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Introduction

The question we deal with in this thesis is the following:

Question. What is the Kodaira dimension of the moduli space of polarised K3 surfaces of degree 2𝑑𝑑,
for a given positive integer 𝑑𝑑?

We shall introduce the objects involved in this question, give an overview of the partial answers that
were obtained by others, and describe the strategy we have used to get some further answers and
confirmation of existing results.

The geometric objects we study are smooth projective K3 surfaces over the complex numbers.
K3 surfaces by definition have a trivial canonical bundle and trivial fundamental group. Standard
examples of K3 surfaces are a double cover of ℙ2 branched along a smooth sextic curve, a smooth
quartic hypersurface in ℙ3, a smooth complete intersection of a quadric and a cubic hypersurface in
ℙ4, a smooth complete intersection of three quadric hypersurfaces in ℙ5, and the desingularisation of
the quotient of an abelian surface by the group inversion 𝑎𝑎 𝑎 𝑎𝑎𝑎.

Their trivial canonical bundle makes K3 surfaces an analogue of elliptic curves in higher dimension,
like abelian varieties. They have been studied for a long time, for instance by Kummer as early as
1864, but also by the Italian school, in particular Enriques and Severi.

André Weil suggested the name “K3” in the 1950s after the geometers Kähler, Kodaira and Kum-
mer, and also after the mountain K2 that was famously first summitted in those years. Weil proposed
a programme to study these surfaces and their moduli space. A moduli space of a class of objects is
a parameter space, in which all such objects are catalogued: points of the moduli space correspond
to isomorphism classes of objects. The properties that Weil expected to hold of this moduli space to-
gether imply that this moduli space of K3 surfaces can be described in a concrete way, as the quotient
of some 20-dimensional complex domain by a discrete group action. This would be the analogue of
the description of the moduli space of elliptic curves as the quotient of the upper half-plane by the
group SL(2, ℤ). Over the course of the next decades, Weil’s expectations were shown to be correct
by the work of many different mathematicians, among them Kodaira, Siu, Shah, Kulikov, Todorov,
Looijenga, Piatetskii-Shapiro, Shafarevich and Friedman.

There exists a coarse moduli space of K3 surfaces, but it is not separated (Hausdorff, in complex-
analytical language). Instead, one usually considers K3 surfaces together with a choice of (quasi-)
polarisation (a primitive nef and big line bundle: see definition 1.1.3). A K3 surface 𝑆𝑆 together with
a choice of a polarisation 𝐻𝐻 is called a polarised K3 surface. One may think of this as an object
intermediate between an abstract K3 surface and one embedded in a projective space. Also note that
on a K3 surface the map 𝑐𝑐1 taking a line bundle to its first Chern class is injective, so we may identify
the polarisation line bundle with a cohomology class.

Polarised K3 surfaces have a discrete invariant called the degree: the self-intersection 𝐻𝐻2 of the
polarisation 𝐻𝐻 on the surface 𝑆𝑆, or equivalently, the cup product of the cohomology class 𝑐𝑐1(𝐻𝐻) with
itself. Because this degree is always even, it is commonly written as 2𝑑𝑑, where 𝑑𝑑 is then a positive
integer. Alternatively, we may parametrise the possible degrees by the number 𝑔𝑔 𝑔 𝑑𝑑 𝑔𝑔; this number
𝑔𝑔 𝑔 2 is called the genus of the polarised K3 surface: it equals the genus of any smooth divisor in the
polarisation class 𝐻𝐻.

The moduli space of polarised K3 surfaces thus splits up as a disjoint union of components ℱ2𝑑𝑑,
one for every positive integer 𝑑𝑑. These components turn out to be better behaved than the moduli
space of K3 surfaces without polarisation: they are irreducible quasi-projective varieties by the work
of Baily–Borel [2], each of dimension 𝑔9.

It is now a natural question to ask for the birational type of these moduli spaces ℱ2𝑑𝑑. More
specifically, we would like to compute the Kodaira dimension of each of them.

Recall that the Kodaira dimension is a birational invariant of algebraic varieties which measures

viii
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the dimension of the canonical model of the variety (i.e., the stable image of the variety under the
maps to projective space given by sections of tensor powers of the canonical bundle). We write 𝜅𝜅𝜅𝜅𝜅𝜅
for the Kodaira dimension of a variety 𝜅𝜅. It takes value either −∞ or a number between 0 and the
dimension of 𝜅𝜅. For example, in the case of curves the Kodaira dimension discriminates between
curves of genus 0 (having Kodaira dimension −∞), genus 1 (of Kodaira dimension 0) and genus at
least 2 (those all have Kodaira dimension 1). All rational varieties – even all unirational ones –
have Kodaira dimension −∞; they are in some sense the simplest possible. At the other end of the
spectrum, the varieties having Kodaira dimension equal to their dimension are typically harder to
classify, and are said to be of general type.

As a comparison, for the moduli space ℳ𝑔𝑔 of curves of genus 𝑔𝑔 one can ask the same question
about the Kodaira dimension. It was hailed as a big breakthrough in the 1980s when Harris and
Mumford proved that for 𝑔𝑔 large enough these moduli spaces are of general type. It was then natural
to ask for the Kodaira dimension of other moduli spaces too, in particular for abelian varieties and
for K3 surfaces.

In the next section, we give an overview of what is currently known about the Kodaira dimension
of ℱ2𝑑𝑑.

Previous work
For 𝑑𝑑 ∈ {1, 2, 3, 4} there are well-known explicit constructions of polarised K3 surfaces: as a branched
cover of ℙ2, respectively as a complete intersection of hypersurfaces in some projective space. These
constructions each give rise to a birational map between the moduli space ℱ2𝑑𝑑 and a quotient of a
projective space by a linear group. In particular, ℱ2𝑑𝑑 is unirational in those cases.

Mukai has extended that result to some slightly higher values of 𝑑𝑑, proving that ℱ2𝑑𝑑 is unirational
(hence 𝜅𝜅𝜅ℱ2𝑑𝑑𝜅 = −∞) for 𝑑𝑑 ∈ {5, 6, 7, 8, 9} (see [32]), for 𝑑𝑑 ∈ {10} (see [34]), for 𝑑𝑑 ∈ {11, 12} (see [35]),
for 𝑑𝑑 ∈ {15} (see [36]) and also for 𝑑𝑑 ∈ {17, 19} (see [33]).

In the other direction, Kondō has shown in [25] that ℱ2𝑝𝑝2 is of general type for large enough
primes 𝑝𝑝, and later in [26] that the Kodaira dimension of ℱ2𝑑𝑑 is non-negative if

𝑑𝑑 ∈ {42, 43, 51, 53, 55, 57, 59, 61, 66, 67, 69, 74, 83, 85, 105, 119, 133} .

Gritsenko, Hulek and Sankaran more recently proved [18] that ℱ2𝑑𝑑 is of general type for all
𝑑𝑑 𝑑 61 and also for 𝑑𝑑 ∈ {46, 50, 54, 57, 58, 60}, and that its Kodaira dimension is non-negative for
𝑑𝑑 ∈ {40, 42, 43, 46, 48, 49, 51, 52, 53, 55, 56, 59, 61}. It was noted by the author and Sankaran in [40]
that their method also applies to the case 𝑑𝑑 = 52, proving that ℱ2·52 is of general type.

Arithmetic description
Mukai’s unirationality results for low values of 𝑑𝑑 depend on a construction of these polarised K3
surfaces as complete intersections in some homogeneous space. In all other results a crucial role is
played by an alternative description of the moduli space ℱ2𝑑𝑑, as a so-called locally symmetric domain,
or arithmetic quotient. See for instance [4] and [22]; more details and references can be found in
section 4.1.

This description of the moduli space of polarised K3 surfaces as an arithmetic quotient is a natural
analogue of the presentation of the moduli space of elliptic curves as the quotient SL𝜅2, ℤ𝜅\ℍ of the
upper half-plane by the special linear group. As in the case of elliptic curves, it connects the geometry
of the moduli space to the theory of automorphic forms.

The starting point of this description is the observation that all K3 surfaces 𝑆𝑆 have isomorphic
second cohomology groups: H2𝜅𝑆𝑆, ℤ𝜅 is torsion-free of rank 22. The cup product gives a bilinear form
on this group, making it into a lattice, and the lattice isomorphism class of this cohomology group is
also the same for all K3 surfaces: H2𝜅𝑆𝑆, ℤ𝜅 ≅ 𝐿𝐿𝐾𝐾𝐾 as lattices, where 𝐿𝐿𝐾𝐾𝐾 is the so-called K3 lattice:

𝐿𝐿𝐾𝐾𝐾 = 𝑈𝑈⊕𝐾 ⊕ 𝐸𝐸8𝜅−1𝜅⊕2 ,

where 𝑈𝑈 is the rank 2 hyperbolic lattice and 𝐸𝐸8𝜅−1𝜅 the negative definite unimodular even lattice of
rank 8.

This cohomology lattice thus does not distinguish among different K3 surfaces. However, we may
retain some information about the complex algebraic structure of the K3 surface 𝑆𝑆 by not only taking
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x INTRODUCTION

its middle cohomology group, but also including the Hodge decomposition of the second cohomology
group:

H2(𝑆𝑆𝑆 𝑆𝑆 𝑆 𝑆 𝑆 H2,0(𝑆𝑆𝑆 𝑆 H1,1(𝑆𝑆𝑆 𝑆 H0,2(𝑆𝑆𝑆 .
This decomposition is completely determined by the position of the 1-dimensional subspace H2,0(𝑆𝑆𝑆
of holomorphic 2-forms on 𝑆𝑆 within the 22-dimensional complex vector space H2(𝑆𝑆𝑆 𝑆𝑆 𝑆 𝑆.

These considerations lead us to the so-called period map, which associates to a K3 surface 𝑆𝑆 and
an identification H2(𝑆𝑆𝑆 𝑆𝑆 ≅ 𝐿𝐿𝐾𝐾𝐾 the point of the projective space ℙ(𝐿𝐿𝐾𝐾𝐾𝑆 𝑆 𝑆 corresponding to
the complex line H2,0(𝑆𝑆𝑆 𝑆 H2(𝑆𝑆𝑆 𝑆𝑆 𝑆 𝑆. It is now a crucial fact due to Piatetskii-Shapiro and
Shafarevich [41] that we can recover the complex-algebraic structure of the K3 surface from its period
point (i.e., its image under the period map); this is a form of the Torelli theorem.

One would like to exploit this fact to get a concrete description of the moduli space of polarised
K3 surfaces. To do so, we perform some modifications to the period map. First of all, because the
isomorphism H2(𝑆𝑆𝑆 𝑆𝑆 ≅ 𝐿𝐿𝐾𝐾𝐾 of lattices is not unique, we are forced to quotient out by the automor-
phism group O(𝐿𝐿𝐾𝐾𝐾𝑆 of the K3 lattice. This gives us a well-defined map from the set of isomorphism
classes of K3 surfaces (without choice of identification) to the quotient space O(𝐿𝐿𝐾𝐾𝐾𝑆\(ℙ(𝐿𝐿𝐾𝐾𝐾𝑆 𝑆 𝑆𝑆.
Secondly, because we look at K3 surfaces with a choice of (quasi-)polarisation 𝐻𝐻 (of degree 2𝑑𝑑, say),
the subspace H1,1(𝑆𝑆𝑆 𝑆 H2(𝑆𝑆𝑆 𝑆𝑆 always contains the class 𝑐𝑐1(𝐻𝐻𝑆 of square 2𝑑𝑑, which is orthogonal
to the subspace H2,0(𝑆𝑆𝑆. We may as well remove this superfluous piece of information by taking as
codomain of the period map not ℙ(𝐿𝐿𝐾𝐾𝐾 𝑆 𝑆𝑆, but ℙ(𝐿𝐿2𝑑𝑑 𝑆 𝑆𝑆, where

𝐿𝐿2𝑑𝑑 𝑆 ⟨−2𝑑𝑑𝑑 𝑆 𝑑𝑑𝑆2 𝑆 𝐸𝐸8(−1𝑆𝑆2 .

In doing so, we have to change the group from O(𝐿𝐿𝐾𝐾𝐾𝑆 to the stable orthogonal group Õ(𝐿𝐿2𝑑𝑑𝑆 (see
section 2.3 for definitions). As a final modification, the Hodge–Riemann relations tell us that the
image of the period map is contained in the subset

𝒟𝒟2𝑑𝑑 ∪ 𝒟𝒟2𝑑𝑑 𝑆 {𝑆𝑧𝑧 𝑧 (𝑧𝑧𝑆 𝑧𝑧𝑆 𝑆 𝑧𝑆 (𝑧𝑧𝑆 𝑧𝑧𝑧𝑆 𝑧 𝑧𝑧 𝑆 ℙ(𝐿𝐿2𝑑𝑑 𝑆 𝑆𝑆 ,

and we may further restrict to a single component 𝒟𝒟2𝑑𝑑 if we also replace the group Õ(𝐿𝐿2𝑑𝑑𝑆 by its
index two subgroup Õ+(𝐿𝐿2𝑑𝑑𝑆 (again see section 2.3). The space 𝒟𝒟2𝑑𝑑 is called the period domain.

Once we have done all this, the injectivity given by the Torelli theorem and a surjectivity theorem
due to Todorov [51] assert that the modified period map is an isomorphism from the coarse moduli
space of polarised K3 surfaces of degree 2𝑑𝑑 to the arithmetic quotient space

ℱ2𝑑𝑑 𝑆 Õ+(𝐿𝐿𝑆\𝒟𝒟2𝑑𝑑 .

This means that the general theory of arithmetic quotients can be applied to our moduli space.

Remark. Note that the surjectivity does not require removing hyperplanes orthogonal to −2-vectors
from the period domain, as is commonly done: see for instance [22, theorem 2.9]. The reason is that
we allow our quasi-polarisations to be non-ample.

Picard group of ℱ2𝑑𝑑
Our research has focused for a large part on the rational Picard group of the moduli space ℱ2𝑑𝑑.

The arithmetic description gives rise to a set of divisors on ℱ2𝑑𝑑 called Heegner divisors (see section
4.2). On the level of the period domain 𝒟𝒟2𝑑𝑑 these are simply subsets of points orthogonal to a given
vector 𝑣𝑣 ∈ 𝐿𝐿2𝑑𝑑 𝑆 ℚ of negative norm. As any multiple of 𝑣𝑣 gives the same divisor, we might as well
normalise 𝑣𝑣 to be a primitive vector in 𝐿𝐿2𝑑𝑑. To get a divisor on the quotient ℱ2𝑑𝑑 𝑆 Õ+(𝐿𝐿2𝑑𝑑𝑆\𝒟𝒟2𝑑𝑑,
just take the union of the orthogonal complements of an Õ+(𝐿𝐿2𝑑𝑑𝑆-invariant set of such vectors 𝑣𝑣.

The Õ+(𝐿𝐿2𝑑𝑑𝑆-orbits of primitive vectors 𝑣𝑣 ∈ 𝐿𝐿2𝑑𝑑 are parametrised by two pieces of data (see lemma
2.3.8): in terms of the vector 𝑣𝑣∗ (the rational positive multiple of 𝑣𝑣 that is primitive in the dual lattice
𝐿𝐿∨

2𝑑𝑑 – see section 2.2), these are the norm of 𝑣𝑣∗ and the class of 𝑣𝑣∗ in the discriminant group

𝐷𝐷𝐿𝐿2𝑑𝑑
𝑆 𝐿𝐿∨

2𝑑𝑑/𝐿𝐿2𝑑𝑑 ≅ 𝑆/2𝑑𝑑𝑆 ;

for a discussion of the discriminant group, see section 2.2.
Therefore, the Heegner divisors on ℱ2𝑑𝑑 are parametrised by a class 𝛾𝛾 ∈ 𝐷𝐷𝐿𝐿2𝑑𝑑

≅ 𝑆/2𝑑𝑑𝑆 and a
number 𝑛𝑛 ∈ ℚ<0 such that 𝑛𝑛 ∈ 𝑆 − 𝛾𝛾2/2; we denote them by 𝐻𝐻(𝛾𝛾𝑆 𝑛𝑛𝑆. Through the period map, these
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divisors also correspond to interesting subsets of the moduli space of polarised K3 surfaces. The divisor
𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻 corresponds to a so-called Noether–Lefschetz divisor 𝐷𝐷ℎ,𝑎𝑎: that is the locus of polarised K3
surfaces 𝐻𝑆𝑆𝐻 𝐻𝐻𝐻 having a line bundle Γ independent of 𝐻𝐻 with intersection numbers Γ2 = 2ℎ − 2 and
Γ · 𝐻𝐻 = 𝐻𝐻. There is an explicit relation between 𝐻𝐻𝐻𝐻 𝐻𝐻𝐻 and 𝐻ℎ𝐻 𝐻𝐻𝐻: see lemma 4.2.7.

A few questions immediately arise: can we compute linear relations between the Heegner divisors
𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻? Do the Heegner divisors span the rational Picard group Picℚ𝐻ℱ2𝑑𝑑𝐻? What is the dimension
of Picℚ𝐻ℱ2𝑑𝑑𝐻 as a function of 𝑑𝑑?

To start with the last question: O’Grady showed [39] that as the polarisation degree 2𝑑𝑑 increases,
the dimension of the Picard group Picℚ𝐻ℱ2𝑑𝑑𝐻 is unbounded: this was a first indication that the situation
is very different from the case of the moduli spaces of curves.

Borcherds [6] has devised a very general construction of modular forms on arithmetic quotient
spaces, and the vanishing and singular locus of these modular forms is supported on Heegner divisors
(see section 4.3). This gives us a way to compute relations between Heegner divisors. Additionally,
Bruinier [10] has proved that in fact all relations between Heegner divisors arise in this way. That
means that we can compute the image of all Heegner divisors in Picℚ𝐻ℱ2𝑑𝑑𝐻, including explicit linear
relations, by exhaustively applying Borcherds’ construction.

The input datum to Borcherds’ construction is also a modular form, but of a much simpler type:
it lives not on the big symmetric domain 𝒟𝒟2𝑑𝑑, but on the upper half-plane. Specifically, it should be
a vector-valued modular form (see 3.3) of half-integral weight with respect to the metaplectic group
(see section 3.1). Using a well-known isomorphism, such modular forms can also be viewed as Jacobi
forms of lattice index. The work of Raum [42] has made it possible to compute these spaces of Jacobi
forms. We have written computer programs implementing his algorithms, and used these to compute
the part of the rational Picard group generated by Heegner divisors for 𝑑𝑑 up to around 50.

Finally, the very recent work of Bergeron, Li, Millson and Moeglin [5] shows that the rational
Picard group of ℱ2𝑑𝑑 is spanned by the Heegner divisors, so our computations in fact give an explicit
presentation of the full rational Picard group Picℚ𝐻ℱ2𝑑𝑑𝐻.

Strategy
The strategy we follow to try to compute the Kodaira dimension of ℱ2𝑑𝑑 is a variant of the one of
Gritsenko, Hulek and Sankaran [18]. Specifically, we apply [18, theorem 1.1]: if we can find a modular
form on ℱ2𝑑𝑑 of weight less than 19 that vanishes (seen as a function on the period domain 𝒟𝒟2𝑑𝑑) on
the ramification divisor of the quotient map 𝒟𝒟2𝑑𝑑 → ℱ2𝑑𝑑, and also vanishes at the cusps, then ℱ2𝑑𝑑 is
of general type.

Let us translate their statement to a geometric language. Modular forms correspond to sections of
powers of the Hodge bundle 𝜆𝜆. We write ℱ2𝑑𝑑 for a toroidal compactification (see section 5.2) of ℱ2𝑑𝑑,
and 𝐵𝐵 for the branch divisor of 𝒟𝒟2𝑑𝑑 → ℱ2𝑑𝑑 and Δ = ℱ2𝑑𝑑⧵ℱ2𝑑𝑑 for the boundary divisor. In those terms,
[18, theorem 1.1] instructs us to find an 𝜀𝜀 𝜀 0 such that the class 𝐾𝐾 − 𝜀𝜀𝜆𝜆 = 𝐻19 − 𝜀𝜀𝐻𝜆𝜆 − 1𝐾2 · 𝐾𝐵𝐵𝐾 − 𝐾Δ𝐾
on ℱ2𝑑𝑑 is effective. The proof of [18, theorem 1.1] can be paraphrased as follows: if 𝐾𝐾 −𝜀𝜀𝜆𝜆 is effective,
then 𝐾𝐾 is the sum of the ample divisor 𝜀𝜀𝜆𝜆 and some effective divisor, so 𝐾𝐾 is big, so ℱ2𝑑𝑑 is of general
type. An essential problem of this simplified argument is that ℱ2𝑑𝑑 and even ℱ2𝑑𝑑 itself are not smooth;
it is therefore necessary to prove that the singularities of ℱ2𝑑𝑑 are not too bad, and that pluricanonical
forms on ℱ2𝑑𝑑 extend across them. In technical terms: ℱ2𝑑𝑑 should have canonical singularities. A
large part of [18] is devoted to proving that this is indeed the case; they do so for a large class of
arithmetic quotient varieties. We gratefully use their work, and may thus reduce to finding modular
forms on ℱ2𝑑𝑑 that have the required ratio of weight (coefficient of 𝜆𝜆) versus vanishing order at the
branch divisor (coefficient of 𝐵𝐵) and at the boundary (coefficient of Δ).

Our approach differs from [18] in the manner in which we obtain the modular forms on ℱ2𝑑𝑑 with
the required properties. The method used in [18] – quasi-restriction of the Borcherds form on a
bigger lattice – is very general, but it may or may not give a modular form with the right properties,
depending on the value of 𝑑𝑑 in a rather complex way. On the other hand, we compute the whole space
of relevant modular forms for every 𝑑𝑑 in the range we are interested in, and try to systematically
search this space for the right ones.

We proceed as follows: at first, we restrict the class 𝐾𝐾 − 𝜀𝜀𝜆𝜆 to the open part ℱ2𝑑𝑑 of the moduli
space; this gives us the class 𝐾𝐾𝐾 − 𝜀𝜀𝜆𝜆, where 𝐾𝐾𝐾 = 19𝜆𝜆 − 1𝐾2 · 𝐾𝐵𝐵𝐾. We compute an expression of
this class in terms of some basis of Heegner divisors of the rational Picard group Picℚ𝐻ℱ2𝑑𝑑𝐻, using
our computation of the latter. We compare the resulting expression to the large supply of effective
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divisors that we have on ℱ2𝑑𝑑, in the form of Heegner divisors and some slightly refined variants thereof
(so-called irreducible Noether–Lefschetz divisors; see section 4.2.1).

If this gives a negative result, then 𝐾𝐾𝐾 may be non-effective. However, to be sure of that, we would
need to know whether there are any effective divisors on ℱ2𝑑𝑑 that cannot be written as a positive
linear combination of irreducible Noether–Lefschetz divisors. We have no answer to that question, so
we are left with conditional results such as theorem 4.7.5.

On the other hand, if we get a positive result, and so 𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 is indeed effective, then it remains
to determine whether the unrestricted class 𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 on the compactified moduli
space ℱ2𝑑𝑑 is still effective. Let us explore what this means in terms of modular forms. We are given
some relation

𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 𝐾 𝐾
𝛾𝛾𝛾𝛾𝛾

𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝐾𝐻𝐻𝐾𝐻𝐻𝐻 𝐻𝐻𝐾𝐾

of divisor classes, or equivalently line bundles, on ℱ2𝑑𝑑. This relation is witnessed by a section of the
line bundle corresponding to an integral multiple of 𝐾19𝐾𝐾𝐾𝐾𝐾𝐾 with given behaviour at Heegner divisors,
i.e., a modular form Ψ on ℱ2𝑑𝑑. The completion of the above relation on ℱ2𝑑𝑑 to a valid relation on ℱ2𝑑𝑑
is obtained by computing the vanishing order of the modular form Ψ at all the irreducible components
of the boundary divisor 𝐾. If all these vanishing orders are at least 1, then the completed relation on
ℱ2𝑑𝑑 represented by Ψ shows that the class 𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 is effective – or equivalently,
that the modular form in the formulation of [18, theorem 1.1] is a cusp form.

