linear combination of A such that $a \cdot v=\sum L$. The support of $L \neq \emptyset$ by [10, (23)]. Consider u_{1} being an object such that $u_{1} \in$ the support of L. Consider u being a vector of V such that $u=u_{1}$ and $L(u) \neq 0$.
(39) Let us consider a torsion-free \mathbb{Z}-module V, a non zero integer i, and non zero elements r_{1}, r_{2} of $\mathbb{F}_{\mathbb{Q}}$. Suppose $r_{2}=\frac{r_{1}}{i}$. Then Embedding $\left(r_{1}, V\right)$ is a submodule of Embedding $\left(r_{2}, V\right)$.
Proof: For every vector x of $\operatorname{DivisibleMod}(V)$ such that $x \in \operatorname{Embedding}\left(r_{1}\right.$, $V)$ holds $x \in \operatorname{Embedding}\left(r_{2}, V\right)$ by (27), [6, (11)], (19), [6, (5)]. Embedding $\left(r_{1}, V\right)$ is a submodule of $\operatorname{DivisibleMod}(V)$ and $\operatorname{Embedding}\left(r_{2}, V\right)$ is a submodule of DivisibleMod(V).
(40) Let us consider a finite rank, free \mathbb{Z}-module V, and a submodule Z of DivisibleMod (V). Then Z is finitely generated if and only if there exists a non zero element r of $\mathbb{F}_{\mathbb{Q}}$ such that Z is a submodule of Embedding (r, V). The theorem is a consequence of (32), (29), (19), (27), (31), and (39).

References

[1] Grzegorz Bancerek. Cardinal arithmetics Formalized Mathematics, 1(3):543-547, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[4] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[5] Czesław Byliński. Functions and their basic properties Formalized Mathematics, 1(1): 55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Some basic properties of sets Formalized Mathematics, 1(1):47-53, 1990.
[8] Wolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.
[9] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. \mathbb{Z}-modules. Formalized Mathematics, 20(1):47-59, 2012. doi $10.2478 / \mathrm{v} 10037-012-0007-\mathrm{z}$.
[10] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of \mathbb{Z}-module. Formalized Mathematics, 20(3):205-214, 2012. doi $10.2478 / \mathrm{v} 10037-012-0024-\mathrm{y}$
[11] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Free \mathbb{Z}-module. Formalized Mathematics, 20(4):275-280, 2012. doi 10.2478/v10037-012-0033-x.
[12] Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, and Yasunari Shidama. Torsion \mathbb{Z}-module and torsion-free \mathbb{Z}-module. Formalized Mathematics, 22(4):277-289, 2014. doi:10.2478/forma-2014-0028
[13] Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Torsion part of \mathbb{Z}-module. Formalized Mathematics, 23(4):297-307, 2015. doi:10.1515/forma-2015-0024.
[14] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[15] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 1982.
[16] Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective. The International Series in Engineering and Computer Science, 2002.
[17] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[18] Michał J. Trybulec. Integers Formalized Mathematics, 1(3):501-505, 1990.
[19] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.

Received December 30, 2015