We contribute a method to perform this completion of relations on ℱ2𝑑𝑑 to ones on ℱ2𝑑𝑑, by com-
puting the vanishing orders at the boundary components of the perfect cone toroidal compactification
of any modular form on ℱ2𝑑𝑑 that is constructed using Borcherds’ method; see section 5.3.

In practice, there are too many irreducible boundary components to deal with them one at a time.
We have devised a method to compute bounds for the vanishing order of a fixed modular form on ℱ2𝑑𝑑
at all the different boundary components of the toroidal compactification associated to the perfect
cone decomposition. This allows us to prove that many modular forms on ℱ2𝑑𝑑 are cusp forms.

Results
We summarise the most important results here.

First of all, we have computed an explicit basis of Pic𝐾ℱ2𝑑𝑑𝐾, for 𝑑𝑑 up to 50, and coefficients that
express Heegner divisors 𝐻𝐻𝐾𝐻𝐻𝐻 𝐻𝐻𝐾 in terms in this basis. A few examples of the resulting relation
between Heegner divisors and the Hodge class 𝐾𝐾 𝐾 𝐾𝐻𝐻𝐾0𝐻 0𝐾:

𝑑𝑑 𝐾 1 𝑑 150𝐾𝐾 𝑑 𝐻𝐻𝐾0𝐻 𝐾1𝐾 + 56𝐻𝐻𝐾1𝐻 𝐾1/4𝐾 ;
𝑑𝑑 𝐾 𝑑 𝑑 10𝑑𝐾𝐾 𝑑 𝐻𝐻𝐾0𝐻 𝐾1𝐾 + 1𝑑𝑑𝐻𝐻𝐾1𝐻 𝐾1/𝑑𝐾 + 14𝐻𝐻𝐾𝑑𝐻 𝐾1/𝑑𝐾 ;
𝑑𝑑 𝐾 𝑑 𝑑 9𝑑𝐾𝐾 𝑑 𝐻𝐻𝐾0𝐻 𝐾1𝐾 + 10𝑑𝐻𝐻𝐾1𝐻 𝐾1/1𝑑𝐾 + 54𝐻𝐻𝐾𝑑𝐻 𝐾1/𝑑𝐾 + 𝑑𝐻𝐻𝐾𝑑𝐻 𝐾𝑑/4𝐾 ;
𝑑𝑑 𝐾 4 𝑑 𝑑0𝐾𝐾 𝑑 𝐻𝐻𝐾0𝐻 𝐾1𝐾 + 11𝑑𝐻𝐻𝐾1𝐻 𝐾1/16𝐾 + 56𝐻𝐻𝐾𝑑𝐻 𝐾1/4𝐾 + 16𝐻𝐻𝐾𝑑𝐻 𝐾9/16𝐾 ;
𝑑𝑑 𝐾 10 𝑑 𝑑𝑑𝐾𝐾 𝑑 𝐻𝐻𝐾0𝐻 𝐾1𝐾 + 96𝐻𝐻𝐾1𝐻 𝐾1/40𝐾 + 94𝐻𝐻𝐾𝑑𝐻 𝐾1/10𝐾 + 16𝐻𝐻𝐾𝑑𝐻 𝐾9/40𝐾

+ 16𝐻𝐻𝐾4𝐻 𝐾𝑑/5𝐾 + 16𝐻𝐻𝐾5𝐻 𝐾5/𝑑𝐾 𝐾 𝑑𝐻𝐻𝐾6𝐻 𝐾9/10𝐾 + 16𝐻𝐻𝐾7𝐻 𝐾9/40𝐾
+ 1𝑑𝐻𝐻𝐾𝑑𝐻 𝐾𝑑/5𝐾 + 96𝐻𝐻𝐾9𝐻 𝐾1/40𝐾 .

More examples can be found in section 4.4.
We show how to complete any relation in Pic𝐾ℱ2𝑑𝑑𝐾 to the boundary of a specific toroidal compact-

ification ℱ2𝑑𝑑, getting valid relations in Pic𝐾ℱ2𝑑𝑑𝐾:

Theorem (5.3.3). Let ∑𝛾𝛾𝛾𝛾𝛾 𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝐻𝐻𝐾𝐻𝐻𝐻 𝐻𝐻𝐾 𝑑 0 be a linear equivalence of Noether–Lefschetz divisors
on ℱ2𝑑𝑑. Then the following linear equivalence holds on ℱ2𝑑𝑑, the toroidal compactification of ℱ2𝑑𝑑 with
the perfect cone decomposition:

𝐾
𝛾𝛾𝛾𝛾𝛾

𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝐻𝐻𝐾𝐻𝐻𝐻 𝐻𝐻𝐾 + 𝐾
𝐹𝐹∈𝑆𝑆1

𝐾
𝛾𝛾𝛾𝛾𝛾

𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝑐𝑐𝐾𝐻𝐻𝐻 𝐻𝐻𝐻 𝑐𝑐𝐾𝐾𝐹𝐹 𝑑 0 .

Here 𝑐𝑐 ranges over the 1-cusps 𝑆𝑆1 of ℱ2𝑑𝑑, 𝐾𝐹𝐹 is the boundary divisor over the cusp 𝑐𝑐 , and 𝑐𝑐𝐾𝐻𝐻𝐻 𝐻𝐻𝐻 𝑐𝑐𝐾
is some explicit function calculating the contribution of a given Heegner divisor 𝐻𝐻𝐾𝐻𝐻𝐻 𝐻𝐻𝐾 at the cusp 𝑐𝑐 .
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See the full statement of theorem 5.3.3 in chapter 5 for details, including a formula for the function 𝑐𝑐.
For example, we may complete the earlier relation for 𝑑𝑑 𝑑 𝑑 to include the boundary terms:

𝑑50 𝜆𝜆 𝜆 𝜆𝜆𝜆0, −𝑑) + 56 𝜆𝜆𝜆𝑑, −𝑑/4) + 30 𝜆Δ𝛽𝛽 + Δ𝛾𝛾) + 𝑑8𝜆Δ𝜁𝜁 + Δ𝜂𝜂) ;

see section 5.3.3 for notation and details.
Using these results, we get

Theorem (4.7.3). The moduli spaces ℱ13 and ℱ14 have Kodaira dimension −∞.

Together with Mukai’s results we get that 𝜅𝜅𝜆ℱ2𝑑𝑑) 𝑑 −∞ for 𝑑 ≤ 𝑑𝑑 ≤ 𝑑5. In fact, our method easily
reproves these results by Mukai in a uniform way, using no geometric construction of ℱ2𝑑𝑑, just the
arithmetic description through the lattice 𝐿𝐿2𝑑𝑑 and a computation of coefficients of Eisenstein series.

Moreover, our method also reproves some results by Gritsenko–Hulek–Sankaran [18] (and Peterson–
Sankaran [40]): if 𝑑𝑑 ∈ {46, 50, 52, 54}, then ℱ2𝑑𝑑 is of general type (i.e., the Kodaira dimension is
𝜅𝜅𝜆ℱ2𝑑𝑑) 𝑑 𝑑9); see theorem 5.5.1.

Our computation is very explicit: it gives an concrete linear relation for the canonical divisor on
the open part of the moduli space in terms of Noether–Lefschetz divisors. As an example, for 𝑑𝑑 𝑑 46
we get:

𝐾𝐾𝐾 − 𝜆𝜆 𝜆 𝑑9𝜆𝜆𝜆𝑑, −𝑑/𝑑84) + 𝑑6𝜆𝜆𝜆2, −𝑑/46) + 𝑑6𝜆𝜆𝜆3, −9/𝑑84) + 𝑑5𝜆𝜆𝜆4, −2/23) + 𝑑4𝜆𝜆𝜆5, −25/𝑑84)
+ 𝑑0𝜆𝜆𝜆6, −9/46) + 8𝜆𝜆𝜆7, −49/𝑑84) + 5𝜆𝜆𝜆8, −8/23) + 4𝜆𝜆𝜆9, −8𝑑/𝑑84) + 3𝜆𝜆𝜆𝑑0, −25/46)
+ 2𝜆𝜆𝜆𝑑𝑑, −𝑑2𝑑/𝑑84) + 𝑑7𝜆𝜆𝜆𝑑4, −3/46) + 𝑑0𝜆𝜆𝜆𝑑5, −4𝑑/𝑑84) + 6𝜆𝜆𝜆𝑑6, −9/23) + 2𝜆𝜆𝜆𝑑7, −𝑑05/𝑑84)
+ 𝑑𝜆𝜆𝜆𝑑8, −35/46) + 𝑑𝑑𝜆𝜆𝜆20, −4/23) + 6𝜆𝜆𝜆2𝑑, −73/𝑑84) + 𝑑𝜆𝜆𝜆22, −29/46) + 𝑑3𝜆𝜆𝜆24, −3/23)
+ 6𝜆𝜆𝜆25, −73/𝑑84) + 2𝜆𝜆𝜆26, −3𝑑/46) + 7𝜆𝜆𝜆28, −6/23) + 2𝜆𝜆𝜆29, −𝑑05/𝑑84) + 𝑑0𝜆𝜆𝜆3𝑑, −4𝑑/𝑑84)
+ 3𝜆𝜆𝜆32, −𝑑3/23) + 7𝜆𝜆𝜆34, −𝑑3/46) + 2𝜆𝜆𝜆35, −𝑑2𝑑/𝑑84) + 𝑑9𝜆𝜆𝜆36, −𝑑/23) + 4𝜆𝜆𝜆37, −8𝑑/𝑑84)
+ 8𝜆𝜆𝜆39, −49/𝑑84) + 𝑑𝜆𝜆𝜆40, −𝑑6/23) + 𝑑4𝜆𝜆𝜆4𝑑, −25/𝑑84) + 3𝜆𝜆𝜆42, −27/46) + 𝑑6𝜆𝜆𝜆43, −9/𝑑84)
+ 2𝜆𝜆𝜆44, −𝑑2/23) + 𝑑9𝜆𝜆𝜆45, −𝑑/𝑑84) + 2𝜆𝜆𝜆46, −𝑑/2) .

For intermediate degrees, we have the following results.

Theorem (4.7.6). Let 𝑑𝑑 be such that 𝑑6 ≤ 𝑑𝑑 ≤ 39 or 𝑑𝑑 ∈ {4𝑑, 44, 45, 47}. Either 𝜅𝜅𝜆ℱ2𝑑𝑑) 𝑑 −∞, or
there exists an irreducible codimension 𝑑 subvariety of ℱ2𝑑𝑑 that is not a Noether–Lefschetz divisor.

Theorem (4.7.9). Let 𝑑𝑑 ∈ {40, 42, 43, 48, 49, 55, 56}. Either 𝜅𝜅𝜆ℱ2𝑑𝑑) < 𝑑9, or there exists an irreducible
codimension 𝑑 subvariety of ℱ2𝑑𝑑 that is not a Noether–Lefschetz divisor.

We also reproved the result by Gritsenko–Hulek–Sankaran that for 𝑑𝑑 ∈ {40, 42, 43, 48, 49, 55, 56} the
Kodaira dimension of ℱ2𝑑𝑑 is non-negative; see theorem 5.5.3.

Conditional results
We may rephrase the last results above as conditional calculations of the Kodaira dimension of ℱ2𝑑𝑑
for the relevant intermediate polarisation degrees 2𝑑𝑑, the hypothesis being that the effective cone of
ℱ2𝑑𝑑 is generated by irreducible Noether–Lefschetz divisors. It is not clear at all if this hypothesis
holds for all 𝑑𝑑. For low 𝑑𝑑, it seems plausible, for example from comparison to the moduli space of
abelian surfaces. On the other hand, similar statements for some moduli spaces of curves turned out
to be false in general.

Theorem (4.7.5). Let 𝑑𝑑 be such that 𝑑6 ≤ 𝑑𝑑 ≤ 39 or 𝑑𝑑 ∈ {4𝑑, 44, 45, 47}. If the effective cone of
ℱ2𝑑𝑑 is generated by irreducible Noether–Lefschetz divisors and our list of generators is complete (see
questions 4.5.2 and 4.5.3), then 𝜅𝜅𝜆ℱ2𝑑𝑑) 𝑑 −∞.

Theorem (5.5.4). Let 𝑑𝑑 ∈ {40, 42, 43, 48, 49, 55, 56}. If the effective cone of ℱ2𝑑𝑑 is generated by
irreducible Noether–Lefschetz divisors and our list of generators is complete (see questions 4.5.2 and
4.5.3), then we have intermediate Kodaira dimension: 0 ≤ 𝜅𝜅𝜆ℱ2𝑑𝑑) < 𝑑9.

In table 1 we list the results – some conditional and some unconditional – of our computation of
𝜅𝜅𝜆ℱ2𝑑𝑑), and compare with what was known by earlier work.
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Table 1: The Kodaira dimension of ℱ2𝑑𝑑, for 1 ≤ 𝑑𝑑 ≤ 𝑑𝑑. The column marked 𝜅𝜅1 collects what was
known about the value of 𝜅𝜅𝜅ℱ2𝑑𝑑) by earlier work. The results of our computation of the same number
𝜅𝜅𝜅ℱ2𝑑𝑑) stand in the column marked 𝜅𝜅2. Results printed in grey are conditional, relying on a positive
answer to question 4.5.3, which at the moment is still wide open.

𝑑𝑑 𝑑𝑑𝑑 𝑑𝑑𝑑ℚ 𝜅𝜅1 𝜅𝜅2

1 2 -∞ -∞
2 3 -∞ -∞
3 4 -∞ -∞
4 4 -∞ -∞
5 6 -∞ -∞
6 7 -∞ -∞
7 7 -∞ -∞
8 8 -∞ -∞
9 9 -∞ -∞
10 10 -∞ -∞
11 11 -∞ -∞
12 12 -∞ -∞
13 12 -∞
14 14 -∞
15 15 -∞ -∞
16 14 -∞ -∞
17 16 -∞ -∞
18 17 -∞
19 17 -∞ -∞
20 19 -∞
21 20 -∞
22 20 -∞
23 21 -∞
24 23 -∞
25 21 -∞
26 24 -∞
27 24 -∞
28 25 -∞
29 26 -∞
30 29 -∞
31 27 -∞
32 28 -∞

𝑑𝑑 𝑑𝑑𝑑 𝑑𝑑𝑑ℚ 𝜅𝜅1 𝜅𝜅2

33 30 -∞
34 30 -∞
35 32 -∞
36 32 -∞
37 31 -∞
38 34 -∞
39 35 -∞
40 36 ≥ 0 0 ≤ 𝜅𝜅2< 19
41 36 -∞
42 39 ≥ 0 0 ≤ 𝜅𝜅2< 19
43 36 ≥ 0 0 ≤ 𝜅𝜅2< 19
44 39 -∞
45 40 -∞
46 40 19 19
47 41 -∞
48 43 ≥ 0 0 ≤ 𝜅𝜅2< 19
49 40 ≥ 0 0 ≤ 𝜅𝜅2< 19
50 43 19 19
51 45 ≥ 0
52 45 19 19
53 45 ≥ 0
54 48 19 19
55 48 ≥ 0 0 ≤ 𝜅𝜅2< 19
56 50 ≥ 0 0 ≤ 𝜅𝜅2< 19
57 49 19
58 49 19
59 51 ≥ 0
60 55 19
61 51 ≥ 0
62 54 19
63 55 19
64 53 19
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Overview of contents
Chapters 1, 2 and 3 are introductory, and give background information on K3 surfaces, lattices (in-
cluding discriminant groups, genera of lattices, and orthogonal groups), and modular forms (especially
vector-valued ones), respectively. Section 3.6 contains some non-standard material, explaining how
to use the work of Raum [42] to compute some spaces of vector-valued modular forms. This provides
the data necessary to compute relations among divisors on the moduli space of K3 surfaces.

In chapter 4 we discuss the central object of our research: the moduli space ℱ2𝑑𝑑 of polarised K3
surfaces of degree 2𝑑𝑑. We introduce a set of well-known divisors on the moduli space, called Noether–
Lefschetz or Heegner divisors; we compute relations among these divisors using the modular forms
from chapter 3; we study the effective cone of the moduli space, in particular defining and computing
a large natural subcone of this effective cone. Finally, we compute the canonical divisor – for the
moment disregarding its behaviour at the boundary – in terms of Noether–Lefschetz divisors, and
draw some first conclusions about the Kodaira dimension of ℱ2𝑑𝑑 for low values of 𝑑𝑑 (see theorem
4.7.3).

In chapter 5, we study the compactified moduli space. We describe the boundary of two different
compactifications: the Satake compactification ℱ∗

2𝑑𝑑, and toroidal compactifications ℱ2𝑑𝑑, following old
work by Scattone [44], and newer work by Gritsenko, Hulek and Sankaran [18]. We show how to
extend the relations among Noether–Lefschetz divisors from chapter 4 to the boundary. Also, we
study the set of vector-valued modular forms that occur as theta series of a lattice in a fixed lattice
genus, and use this to compute bounds for variations in vanishing order of modular forms at the
different boundary components of a toroidal compactification ℱ2𝑑𝑑 of ℱ2𝑑𝑑. This allows us to compare
the canonical divisor on ℱ2𝑑𝑑 to our supply of effective divisors, and compute some more Kodaira
dimensions (see theorem 5.5.1).

The final chapter 6 is not part of the main flow of arguments leading to the computation of the
Kodaira dimension of ℱ2𝑑𝑑, but it sprouted from the same research, and seemed interesting enough to
include here. In this chapter we return to the geometry of individual K3 surfaces. We compute the
effective, nef and ample cones of K3 surfaces with a rank 2 Picard group, and show how to relate the
Clifford index of a smooth section of the polarisation class to the lattice structure of the Picard group
of the K3 surface. This way, we may take an interesting geometrically defined divisor on the moduli
space ℱ2𝑑𝑑 – the subset where the Clifford index of the polarisation curve jumps – and compute it in
terms of the well-known Noether–Lefschetz divisors on ℱ2𝑑𝑑.
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Chapter 1

K3 surfaces

Definition 1.0.1. A K3 surface is a smooth surface 𝑆𝑆, such that

(i) 𝜔𝜔𝑆𝑆 ≅ 𝒪𝒪𝑆𝑆 , and

(ii) H1(𝑆𝑆𝑆 𝒪𝒪𝑆𝑆) = 0 .

We will only consider projective K3 surfaces over ℂ in this thesis.

Example 1.0.2. Some examples of K3 surfaces are: a smooth quartic hypersurface in ℙ3; a Kummer
surface (the desingularised quotient of an abelian surface by the equivalence 𝑥𝑥 𝑥 𝑥𝑥𝑥); the double
cover of ℙ2 branched along a smooth sextic curve.

Many invariants are completely determined by the K3 conditions (i) and (ii). The geometric genus is
given by

𝑝𝑝𝑔𝑔 = h0(𝑆𝑆𝑆 𝜔𝜔𝑆𝑆) = h0(𝑆𝑆𝑆 𝒪𝒪𝑆𝑆) = 1 . (1.1)

The holomorphic Euler characteristic is
𝜒𝜒(𝒪𝒪𝑆𝑆) = 2 . (1.2)

The arithmetic genus then becomes

𝑝𝑝𝑎𝑎 = (𝑥1)2(𝜒𝜒(𝒪𝒪𝑆𝑆) 𝑥 1) = 1 · (2 𝑥 1) = 1 . (1.3)

Substituting this value of the arithmetic genus in Noether’s formula, we get 𝑐𝑐2(𝒯𝒯𝑆𝑆) = 24, where 𝒯𝒯𝑆𝑆 is
the tangent sheaf of 𝑆𝑆.

Also, since 𝑐𝑐1(𝒯𝒯𝑆𝑆) = 𝑐𝑐1(⋀2 𝒯𝒯𝑆𝑆) = 𝑐𝑐1(𝜔𝜔∨
𝑆𝑆), and 𝜔𝜔𝑆𝑆 is trivial, the first Chern class of a K3 surface

vanishes: 𝑐𝑐1(𝒯𝒯𝑆𝑆) = 0.
Now, let 𝑆𝑆 be a projective surface. Its middle cohomology H2(𝑆𝑆𝑆 𝑆) carries an integer-valued

bilinear form, given by the cup product. (This product is also called the intersection product, and the
resulting form the intersection form.) This makes the second cohomology H2(𝑆𝑆𝑆 𝑆) into a lattice (see
chapter 2 for definitions). If 𝑆𝑆 is a K3 surface, the structure of this lattice is completely determined:

Proposition 1.0.3 ([4, proposition VIII.3.2]). If 𝑆𝑆 is a K3 surface, then H2(𝑆𝑆𝑆 𝑆) is isomorphic (as
a lattice) to the K3 lattice 𝐿𝐿𝐾𝐾3 = 𝑈𝑈⊕3 ⊕ 𝐸𝐸8(𝑥1)⊕2.

(Sketch of proof: use the geometry of 𝑆𝑆, in particular the Hodge decomposition of H2(𝑆𝑆𝑆 𝑆) and the
Hodge index theorem, to deduce that H2(𝑆𝑆𝑆 𝑆) is an even unimodular lattice of signature (3𝑆 19).
Then apply a general lattice-theoretic result which says that these properties suffice to characterise
H2(𝑆𝑆𝑆 𝑆) as a lattice.)

Because H1(𝑆𝑆𝑆 𝒪𝒪𝑆𝑆) = 0, the long sequence in cohomology associated to the exponential sequence in
particular gives an injective map H1(𝑆𝑆𝑆 𝒪𝒪×

𝑆𝑆 ) → H2(𝑆𝑆𝑆 𝑆), or equivalently, identifying H1(𝑆𝑆𝑆 𝒪𝒪×
𝑆𝑆 ) with

the Picard group Pic(𝑆𝑆), an embedding Pic(𝑆𝑆) → H2(𝑆𝑆𝑆 𝑆).

Definition 1.0.4. The Picard lattice of a K3 surface 𝑆𝑆 is the Picard group Pic(𝑆𝑆), with bilinear form
given by restricting the one on H2(𝑆𝑆𝑆 𝑆) along the above embedding Pic(𝑆𝑆) → H2(𝑆𝑆𝑆 𝑆).

1



208154-L-bw-Peterson208154-L-bw-Peterson208154-L-bw-Peterson208154-L-bw-Peterson

2 CHAPTER 1. K3 SURFACES

1.1 Linear series on a K3 surface
We can analyse the behaviour of linear series on a K3 surface to a large extent. The basic results
on which this analysis rests are due to Saint-Donat ([43]); the proposition below is a summary of the
excellent overview given in [23].

Proposition 1.1.1. Let 𝐷𝐷 be a divisor on a K3 surface 𝑆𝑆. We write 𝒪𝒪𝒪𝐷𝐷𝒪 for the associated line
bundle on 𝑆𝑆.

(i) If 𝐷𝐷 is effective, then h2𝒪𝑆𝑆𝑆 𝒪𝒪𝒪𝐷𝐷𝒪𝒪 𝑆 𝑆.

(ii) If 𝐷𝐷 is effective and nef, and 𝐷𝐷2 𝑆 𝐷𝐷 𝐷 𝐷𝐷 𝐷 𝑆, then h1𝒪𝑆𝑆𝑆 𝒪𝒪𝒪𝐷𝐷𝒪𝒪 𝑆 𝑆. Also, either

(a) |𝐷𝐷| is base-point free, and a generic element of |𝐷𝐷| is smooth and irreducible; or
(b) 𝐷𝐷 𝐷 𝐷𝐷𝐷𝐷 𝐷 𝐷, where 𝐷𝐷 𝑘 𝑘 is an integer, |𝐷𝐷| is a pencil, 𝐷𝐷2 𝑆 𝑆, 𝐷 is an irreducible curve

with 𝐷2 𝑆 −𝑘, and 𝐷𝐷 𝐷 𝐷 𝑆 𝐸.

(iii) If 𝐷𝐷 is effective and nef, and 𝐷𝐷2 𝑆 𝑆, then 𝐷𝐷 𝐷 𝐷𝐷𝐷𝐷, for some smooth genus 𝐸 curve 𝐷𝐷 and some
𝐷𝐷 𝐷 𝑆, and h1𝒪𝑆𝑆𝑆 𝒪𝒪𝒪𝐷𝐷𝒪𝒪 𝑆 𝐷𝐷 − 𝐸.

(Reider’s method provides a modern general way to derive these results.)
This proposition allows us to compute h0𝒪𝑆𝑆𝑆 𝒪𝒪𝒪𝐷𝐷𝒪𝒪 for a sufficiently positive line bundle 𝒪𝒪𝒪𝐷𝐷𝒪 in

terms of its self-intersection:

Corollary 1.1.2. Let 𝒪𝒪𝒪𝐷𝐷𝒪 be an effective and nef line bundle on a K3 surface 𝑆𝑆 such that 𝐷𝐷2 𝐷 𝑆.
Then h0𝒪𝑆𝑆𝑆 𝒪𝒪𝒪𝐷𝐷𝒪𝒪 𝑆 𝑘 𝐷 𝐷𝐷2/𝑘.

Proof. Applying the Riemann–Roch theorem to 𝒪𝒪𝒪𝐷𝐷𝒪 gives 𝜒𝜒𝒪𝑆𝑆𝑆 𝒪𝒪𝒪𝐷𝐷𝒪𝒪 𝑆 𝑘 𝐷 𝐷𝐷2/𝑘. By proposition
1.1.1, we have h1𝒪𝑆𝑆𝑆 𝒪𝒪𝒪𝐷𝐷𝒪𝒪 𝑆 h2𝒪𝑆𝑆𝑆 𝒪𝒪𝒪𝐷𝐷𝒪𝒪 𝑆 𝑆.

We will be interested in the moduli space of K3 surfaces. However, this moduli space is not even
separated. Therefore, we instead consider K3 surfaces together with a choice of line bundle on it,
satisfying some positivity condition. You may think of this as an object intermediate between an
abstract surface and a surface embedded in a projective space, which is equivalent to a surface together
with a choice of divisor, again with some positivity condition.

Definition 1.1.3. A line bundle 𝐻𝐻 on a K3 surface is called a polarisation if 𝐻𝐻 is primitive (i.e., 𝐻𝐻
is not a proper tensor power of another line bundle) and nef, and the self-intersection 𝐻𝐻2 𝑆 𝐻𝐻 𝐷 𝐻𝐻 is
positive. A polarised K3 surface is a K3 surface 𝑆𝑆 together with a choice of a polarisation 𝐻𝐻.

The positive integer 𝐻𝐻2 is called the degree of a polarised K3 surface.

Because the degree is always even, we may write 𝐻𝐻2 𝑆 𝑘𝑑𝑑 for a positive integer 𝑑𝑑. Confusingly but
understandably, this number 𝑑𝑑 is sometimes also called the degree. Throughout this thesis, the symbol
𝑑𝑑 will always refer to this number.

Instead of the number 𝑑𝑑, we can also parametrise the possible degrees by the number 𝑔𝑔 𝑆 𝑑𝑑 𝐷 𝐸;
this number 𝑔𝑔 is called the genus of the polarised K3 surface. By the adjunction formula, a smooth
section of the polarisation class 𝐻𝐻 has a canonical divisor of degree 𝐻𝐻2 𝑆 𝑘𝑔𝑔 − 𝑘, so 𝑔𝑔 is in fact the
genus of such a curve.

Remark 1.1.4. Some prefer to strengthen the positivity condition in the above definition, and require
a polarisation to be ample instead of nef; a polarisation as we call it, would be a quasi-polarisation in
their terminology. Also, some do not include the requirement that a polarisation be primitive.

Definition 1.1.5. If the polarisation 𝐻𝐻 on a K3 surface 𝑆𝑆 is of the exceptional type of case iib in
proposition 1.1.1, the polarised K3 surface is called monogonal.

We can see whether a polarised K3 surface 𝒪𝑆𝑆𝑆 𝐻𝐻𝒪 is monogonal from the Picard lattice alone:

Proposition 1.1.6. A polarised K3 surface 𝒪𝑆𝑆𝑆 𝐻𝐻𝒪 is monogonal if and only if there exists a line
bundle 𝐷𝐷 ∈ Pic𝒪𝑆𝑆𝒪 such that 𝐷𝐷2 𝑆 𝑆 and 𝐻𝐻 𝐷 𝐷𝐷 𝑆 𝐸.

Note that this condition is equivalent to the requirement that the polarised surface is in the Noether–
Lefschetz divisor 𝐷𝐷1,1, or equivalently the Heegner divisor 𝐻𝐻𝒪𝐸𝑆 −𝐸/4𝑑𝑑𝒪 (these divisors on the moduli
space are defined in section 4.2).
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1.2 Existence of K3 surfaces with prescribed Picard lattice
Suppose given an even hyperbolic lattice 𝐿𝐿 of rank 2, together with an element 𝐻𝐻 ∈ 𝐿𝐿 such that 𝐻𝐻2

is positive.
Nikulin ([37]) gives sufficient conditions for a lattice to have a primitive embedding into the K3

lattice. These conditions are satisfied for our rank 2 lattice 𝐿𝐿, so we get a primitive embedding
𝐿𝐿 → 𝐿𝐿𝐾𝐾𝐾 = 𝑈𝑈⊕𝐾 ⊕ 𝐸𝐸8(−1)⊕2. From this, and the surjectivity of the period map (which will be
defined in the chapter on the moduli space of K3 surfaces; see section 4.1), it is easy to show that
there exists a K3 surface 𝑆𝑆 with Picard lattice isomorphic to 𝐿𝐿.

So, pick a K3 surface 𝑆𝑆 with Picard lattice isomorphic to 𝐿𝐿. Note that there are many lattice
isomorphisms from 𝐿𝐿 to Pic(𝑆𝑆) (precomposing with automorphisms of 𝐿𝐿 permutes them). We would
like to choose an isomorphism that sends the distinguished element 𝐻𝐻 ∈ 𝐿𝐿 of positive norm to a line
bundle on 𝑆𝑆 with strong positivity properties. Lemma 1.2.2 below shows that this is possible to some
extent.

First, let us define some positivity notions that we need now and later; see [28] for a proper
introduction. Let 𝑆𝑆 be a K3 surface; we define some cones in the real hyperbolic vector space 𝑉𝑉 =
(Pic 𝑆𝑆) 𝑆 𝑆.

Definition 1.2.1. The set {𝑥𝑥 ∈ 𝑉𝑉 𝑉 𝑥𝑥2 > 0} is a disjoint union of two cones 𝒞𝒞 𝒞 −𝒞𝒞; one of these,
say 𝒞𝒞, contains an ample class, and is called the positive cone. The cone of 𝑆+-linear combinations of
ample classes is called the ample cone; similarly, we have the nef cone Nef(𝑆𝑆), and the effective cone
Eff(𝑆𝑆).

Recall from [28] that the nef cone is the closure of the ample cone, and the ample cone is the interior
of the nef cone.

Lemma 1.2.2. We may choose the isomorphism between Pic(𝑆𝑆) and 𝐿𝐿 in such a way that 𝐻𝐻 corre-
sponds to a nef class on 𝑆𝑆.

Proof. Pick some isomorphism 𝛼𝛼 𝑉 𝐿𝐿 ⟶ Pic(𝑆𝑆), and let ℎ = 𝛼𝛼(𝐻𝐻) be the class corresponding to 𝐻𝐻.
Because ℎ2 > 0, either ℎ or −ℎ is in the positive cone 𝒞𝒞. By [4, VIII.3.9], we may translate any
element of the positive cone to an element of the nef cone by reflections in (−2)-curves. Composing
𝛼𝛼 with these reflections, and with −1 if necessary, we get an isomorphism from 𝐿𝐿 to Pic(𝑆𝑆) sending
𝐻𝐻 to a nef class.

Remark 1.2.3. It may or may not be possible to let 𝐻𝐻 correspond to an ample class on 𝑆𝑆. This is
determined by the structure of the lattice 𝐿𝐿 (and the choice 𝐻𝐻 ∈ 𝐿𝐿):

(i) if there exists an 𝛿𝛿 ∈ 𝐿𝐿 such that 𝛿𝛿2 = −2 and 𝛿𝛿 𝛿 𝐻𝐻 = 0, then 𝐻𝐻 cannot correspond to an ample
class, because we know by [4, VIII.3.6.(i)] that either 𝛿𝛿 or −𝛿𝛿 is effective;

(ii) if, on the other hand, 𝛿𝛿 𝛿 𝐻𝐻 𝛿 0 for all 𝛿𝛿 ∈ 𝐿𝐿 with 𝛿𝛿2 = −2, then the class ℎ corresponding to 𝐻𝐻
cannot lie on the boundary of Nef(𝑆𝑆) (because any codimension 1 face of the nef cone Nef(𝑆𝑆) is
given by the hypersurface orthogonal to some (−2)-curve), so ℎ is in fact ample.
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Chapter 2

Lattices

In this chapter, we review the classical theory of lattices (discrete subgroups of finite-dimensional
vector spaces with a bilinear form). As general references for this theory, see [12],[37],[14],[24].

2.1 Definitions
Definition 2.1.1. A lattice is a free ℤ-module 𝐿𝐿 of finite rank, together with a symmetric bilinear
map (·, ·) ∶ 𝐿𝐿 𝐿 𝐿𝐿 → ℚ. If the bilinear form takes values in ℤ, then the lattice is called integral. If
𝑣𝑣2 = (𝑣𝑣, 𝑣𝑣) ∈ 2ℤ for all 𝑣𝑣 ∈ 𝐿𝐿, then the lattice is called even; if a lattice is integral but not even, it is
called odd.

Example 2.1.2. The free ℤ-module of rank 1 has a natural bilinear form, given by (𝑚𝑚, 𝑚𝑚) = 𝑚𝑚𝑚𝑚.
This makes it into an integral odd lattice of rank 1.

The hyperbolic lattice 𝑈𝑈 is the rank 2 free ℤ-module, generated by elements 𝑒𝑒,𝑓𝑓 , say, with the
bilinear map specified by the 2 𝐿 2-matrix (0 1

1 0). Explicitly, this means that 𝑒𝑒2 = 𝑓𝑓2 = 0, and
(𝑒𝑒, 𝑓𝑓) = (𝑓𝑓, 𝑒𝑒) = 1. The hyperbolic lattice is integral and even (because (𝑚𝑚𝑒𝑒 𝑚 𝑚𝑚𝑓𝑓)2 = 2𝑚𝑚𝑚𝑚 ∈ 2ℤ).

The lattice 𝐸𝐸8 is a special even integral lattice of rank 8. We define it by giving its intersection
matrix (the 8 𝐿 8-matrix specifying the values of the bilinear form on the generators):

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.1)

Alternatively, one may define this lattice as the root lattice of a Lie algebra of type 𝐸𝐸8.
For any lattice 𝐿𝐿, and any rational number 𝑚𝑚, we define a new lattice 𝐿𝐿(𝑚𝑚) with the same

underlying ℤ-module as 𝐿𝐿, but scaling the bilinear form by 𝑚𝑚:

(𝑣𝑣, 𝑣𝑣)𝐿𝐿(𝐿𝐿) = 𝑚𝑚 · (𝑣𝑣, 𝑣𝑣)𝐿𝐿 . (2.2)

As a special case, we define ⟨𝑚𝑚𝑚 = ℤ(𝑚𝑚). So ⟨𝑚𝑚𝑚 has rank 1, and its bilinear form is (𝑎𝑎, 𝑎𝑎) = 𝑚𝑚𝑎𝑎𝑎𝑎.
Given two lattices 𝐿𝐿1, 𝐿𝐿2, their direct sum 𝐿𝐿1 ⊕ 𝐿𝐿2 as a ℤ-module carries a natural bilinear form,

where the summands are made orthogonal:

(𝑎𝑎1 ⊕ 𝑎𝑎2, 𝑎𝑎1 ⊕ 𝑎𝑎2) = (𝑎𝑎1, 𝑎𝑎1) 𝑚 (𝑎𝑎2, 𝑎𝑎2) . (2.3)

Definition 2.1.3. A sublattice of a lattice is a submodule that carries the induced bilinear form. A
subgroup 𝑀𝑀 𝑀 𝐿𝐿 of a free ℤ-module (in particular, a sublattice) is called primitive if the quotient
module 𝐿𝐿𝐿𝑀𝑀 is torsion-free. (Equivalently, if no non-zero multiples of non-members of 𝑀𝑀 are in 𝑀𝑀 ;
equivalently, if (𝑀𝑀 𝑀 ℚ) 𝑀 𝐿𝐿 = 𝑀𝑀 .) A nonzero vector 𝑣𝑣 ∈ 𝐿𝐿 is called primitive if the subgroup it
generates is primitive; this just means that 𝑣𝑣 is not a positive integral multiple of any element of 𝐿𝐿,
except for the trivial 𝑣𝑣 = 1 · 𝑣𝑣.

5
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Definition 2.1.4. A lattice 𝐿𝐿 is called non-degenerate if the bilinear form is non-degenerate, i.e., if
the map 𝐿𝐿 → Homℚ(𝐿𝐿 𝐿 ℚ𝐿 ℚ𝐿 𝐿 𝐿𝐿 ↦ (𝐿𝐿𝐿 𝑣𝐿 is injective.

A lattice 𝐿𝐿 of positive rank is called (totally) isotropic if the bilinear form on 𝐿𝐿 vanishes.

Although isotropic lattices do not have an interesting lattice structure themselves, they occur naturally
as sublattices (even of non-degenerate lattices).

Example 2.1.5. All the examples from 2.1.2 are non-degenerate (except ⟨𝑛𝑛𝑛 when 𝑛𝑛 𝑛 𝑛). The
lattice ⟨𝑛𝑛 is isotropic, as is the sublattice of 𝑈𝑈 spanned by 𝑒𝑒 (because 𝑒𝑒2 𝑛 𝑛).

Definition 2.1.6. Let 𝐿𝐿 be a lattice. We consider 𝐿𝐿ℝ 𝑛 𝐿𝐿 𝐿 ℝ, with the induced bilinear form
(𝑣𝐿 𝑣𝐿 𝐿 𝐿𝐿ℝ × 𝐿𝐿ℝ → ℝ. By the theory of real quadratic forms (in particular, Sylvester’s law of inertia),
we can choose a basis of 𝐿𝐿ℝ such that the intersection matrix becomes diagonal, and the numbers of
positive, negative and zero entries (say 𝑏𝑏+, 𝑏𝑏𝑏 and 𝑏𝑏0) in this diagonal matrix are well defined (that
is, independent of the basis). Now, the signature of 𝐿𝐿 is defined to be the triple (𝑏𝑏0𝐿 𝑏𝑏+𝐿 𝑏𝑏𝑏𝐿.

If the lattice 𝐿𝐿 is non-degenerate, then the number 𝑏𝑏0 is zero, and we will typically write the
signature as (𝑏𝑏+𝐿 𝑏𝑏𝑏𝐿.

A lattice 𝐿𝐿 is called positive definite (negative definite) if 𝑏𝑏𝑏 𝑛 𝑏𝑏0 𝑛 𝑛 (resp. 𝑏𝑏+ 𝑛 𝑏𝑏0 𝑛 𝑛). It is
called definite if it is either positive definite or negative definite.

Note that if 𝐿𝐿 has signature (𝑏𝑏+𝐿 𝑏𝑏𝑏𝐿, the maximal rank of an isotropic sublattice is min {𝑏𝑏+𝐿 𝑏𝑏𝑏𝑏.

2.2 Dual lattices and the discriminant group
Definition 2.2.1. Let 𝐿𝐿 be a non-degenerate lattice. The dual lattice 𝐿𝐿∨ is given by

𝐿𝐿∨ 𝑛 {𝑥𝑥 ∈ 𝐿𝐿 𝐿 ℚ 𝐿 (𝑥𝑥𝐿 𝐿𝐿𝐿 ∈ ℤ for all 𝐿𝐿 ∈ 𝐿𝐿𝑏 . (2.4)

The bilinear form on 𝐿𝐿∨ is induced by the one on 𝐿𝐿.

Example 2.2.2. The dual of ⟨𝑛𝑛𝑛 is a strict supergroup of ⟨𝑛𝑛𝑛, generated by 𝑤𝑤𝑤𝑛𝑛 ∈ 𝐿𝐿 𝐿 ℚ, where 𝑤𝑤
is the generator of ⟨𝑛𝑛𝑛. We see that this generator has norm (𝑤𝑤𝑤𝑛𝑛𝐿 𝑤𝑤𝑤𝑛𝑛𝐿 𝑛 (𝑤𝑤𝐿 𝑤𝑤𝐿𝑤𝑛𝑛2 𝑛 𝑛𝑛𝑤𝑛𝑛2 𝑛 1𝑤𝑛𝑛,
so ⟨𝑛𝑛𝑛∨ is isomorphic as a lattice to ⟨1𝑤𝑛𝑛𝑛.

The dual of each of ℤ, 𝑈𝑈 , 𝐸𝐸8 equals the lattice itself. Taking the dual distributes over direct sums.

The first of these examples shows that the dual of an integral lattice might not be integral.
There is another candidate for the dual of a lattice 𝐿𝐿: the abelian group 𝐿𝐿∗ 𝑛 HomAb(𝐿𝐿𝐿 ℤ𝐿. There

is a natural map from 𝐿𝐿∨ to 𝐿𝐿∗, sending 𝑥𝑥 to the function 𝐿𝐿 ↦ (𝑥𝑥𝐿 𝐿𝐿𝐿. Because 𝐿𝐿 is non-degenerate,
this map is a bijection, and we may use it to give 𝐿𝐿∗ a lattice structure. We will identify these two
incarnations of the dual lattice.

Definition 2.2.3. A morphism 𝑓𝑓 𝐿 𝑓𝑓 → 𝐿𝐿 of lattices is a linear map that preserves the bilinear maps:
(𝑓𝑓(𝑥𝑥𝐿𝐿 𝑓𝑓(𝑓𝑓𝐿𝐿𝐿𝐿 𝑛 (𝑥𝑥𝐿 𝑓𝑓𝐿𝐾𝐾. If we want to be more explicit, we may also call a morphism an isometric
map.

Note that some natural linear maps between lattices may not be isometric: for example, the projection
𝑓𝑓 𝐾 𝐿𝐿 → 𝑓𝑓 𝐿 𝑥𝑥 𝐾 𝑓𝑓 ↦ 𝑥𝑥, or the dual map 𝑓𝑓∨ 𝐿 𝐿𝐿∨ → 𝑓𝑓∨ of an isometric map 𝑓𝑓 𝐿 𝑓𝑓 → 𝐿𝐿.

Lemma 2.2.4. Suppose 𝐴𝐴 and 𝐿𝐿 are lattices. If 𝑗𝑗 𝐿 𝐴𝐴 → 𝐿𝐿 is an injective linear map, and its image
is primitive, then the dual map 𝑗𝑗∨ 𝐿 𝐿𝐿∨ → 𝐴𝐴∨ is surjective.

Proof. Because 𝑗𝑗 is injective, we may view 𝐴𝐴 as a subgroup of 𝐿𝐿. Note that 𝑗𝑗∨ sends 𝜑𝜑 ∈ 𝐿𝐿∨, say
𝜑𝜑 𝐿 𝐿𝐿 → ℤ, to 𝜑𝜑 𝜑 𝑗𝑗 ∈ 𝐴𝐴∨: in other words, 𝑗𝑗∨ restricts ℤ-valued maps on 𝐿𝐿 to 𝐴𝐴. Surjectivity of 𝑗𝑗∨ thus
means, that for any map 𝜓𝜓 𝐿 𝐴𝐴 → ℤ of ℤ-modules, we can extend the domain to 𝐿𝐿. Now, because
𝐴𝐴 is primitive in 𝐿𝐿, the quotient 𝐿𝐿𝑤𝐴𝐴 is torsion-free, and we may take a subgroup 𝐵𝐵 of 𝐿𝐿 such that
𝐿𝐿 𝑛 𝐴𝐴 𝐾 𝐵𝐵 as ℤ-modules. Extending 𝜓𝜓 by zero on 𝐵𝐵, we get the desired map 𝜑𝜑 𝐿 𝐿𝐿 → ℤ.

If 𝐿𝐿 is integral and non-degenerate, it is naturally a sublattice of its dual 𝐿𝐿∨, by the map 𝐿𝐿 ↦ 𝐿𝐿 𝐿 1
(or, viewing the dual as Hom(𝐿𝐿𝐿 ℤ𝐿, by the map 𝐿𝐿 ↦ (𝐿𝐿𝐿 𝑣𝐿). However, this embedding might not be
primitive. The failure of primitivity is measured by the quotient 𝐿𝐿∨𝑤𝐿𝐿. This is an important invariant
of the lattice 𝐿𝐿.
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Definition 2.2.5. Let 𝐿𝐿 be an integral lattice. The discriminant group of 𝐿𝐿 is the abelian group
𝐷𝐷𝐿𝐿 = 𝐿𝐿∨/𝐿𝐿. It carries a bilinear map (·, ·) ∶ 𝐷𝐷𝐿𝐿 × 𝐷𝐷𝐿𝐿 → ℚ/ℤ, induced by the bilinear form of 𝐿𝐿.

The lattice 𝐿𝐿 is called unimodular if the discriminant group is trivial (equivalently, if 𝐿𝐿∨ = 𝐿𝐿).

We may occasionally call 𝐷𝐷𝐿𝐿 the discriminant module, if we want to emphasise its structure as an
abelian group together with a quadratic form. (Such objects are sometimes called quadratic modules.)

In general, for a lattice 𝐿𝐿, the quadratic form on 𝐷𝐷𝐿𝐿 takes values in ℚ/ℤ. If 𝐿𝐿 is even, though, we
may let the quadratic form take values in ℚ/2ℤ, and for any 𝛾𝛾 ∈ 𝐷𝐷𝐿𝐿, the number 𝛾𝛾2/2 is a well-defined
element of ℚ/ℤ.

Example 2.2.6. The lattices ℤ, 𝑈𝑈 and 𝐸𝐸8 are unimodular. The lattice ⟨𝑛𝑛𝑛 has discriminant group
isomorphic to ℤ/ |𝑛𝑛| ℤ, with quadratic form given by 𝑘𝑘2 = 𝑘𝑘2/𝑛𝑛 ∈ ℚ/ℤ. (The isomorphism sends the
generator of ⟨𝑛𝑛𝑛∨ to the class 1 ∈ ℤ/ |𝑛𝑛| ℤ; this is well defined, because |𝑛𝑛| times the generator of ⟨𝑛𝑛𝑛∨

is a vector in ⟨𝑛𝑛𝑛 𝑛 ⟨𝑛𝑛𝑛∨, and the norm of this, 𝑛𝑛2/𝑛𝑛 = 𝑛𝑛 ∈ ℤ indeed vanishes in ℚ/ℤ.)

Definition 2.2.7. Let 𝐿𝐿 be a non-degenerate integral lattice, and 𝑣𝑣 ∈ 𝐿𝐿 a nonzero vector. The divisor
of 𝑣𝑣 is a number, written as div(𝑣𝑣), that measures the imprimitivity of 𝑣𝑣 in the lattice 𝐿𝐿∨. We define
it to be the positive generator of the ideal (𝑣𝑣, 𝐿𝐿) 𝑛 ℤ.

Also, we let 𝑣𝑣∗ = 𝑣𝑣/div(𝑣𝑣) ∈ 𝐿𝐿∨.

Note that 𝑣𝑣∗ is the unique positive rational multiple of 𝑣𝑣 that is primitive in the dual lattice 𝐿𝐿∨.

2.2.1 Comparing discriminant groups
Suppose we are given a primitive embedding 𝑗𝑗 ∶ 𝑗𝑗 → 𝐿𝐿 of non-degenerate lattices. We would like to
compare the discriminant groups of 𝑗𝑗 and 𝐿𝐿.

As a first step, we may take the dual map 𝑗𝑗∨ ∶ 𝐿𝐿∨ → 𝑗𝑗∨, and compose this with the quotient map
𝑗𝑗∨ → 𝑗𝑗∨/𝑗𝑗 to get a map 𝜋𝜋 ∶ 𝐿𝐿∨ → 𝑗𝑗∨/𝑗𝑗. Note that, by lemma 2.2.4, the map 𝜋𝜋 is surjective.

Next, we would like to let this map descend from 𝐿𝐿∨ to 𝐿𝐿∨/𝐿𝐿 to get a map 𝐿𝐿∨/𝐿𝐿 → 𝑗𝑗∨/𝑗𝑗 of
discriminant groups. However, this may not be possible.

Example 2.2.8. Let 𝐿𝐿 = 𝑈𝑈 , the hyperbolic plane. Let 𝑗𝑗 = ⟨2𝑛 = ℤ𝐴𝐴, a rank 1 lattice with generator
𝐴𝐴 of norm 2. Let 𝑗𝑗 ∶ 𝑗𝑗 → 𝐿𝐿 be the map that sends 𝐴𝐴 to 𝑒𝑒 𝑒 𝑒𝑒 ∈ 𝑈𝑈 . (Note that (𝑒𝑒 𝑒 𝑒𝑒)2 = 2, and 𝑒𝑒 𝑒 𝑒𝑒
is primitive in 𝑈𝑈 , so this is a primitive embedding.)

Now, we have 𝑈𝑈∨ = 𝑈𝑈 , and 𝑗𝑗∨ = 1
2 ℤ𝐴𝐴. Also, the map 𝑗𝑗∨ sends 𝑒𝑒 ∈ 𝑈𝑈 to the map 𝐴𝐴 ↦ (𝑗𝑗(𝐴𝐴), 𝑒𝑒) =

(𝑒𝑒 𝑒 𝑒𝑒, 𝑒𝑒) = 1, which corresponds to 1
2 𝐴𝐴; in the same way we get 𝑗𝑗∨(𝑒𝑒) = 1

2 𝐴𝐴. Therefore, the kernel
of 𝜋𝜋 ∶ 𝐿𝐿∨ = 𝑈𝑈 → 𝑗𝑗∨/𝑗𝑗 ≅ ℤ/2ℤ consists of all elements 𝑚𝑚𝑒𝑒 𝑒 𝑛𝑛𝑒𝑒 such that 𝑚𝑚 𝑒 𝑛𝑛 is even. This is a
strict sublattice of 𝑈𝑈 (of index 2).

In particular, the kernel of 𝜋𝜋 does not contain 𝐿𝐿, so 𝜋𝜋 does not descend to a map 𝐿𝐿∨/𝐿𝐿 → 𝑗𝑗∨/𝑗𝑗
of discriminant groups.

We introduce a name for the case where this anomaly does not occur. It applies in a more general
setting, not just for embeddings, but for any map of lattices.

Definition 2.2.9. If 𝑒𝑒 ∶ 𝑗𝑗 → 𝐵𝐵 is a map of non-degenerate lattices such that 𝐵𝐵 𝑛 𝐵𝐵𝐵(𝐵𝐵∨ → 𝑗𝑗∨/𝑗𝑗),
then we say that 𝑒𝑒 is monomodular.

Lemma 2.2.10. Suppose that 𝑒𝑒 ∶ 𝑗𝑗 → 𝐵𝐵 is a monomodular map.

(i) In this case 𝑒𝑒 extends to a linear map 𝑒𝑒∨ ∶ 𝑗𝑗∨ → 𝐵𝐵∨. (More explicitly: if 𝛼𝛼 ∈ 𝑗𝑗∨, say 𝛼𝛼 = 1𝑛𝑛 𝑎𝑎
with 𝑎𝑎 ∈ 𝑗𝑗, then 1𝑛𝑛 𝑒𝑒(𝑎𝑎) ∈ 𝐵𝐵∨ ⊂ 𝐵𝐵 𝐵 ℚ.)

(ii) If additionally 𝑒𝑒 is isometric, then 𝑒𝑒∨ ∘ 𝑒𝑒∨ = id𝐴𝐴∨ .

Proof. (i) Let 𝛼𝛼 ∈ 𝑗𝑗∨. Write 𝛼𝛼 = 1𝑛𝑛 𝑎𝑎 with 𝑎𝑎 ∈ 𝑗𝑗. We need to prove that 1𝑛𝑛 𝑒𝑒(𝑎𝑎) ∈ 𝐵𝐵∨, i.e., that for all
𝑏𝑏 ∈ 𝐵𝐵, we have ( 1𝑛𝑛 𝑒𝑒(𝑎𝑎), 𝑏𝑏) ∈ ℤ.

Now, we know that 𝑏𝑏 ∶ 𝑗𝑗 → 𝐵𝐵 is monomodular, so 𝑏𝑏 ∈ 𝐵𝐵 is in the kernel of the map 𝐵𝐵∨ → 𝑗𝑗∨/𝑗𝑗.
This means that 𝑒𝑒∨(𝑏𝑏) ∈ 𝑗𝑗∨ is in fact an element of 𝑗𝑗, say 𝑎𝑎𝑏𝑏: this means that for all 𝑥𝑥 ∈ 𝑗𝑗, we
have (𝑎𝑎𝑏𝑏, 𝑥𝑥) = (𝑒𝑒∨(𝑏𝑏), 𝑥𝑥) = (𝑏𝑏, 𝑒𝑒(𝑥𝑥)). Applying this to 𝑥𝑥 = 𝑎𝑎, we see that (𝑎𝑎𝑏𝑏, 𝑎𝑎) = (𝑏𝑏, 𝑒𝑒(𝑎𝑎)), so also
(𝑎𝑎𝑏𝑏, 1𝑛𝑛 𝑎𝑎) = (𝑏𝑏, 1𝑛𝑛 𝑒𝑒(𝑎𝑎)). The left-hand side of this last equation equals (𝑎𝑎𝑏𝑏, 𝛼𝛼), which is in ℤ, because
𝛼𝛼 ∈ 𝑗𝑗∨ and 𝑎𝑎𝑏𝑏 ∈ 𝑗𝑗. Therefore the right-hand side, (𝑏𝑏, 1𝑛𝑛 𝑒𝑒(𝑎𝑎)), is in ℤ as well, which was to be proved.

(ii) Let 𝛼𝛼 ∈ 𝑗𝑗∨, and take any 𝑥𝑥 ∈ 𝑗𝑗. Then we have (𝑒𝑒∨(𝑒𝑒∨(𝛼𝛼)), 𝑥𝑥) = (𝑒𝑒∨(𝛼𝛼), 𝑒𝑒(𝑥𝑥)) = (𝛼𝛼, 𝑥𝑥) (in the
last step, we use that 𝑒𝑒 is isometric). Because this holds for all 𝑥𝑥 ∈ 𝑗𝑗, and 𝑗𝑗 is non-degenerate, we
conclude that 𝑒𝑒∨(𝑒𝑒∨(𝛼𝛼)) = 𝛼𝛼.
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Definition 2.2.11. If 𝑓𝑓 𝑓 𝑓𝑓 → 𝐵𝐵 is a linear map of non-degenerate lattices such that 𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵𝐵∨ →
𝑓𝑓∨/𝑓𝑓𝐴, then we say that 𝑓𝑓 is isomodular.
Proposition 2.2.12. Let 𝑓𝑓 𝑓 𝑓𝑓 → 𝐵𝐵 be a linear map of non-degenerate lattices.

(i) If 𝑓𝑓 is injective with primitive image, and isomodular, then the induced map 𝐵𝐵∨/𝐵𝐵 → 𝑓𝑓∨/𝑓𝑓 is
an isomorphism of ℤ-modules.

(ii) If additionally 𝑓𝑓 is isometric, then the induced map 𝐵𝐵∨/𝐵𝐵 → 𝑓𝑓∨/𝑓𝑓 is an isomorphism of
discriminant modules.

Proof. (i) By lemma 2.2.4, the map 𝐵𝐵∨ → 𝑓𝑓∨ is surjective, so the composition 𝐵𝐵∨ → 𝑓𝑓∨/𝑓𝑓 is
surjective. Since 𝐵𝐵 𝐵 𝐵𝐵𝐵𝐵𝐵𝐵∨ → 𝑓𝑓∨/𝑓𝑓𝐴 (as 𝑓𝑓 is isomodular), we get an isomorphism 𝐵𝐵∨/𝐵𝐵 → 𝑓𝑓∨/𝑓𝑓
of ℤ-modules. (ii) We noted earlier that the dual map 𝑓𝑓∨ 𝑓 𝐵𝐵∨ → 𝑓𝑓∨ might not be isometric. However,
by lemma 2.2.10.ii, 𝑓𝑓∨ is a pre-inverse of 𝑓𝑓∨, so, descending to discriminant groups, we see that the
map 𝑓𝑓∨/𝑓𝑓 → 𝐵𝐵∨/𝐵𝐵 induced by 𝑓𝑓∨ is a left inverse of 𝐵𝐵∨/𝐵𝐵 → 𝑓𝑓∨/𝑓𝑓; because the latter is an
isomorphism, these two induced maps are in fact two-sided inverses. Finally, because 𝑓𝑓∨ is isometric,
the induced map 𝑓𝑓∨/𝑓𝑓 → 𝐵𝐵∨/𝐵𝐵 preserves the quadratic structure, so its inverse 𝐵𝐵∨/𝐵𝐵 → 𝑓𝑓∨/𝑓𝑓 does
as well.

Note that the discriminant modules of 𝑓𝑓 and 𝐵𝐵 can be isomorphic, even though 𝑓𝑓 𝑓 𝑓𝑓 → 𝐵𝐵 is isometric
but not isomodular. Example: 𝑓𝑓 𝐵 𝐴𝐴𝐴, 𝐵𝐵 𝐵 ℤ 𝐵 𝐴𝐴𝐴, and 𝑓𝑓 𝑓 𝑓𝑓 → 𝐵𝐵 sends the generator of 𝑓𝑓 to
2 ∈ ℤ.

We now formulate a result we will later need. It is a precise formulation of the following intuition:
if 𝑓𝑓 𝐴 𝐴𝐴 is a sublattice, and all the “non-unimodularity” of 𝐴𝐴 comes from 𝑓𝑓, then the complement
𝑓𝑓⊥ should be unimodular.
Proposition 2.2.13. Let 𝐴𝐴 be a non-degenerate lattice, and 𝑓𝑓 a non-degenerate sublattice. Write
𝐵𝐵 𝐵 𝑓𝑓⊥ for the orthogonal complement of 𝑓𝑓 in 𝐴𝐴; we assume that 𝐵𝐵 is non-degenerate as well. If the
inclusion 𝑓𝑓 → 𝐴𝐴 is isomodular, then 𝐵𝐵 is unimodular.
Proof. Let 𝛽𝛽 ∈ 𝐵𝐵∨; we must prove that 𝛽𝛽 ∈ 𝐵𝐵. Write 𝑓𝑓 𝑓 𝑓𝑓 → 𝐴𝐴 and 𝑔𝑔 𝑓 𝐵𝐵 → 𝐴𝐴 for the inclusions.

Because 𝐵𝐵 is primitive in 𝐴𝐴 (by construction as an orthogonal complement), the map 𝑔𝑔∨ 𝑓 𝐴𝐴∨ → 𝐵𝐵∨

is surjective (lemma 2.2.4), so there is an 𝜆𝜆 ∈ 𝐴𝐴∨ such that 𝑔𝑔∨𝐵𝜆𝜆𝐴 𝐵 𝛽𝛽. Write 𝛼𝛼 𝐵 𝑓𝑓∨𝐵𝜆𝜆𝐴 ∈ 𝑓𝑓∨. Now,
look at 𝑏𝑏 𝐵 𝜆𝜆 𝑏 𝑓𝑓∨𝐵𝛼𝛼𝐴 ∈ 𝐴𝐴∨. We have 𝑓𝑓∨𝐵𝑏𝑏𝐴 𝐵 𝑓𝑓∨𝐵𝜆𝜆𝐴 𝑏 𝑓𝑓∨𝐵𝑓𝑓∨𝐵𝛼𝛼𝐴𝐴 𝐵 𝛼𝛼 𝑏 𝛼𝛼 𝐵 𝛼, where we use lemma
2.2.10.ii (which applies, since 𝑓𝑓 is isometric, and isomodular, hence monomodular).

Because 𝑓𝑓∨𝐵𝑏𝑏𝐴 𝐵 𝛼, the vector 𝑏𝑏 is in the kernel of the composed map 𝐴𝐴∨ → 𝑓𝑓∨ → 𝑓𝑓∨/𝑓𝑓. Since 𝑓𝑓
is isomodular, this kernel equals 𝐴𝐴, so 𝑏𝑏 ∈ 𝐴𝐴.

Next, again because 𝑓𝑓∨𝐵𝑏𝑏𝐴 𝐵 𝛼, we see that 𝑏𝑏 is in the kernel of the composed map 𝐴𝐴 → 𝐴𝐴∨ → 𝑓𝑓∨.
This kernel is exactly 𝑓𝑓⊥ 𝐵 𝐵𝐵 (just unfold the definitions), so 𝑏𝑏 ∈ 𝐵𝐵.

Finally, we prove that 𝑏𝑏 𝐵 𝛽𝛽. Because 𝐵𝐵 is non-degenerate, it suffices to show that 𝐵𝑏𝑏𝑏 𝑏𝑏𝐴 𝐵 𝐵𝛽𝛽𝑏 𝑏𝑏𝐴
for all 𝑏𝑏 ∈ 𝐵𝐵. Now, we have

𝐵𝛽𝛽𝑏 𝑏𝑏𝐴 𝐵 𝐵𝑔𝑔∨𝐵𝜆𝜆𝐴𝑏 𝑏𝑏𝐴 𝐵 𝐵𝜆𝜆𝑏 𝑔𝑔𝐵𝑏𝑏𝐴𝐴 𝐵 𝐵𝑔𝑔𝐵𝑏𝑏𝐴 𝜆 𝑓𝑓∨𝐵𝛼𝛼𝐴𝑏 𝑔𝑔𝐵𝑏𝑏𝐴𝐴 𝐵 𝐵𝑔𝑔𝐵𝑏𝑏𝐴𝑏 𝑔𝑔𝐵𝑏𝑏𝐴𝐴 𝜆 𝐵𝑓𝑓∨𝐵𝛼𝛼𝐴𝑏 𝑔𝑔𝐵𝑏𝑏𝐴𝐴 𝐵 𝐵𝑏𝑏𝑏 𝑏𝑏𝐴 , (2.5)

where in the last step, we used that 𝑔𝑔 is isometric, and that any elements 𝛼𝛼 ∈ 𝑓𝑓∨ and 𝑏𝑏 ∈ 𝐵𝐵 are
orthogonal (since 𝐵𝐵 𝐵 𝑓𝑓⊥). This concludes the proof.

2.3 Orthogonal groups
Definition 2.3.1. Let 𝐴𝐴 be an integral lattice. We denote the group of automorphisms of 𝐴𝐴 by O𝐵𝐴𝐴𝐴.
Recall that morphisms of lattices by definition preserve the bilinear form, so automorphisms are
invertible ℤ-linear maps that preserve the bilinear form. Such maps are sometimes called orthogonal
maps, and the group O𝐵𝐴𝐴𝐴 is called the orthogonal group of 𝐴𝐴.

We get an important class of automorphisms by reflecting in hyperplanes orthogonal to a vector.
Definition 2.3.2. Let 𝑣𝑣 ∈ 𝐴𝐴 be non-isotropic (i.e., 𝑣𝑣2 ≠ 𝛼). Then we have an involution 𝜎𝜎𝑣𝑣 ∈ O𝐵𝐴𝐴ℚ𝐴,
given by

𝜎𝜎𝑣𝑣 𝑓 𝑏𝑏 ↦ 𝑏𝑏 𝑏 2𝐵𝑣𝑣𝑏 𝑏𝑏𝐴
𝐵𝑣𝑣𝑏 𝑣𝑣𝐴 𝑣𝑣 , (2.6)

called the reflection associated to 𝑣𝑣. (It is the reflection in the hyperplane orthogonal to 𝑣𝑣.) This
map 𝜎𝜎𝑣𝑣 𝑓 𝐴𝐴ℚ → 𝐴𝐴ℚ may not preserve the lattice 𝐴𝐴. If it does, and in addition 𝑣𝑣 is primitive in 𝐴𝐴 and
𝐵𝑣𝑣𝑏 𝑣𝑣𝐴 𝑣 𝛼, then we call 𝑣𝑣 a generalised root.
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Note that the reflection 𝜎𝜎𝑣𝑣 associated to a root 𝑣𝑣 (i.e., a vector 𝑣𝑣 with 𝑣𝑣2 = −2) preserves 𝐿𝐿, so a
root is indeed an example of a generalised root.

For even unimodular lattices, there are no others:

Lemma 2.3.3. Let 𝐿𝐿 be an even unimodular lattice. Then any generalised root 𝑣𝑣 ∈ 𝐿𝐿 is a root.

Proof. Let 𝑣𝑣 ∈ 𝐿𝐿 be a generalised root, so 𝑣𝑣 is primitive in 𝐿𝐿, and 𝑣𝑣2 < 0, and 𝜎𝜎𝑣𝑣 preserves 𝐿𝐿. Looking
at the definition of 𝜎𝜎𝑣𝑣, and given the primitivity of 𝑣𝑣, we see that 𝜎𝜎𝑣𝑣(𝑥𝑥𝑥 ∈ 𝐿𝐿 if and only if 𝑣𝑣2 divides
2(𝑣𝑣𝑣 𝑥𝑥𝑥. This happens for all 𝑥𝑥 ∈ 𝐿𝐿 if and only if 𝑣𝑣2 divides 2 div(𝑣𝑣𝑥. Now, because 𝐿𝐿 is unimodular,
and 𝑣𝑣 is primitive in 𝐿𝐿, we have in fact div(𝑣𝑣𝑥 = 𝑣, so we conclude that 𝑣𝑣2 divides 2. Since 𝑣𝑣2 < 0
and 𝐿𝐿 is even, we see that 𝑣𝑣2 = −2, so 𝑣𝑣 is a root.

Lemma 2.3.4. The group O(𝐿𝐿ℚ𝑥 is generated by the reflections {𝜎𝜎𝑣𝑣 ∶ 𝑣𝑣 ∈ 𝐿𝐿𝐿.

See for instance [44, Section 3.5] for a proof.
The automorphism group of a lattice has a few natural subgroups that will be important to us.
An automorphism 𝜎𝜎 ∈ O(𝐿𝐿𝑥 descends to a map 𝜎𝜎 ∶ 𝜎𝜎𝐿𝐿 → 𝜎𝜎𝐿𝐿, which then is an automorphism of

abelian groups, preserving the bilinear form (i.e., an automorphism of quadratic modules). This gives
a homomorphism of groups O(𝐿𝐿𝑥 → O(𝜎𝜎𝐿𝐿𝑥.

Definition 2.3.5. The subgroup Õ(𝐿𝐿𝑥 𝐿 O(𝐿𝐿𝑥 is the kernel of the map O(𝐿𝐿𝑥 → O(𝜎𝜎𝐿𝐿𝑥. In other
words, it is the set of automorphisms of 𝐿𝐿 that act trivially on the discriminant group.

Another important subgroup of O(𝐿𝐿𝑥 is the group of automorphisms of trivial spinor norm (to be
defined below). This spinor norm distinguishes reflections associated to vectors of positive norm and
negative norm.

Definition 2.3.6. Let 𝜎𝜎 ∈ O(𝐿𝐿𝑥. Write 𝜎𝜎 as a product of reflections: 𝜎𝜎 = 𝜎𝜎𝑣𝑣1
⋯ 𝜎𝜎𝑣𝑣𝑛𝑛

(this is possible,
by lemma 2.3.4). Then we define the spinor norm of 𝜎𝜎 by

(−𝑣𝑥𝑛𝑛
𝑛𝑛

∏
𝑖𝑖=1

sign 𝑣𝑣2
𝑖𝑖 . (2.7)

The group O+(𝐿𝐿𝑥 𝐿 O(𝐿𝐿𝑥 is the subgroup of automorphisms of spinor norm 𝑣.

We do not verify here that this does not depend on the chosen decomposition of 𝜎𝜎 as a product of
reflections. We will only use the spinor norm for lattices 𝐿𝐿 of signature (2𝑣 𝑛𝑛𝑥, and in that case O+(𝐿𝐿𝑥
is the subgroup of transformations that do not interchange the two components of the period domain
associated to 𝐿𝐿 (see section 4.1).

Definition 2.3.7. The group Õ+(𝐿𝐿𝑥 𝐿 O(𝐿𝐿𝑥 is the intersection of Õ(𝐿𝐿𝑥 and O+(𝐿𝐿𝑥.
Lemma 2.3.8 ([22, lemma 7.5]). Suppose that 𝐿𝐿 is a lattice containing two orthogonal copies of the
hyperbolic plane 𝑈𝑈 . Then the Õ+(𝐿𝐿𝑥-orbit of a primitive vector 𝑣𝑣 ∈ 𝐿𝐿 is determined by the norm 𝑣𝑣2

and the discriminant class of 𝑣𝑣∗ ∈ 𝐿𝐿∨.

2.4 Lattice genera
Classifying lattices is hard in general. As an approximation to isomorphism, we can ask whether two
lattices are isomorphic locally at each prime 𝑝𝑝.

Definition 2.4.1. Let 𝐾𝐾 and 𝐿𝐿 be lattices. We say that 𝐾𝐾 and 𝐿𝐿 are 𝑝𝑝-adically equivalent if
𝐾𝐾 𝐾𝐾𝑝𝑝 ≅ 𝐿𝐿𝐾𝐾𝑝𝑝, where 𝐾𝑝𝑝 are the 𝑝𝑝-adic integers. (We include the case of the infinite prime ∞, with
the convention that 𝐾∞ = ℝ.) We call 𝐾𝐾 and 𝐿𝐿 locally equivalent if they are 𝑝𝑝-adically equivalent at
every prime 𝑝𝑝, including the infinite prime ∞.

If 𝐿𝐿 is a lattice, we define the genus of 𝐿𝐿 (denoted by 𝒢𝒢(𝐿𝐿𝑥) to be the set of isomorphism classes
of lattices that are locally equivalent to 𝐿𝐿.

This weaker equivalence notion turns out to be very useful. First of all, it is easy to decide whether
two lattices are 𝑝𝑝-adically equivalent; the 𝑝𝑝-adic equivalence classes can be described by a relatively
simple invariant, called the local symbol at 𝑝𝑝. Note that local equivalence at ∞ is just equivalence of
real quadratic forms, so the local symbol at ∞ is the signature of the lattice.
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Secondly, the genus of any given lattice turns out to be a finite set, so in this sense, local equivalence
comes close to full isomorphism. In practice, the genus can be quite large, so the difference is still
significant.

If we restrict to even lattices, the local equivalence class of a lattice at all finite primes is captured
precisely by the discriminant module:
Theorem 2.4.2 ([37, 1.9.4]). Even lattices are locally equivalent if and only if they have the same
signature and isomorphic discriminant modules.

2.5 Vector-valued theta series
Let 𝐿𝐿 be a definite even lattice. Let us assume for convenience that 𝐿𝐿 is positive definite; the negative
definite case can be dealt with in the same way. There is a classical object derived from 𝐿𝐿, called the
theta series. It counts the number of vectors in 𝐿𝐿 of all possible lengths:

Θ𝐿𝐿 = ∑
𝑣𝑣∈𝐿𝐿

𝑞𝑞𝑣𝑣2/2 . (2.8)

If 𝐿𝐿 is non-unimodular, we may extract more information from it by considering vectors in the dual
lattice 𝐿𝐿∨. We may keep track of the discriminant class (i.e., the coset of the vector in 𝐷𝐷𝐿𝐿 = 𝐿𝐿∨/𝐿𝐿)
by letting the theta series take values in the group algebra ℂ[𝐷𝐷𝐿𝐿]; we write 𝐞𝐞𝛾𝛾 ∈ ℂ[𝐷𝐷𝐿𝐿] for the basis
element associated to 𝛾𝛾 ∈ 𝐷𝐷𝐿𝐿:

𝚯𝚯𝐿𝐿 = ∑
𝑣𝑣∈𝐿𝐿∨

𝑞𝑞𝑣𝑣2/2𝐞𝐞𝑣𝑣𝑣𝐿𝐿 . (2.9)

We call this the vector-valued theta series associated to the lattice 𝐿𝐿.
Proposition 2.5.1 ([6, section 4]). If 𝐿𝐿 is a definite even lattice of rank 𝑘𝑘, then 𝚯𝚯𝐿𝐿 is a vector-valued
modular form (see section 3.3) of weight 𝑘𝑘/𝑘, with values in the Weil representation 𝜌𝜌𝐿𝐿 (see section
3.2).
This is an improvement from the usual scalar-valued theta series, which is modular only with respect
to a congruence subgroup. There is no fundamental difference though; components of a vector-valued
modular form are themselves scalar-valued modular forms with level, and scalar-valued modular forms
can be extended to get vector-valued ones.
Example 2.5.2. If we take 𝐿𝐿 = 𝐿𝐿8, a definite unimodular lattice of rank 8, we get as theta series
a modular form 𝚯𝚯𝐸𝐸8

= Θ𝐸𝐸8
𝐞𝐞0 of weight 8/𝑘 = 4. Note that there is only one component, because

𝐿𝐿8 is unimodular, so the discriminant group 𝐿𝐿∨/𝐿𝐿 is trivial. We may as well identify 𝚯𝚯𝐸𝐸8
with the

scalar-valued form Θ𝐸𝐸8
.

Because the space of scalar-valued modular forms of weight 4 is 1-dimensional, Θ𝐸𝐸8
must be

proportional to the classical Eisenstein series 𝐺𝐺4. In fact, because the constant term of Θ𝐸𝐸8
equals 1

(being the number of vectors of length 0 in 𝐿𝐿8), the theta series Θ𝐸𝐸8
equals the normalised Eisenstein

series
𝐿𝐿4 = 1 𝑣 𝑘40

∞
∑
𝑛𝑛=𝑛

𝜎𝜎3(𝑛𝑛𝑛𝑞𝑞𝑛𝑛 . (2.10)

Incidentally, this gives a cheap method to compute the number of vectors in the lattice 𝐿𝐿8 of given
length.

In terms of the so-called Jacobi theta functions

𝜃𝜃2(𝑞𝑞𝑛 =
∞
∑

𝑛𝑛=𝑛∞
𝑞𝑞(𝑛𝑛𝑣𝑛/2𝑛2/2

𝜃𝜃3(𝑞𝑞𝑛 =
∞
∑

𝑛𝑛=𝑛∞
𝑞𝑞𝑛𝑛2/2

𝜃𝜃4(𝑞𝑞𝑛 =
∞
∑

𝑛𝑛=𝑛∞
(𝑛𝑞𝑞𝑛𝑛𝑛2/2 ,

(2.11)

we can write the theta series of the 𝐿𝐿8 lattice as

Θ𝐸𝐸8
= 1/𝑘 · (𝜃𝜃2(𝑞𝑞𝑛8 𝑣 𝜃𝜃3(𝑞𝑞𝑛8 𝑣 𝜃𝜃4(𝑞𝑞𝑛8) ; (2.12)

see [12, p. 122], but note that their 𝑞𝑞 is exp(𝜋𝜋𝜋𝜋𝜋𝜋𝑛, whereas we use 𝑞𝑞 = exp(𝑘𝜋𝜋𝜋𝜋𝜋𝜋𝑛.
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Example 2.5.3. As another example, let us take 𝐿𝐿 𝐿 𝐿𝐿𝑛𝑛, a definite lattice of rank 𝑛𝑛. This lattice is
not unimodular; its discriminant group is the Klein four group if 𝑛𝑛 is even, and the cyclic group 𝐶𝐶4
of order four if 𝑛𝑛 is odd. Let us write 𝐞𝐞0, 𝐞𝐞1, 𝐞𝐞2, 𝐞𝐞3 for the generators of the group algebra ℂ[𝐿𝐿∨/𝐿𝐿𝐿
in either case (so if 𝑛𝑛 is even, we have 𝐞𝐞2

𝑖𝑖 𝐿 𝐞𝐞0 for all 𝑖𝑖 and 𝐞𝐞1𝐞𝐞2 𝐿 𝐞𝐞3; if 𝑛𝑛 is odd, then 𝐞𝐞𝑖𝑖𝐞𝐞𝑗𝑗 𝐿 𝐞𝐞𝑘𝑘
with 𝑘𝑘 ≡ 𝑖𝑖 𝑖 𝑖𝑖 𝑖𝑖𝑖 𝑖).

Because the discriminant group has four elements, the vector-valued theta series, taking values in
ℂ[𝐿𝐿∨/𝐿𝐿𝐿, has four components. We may write it in terms of Jacobi theta functions as

𝚯𝚯𝐷𝐷𝑛𝑛
𝐿1/2 · (𝜃𝜃3(𝑞𝑞𝑞𝑛𝑛 𝑖 𝜃𝜃4(𝑞𝑞𝑞𝑛𝑛)𝐞𝐞0

𝑖1/2 · 𝜃𝜃2(𝑞𝑞𝑞𝑛𝑛 𝐞𝐞1

𝑖1/2 · (𝜃𝜃3(𝑞𝑞𝑞𝑛𝑛 − 𝜃𝜃4(𝑞𝑞𝑞𝑛𝑛)𝐞𝐞2

𝑖1/2 · 𝜃𝜃2(𝑞𝑞𝑞𝑛𝑛 𝐞𝐞3 ;

(2.13)

see for instance [12, p. 118].
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Chapter 3

Modular forms

3.1 The metaplectic group
We will be dealing with modular forms of half-integral weight, as extensively studied by Shimura [48].
The transformation group governing the behaviour of these forms is not the special linear group, as
in the integer weight case, but a double cover of it called the metaplectic group; the classic reference
for this is [52].

Similarly to the integer weight case, we have a discrete subgroup Mp2(ℤ) of a connected Lie group
Mp2(ℝ). Unfortunately, we cannot realise this metaplectic group as a group of matrices. (More
precisely: there is no faithful finite-dimensional representation of Mp2(ℝ).) We can get an explicit
description from the covering map to SL2(ℝ), though.

Definition 3.1.1. The (real) metaplectic group is given as a set by

Mp2(ℝ) = {(( 𝑎𝑎 𝑎𝑎
𝑐𝑐 𝑐𝑐 ),

√
𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐) 𝑐 ( 𝑎𝑎 𝑎𝑎

𝑐𝑐 𝑐𝑐 ) ∈ SL2(ℝ)} , (3.1)

where
√

𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐 denotes one of the two branches of the square root of the function 𝑐𝑐𝑐𝑐 𝑐 𝑐𝑐 on the upper
half-plane.

The group structure on Mp2(ℝ) is as follows:

(𝐴𝐴1, 𝜀𝜀1)(𝐴𝐴2, 𝜀𝜀2) = (𝐴𝐴1𝐴𝐴2, 𝜀𝜀) , (3.2)

where
𝜀𝜀(𝑐𝑐) = 𝜀𝜀1(𝐴𝐴2 · 𝑐𝑐)𝜀𝜀2(𝑐𝑐) . (3.3)

The covering map Mp2(ℝ) → SL2(ℝ) is the obvious map, forgetting about the choice of square root.
The integral metaplectic group Mp2(ℤ) is the inverse image of SL2(ℤ) under this covering map.

We state some simple results on the structure of the integral metaplectic group.

Proposition 3.1.2.

(i) Mp2(ℤ) is generated by the elements ̃𝑇𝑇 = (( 1 1
0 1 ), 1) and ̃𝑆𝑆 = (( 0 −1

1 0 ), √𝑐𝑐).

(ii) The centre of Mp2(ℤ) is generated by the element 𝑍𝑍 ≔ ̃𝑆𝑆2 = ( ̃𝑆𝑆 ̃𝑇𝑇 )3 = ((−1 0
0 −1), i).

Proof. (i) Let 𝑔𝑔 ∈ Mp2(ℤ). We know ([45]) that SL2(ℤ) is generated by 𝑆𝑆 and 𝑇𝑇 ; so we can write

𝜋𝜋(𝑔𝑔) = 𝜋
𝑖𝑖

𝑆𝑆𝑚𝑚𝑖𝑖𝑇𝑇 𝑛𝑛𝑖𝑖 (3.4)

for some integers 𝑚𝑚𝑖𝑖 and 𝑛𝑛𝑖𝑖. Then, since 𝜋𝜋( ̃𝑆𝑆) = 𝑆𝑆 and 𝜋𝜋( ̃𝑇𝑇 ) = 𝑇𝑇 , we have

𝜋𝜋(𝑔𝑔) = 𝜋𝜋 𝜋𝜋
𝑖𝑖

̃𝑆𝑆𝑚𝑚𝑖𝑖 ̃𝑇𝑇 𝑛𝑛𝑖𝑖) , (3.5)

so 𝑔𝑔 and ∏𝑖𝑖
̃𝑆𝑆𝑚𝑚𝑖𝑖 ̃𝑇𝑇 𝑛𝑛𝑖𝑖 are the same up to the choice of square root. Multiplying by ̃𝑆𝑆4 = (( 1 0

0 1 ), −1) to
change the square root if necessary, we see that 𝑔𝑔 ∈ ⟨ ̃𝑆𝑆, ̃𝑇𝑇 𝑇. (ii) Clearly, 𝑍𝑍 is in the centre of Mp2(ℤ).

13
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On the other hand, if 𝑐𝑐 is an element of the centre, then 𝜋𝜋𝜋𝑐𝑐𝜋 is in the centre of SL2𝜋ℤ𝜋 (because 𝜋𝜋 is
a surjective homomorphism), hence equal to (1 0

0 1) or (−1 0
0 −1). Then 𝑐𝑐 must be a pre-image of one of

these elements, allowing only the four possibilities 1, 𝑍𝑍, 𝑍𝑍2, 𝑍𝑍3.

Definition 3.1.3. The cyclic subgroup of Mp2𝜋ℤ𝜋 generated by ̃𝑇𝑇 is denoted by Γ̃∞.

3.2 The Weil representation associated to a lattice
Given an even lattice 𝐿𝐿, there is a natural representation 𝜌𝜌𝐿𝐿 of the metaplectic group Mp2𝜋ℤ𝜋 on the
vector space ℂ[𝐿𝐿∨/𝐿𝐿𝐿. It is a special case of the representations of symplectic groups of [52], and thus
it is called the Weil representation. It may be defined by the action of the generators ̃𝑇𝑇 , ̃𝑆𝑆:

Definition 3.2.1. Let 𝐿𝐿 be an even lattice of signature 𝜋𝑏𝑏+, 𝑏𝑏𝑏𝜋. Write e𝜋𝑡𝑡𝜋 𝑡 𝑡𝑡2𝜋𝜋𝜋𝜋𝜋𝜋 for convenience,
and denote the natural generators of the group algebra ℂ[𝐿𝐿∨/𝐿𝐿𝐿 by 𝐞𝐞𝛾𝛾 for 𝛾𝛾 ∈ 𝐿𝐿∨/𝐿𝐿. We define the
representation 𝜌𝜌𝐿𝐿 by

𝜌𝜌𝐿𝐿𝜋 ̃𝑇𝑇 𝜋 𝐞𝐞𝛿𝛿 𝑡 e𝜋𝛿𝛿2/2𝜋𝐞𝐞𝛿𝛿 and

𝜌𝜌𝐿𝐿𝜋 ̃𝑆𝑆𝜋 𝐞𝐞𝛿𝛿 𝑡 e𝜋𝜋𝑏𝑏𝑏 − 𝑏𝑏+𝜋/8𝜋
√|𝐿𝐿∨/𝐿𝐿|

∑
𝛾𝛾∈𝐿𝐿∨/𝐿𝐿

e𝜋−𝛾𝛾 𝛾 𝛿𝛿𝜋𝐞𝐞𝛾𝛾 . (3.6)

Note for reference that the central element 𝑍𝑍 acts by

𝜌𝜌𝐿𝐿𝜋𝑍𝑍𝜋𝐞𝐞𝛿𝛿 𝑡 e𝜋𝜋𝑏𝑏𝑏 − 𝑏𝑏+𝜋/4𝜋𝐞𝐞−𝛿𝛿 . (3.7)

A formula giving the action of any element of the metaplectic group has been found by Shintani (see
[49]), but we will not need it.

3.3 Vector-valued modular forms associated to a lattice
Throughout this section, let 𝐿𝐿 be an even lattice and 𝑘𝑘 ∈ 1

2 ℤ. Following the conventions of [8], we
introduce a class of modular forms associated to 𝐿𝐿 of weight 𝑘𝑘 with respect to the metaplectic group,
taking values in the vector space ℂ[𝐿𝐿∨/𝐿𝐿𝐿. First of all, we should specify how the metaplectic group
acts on vector-valued functions on the upper half-plane.

Definition 3.3.1. Let 𝑓𝑓 𝑓 𝑓 → ℂ[𝐿𝐿∨/𝐿𝐿𝐿, and 𝜋𝐴𝐴, 𝐴𝐴𝜋 ∈ Mp2𝜋ℤ𝜋. The slash operator |∗𝑘𝑘 is defined by

𝑓𝑓 |∗𝑘𝑘𝜋𝐴𝐴, 𝐴𝐴𝜋𝜋𝐴𝐴𝜋 𝑡 𝐴𝐴𝜋𝐴𝐴𝜋−2𝑘𝑘𝜌𝜌∨
𝐿𝐿𝜋𝐴𝐴, 𝐴𝐴𝜋−1𝑓𝑓𝜋𝐴𝐴𝐴𝐴𝜋 . (3.8)

Here, 𝜌𝜌∨
𝐿𝐿 is the dual of the Weil representation 𝜌𝜌𝐿𝐿 of Mp2𝜋ℤ𝜋 on ℂ[𝐿𝐿∨/𝐿𝐿𝐿, defined in section 3.2.

Example 3.3.2. Suppose that 𝐿𝐿 𝑡 ℤ, the unimodular positive definite rank 1 lattice. Then 𝐿𝐿∨/𝐿𝐿 is
the trivial group, so the associated slash operator gives an action of Mp2𝜋ℤ𝜋 on the space of complex
functions on the upper half-plane.

Suppose further that 𝑘𝑘 is integer. Then the factor 𝐴𝐴𝜋𝐴𝐴𝜋−2𝑘𝑘 equals 𝜋𝑐𝑐𝐴𝐴+𝑐𝑐𝜋−𝑘𝑘 (if we write 𝐴𝐴 𝑡 (𝑎𝑎 𝑎𝑎
𝑐𝑐 𝑐𝑐)),

and the generators ̃𝑇𝑇 , ̃𝑆𝑆 act by
𝑓𝑓 |∗𝑘𝑘 ̃𝑇𝑇 𝑡 𝑓𝑓𝜋𝑇𝑇 𝐴𝐴𝜋 ,
𝑓𝑓 |∗𝑘𝑘 ̃𝑆𝑆 𝑡 e𝜋−1/8𝜋𝐴𝐴−𝑘𝑘𝑓𝑓𝜋𝑆𝑆𝐴𝐴𝜋 ;

(3.9)

this is the usual slash operator on (scalar) functions on the upper half-plane, except for the factor
e𝜋−1/8𝜋 𝑡 𝑡𝑡−𝜋𝜋𝜋𝜋/𝜋.

Definition 3.3.3. A holomorphic function 𝑓𝑓 𝑓 𝑓 → ℂ[𝐿𝐿∨/𝐿𝐿𝐿 is called a modular form of weight 𝑘𝑘 on
the metaplectic group Mp2𝜋ℤ𝜋 if

(i) for every ̃𝐴𝐴 ∈ Mp2𝜋ℤ𝜋, we have 𝑓𝑓 |∗𝑘𝑘 ̃𝐴𝐴 𝑡 𝑓𝑓 ; and

(ii) 𝑓𝑓 is holomorphic at i∞.

The space of all modular forms of weight 𝑘𝑘 is denoted by 𝑀𝑀𝜋𝑘𝑘, 𝐿𝐿𝜋.
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Remark 3.3.4. We will sometimes drop condition ii, and allow 𝑓𝑓 to have a pole at the cusp. We will
call this “a vector-valued modular form with possible pole at the cusp”, although it is not a modular
form in the above sense. Some authors refer to these objects as weak modular forms.

Suppose that 𝜑𝜑 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 is a vector-valued modular form. We may write such a form as a Fourier
expansion

𝜑𝜑𝑀𝜑𝜑𝑀 𝜑 𝜑
𝛾𝛾𝛾𝛾𝛾

𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝑞𝑞𝛾𝛾𝐞𝐞𝛾𝛾 , (3.10)

where we write 𝑞𝑞 𝜑 𝑞𝑀𝜑𝜑𝑀 𝜑 𝑞𝑞2𝜋𝜋𝜋𝜋𝜋𝜋.

Definition 3.3.5. Given 𝑀𝛾𝛾𝑀 𝛾𝛾𝑀 (such that 𝛾𝛾 ∈ −𝛾𝛾2/2 + ℤ and 𝛾𝛾 𝑛 𝑛), let 𝑐𝑐𝛾𝛾𝛾𝛾𝛾 ∶ 𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 → ℂ be the
function taking a form 𝜑𝜑 to its 𝑀𝛾𝛾𝑀 𝛾𝛾𝑀-coefficient 𝑎𝑎𝛾𝛾𝛾𝛾𝛾.

The modular curve SL2𝑀ℤ𝑀\ℍ on which these vector-valued modular forms live has one cusp. However,
we may want to distinguish the behaviour of the different components of a vector-valued form at the
cusp. This leads to the following useful abuse of language:

Definition 3.3.6. Let 𝑀𝑀 be an even lattice. The cusps of 𝑀𝑀 are the isotropic elements of the discrim-
inant group of 𝑀𝑀 (i.e., the elements 𝛾𝛾 ∈ 𝐷𝐷𝐿𝐿 𝜑 𝑀𝑀∨/𝑀𝑀 such that 𝛾𝛾2/2 𝜑 𝑛 ∈ ℚ/ℤ).

Using this terminology, we might say that a given vector-valued modular form 𝜑𝜑 vanishes at the cusp
𝛾𝛾 ∈ 𝐷𝐷𝐿𝐿 if the 𝐞𝐞𝛾𝛾-component of 𝜑𝜑 vanishes at the single cusp of the modular curve.

Remark 3.3.7. We will see later on (section 4.3) that if the lattice has signature 𝑀2𝑀 𝛾𝛾𝑀 there is a
tight connection between the vector-valued modular forms associated to 𝑀𝑀 and modular forms on the
arithmetic quotient associated to 𝑀𝑀 (see section 4.1). The cusps of 𝑀𝑀 in the above sense correspond
with the 𝑛-dimensional cusps of that arithmetic quotient (see section 5.1.1), giving an alternative
interpretation of definition 3.3.6.

Definition 3.3.8. We say that a modular form 𝜑𝜑 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 is a cusp form if its coefficients satisfy
𝑐𝑐𝛾𝛾𝛾𝛾𝑀𝜑𝜑𝑀 𝜑 𝑛 for all cusps 𝛾𝛾 of 𝑀𝑀.

As a non-standard extension of this terminology, we say that 𝜑𝜑 is an almost cusp form if 𝑐𝑐𝛾𝛾𝛾𝛾𝑀𝜑𝜑𝑀 𝜑 𝑛
for all isotropic 𝛾𝛾 𝛾 ̄𝑛. (In other words, an almost cusp form vanishes at all cusps except perhaps the
standard cusp 𝛾𝛾 𝜑 ̄𝑛 ∈ 𝐷𝐷𝐿𝐿.)

Denote the space of cusp forms by 𝑆𝑆𝑀𝑀𝑀𝑀 𝑀𝑀𝑀, and the space of almost cusp forms by 𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 𝑀𝑀𝑀.

Note that we have 𝑆𝑆𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 𝑆 𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 𝑆 𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀. If 𝑀𝑀 𝑘 2, the first inclusion is strict, and the
last inclusion is an equality if and only if 𝑀𝑀 has only one cusp: this follows from the existence of an
Eisenstein series 𝐸𝐸𝛾𝛾 at every cusp 𝛾𝛾 of 𝑀𝑀 (see [11] and section 3.4).

Note that 𝑀𝑀 has only one cusp if and only if the quadratic module 𝐷𝐷𝐿𝐿 has ̄𝑛 as its only isotropic
element (for details on this in the case of the lattice 𝑀𝑀 𝜑 𝑀𝑀2𝑑𝑑, which figures in the theory of K3
surfaces, see section 5.1.1).

3.3.1 Serre duality
Later on, we will need a result saying that the obstruction to constructing vector-valued modular
forms with given singularities at the cusps of 𝑀𝑀 is itself given by a space of holomorphic vector-valued
modular forms (of different weight). This is fully explained in [7, section 3]; we give a short account
here.

We introduce a few tools to describe the pole behaviour of vector-valued modular forms.

Definition 3.3.9. Sing𝑀𝑀𝑀𝑀 is the space of Laurent polynomials (in 𝑞𝑞) with values in ℂ[𝐷𝐷𝐿𝐿] having
only non-positive powers of 𝑞𝑞.

Similarly, Sing𝑀𝑀𝑀𝑀𝐿 is the subspace of Sing𝑀𝑀𝑀𝑀 of elements having only negative powers of 𝑞𝑞, and
Sing𝑀𝑀𝑀𝑀−

𝛾 is the subspace of Sing𝑀𝑀𝑀𝑀 of elements having only negative powers of 𝑞𝑞 except possibly a
term 𝑞𝑞𝛾𝐞𝐞�̄�.

We write Obstruct𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 for the obstruction space to the existence of vector-valued modular forms
of weight 𝑀𝑀 with given principal part. More formally, Obstruct𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 is the quotient of Sing𝑀𝑀𝑀𝑀 by the
image of the map taking a vector-valued modular form with poles to its principal part.
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By an application of Serre duality, the space 𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 is dual to the obstruction space Obstruct𝑀2−𝑀𝑀𝑀 𝑀𝑀𝑀
of obstructions to a given element of Sing𝑀𝑀𝑀𝑀 being the principal part of a meromorphic vector-valued
modular form of weight 2 − 𝑀𝑀 and representation 𝜌𝜌𝐿𝐿. The duality is realised by the residue map

𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 𝑀 Sing𝑀𝑀𝑀𝑀 → ℂ

𝑀𝜑𝜑𝑀 𝜑𝜑𝑀 ↦ Res𝑀 𝜑𝜑𝜑𝜑
𝑞𝑞1/𝑁𝑁

d𝑞𝑞1/𝑁𝑁𝑀 .
(3.11)

Proposition 3.3.10 ([7]). The above correspondence identifies the coefficient function 𝑐𝑐𝛾𝛾𝛾𝛾𝛾 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀∨

with [𝑞𝑞−𝛾𝛾𝐞𝐞𝛾𝛾] ∈ Obstruct𝑀2 − 𝑀𝑀𝑀 𝑀𝑀𝑀. A linear combination

∑
𝛾𝛾𝛾𝛾𝛾

𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝑐𝑐𝛾𝛾𝛾𝛾𝛾 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀∨ (3.12)

is zero on 𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 if and only if the corresponding obstruction

[ ∑
𝛾𝛾𝛾𝛾𝛾𝛾𝛾

𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝑞𝑞−𝛾𝛾𝐞𝐞𝛾𝛾] ∈ Obstruct𝑀2 − 𝑀𝑀𝑀 𝑀𝑀𝑀 (3.13)

vanishes, i.e., if and only if this equals the principal part of some meromorphic vector-valued form of
weight 2 − 𝑀𝑀 and representation 𝜌𝜌𝐿𝐿.

Remark 3.3.11. The analogous statement holds for the space 𝑆𝑆𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 of cusp forms, if we restrict the
principal parts to Sing¯𝑀𝑀𝑀𝑀, and likewise for the space 𝐴𝐴𝐴𝐴𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 of almost cusp forms, if we restrict
the principal parts to Sing−

𝛾𝑀𝑀𝑀𝑀.

3.4 Eisenstein series
If the weight 𝑀𝑀 is greater than 2, the space 𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀 of vector-valued modular forms contains some
special forms called Eisenstein series. For a given weight 𝑀𝑀, there is one such a form for every cusp.

Definition 3.4.1. Let 𝛾𝛾 be a cusp of 𝑀𝑀, i.e., 𝛾𝛾 ∈ 𝑀𝑀∨/𝑀𝑀 is such that 𝛾𝛾2/2 = 0 ∈ ℚ/ℤ; also, let 𝑀𝑀 𝛾 2
be a proper half-integer (i.e., 𝑀𝑀 ∈ 1

2 ℤ, and 𝑀𝑀 ∉ ℤ). Then the Eisenstein series of weight 𝑀𝑀 associated
to 𝛾𝛾 is

𝐸𝐸𝛾𝛾 = ∑
𝜎𝜎 ∈ Γ∞\Mp2𝑀ℤ𝑀

𝐞𝐞𝛾𝛾 |∗𝑘𝑘 𝜎𝜎 . (3.14)

(Because 𝑀𝑀 𝛾 2, the sum is normally convergent.) We write 𝐸𝐸 = 𝐸𝐸�̄� for the Eisenstein series associated
to the standard cusp; if we refer to an Eisenstein series without mentioning a specific cusp, it shall be
this one.

We will only be interested in the special case 𝑀𝑀 = 𝑀𝑀2𝑑𝑑 = ⟨−2𝑑𝑑𝑑𝑑2𝑑𝑑 𝑑2𝐸𝐸8𝑀−1𝑀, the lattice associated
to the moduli space of polarised K3 surfaces of degree 2𝑑𝑑. From now on, let 𝑀𝑀 denote that lattice (for
some value of 𝑑𝑑).

The Eisenstein series 𝐸𝐸�̄� also has an interpretation involving the arithmetic quotient space ℱ2𝑑𝑑
associated to 𝑀𝑀 (see section 4.1) and its so-called Heegner divisors (see section 4.2):

Proposition 3.4.2 ([27]). Let 𝐻𝐻𝑀𝛾𝛾𝑀 𝐻𝐻𝑀 be a Heegner divisor on ℱ2𝑑𝑑. The degree of 𝐻𝐻𝑀𝛾𝛾𝑀 𝐻𝐻𝑀, i.e.,
the intersection number 𝐻𝐻𝑀𝛾𝛾𝑀 𝐻𝐻𝑀 𝐻 𝐻𝐻18, is equal to a negative constant (independent of 𝛾𝛾 and 𝐻𝐻) times
𝑐𝑐𝛾𝛾𝛾𝛾𝛾𝑀𝐸𝐸�̄�𝑀.
Bruinier and Kuss [11] have found a formula for the Fourier coefficients of the Eisenstein series 𝐸𝐸�̄�
which is explicit enough to allow a computer implementation.

Theorem 3.4.3 ([11]). Let 𝛾𝛾 ∈ 𝑀𝑀∨ and 𝐻𝐻 ∈ ℤ − 𝛾𝛾2/2, with 𝐻𝐻 𝛾 0. The coefficient 𝑐𝑐𝛾𝛾𝛾𝛾𝛾𝑀𝐸𝐸�̄�𝑀 of the
Eisenstein series 𝐸𝐸�̄� is given by

−𝑀2𝜋𝜋𝑀21/2𝐻𝐻19/2

√|2𝑑𝑑|𝑑𝑀21/2𝑀
𝑀𝑀𝑀10𝑀 𝐿𝐿𝒟𝒟𝑀

𝜁𝜁𝑀20𝑀 ∑
𝑐𝑐|𝑐𝑐

𝜇𝜇𝑀𝑐𝑐𝑀𝐿𝐿𝒟𝒟𝑀𝑐𝑐𝑀𝑐𝑐−1𝛾𝜎𝜎−19𝑀𝜑𝜑/𝑐𝑐𝑀 𝑓
𝑝𝑝|2𝑑𝑑

𝑝𝑝−2𝛾𝑤𝑤𝑝𝑝𝑁𝑁𝛾𝛾𝛾𝛾𝛾𝑀𝑝𝑝𝑤𝑤𝑝𝑝𝑀
1 − 𝑝𝑝−2𝛾 , (3.15)

where 𝑑 is the gamma function; 𝑀𝑀𝑀𝐻𝑀 𝐿𝐿𝒟𝒟𝑀 is the Dirichlet L-series associated to the character 𝐿𝐿𝒟𝒟;
𝜎𝜎𝑖𝑖𝑀𝑥𝑥𝑀 = 𝑥𝑏𝑏|𝑏𝑏 𝑏𝑏𝑖𝑖 is a divisor sum function; the product is taken over prime divisors 𝑝𝑝 of 2𝑑𝑑; the
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number 𝑤𝑤𝑝𝑝 is given by 𝑤𝑤𝑝𝑝 = 1 + 2𝑣𝑣𝑝𝑝(2𝑛𝑛𝑛𝑛𝛾𝛾) (where 𝑣𝑣𝑝𝑝 denotes the additive valuation at 𝑝𝑝, and 𝑛𝑛𝛾𝛾 is
the level of 𝛾𝛾, i.e., the order of 𝛾𝛾 in the abelian group 𝐿𝐿∨/𝐿𝐿); further, 𝑁𝑁𝛾𝛾𝛾𝛾𝛾(𝑎𝑎) is a count of lattice
congruence classes:

𝑁𝑁𝛾𝛾𝛾𝛾𝛾(𝑎𝑎) = 𝑎 𝑎𝑎𝑎 ∈ 𝐿𝐿/𝑎𝑎𝐿𝐿 𝐿 (𝑎𝑎 𝐿 𝛾𝛾)2/2 + 𝑛𝑛 ≡ 0 mod 𝑎𝑎𝑎 ; (3.16)

finally, the numbers 𝒟𝒟 and 𝑓𝑓 are given by the following procedure: write 𝑛𝑛 = 𝑛𝑛0𝑓𝑓2, where 𝑛𝑛0 ∈ ℚ, 𝑓𝑓 ∈ ℕ,
and (𝑓𝑓, 2𝑛𝑛) = 1, and 𝑣𝑣𝑙𝑙(𝑛𝑛0) ∈ {0, 1} for all prime 𝑙𝑙 such that (𝑙𝑙, 2𝑛𝑛) = 1; then set 𝒟𝒟 = 𝒟𝑛𝑛𝑛𝑛0𝑛𝑛2

𝛾𝛾.
Note that this is Theorem 4.8 from [11], specialised to our situation: 𝑘𝑘 = 21/2 is the weight of the
Eisenstein series we want to compute, 𝑏𝑏+ = 2, |𝐿𝐿∨/𝐿𝐿| = 2𝑛𝑛.

This formula can be implemented on a computer in a straightforward way. The special value of
the L-series at the positive integer 10 can be calculated exactly. The only part that takes a significant
amount of time to compute when done in a naive way is the congruence count 𝑁𝑁𝛾𝛾𝛾𝛾𝛾(𝑎𝑎): counting
this set of vectors would enumerate the set 𝐿𝐿/𝑎𝑎𝐿𝐿, which has 𝑎𝑎rank 𝐿𝐿 = 𝑎𝑎21 elements. So, if 𝑎𝑎 is only
slightly large, say 𝑎𝑎 = 𝑎2 = 25, then this set already has 𝑎221 ≈ 𝒟 ∗ 1031 elements.

There are (at least) two ways around this problem.
In his thesis [3], Barnard rewrites these congruence counts in terms of Gauss sums. Unfortunately

these cannot be computed directly, as this would involve a sum over a set of size similar to that of
𝐿𝐿/𝑎𝑎𝐿𝐿. Barnard presents an alternative way to compute these Gauss sums, using local analysis at each
prime. However, he does not deal with the case of an odd 2-adic Jordan component in the lattice
𝐿𝐿. Our lattice 𝐿𝐿 = 𝐿𝐿2𝑑𝑑 does have an odd 2-adic Jordan component, so Barnard’s approach does not
apply directly to our case, although it could possibly be extended to do so.

The approach that we will use rests on the observation that the Eisenstein series depends only on
the discriminant group 𝐿𝐿∨/𝐿𝐿 (together with its quadratic form 𝛾𝛾 ↦ 𝛾𝛾2/2 ∈ ℚ/ℤ) and of course on the
choice of weight 𝑘𝑘. Recall that our lattice 𝐿𝐿 = 𝐿𝐿2𝑑𝑑 = ⟨𝐿2𝑛𝑛𝑑 𝑑 2𝑑𝑑 𝑑 2𝑑𝑑8(𝐿1) has a big unimodular
part 2𝑑𝑑 𝑑 2𝑑𝑑8(𝐿1); its discriminant module is just the discriminant module of the lattice ⟨𝐿2𝑛𝑛𝑑. So
when computing the Eisenstein series associated to the rank 21 lattice 𝐿𝐿2𝑑𝑑, we might as well use the
rank 1 lattice ⟨𝐿2𝑛𝑛𝑑 instead. In doing so, we reduce the sum over 𝐿𝐿/𝑎𝑎𝐿𝐿 from having size 𝑎𝑎21 to just
𝑎𝑎. The slight downside is that we can no longer use the easier formula of [11, Theorem 4.8], because
that applies only to the special case where the weight 𝑘𝑘 equals rank(𝐿𝐿)/2. Instead, we may use the
more general formula:
Theorem 3.4.4 ([11, Theorem 4.6]). Let 𝛾𝛾 ∈ 𝐷𝐷𝐿𝐿2𝑑𝑑

≅ ℤ/2𝑛𝑛ℤ and 𝑛𝑛 ∈ ℤ 𝐿 𝛾𝛾2/2, with 𝑛𝑛 𝑛 0. The
coefficient 𝑐𝑐𝛾𝛾𝛾𝛾𝛾(𝑑𝑑0̄) of the Eisenstein series 𝑑𝑑0̄ is given by

𝐿223/2𝜋𝜋21/2𝑛𝑛19/2

√|2𝑛𝑛|𝑑(21/2)
𝐿𝐿(10, 𝐿𝐿𝒟𝒟)

𝜁𝜁(20) ∏
𝑝𝑝|𝑝𝑑𝑑𝛾𝛾𝑑𝑑2𝛾𝛾

1 𝐿 𝐿𝐿𝒟𝒟(𝑝𝑝)𝑝𝑝𝐿10

1 𝐿 𝑝𝑝𝐿20 𝐿𝐿𝛾𝛾𝛾𝛾𝛾(𝑝𝑝) , (3.17)

where 𝑑, 𝐿𝐿(𝐿, 𝐿𝐿𝒟𝒟), 𝒟𝒟, 𝜁𝜁, 𝑛𝑛𝛾𝛾 all are as in theorem 3.4.3, and the local factor 𝐿𝐿𝛾𝛾𝛾𝛾𝛾(𝑝𝑝) is given by

𝐿𝐿𝛾𝛾𝛾𝛾𝛾(𝑝𝑝) = (1 𝐿 𝑝𝑝𝐿10)
𝑤𝑤𝑝𝑝𝐿1

∑
𝜈𝜈=0

𝑁𝑁𝛾𝛾𝛾𝛾𝛾(𝑝𝑝𝜈𝜈)𝑝𝑝𝐿10𝜈𝜈 + 𝑁𝑁𝛾𝛾𝛾𝛾𝛾(𝑝𝑝𝑤𝑤𝑝𝑝)𝑝𝑝𝐿10𝑤𝑤𝑝𝑝 , (3.18)

where the congruence count 𝑁𝑁𝛾𝛾𝛾𝛾𝛾(𝑎𝑎) is the same as before, but now for the lattice 𝐿𝐿 = ⟨𝐿2𝑛𝑛𝑑.
Note that the congruence count 𝑁𝑁𝛾𝛾𝛾𝛾𝛾(𝑎𝑎) counts a subset of 𝐿𝐿/𝑎𝑎𝐿𝐿, which now has 𝑎𝑎 elements (because
𝐿𝐿 = ⟨𝐿2𝑛𝑛𝑑 has rank 1). This means that a naive counting implementation will suffice for many values
of 𝛾𝛾 and 𝑛𝑛: only if the number 𝑝𝑝𝑤𝑤𝑝𝑝 is very large, for some prime divisors 𝑝𝑝 of 𝒟𝑛𝑛𝑛𝑛𝑛𝑛2

𝛾𝛾, will this method
take a significant amount of time.

Later, in section 3.6, we will see how to compute a basis of the space of modular forms 𝑀𝑀 of which
this Eisenstein series 𝑑𝑑 is a member. Once we have such a basis, we need to compute only a finite
number of coefficients of 𝑑𝑑; comparing with the coefficients of the basis forms, we may identify the
modular form 𝑑𝑑. We can then compute all its other coefficients by linear algebra. Hence, for our
purposes, we may avoid the computation of the coefficient 𝑑𝑑(𝛾𝛾, 𝑛𝑛) for any particular value of 𝛾𝛾 and
𝑛𝑛, if we find it takes too much time.

We have implemented the formula given by theorem 3.4.4 using Sage [50]; see listing A.1.
Example 3.4.5. We give here some coefficients, for the case 𝑛𝑛 = 1.

17𝒟611 𝐿 𝑑𝑑0̄ = 𝐞𝐞0̄ (𝑎𝒟9222 𝐿 52𝑎77700𝑞𝑞1 𝐿 𝑎792𝒟1𝒟1200𝑞𝑞2 𝐿 178562𝒟218𝒟00𝑞𝑞3 + 𝑂𝑂(𝑞𝑞𝑝))
+ 𝐞𝐞1̄ (𝐿100𝑞𝑞1/𝑝 𝐿 𝒟𝑎5865056𝑞𝑞5/𝑝 𝐿 11622𝒟178500𝑞𝑞9/𝑝 𝐿 𝑎8160𝒟5𝑎1𝒟𝒟00𝑞𝑞13/𝑝 + 𝑂𝑂(𝑞𝑞𝑝)) .

(3.19)
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3.5 Jacobi forms
Modular forms are functions of one variable 𝜏𝜏 . Jacobi forms are a certain generalisation to functions
of two variables 𝜏𝜏 and 𝑧𝑧.

Just as a modular form has a weight, which describes its behaviour under transformations of the
domain, Jacobi forms have a weight and an index (an integer number), describing how it transforms
under changes in the two variables.

Classically, the second variable 𝑧𝑧 was a complex number. A natural further generalisation arises
when we replace this number by a complex vector 𝑧𝑧 ∈ ℂ𝑁𝑁. The index is then no longer an integer, but
a lattice of rank 𝑁𝑁 . We are interested in these lattice index Jacobi forms, because they are strongly
related to vector-valued modular forms: see theorem 3.5.4 below.

A general reference on classical Jacobi forms is [15]. The generalisation to lattice index Jacobi
forms is hard to attribute; we follow the notation of [42], although we use a rank 𝑁𝑁 lattice 𝐿𝐿 where
Raum uses ℤ𝑁𝑁 with a matrix 𝐿𝐿 (representing the intersection form of our lattice 𝐿𝐿).

Definition 3.5.1. Let 𝐿𝐿 be an even lattice. The Jacobi upper-half plane is the set

ℍ𝐿𝐿 = ℍ × 𝐿𝐿ℂ , (3.20)

where ℍ = {𝜏𝜏 ∈ ℂ ∶ ℑ(𝜏𝜏𝜏 𝜏 𝜏𝜏 is the usual upper-half plane, and 𝐿𝐿ℂ = 𝐿𝐿 𝐿 ℂ, which is just ℂ𝑁𝑁 (if 𝐿𝐿
has rank 𝑁𝑁), with inner product induced by that of 𝐿𝐿.

The Jacobi group is the semi-direct product

Γ𝐽𝐽 = SL2(ℤ𝜏 ⋉ (ℤ2 𝐿 𝐿𝐿𝜏 , (3.21)

with SL2(ℤ𝜏 acting on ℤ2 𝐿 𝐿𝐿 by the natural extension of the action on ℤ2. The Jacobi group acts
on the Jacobi upper-half plane, as follows: if 𝛾𝛾𝐽𝐽 = (𝛾𝛾𝛾 (𝛾𝛾𝛾 𝛾𝛾𝜏𝜏 ∈ Γ𝐽𝐽 (so 𝛾𝛾 = 𝛾𝑎𝑎 𝑎𝑎

𝑐𝑐 𝑐𝑐) ∈ SL2(ℤ𝜏, and
𝛾𝛾𝛾 𝛾𝛾 ∈ 𝐿𝐿), and (𝜏𝜏𝛾 𝑧𝑧𝜏 ∈ ℍ𝐿𝐿, then

𝛾𝛾𝐽𝐽 · (𝜏𝜏𝛾 𝑧𝑧𝜏 = (𝑎𝑎𝜏𝜏 𝑎 𝑎𝑎
𝑐𝑐𝜏𝜏 𝑎 𝑐𝑐 𝛾 𝑧𝑧 𝑎 𝛾𝛾𝜏𝜏 𝑎 𝛾𝛾

𝑐𝑐𝜏𝜏 𝑎 𝑐𝑐 𝜏 . (3.22)

Given an integer number 𝑘𝑘, we define a slash operator, which is an action of the Jacobi group Γ𝐽𝐽

on functions 𝜑𝜑 ∶ ℍ𝐿𝐿 → ℂ:

(𝜑𝜑𝜑𝑘𝑘𝑘𝐿𝐿𝛾𝛾𝐽𝐽𝜏(𝜏𝜏𝛾 𝑧𝑧𝜏 = (𝑐𝑐𝜏𝜏 𝑎 𝑐𝑐𝜏−𝑘𝑘e(−𝑐𝑐 (𝑧𝑧 𝑎 𝛾𝛾𝜏𝜏 𝑎 𝛾𝛾𝜏2

2(𝑐𝑐𝜏𝜏 𝑎 𝑐𝑐𝜏 𝑎 𝜏𝜏𝛾𝛾2/2 𝑎 (𝛾𝛾𝛾 𝑧𝑧𝜏𝜏𝜑𝜑(𝛾𝛾𝐽𝐽 · (𝜏𝜏𝛾 𝑧𝑧𝜏𝜏 , (3.23)

where 𝛾𝛾𝐽𝐽 = (𝛾𝑎𝑎 𝑎𝑎
𝑐𝑐 𝑐𝑐)𝛾 (𝛾𝛾𝛾 𝛾𝛾𝜏𝜏 ∈ Γ𝐽𝐽. (Note that the inner product on 𝐿𝐿ℂ induced by that of 𝐿𝐿 is used

implicitly.)

Definition 3.5.2. Let 𝐿𝐿 be an even lattice. A Jacobi form of weight 𝑘𝑘 and index 𝐿𝐿 is a holomorphic
function 𝜑𝜑 ∶ ℍ𝐿𝐿 → ℂ such that

(i) 𝜑𝜑𝜑𝑘𝑘𝑘𝐿𝐿𝛾𝛾𝐽𝐽 = 𝜑𝜑 for all 𝛾𝛾𝐽𝐽 ∈ Γ𝐽𝐽, and

(ii) for every 𝛼𝛼𝛾 𝛼𝛼 ∈ 𝐿𝐿ℚ, the function 𝜏𝜏 ↦ 𝜑𝜑(𝜏𝜏𝛾 𝛼𝛼𝜏𝜏 𝑎 𝛼𝛼𝜏 is bounded.

The space of Jacobi forms of weight 𝑘𝑘 and index 𝐿𝐿 is denoted by 𝐽𝐽(𝑘𝑘𝛾 𝐿𝐿𝜏.
If 𝐿𝐿 has rank 1, say generated by a vector of length 2𝑚𝑚, then we recover the definition of a Jacobi
form in the classical sense (i.e., of scalar index) of weight 𝑘𝑘 and index 𝑚𝑚.
Jacobi forms have a Fourier expansion, similar to usual modular forms: if 𝜑𝜑 is a Jacobi form of index
𝐿𝐿, then we may write

𝜑𝜑(𝜏𝜏𝛾 𝑧𝑧𝜏 = 𝜑
𝑛𝑛∈ℤ

𝜑
𝑟𝑟∈𝐿𝐿∨

𝑟𝑟2/2≤𝑛𝑛

𝑐𝑐(𝑐𝑐𝛾 𝑐𝑐𝜏 𝑐𝑐𝑛𝑛𝜁𝜁𝑟𝑟 , (3.24)

where 𝑐𝑐(𝑐𝑐𝛾 𝑐𝑐𝜏 ∈ ℂ are the Fourier coefficients of 𝜑𝜑, and 𝑐𝑐 = e(𝜏𝜏𝜏, and 𝜁𝜁𝑟𝑟 = e((𝑧𝑧𝛾 𝑐𝑐𝜏𝜏 (using the natural
pairing of 𝐿𝐿ℂ with 𝐿𝐿∨).

Some particularly useful relations among Fourier coefficients of Jacobi forms are the following:

Lemma 3.5.3. Let 𝜑𝜑 be a Jacobi form of weight 𝑘𝑘 and index 𝐿𝐿, with Fourier coefficients 𝑐𝑐(𝑐𝑐𝛾 𝑐𝑐𝜏. If
𝛾𝛾 ∈ 𝐿𝐿, then

𝑐𝑐(𝑐𝑐𝛾 𝑐𝑐 𝑎 𝛾𝛾𝜏 = 𝑐𝑐(𝑐𝑐 − 𝛾𝛾2/2 − (𝛾𝛾𝛾 𝑐𝑐𝜏𝛾 𝑐𝑐𝜏 . (3.25)
Also, we have 𝑐𝑐(𝑐𝑐𝛾 −𝑐𝑐𝜏 = (−1𝜏𝑘𝑘𝑐𝑐(𝑐𝑐𝛾 𝑐𝑐𝜏.
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Proof. Use the invariance of 𝜑𝜑 under the slash operator applied to the Jacobi group element
((1 0

0 1), (𝜆𝜆, 𝜆𝜆𝜆, respectively ((−1 0
0 −1), (𝜆, 𝜆𝜆𝜆.

These relations imply that a Jacobi form is uniquely determined by the coefficients 𝑐𝑐(𝑐𝑐, 𝑐𝑐𝜆 for 𝑐𝑐 in a
set of representatives of (𝐿𝐿∨/𝐿𝐿𝜆/𝐿.

Theorem 3.5.4 ([53, p. 210]). Let 𝑘𝑘 be an integer and 𝐿𝐿 a positive definite even lattice of rank 𝑁𝑁 .
There is an isomorphism Θ𝐿𝐿 ∶ 𝐽𝐽(𝑘𝑘, 𝐿𝐿𝜆 → 𝑀𝑀(𝑘𝑘−𝑁𝑁/𝑀, 𝐿𝐿𝜆 between the space of Jacobi forms of weight 𝑘𝑘
and index 𝐿𝐿, and the space of vector-valued modular forms of weight 𝑘𝑘 − 𝑁𝑁/𝑀 associated to the lattice
𝐿𝐿.

Explicitly, if
𝑓𝑓 𝑓 𝑓

𝛾𝛾∈𝐷𝐷𝐿𝐿

𝑓𝑓𝛾𝛾𝐞𝐞𝛾𝛾 ∈ 𝑀𝑀(𝑘𝑘 − 𝑁𝑁/𝑀, 𝐿𝐿𝜆 (3.26)

is such a vector-valued modular form, it corresponds under this isomorphism to

Θ−1
𝐿𝐿 (𝑓𝑓𝜆(𝑓𝑓, 𝑓𝑓𝜆 𝑓 𝑓

𝑟𝑟∈𝐿𝐿∨
𝑞𝑞𝑟𝑟2/2 𝜁𝜁𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝐿𝐿(𝑓𝑓𝜆 . (3.27)

This theorem will form the basis of our computations of spaces of vector-valued modular forms. We
may compute spaces of Jacobi forms of lattice index by relating them to spaces of Jacobi forms of
scalar index, which are well-known.

Definition 3.5.5 ([42]). Let 𝜑𝜑 be a Jacobi form of weight 𝑘𝑘 and index 𝐿𝐿, and let 𝑠𝑠 ∈ 𝐿𝐿. Then the
restriction of 𝜑𝜑 along 𝑠𝑠 is the function 𝜑𝜑𝜑𝑠𝑠𝜑 given by

𝜑𝜑𝜑𝑠𝑠𝜑(𝑓𝑓, 𝑓𝑓𝜆 𝑓 𝜑𝜑(𝑓𝑓, 𝑓𝑓𝑠𝑠𝜆 . (3.28)

Proposition 3.5.6 ([42, Lemma 3.6]). If 𝜑𝜑 is a Jacobi form of weight 𝑘𝑘 and index 𝐿𝐿, and 𝑠𝑠 ∈ 𝐿𝐿, then
the restriction 𝜑𝜑𝜑𝑠𝑠𝜑 is a Jacobi form of weight 𝑘𝑘 and scalar index 𝑠𝑠2/𝑀.

3.6 Computation of spaces of vector-valued modular forms
We want to compute spaces of vector-valued modular forms explicitly, in terms of Fourier expansions
of a set that forms a basis.

In [42], Raum describes an algorithm to compute these expansions. We follow his strategy.
The first step is to relate the wanted vector-valued modular forms to Jacobi forms (of lattice index).

This requires us to change the lattice to be positive definite, without changing the discriminant group.
We explain this in section 3.6.1.

Next, the main tool to compute these Jacobi forms of lattice index is proposition 3.5.6: if 𝜑𝜑 is a
Jacobi form of lattice index 𝐿𝐿, and 𝑠𝑠 ∈ 𝐿𝐿 is an integral vector, then 𝜑𝜑𝜑𝑠𝑠𝜑 – the restriction (in its second
variable) of the form 𝜑𝜑 to the span of 𝑠𝑠 – is again a Jacobi form, but now of scalar index. Spaces of
Jacobi forms of scalar index are well-known, and Fourier coefficients of such forms can be computed
using existing algorithms. Therefore, if we can describe explicitly how the Fourier coefficients of 𝜑𝜑𝜑𝑠𝑠𝜑
are determined by those of 𝜑𝜑, we get relations that the Fourier coefficients of 𝜑𝜑 must satisfy. We
explain how to do this in section 3.6.2.

Now, the idea of the algorithm is to take several of these “restriction vectors” 𝑠𝑠, and for each of
them compute the induced relations among coefficients of Jacobi forms. If we take enough restriction
vectors, the induced relations may completely determine the space of Jacobi forms. We will know
when we reach that point, because there is a formula for the dimension of the space of Jacobi forms.
Moreover, Raum proves that there exists a finite set of restriction vectors that suffices, and gives an
algorithm to compute such a set (although this algorithm is not very efficient, and in practice, it seems
easier to generate restriction vectors at random).

3.6.1 Change to positive definite lattice
We would like to apply the isomorphism Θ𝐿𝐿 ∶ 𝐽𝐽(𝑘𝑘, 𝐿𝐿𝜆 → 𝑀𝑀(𝑘𝑘 − 𝑁𝑁/𝑀, 𝐿𝐿𝜆 of theorem 3.5.4 to relate
our space of vector-valued modular forms to a space of Jacobi forms, which we may compute in turn
by Raum’s restriction method. However, theorem 3.5.4 only works if the lattice 𝐿𝐿 is positive definite,
which our lattice 𝐿𝐿2𝑑𝑑 𝑓 ⟨−𝑀𝑑𝑑𝑑 𝑑 𝑀𝑑𝑑8(−1𝜆 𝑑 𝑀𝑈𝑈 is not.
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Luckily, the space of vector-valued modular forms associated to a lattice 𝐿𝐿 in fact only depends
on the Weil representation 𝜌𝜌𝐿𝐿 associated to 𝐿𝐿, and in turn this only sees the discriminant group 𝐷𝐷𝐿𝐿
of the lattice. So we need to find a positive definite lattice 𝑁𝑁 such that 𝐷𝐷𝑁𝑁 ≅ 𝐷𝐷𝐿𝐿2𝑑𝑑

.
This is not so hard:

Proposition 3.6.1. Let 𝑑𝑑 be a positive integer. Pick any vector 𝑣𝑣 ∈ 𝐸𝐸8 such that 𝑣𝑣2 = 2𝑑𝑑, and define
𝑁𝑁 = 𝑣𝑣⊥, the orthogonal complement of 𝑣𝑣 in 𝐸𝐸8. Then 𝑁𝑁 has the same discriminant module as 𝐿𝐿2𝑑𝑑.
Proof. By the lemma below, since 𝐸𝐸8 is unimodular, the discriminant module 𝐷𝐷𝑁𝑁 of 𝑁𝑁 = 𝑣𝑣⊥ is minus
that of ⟨𝑣𝑣𝑣 ≅ ⟨2𝑑𝑑𝑣, so 𝐷𝐷𝑁𝑁 is isomorphic to the discriminant module of ⟨−2𝑑𝑑𝑣. This in turn equals the
discriminant module of 𝐿𝐿2𝑑𝑑 = ⟨−2𝑑𝑑𝑣 𝑑 2𝑑𝑑 𝑑 2𝐸𝐸8(−1), because 𝑑𝑑 and 𝐸𝐸8(−1) are unimodular.

Lemma 3.6.2 ([37, proposition 1.6.1]). Suppose that 𝐿𝐿 is an even unimodular lattice, and that 𝐴𝐴𝐴 𝐴𝐴
are sublattices of 𝐿𝐿 such that 𝐴𝐴⊥ = 𝐴𝐴 and 𝐴𝐴⊥ = 𝐴𝐴. Then the discriminant groups 𝐷𝐷𝐴𝐴 and 𝐷𝐷𝐵𝐵 satisfy
𝐷𝐷𝐴𝐴 ≅ 𝐷𝐷𝐵𝐵(−1), where 𝐷𝐷𝐵𝐵(−1) is just 𝐷𝐷𝐵𝐵 with the sign of the quadratic form reversed. Explicitly:
there is an isomorphism of groups 𝛼𝛼 𝛼 𝐷𝐷𝐴𝐴 → 𝐷𝐷𝐵𝐵 such that 𝛼𝛼(𝛼𝛼)2/2 = −𝛼𝛼2/2 ∈ ℚ/ℤ for all 𝛼𝛼 ∈ 𝐷𝐷𝐴𝐴.
Proof. Let 𝛼𝛼 ∈ 𝐷𝐷𝐴𝐴, say 𝛼𝛼 = 𝑡𝑡/𝑡𝑡 𝑡 𝐴𝐴, for some 𝑡𝑡 ∈ 𝐴𝐴 and 𝑡𝑡 ∈ ℤ𝑡. We claim that there exists some
𝑢𝑢 ∈ 𝑡𝑡𝐿𝐿, such that 𝑡𝑡 − 𝑢𝑢 ∈ 𝐴𝐴.

As a general remark, note that the orthogonal complement of a lattice is by construction primitive;
in particular 𝐴𝐴 and 𝐴𝐴 are primitive in 𝐿𝐿.

Proof of claim: since 𝐴𝐴 = 𝐴𝐴⊥, we know that 𝐴𝐴 is primitive in 𝐿𝐿, so, by lemma 2.2.4, the map
𝐿𝐿∨ → 𝐴𝐴∨ is surjective. Because 𝐿𝐿 is unimodular by assumption, 𝐿𝐿∨ = 𝐿𝐿, so in fact 𝐿𝐿 → 𝐴𝐴∨ is
surjective. Therefore, there is an 𝜐𝜐 ∈ 𝐿𝐿 such that (𝜐𝜐𝐴 𝜐𝜐) = (𝑡𝑡/𝑡𝑡𝐴 𝜐𝜐) for all 𝜐𝜐 ∈ 𝐴𝐴. Now, take
𝑢𝑢 = 𝑡𝑡𝜐𝜐 ∈ 𝑡𝑡𝐿𝐿; we then know that (𝑢𝑢𝐴 𝜐𝜐) = (𝑡𝑡𝐴 𝜐𝜐) for all 𝜐𝜐 ∈ 𝐴𝐴, so (𝑡𝑡 − 𝑢𝑢𝐴 𝜐𝜐) = 𝑎 for all 𝜐𝜐 ∈ 𝐴𝐴. This
means that 𝑡𝑡 − 𝑢𝑢 ∈ 𝐴𝐴⊥ = 𝐴𝐴, as required.

We now define the map 𝛼𝛼 by declaring 𝛼𝛼(𝛼𝛼) = (𝑡𝑡 − 𝑢𝑢)/𝑡𝑡 𝑡 𝐴𝐴 ∈ 𝐷𝐷𝐵𝐵. We need to verify that this
is well defined (independent of the choice of 𝑢𝑢), and that it gives an isomorphism of abelian groups,
and finally that 𝛼𝛼(𝛼𝛼)2 = −𝛼𝛼2.

First, we show that 𝛼𝛼 is well defined. If 𝑢𝑢′ ∈ 𝑡𝑡𝐿𝐿 is another element such that 𝑡𝑡 − 𝑢𝑢′ ∈ 𝐴𝐴, then
(𝑡𝑡 − 𝑢𝑢′) − (𝑡𝑡 − 𝑢𝑢) ∈ 𝐴𝐴, but also (𝑡𝑡 − 𝑢𝑢′) − (𝑡𝑡 − 𝑢𝑢) = 𝑢𝑢 − 𝑢𝑢′ ∈ 𝑡𝑡𝐿𝐿. Because 𝐴𝐴 is primitive in 𝐿𝐿, we
have in fact that (𝑡𝑡 − 𝑢𝑢′) − (𝑡𝑡 − 𝑢𝑢) ∈ 𝑡𝑡𝐴𝐴, so (𝑡𝑡 − 𝑢𝑢′)/𝑡𝑡 𝑡 𝐴𝐴 = (𝑡𝑡 − 𝑢𝑢)/𝑡𝑡 𝑡 𝐴𝐴 ∈ 𝐷𝐷𝐵𝐵.

Next, note that 𝛼𝛼 is additive: if 𝛼𝛼𝑖𝑖 = 𝑡𝑡′
𝑖𝑖/𝑡𝑡𝑖𝑖 ∈ 𝐷𝐷𝐴𝐴, we can first take multiples to get a common

denominator: 𝛼𝛼𝑖𝑖 = 𝑡𝑡𝑖𝑖/𝑡𝑡. Then, if 𝑢𝑢𝑖𝑖 ∈ 𝑡𝑡𝐿𝐿 is such that 𝑡𝑡𝑖𝑖 − 𝑢𝑢𝑖𝑖 ∈ 𝐴𝐴, then (𝑡𝑡1 𝑡 𝑡𝑡2) − (𝑢𝑢1 𝑡 𝑢𝑢2) =
𝑡𝑡1 − 𝑢𝑢1 𝑡 𝑡𝑡2 − 𝑢𝑢2 ∈ 𝐴𝐴, and 𝑢𝑢1 𝑡 𝑢𝑢2 ∈ 𝑡𝑡𝐿𝐿, so 𝛼𝛼(𝛼𝛼1 𝑡 𝛼𝛼2) = 𝛼𝛼((𝑡𝑡1 𝑡 𝑡𝑡2)/𝑡𝑡) = ((𝑡𝑡1 𝑡 𝑡𝑡2) − (𝑢𝑢1 𝑡
𝑢𝑢2))/𝑡𝑡 𝑡 𝐴𝐴 = (𝑡𝑡1 − 𝑢𝑢1)/𝑡𝑡 𝑡 (𝑡𝑡2 − 𝑢𝑢2)/𝑡𝑡 𝑡 𝐴𝐴 = 𝛼𝛼(𝛼𝛼1) 𝑡 𝛼𝛼(𝛼𝛼2).

Furthermore, we may apply this construction also after switching 𝐴𝐴 and 𝐴𝐴; this gives a map
𝛽𝛽 𝛼 𝐷𝐷𝐵𝐵 → 𝐷𝐷𝐴𝐴, such that if 𝑠𝑠 = 𝑠𝑠/𝑡𝑡 𝑡 𝐴𝐴, and 𝑢𝑢 ∈ 𝑡𝑡𝐿𝐿 with 𝑠𝑠 − 𝑢𝑢 ∈ 𝐴𝐴, then 𝛽𝛽(𝑠𝑠) = (𝑠𝑠 − 𝑢𝑢)/𝑡𝑡.
Now, take 𝛼𝛼 ∈ 𝐷𝐷𝐴𝐴, say 𝛼𝛼 = 𝑡𝑡/𝑡𝑡 with 𝑡𝑡 ∈ 𝐴𝐴 and 𝑡𝑡 ∈ ℤ𝑡. Pick a 𝑢𝑢 ∈ 𝑡𝑡𝐿𝐿 such that 𝑡𝑡 − 𝑢𝑢 ∈ 𝐴𝐴,
and write 𝑠𝑠 = 𝛼𝛼(𝛼𝛼) = (𝑡𝑡 − 𝑢𝑢)/𝑡𝑡 𝑡 𝐴𝐴. Note that 𝑢𝑢 = −𝑢𝑢 has the property that (𝑡𝑡 − 𝑢𝑢) − 𝑢𝑢 ∈ 𝐴𝐴, so
𝛽𝛽(𝑠𝑠) = ((𝑡𝑡 − 𝑢𝑢) − 𝑢𝑢)/𝑡𝑡 𝑡 𝐴𝐴 = 𝑡𝑡/𝑡𝑡 𝑡 𝐴𝐴 = 𝛼𝛼. This proves that 𝛽𝛽 𝛽 𝛼𝛼 = 𝛽𝛽𝐷𝐷𝐴𝐴

. Symmetrically, we have
𝛼𝛼 𝛽 𝛽𝛽 = 𝛽𝛽𝐷𝐷𝐵𝐵

, so 𝛼𝛼 is an isomorphism of abelian groups.
Finally, let 𝛼𝛼 = 𝑡𝑡/𝑡𝑡 𝑡 𝐴𝐴 ∈ 𝐷𝐷𝐴𝐴; we need to show that 𝛼𝛼(𝛼𝛼)2/2 = −𝛼𝛼2/2 ∈ ℚ/ℤ. On the one hand,

we have 𝛼𝛼2/2 = (𝑡𝑡/𝑡𝑡𝐴 𝑡𝑡/𝑡𝑡)/2 = (𝑡𝑡𝐴 𝑡𝑡)/2𝑡𝑡2; on the other, we have

𝛼𝛼(𝛼𝛼)2/2 = ((𝑡𝑡 − 𝑢𝑢)/𝑡𝑡)2/2 = (𝑡𝑡 − 𝑢𝑢𝐴 𝑡𝑡 − 𝑢𝑢)/2𝑡𝑡2 = (𝑡𝑡𝐴 𝑡𝑡)/2𝑡𝑡2 − 2(𝑡𝑡𝐴 𝑢𝑢)/2𝑡𝑡2 𝑡 (𝑢𝑢𝐴 𝑢𝑢)/2𝑡𝑡2

= −(𝑡𝑡𝐴 𝑡𝑡)/2𝑡𝑡2 ,
(3.29)

where in the final equation, we used the fact that (𝑡𝑡𝐴 𝑢𝑢) = (𝑡𝑡𝐴 𝑡𝑡) (because 𝑡𝑡 − 𝑢𝑢 ∈ 𝐴𝐴 = 𝐴𝐴⊥), and that
(𝑢𝑢𝐴 𝑢𝑢)/2𝑡𝑡2 ∈ ℤ (because 𝑢𝑢 ∈ 𝑡𝑡𝐿𝐿, and 𝐿𝐿 is even). This proves that 𝛼𝛼2/2 = (𝑡𝑡𝐴 𝑡𝑡)/2𝑡𝑡2 = −𝛼𝛼(𝛼𝛼)2/2.

3.6.2 Restriction matrix
To compute Fourier coefficients of Jacobi forms using the restriction method, we need to describe
explicitly how the restriction acts on the level of Fourier expansions.
Lemma 3.6.3. Let 𝜑𝜑 be a Jacobi form of index 𝐿𝐿, and 𝑠𝑠 ∈ 𝐿𝐿; write 𝑐𝑐(𝑐𝑐𝐴 𝑐𝑐) for the Fourier coefficients
of 𝜑𝜑. Then the Fourier coefficients of 𝜑𝜑𝜑𝑠𝑠𝜑 are given by

𝑑𝑑(𝑐𝑐𝐴 𝑑𝑐𝑐) = 𝑑
𝑟𝑟∈𝐿𝐿∨

(𝑠𝑠𝑠𝑟𝑟)= 𝑑𝑟𝑟
𝑟𝑟2/2≤𝑛𝑛

𝑐𝑐(𝑐𝑐𝐴 𝑐𝑐) . (3.30)
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Proof. We simply insert the argument 𝑧𝑧𝑧𝑧 in the expansion of 𝜑𝜑, and collect terms:

𝜑𝜑𝜑𝑧𝑧𝜑𝜑𝜑𝜑𝜑 𝑧𝑧𝜑 𝜑 𝜑𝜑𝜑𝜑𝜑𝜑 𝑧𝑧𝑧𝑧𝜑
𝜑 ∑

𝑛𝑛∈ℤ
∑

𝑟𝑟∈𝐿𝐿∨
𝑟𝑟2/2≤𝑛𝑛

𝑐𝑐𝜑𝑐𝑐𝜑 𝑐𝑐𝜑 𝑐𝑐𝑛𝑛 e𝜑𝜑𝑧𝑧𝑧𝑧𝜑 𝑐𝑐𝜑𝜑

𝜑 ∑
𝑛𝑛∈ℤ

∑
𝑟𝑟∈𝐿𝐿∨

𝑟𝑟2/2≤𝑛𝑛

𝑐𝑐𝜑𝑐𝑐𝜑 𝑐𝑐𝜑 𝑐𝑐𝑛𝑛𝜁𝜁𝜑𝑠𝑠𝑠𝑟𝑟𝜑
1

𝜑 ∑
𝑛𝑛∈ℤ

∑
�̃�𝑟∈ℤ

( ∑
𝑟𝑟∈𝐿𝐿∨

𝜑𝑠𝑠𝑠𝑟𝑟𝜑𝜑�̃�𝑟
𝑟𝑟2/2≤𝑛𝑛

𝑐𝑐𝜑𝑐𝑐𝜑 𝑐𝑐𝜑) 𝑐𝑐𝑛𝑛𝜁𝜁�̃�𝑟
1 ,

(3.31)

where 𝜁𝜁1 𝜑 e𝜑𝑧𝑧𝜑.

We want to compute the possible coefficients 𝑐𝑐𝜑𝑐𝑐𝜑 𝑐𝑐𝜑 of a lattice index Jacobi form, given the coefficients
𝑑𝑑𝜑𝑐𝑐𝜑 ̃𝑐𝑐𝜑 of its restriction, using the above lemma. We can decrease the number of unknowns in equation
(3.30), by employing the symmetries among the 𝑐𝑐𝜑𝑐𝑐𝜑 𝑐𝑐𝜑, as described by lemma 3.5.3.

Let us choose representatives 𝑐𝑐𝑖𝑖 of the quotient 𝜑𝐿𝐿∨/𝐿𝐿𝜑/𝐿, and denote by 𝜌𝜌 the map sending
𝑐𝑐 ∈ 𝐿𝐿∨ to the representative of the class of 𝑐𝑐. Also, write

𝜈𝜈𝜑𝑐𝑐𝜑 𝑐𝑐𝜑 𝜑 𝑐𝑐 𝜈 𝜈𝜈2/2 − 𝜑𝑐𝑐𝜑 𝜈𝜈𝜑 , (3.32)

where 𝜈𝜈 ∈ 𝐿𝐿 and 𝜀𝜀𝜑𝑐𝑐𝜑 ∈ {1𝜑 −1} are chosen in such a way that 𝜀𝜀𝜑𝑐𝑐𝜑𝜌𝜌𝜑𝑐𝑐𝜑 𝜑 𝑐𝑐 𝜈 𝜈𝜈.
Then we have

𝑑𝑑𝜑𝑐𝑐𝜑 ̃𝑐𝑐𝜑 𝜑 ∑
𝑟𝑟∈𝐿𝐿∨

𝜑𝑠𝑠𝑠𝑟𝑟𝜑𝜑�̃�𝑟
𝑟𝑟2/2≤𝑛𝑛

𝜀𝜀𝜑𝑐𝑐𝜑 𝑐𝑐𝜑𝜈𝜈𝜑𝑐𝑐𝜑 𝑐𝑐𝜑𝜑 𝜌𝜌𝜑𝑐𝑐𝜑𝜑 . (3.33)

3.6.3 Examples

Our interest in vector-valued modular forms is motivated by the moduli space of polarised K3 surfaces
(of degree 2𝑑𝑑, say), which is intimately related to the lattice 𝐿𝐿2𝑑𝑑 𝜑 ⟨−2𝑑𝑑𝑑 𝑑 2𝑑𝑑 𝑑 2𝑑𝑑8𝜑−1𝜑. In
particular, we are interested in the space 𝑀𝑀𝜑𝑑𝑑𝜑 of vector-valued modular forms associated to 𝐿𝐿2𝑑𝑑, of
weight 21/2. We may use the method outlined above to compute the Fourier expansion of a basis of
this space 𝑀𝑀𝜑𝑑𝑑𝜑, for any 𝑑𝑑.

Example 3.6.4. As a first example, take 𝑑𝑑 𝜑 1. By theorem 4.2.10, we know 𝑀𝑀𝜑1𝜑 has dimension 2.
Applying the restriction method, we get the following basis:

𝑣𝑣1 𝜑 1
169227[𝐞𝐞0̄ · (169227 − 105457575250𝑐𝑐 − 2577𝑞9561𝑞𝑞200𝑐𝑐2 − 𝑞𝑞4𝑞𝑞2250520400𝑐𝑐3 𝜈 𝑂𝑂𝜑𝑐𝑐4𝜑)

𝜈 𝐞𝐞1̄ · (1𝑞𝑞2717700𝑐𝑐1/4 𝜈 677567176704𝑐𝑐5/4 𝜈 5𝑞249565705700𝑐𝑐9/4 𝜈 𝑂𝑂𝜑𝑐𝑐3𝜑) ] , and

𝑣𝑣2 𝜑 1
56[𝐞𝐞0̄ · (56𝑐𝑐 𝜈 1𝑞6𝑞0𝑐𝑐2 𝜈 177120𝑐𝑐3 𝜈 𝑂𝑂𝜑𝑐𝑐4𝜑)

𝜈 𝐞𝐞1̄ · (−1𝑐𝑐1/4 − 𝑞60𝑐𝑐5/4 − 𝑞0969𝑐𝑐9/4 𝜈 𝑂𝑂𝜑𝑐𝑐3𝜑) ] .
(3.34)

The subspace 𝑆𝑆𝜑1𝜑 of cusp forms is exactly the span of 𝑣𝑣2. As there is only one cusp, the almost-cusp
forms are just 𝐴𝐴𝐴𝐴𝜑1𝜑 𝜑 𝑀𝑀𝜑1𝜑.

Example 3.6.5. As a second example, take 𝑑𝑑 𝜑 4. Again by theorem 4.2.10, we know that
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dim 𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀. Our implementation of the restriction method gives the following basis of 𝑀𝑀𝑀𝑀𝑀:

𝑣𝑣1 𝑀 𝐞𝐞0̄ · (1 + 465139258835037405731374758478184425
86741732350842896946275774568 𝑞𝑞 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝑀𝐞𝐞1̄ + 𝐞𝐞7̄𝑀 · (535161477822926417534454718975
43370866175421448473137887284 𝑞𝑞1/16

− 37026422244751374080234548162000
5764336280624860243638741 𝑞𝑞17/16 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝑀𝐞𝐞2̄ + 𝐞𝐞 ̄6𝑀 · (351031013981242083958248958248725
28913910783614298982091924856 𝑞𝑞1/4

+ 159509833158004466689069106107136
36507463110624114876378693 𝑞𝑞5/4 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝑀𝐞𝐞3̄ + 𝐞𝐞5̄𝑀 · (−606766741556901332116610451353675
1606328376867461054560662492 𝑞𝑞9/16

+ 2296362523218756038043262949822170375
43370866175421448473137887284 𝑞𝑞25/16 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝐞𝐞 ̄4 · (7597895932563135563414377343
6425313507469844218242649968 − 6626296324225577417334139362841600

985701503986851101662224711 𝑞𝑞 + 𝑞𝑞𝑀𝑞𝑞2𝑀) ;

𝑣𝑣2 𝑀 𝐞𝐞0̄ · (0 + 𝑞𝑞 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝑀𝐞𝐞1̄ + 𝐞𝐞7̄𝑀 · ( 11219276325284257339
12454522449872439800205872𝑞𝑞1/16

− 871258180695087441587760
778407653117027487512867𝑞𝑞17/16 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝑀𝐞𝐞2̄ + 𝐞𝐞 ̄6𝑀 · ( 739772320056066866325
778407653117027487512867𝑞𝑞1/4 + 266235050695150474020864

778407653117027487512867𝑞𝑞5/4 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝑀𝐞𝐞3̄ + 𝐞𝐞5̄𝑀 · (− 819922747135906324152045
12454522449872439800205872𝑞𝑞9/16

+ 114857850128331821598841027
12454522449872439800205872 𝑞𝑞25/16 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝐞𝐞 ̄4 · ( 265976041774352103
1556815306234054975025734 − 861282101166440052948992

778407653117027487512867𝑞𝑞 + 𝑞𝑞𝑀𝑞𝑞2𝑀) ;

𝑣𝑣3 𝑀 𝐞𝐞0̄ · (0 + 0 · 𝑞𝑞 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝑀𝐞𝐞1̄ + 𝐞𝐞7̄𝑀 · (𝑞𝑞1/16 − 2278793519180193791232
4264745659198093 𝑞𝑞17/16 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝑀𝐞𝐞2̄ + 𝐞𝐞 ̄6𝑀 · (1339786854908780246048
149266098071933255 𝑞𝑞1/4 + 482321579628208652451072

149266098071933255 𝑞𝑞5/4 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝑀𝐞𝐞3̄ + 𝐞𝐞5̄𝑀 · (−670044384396765177399
21323728295990465 𝑞𝑞9/16 + 93917526163270425600473

21323728295990465 𝑞𝑞25/16 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝐞𝐞 ̄4 · ( 386478697856256
21323728295990465 − 21436647650345162375168

21323728295990465 𝑞𝑞 + 𝑞𝑞𝑀𝑞𝑞2𝑀) ;

𝑣𝑣4 𝑀 𝐞𝐞0̄ · (0 + 0 · 𝑞𝑞 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝑀𝐞𝐞1̄ + 𝐞𝐞7̄𝑀 · (0 · 𝑞𝑞1/16 − 345397315221
5804898746 𝑞𝑞17/16 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝑀𝐞𝐞2̄ + 𝐞𝐞 ̄6𝑀 · (𝑞𝑞1/4 + 1044915751496
2902449373 𝑞𝑞5/4 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝑀𝐞𝐞3̄ + 𝐞𝐞5̄𝑀 · (−60950007503
17414696238 𝑞𝑞9/16 + 1421881084638

2902449373 𝑞𝑞25/16 + 𝑞𝑞𝑀𝑞𝑞2𝑀)

+ 𝐞𝐞 ̄4 · (− 163352
8707348119 − 325066162176

2902449373 𝑞𝑞 + 𝑞𝑞𝑀𝑞𝑞2𝑀) .
(3.35)

The space of almost cusp forms 𝐴𝐴𝐴𝐴𝑀𝑀𝑀 has dimension 3: one less than dim 𝑀𝑀𝑀𝑀𝑀 𝑀 𝑀, as 𝐿𝐿2·4 has one
non-standard cusp, represented by ̄𝑀 ∈ ℤ/8ℤ. The space of cusp forms thus has dimension 2.
Note that the dimension of the space of forms 𝑀𝑀𝑀𝑀𝑀𝑀, the number of components of a single vector,
and the size of a typical coefficient all increase as the parameter 𝑀𝑀 grows. This is reflected in the time
needed to compute a basis of the space 𝑀𝑀𝑀𝑀𝑀𝑀.

3.6.4 Check with Maulik–Pandharipande
We may verify these numbers by comparing with some vector-valued modular forms that have been
constructed in the past by different means. For example, Maulik and Pandharipande [30, section 6.3]
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used Rankin–Cohen brackets to construct forms for low values of 𝑑𝑑. In the case 𝑑𝑑 𝑑 𝑑, they found the
form

Θ⃗ 𝑑 𝐞𝐞0̄ · (−𝑑 + 𝑑50𝑞𝑞 + 𝑑0𝑞𝑞00𝑞𝑞2 + 5𝑑𝑑3200𝑞𝑞3 + 𝑂𝑂(𝑞𝑞4))
+ 𝐞𝐞1̄ · (𝑑24𝑞𝑞𝑞5/4 + 332𝑞00𝑞𝑞9/4 + 𝑂𝑂(𝑞𝑞3)) .

(3.36)

Comparing two coefficients of Θ⃗, say of 𝑞𝑞0𝐞𝐞0̄ and 𝑞𝑞1/4𝐞𝐞1̄, with the corresponding coefficients of the
basis vectors 𝑣𝑣1 and 𝑣𝑣2, given in the previous subsection, we see that we should have

Θ⃗ 𝑑 −𝑣𝑣1 + 𝑑05432𝑑9𝑑200
𝑑𝑞9227 𝑣𝑣2 . (3.37)

All other given coefficients of Θ⃗ in fact agree with this equality.

3.6.5 Check with Eisenstein forms
As another verification, we may use the Eisenstein series 𝐸𝐸𝛾𝛾; see section 3.4.

Example 3.6.6. Let us take the simplest case: 𝑑𝑑 𝑑 𝑑. We know from example 3.4.5 that the
Eisenstein series 𝐸𝐸0̄ in this case is given by

𝑑74𝑞𝑑𝑑 · 𝐸𝐸0̄ 𝑑 𝐞𝐞0̄ (349222 − 52377700𝑞𝑞1 − 37924𝑑4𝑑200𝑞𝑞2 − 𝑑7𝑞5𝑞242𝑑𝑞400𝑞𝑞3 + 𝑂𝑂(𝑞𝑞4))
+ 𝐞𝐞1̄ (−𝑑00𝑞𝑞1/4 − 435𝑞𝑞505𝑞𝑞𝑞5/4 − 𝑑𝑑𝑞224𝑑7𝑞500𝑞𝑞9/4 − 3𝑞𝑑𝑞0453𝑑4400𝑞𝑞13/4 + 𝑂𝑂(𝑞𝑞4)) .

(3.19 revisited)
Now, this is a vector-valued modular form of weight 2𝑑/2 and representation associated to the lattice
⟨−2 · 𝑑⟩, so we can write 𝐸𝐸0̄ 𝑑 𝛼𝛼1𝑣𝑣1 + 𝛼𝛼2𝑣𝑣2 for some 𝛼𝛼𝑖𝑖 ∈ ℚ, where 𝑣𝑣1, 𝑣𝑣2 are the two basis vectors of
the space 𝑀𝑀(𝑑) we found in example 3.6.4. Comparing the coefficients of the term 𝑞𝑞0𝐞𝐞0̄, we see that

2 𝑑 𝑐𝑐0̄,0(𝐸𝐸0̄) 𝑑 𝛼𝛼1𝑐𝑐0̄,0(𝑣𝑣1) + 𝛼𝛼2𝑐𝑐0̄,0(𝑣𝑣2) 𝑑 𝛼𝛼1 · 𝑑 + 𝛼𝛼2 · 0 , (3.38)

so 𝛼𝛼1 𝑑 2. Then comparing the 𝑞𝑞1/4𝐞𝐞1̄-coefficients, we see that

−𝑑00
𝑑74𝑞𝑑𝑑 𝑑 𝑐𝑐1̄,1/4(𝐸𝐸0̄) 𝑑 𝛼𝛼1𝑐𝑐1̄,1/4(𝑣𝑣1) + 𝛼𝛼2𝑐𝑐1̄,1/4(𝑣𝑣2) 𝑑 2 · 𝑑𝑞𝑞27𝑑7700

𝑑𝑞9227 + 𝛼𝛼2 · −𝑑
5𝑞 , (3.39)

and solving for 𝛼𝛼2 gives 𝛼𝛼2 𝑑 3𝑞𝑞𝑑924𝑑𝑞229𝑑7𝑞00/2954𝑞𝑞95𝑞97. We can now verify whether this
expression for 𝐸𝐸0̄ is correct by comparing some more coefficients. For instance, the coefficient of 𝐸𝐸0̄
of the term 𝑞𝑞1𝐞𝐞0̄ is −52377700/𝑑74𝑞𝑑𝑑; this indeed equals

𝛼𝛼1𝑐𝑐0̄,1(𝑣𝑣1) + 𝛼𝛼2𝑐𝑐0̄,1(𝑣𝑣2) 𝑑 2 · −𝑑05457575250
𝑑𝑞9227 + 3𝑞𝑞𝑑924𝑑𝑞229𝑑7𝑞00

2954𝑞𝑞95𝑞97 · 𝑑 𝑑 −52377700
𝑑74𝑞𝑑𝑑 . (3.40)
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Chapter 4

The moduli space of polarised K3
surfaces: open part

From this point on, we fix a positive integer 𝑑𝑑. We want to understand the moduli space of polarised
K3 surfaces of degree 2𝑑𝑑 and its compactifications. For now, we will forget about the boundary, and
focus on the moduli space itself; we will return to the compactified moduli space in chapter 5. In
section 4.1, we explain the well-known explicit description of the moduli space ℱ2𝑑𝑑 of polarised K3
surfaces of degree 2𝑑𝑑 as a so-called arithmetic quotient.

A large part of our study of ℱ2𝑑𝑑 is focused on its (rational) Picard group. In section 4.2, we
introduce an important class of divisors on the moduli space, called Noether–Lefschetz divisors or
Heegner divisors.

An early result by O’Grady [39] showed that as the polarisation degree 2𝑑𝑑 increases, the rank of
the Picard group Pic(ℱ2𝑑𝑑) is unbounded. After the work of Borcherds [6], it became possible to use
modular forms to study the Picard group. In particular, Bruinier [8] computed the dimension of the
part of the rational Picard group generated by Noether–Lefschetz divisors, and in [5] it was shown
that this part in fact equals the full rational Picard group. In sections 4.3 and 4.4, we use Borcherds’
work, combined with work by Raum and others on modular forms, to give a complete and explicit
description of the rational Picard group of ℱ2𝑑𝑑.

The strategy we follow to compute the Kodaira dimension of ℱ2𝑑𝑑 is the one of [18]: very roughly,
we compute the canonical class 𝐾𝐾 on a compactification ℱ2𝑑𝑑 of ℱ2𝑑𝑑, and prove that it is effective, or
even big. To that end, we study the effective cone of ℱ2𝑑𝑑 in section 4.5, and in section 4.6 we compute
the restriction of the canonical class to the open part ℱ2𝑑𝑑 in terms of Noether–Lefschetz divisors; this
amounts to the computation of the branch divisor as in [20]. Using these results, we can in fact draw
some first conclusions on the Kodaira dimension of ℱ2𝑑𝑑 in section 4.7.

4.1 Description as a locally symmetric domain
In this section, we give a short explanation of the period map and the description of the moduli
space ℱ2𝑑𝑑 as a locally symmetric domain. Good references for these old ideas are [4] and the recent
survey [22].

A central role in this description of the moduli space is played by the lattice

𝐿𝐿 𝐿 𝐿𝐿2𝑑𝑑 𝐿 𝐸𝐸8(−1)⊕2 ⊕ 𝑈𝑈⊕2 ⊕ ⟨𝑤𝑤𝑤 , (4.1)

where 𝑈𝑈 is the hyperbolic plane, 𝑤𝑤 has square 𝑤𝑤2 𝐿 −2𝑑𝑑, and 𝐸𝐸8 is the even unimodular positive
lattice of rank 8. Throughout this chapter and the next, 𝐿𝐿 will always refer to this lattice. The
lattice 𝐿𝐿 has signature (2, 19), and discriminant module

𝐷𝐷𝐿𝐿 𝐿 𝐿𝐿∨/𝐿𝐿 ≅ ℤ/2𝑑𝑑ℤ (4.2)

generated by the element 𝑤𝑤/2𝑑𝑑 of square −1/2𝑑𝑑. (We will identify the class 𝛾𝛾 𝐿 𝛾𝛾𝑤𝑤/2𝑑𝑑 𝛾 𝐿𝐿 ∈ 𝐷𝐷𝐿𝐿
with the residue class 𝛾𝛾 ∈ ℤ/2𝑑𝑑ℤ.)

Now, the moduli space ℱ2𝑑𝑑 can be described as a so-called locally symmetric space, or arithmetic
quotient, associated to the lattice 𝐿𝐿. The basic idea is as follows: we try to identify a K3 surface by its
second cohomology group 𝐻𝐻2(𝑆𝑆, 𝑆), including the information contained in its Hodge decomposition.

25
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The cohomology group is always the same, isomorphic to 𝐿𝐿𝐾𝐾𝐾 ⊗ ℂ, so all information is in the Hodge
decomposition. This decomposition is relatively simple (with dimensions 22 = 1 + 20 + 1), and can
be completely reconstructed from the position of the 1-dimensional subspace 𝐻𝐻2,0; we can view that
position as a point in the projective space ℙ(𝐿𝐿𝐾𝐾𝐾 ⊗ ℂ).

Let us make this more precise. One important point that we glossed over above is that the
isomorphism 𝐻𝐻2(𝑆𝑆𝑆 𝑆) ≅ 𝐿𝐿𝐾𝐾𝐾 is not unique; a choice of such an isomorphism is called a marking.
Because we should in fact work with polarised K3 surfaces, we get the following definition.

Definition 4.1.1. Let 𝑆𝑆 be a polarised K3 surface (with polarisation 𝐻𝐻 of degree 2𝑑𝑑). A marking of
𝑆𝑆 (with respect to 𝐻𝐻) is an isomorphism 𝛼𝛼 𝛼 𝐻𝐻2(𝑆𝑆𝑆 𝑆) → 𝐿𝐿𝐾𝐾𝐾 such that 𝛼𝛼(𝐻𝐻) = 𝛼𝛼 + 𝑑𝑑𝛼𝛼 ∈ 𝑈𝑈 𝑈 𝐿𝐿𝐾𝐾𝐾,
where 𝛼𝛼𝑆 𝛼𝛼 are the standard basis elements of 𝑈𝑈 satisfying 𝛼𝛼2 = 𝛼𝛼2 = 0 and (𝛼𝛼𝑆 𝛼𝛼) = 1.

The choice of element 𝛼𝛼 + 𝑑𝑑𝛼𝛼 is arbitrary; all that matters is that we take a fixed element of 𝐿𝐿𝐾𝐾𝐾 of
norm 2𝑑𝑑. Note that the orthogonal complement of this element 𝛼𝛼 + 𝑑𝑑𝛼𝛼 in 𝐿𝐿𝐾𝐾𝐾 is isomorphic to 𝐿𝐿2𝑑𝑑.

Definition 4.1.2. Let 𝑆𝑆 be a polarised K3 surface with marking 𝛼𝛼 𝛼 𝐻𝐻2(𝑆𝑆𝑆 𝑆) → 𝐿𝐿𝐾𝐾𝐾. Then the
period point of 𝑆𝑆 is given by

ℂ𝛼𝛼ℂ(𝜔𝜔𝑆𝑆) ∈ ℙ(𝐿𝐿𝐾𝐾𝐾 ⊗ ℂ) , (4.3)

where 𝜔𝜔𝑆𝑆 is any non-zero holomorphic 2-form on 𝑆𝑆.
The map from the moduli space of marked polarised K3 surfaces to ℙ(𝐿𝐿𝐾𝐾𝐾 ⊗ ℂ) that sends a K3

surface to its period point is called the period map.

As we indicated above, another way to write the period point is as 𝛼𝛼ℂ(𝐻𝐻2,0(𝑆𝑆)), where 𝐻𝐻2,0(𝑆𝑆) 𝑈
𝐻𝐻2(𝑆𝑆𝑆 ℂ) is part of the Hodge decomposition.

Without the choice of marking, the period point is not well defined. However, different choices of
marking differ only up to a lattice automorphism of 𝐿𝐿𝐾𝐾𝐾, so the orbit of the period point under the
action of O(𝐿𝐿𝐾𝐾𝐾) is well defined. Because all different markings must send the polarisation class 𝐻𝐻
to a fixed element of the K3 lattice, we can even reduce the action to the subgroup Õ(𝐿𝐿2𝑑𝑑) = Õ(𝐿𝐿):
the subgroup of O(𝐿𝐿𝐾𝐾𝐾) fixing a given vector of norm 2𝑑𝑑 is isomorphic to the stable subgroup Õ(𝐿𝐿2𝑑𝑑)
of the orthogonal complement 𝐿𝐿2𝑑𝑑 of the vector; see for instance [22, example 7.6]. In this way,
we get a well-defined map from the moduli space ℱ2𝑑𝑑 of polarised K3 surfaces to the quotient set
Õ(𝐿𝐿)𝐿ℙ(𝐿𝐿𝐾𝐾𝐾 ⊗ ℂ).

Because the intersection form on 𝐻𝐻2(𝑆𝑆𝑆 ℂ) is the cup product, we know that (𝜔𝜔𝑆𝑆𝑆 𝜔𝜔𝑆𝑆) = 0 and
(𝜔𝜔𝑆𝑆𝑆 𝜔𝜔𝑆𝑆) > 0. We use this fact to restrict the codomain of the period map:

Definition 4.1.3. The period domain 𝒟𝒟2𝑑𝑑 is defined by

𝒟𝒟2𝑑𝑑 ∪ 𝒟𝒟2𝑑𝑑 = {ℂ𝑧𝑧 𝛼 (𝑧𝑧𝑆 𝑧𝑧) = 0𝑆 (𝑧𝑧𝑆 𝑧𝑧𝑧) > 0𝑧 𝑈 ℙ(𝐿𝐿 ⊗ ℂ) . (4.4)

The set on the right-hand side of equation (4.4) consists of two connected components that are
interchanged by complex conjugation; the left-hand side indicates that the period domain 𝒟𝒟2𝑑𝑑 denotes
one of these components.

Because the action of O(𝐿𝐿) on the two-element set of components of the period domain is exactly
given by the spinor norm, we may replace the earlier quotient Õ(𝐿𝐿)𝐿ℙ(𝐿𝐿𝐾𝐾𝐾 ⊗ ℂ) by Õ+(𝐿𝐿)𝐿𝒟𝒟2𝑑𝑑:
recall from 2.3 that Õ+(𝐿𝐿) is the subgroup of Õ(𝐿𝐿) of elements of spinor norm 1, i.e., the stable lattice
automorphisms that stabilise 𝒟𝒟2𝑑𝑑.

Definition 4.1.4. The locally symmetric domain or arithmetic quotient ℱ2𝑑𝑑 is this quotient:

ℱ2𝑑𝑑 = Õ+(𝐿𝐿)𝐿𝒟𝒟2𝑑𝑑 , (4.5)

There are now two somewhat deeper facts that together show that the map from the moduli space of
polarised K3 surfaces to ℱ2𝑑𝑑 is in fact an isomorphism.

Firstly, the image of the period map is the full period domain: this result is known as “surjectivity
of the period map”, and was first proved by Todorov. An updated proof can be found in [4, VIII.14].

Secondly, injectivity relies on a Torelli type theorem, which roughly says that the isomorphisms
class of a polarised K3 surface is determined by its period point. This was first proved in [41], with
later corrections by Rapoport and Shioda. The particular form that we need, including polarisations
that need not be ample, is a result due to Morrison [31]. Again, see [22] for some more details.



208154-L-bw-Peterson208154-L-bw-Peterson208154-L-bw-Peterson208154-L-bw-Peterson

4.2. HEEGNER AND NOETHER–LEFSCHETZ DIVISORS 27

4.2 Heegner and Noether–Lefschetz divisors
The two descriptions of ℱ2𝑑𝑑, as a locally symmetric variety on the one hand, and as a space parametris-
ing geometric objects on the other, give rise to two sets of natural divisors, which turn out to coincide.

We will first introduce the divisors on the arithmetic side.

Definition 4.2.1. Given a vector 𝑣𝑣 ∈ 𝐿𝐿∨, the Heegner divisor 𝐻𝐻𝑣𝑣 is the subset of 𝒟𝒟2𝑑𝑑 ⊂ ℙ(𝐿𝐿 𝐿 𝐿𝐿
orthogonal to 𝑣𝑣.

Note that this is a divisor on the symmetric domain 𝒟𝒟2𝑑𝑑, not on the arithmetic quotient ℱ2𝑑𝑑. As any
multiple of 𝑣𝑣 will have the same orthogonal complement, we may as well assume 𝑣𝑣 to be primitive in
𝐿𝐿∨.

The divisor 𝐻𝐻𝑣𝑣 is not invariant under Õ+(𝐿𝐿𝐿. If we take the sum of a set of such divisors, associated
to a set of vectors that is invariant under Õ+(𝐿𝐿𝐿, then we do get a divisor that is invariant and thus
descends to a divisor on ℱ2𝑑𝑑.

Now, the orbits of primitive vectors of 𝐿𝐿∨ under the action of Õ+(𝐿𝐿𝐿 are classified exactly by the
coset 𝑣𝑣 + 𝐿𝐿 ∈ 𝐷𝐷𝐿𝐿 and the square 𝑣𝑣2 (see lemma 2.3.8). This motivates the following definition.

Definition 4.2.2. Let 𝛾𝛾 ∈ 𝐷𝐷𝐿𝐿 and 𝑛𝑛 ∈ ℤ − 𝛾𝛾2/2 such that 𝑛𝑛 𝑛 𝑛. We denote the corresponding
Heegner divisor by 𝐻𝐻(𝛾𝛾𝐻 𝑛𝑛𝐿:

𝐻𝐻(𝛾𝛾𝐻 𝑛𝑛𝐿 𝐻 Õ+(𝐿𝐿𝐿 𝐿 𝐿 𝐿
𝑣𝑣∈𝐿𝐿∨

𝑣𝑣≡𝛾𝛾 𝛾𝛾𝛾 𝐿𝐿
𝑣𝑣2𝐻2𝑛𝑛

𝐻𝐻𝑣𝑣) . (4.6)

Remark 4.2.3. Note that 𝐻𝐻(𝛾𝛾𝐻 𝑛𝑛𝐿 has multiplicity 1 everywhere if −𝛾𝛾 𝛾 𝛾𝛾, but it has multiplicity 2
everywhere if −𝛾𝛾 𝐻 𝛾𝛾: in that latter case, the above sum runs over pairs 𝑣𝑣𝐻 −𝑣𝑣 of vectors, and
𝐻𝐻𝑣𝑣 𝐻 𝐻𝐻−𝑣𝑣, so any orthogonal complement that occurs, occurs twice.

This consequence of the definition may seem strange or even undesirable from a geometric point
of view. However, this choice makes the connection to modular forms very direct: see theorem 4.3.1,
for example.

Apart from this, the tautological bundle 𝒪𝒪(−1𝐿 on ℙ(𝐿𝐿 𝐿 𝐿𝐿 descends to a line bundle 𝜆𝜆 on ℱ2𝑑𝑑, the
class of which we will somewhat loosely refer to as the Hodge class. (Note that 𝜆𝜆 is isomorphic to
𝜋𝜋∗𝜔𝜔𝜋𝜋, the pushforward of the relative dualising sheaf of the universal K3 surface 𝜋𝜋 𝜋 𝜋𝜋2𝑑𝑑 → ℱ2𝑑𝑑.)
The divisor (pick any) associated to the dual bundle −𝜆𝜆 is often considered together with the Heegner
divisors, and denoted by 𝐻𝐻(𝑛𝐻 𝑛𝐿. Note the minus sign: while the Heegner divisors are effective, this
𝐻𝐻(𝑛𝐻 𝑛𝐿 is anti-ample. This may seem a strange choice, but it turns out to be natural.

The Heegner divisors we constructed are given in terms of the “arithmetic description” of the
moduli space, i.e., its presentation as the arithmetic quotient associated to a lattice. We now define
another class of divisors on the moduli space ℱ2𝑑𝑑, that are geometric in nature, that is, defined in
terms of geometric properties of the K3 surfaces.

Recall that a very general (algebraic) K3 surface has a Picard group of rank 1. K3 surfaces with
a Picard group of higher rank do exist, though, and such surfaces form special subsets of the moduli
space. To get a useful, well-behaved locus, we should restrict the Picard group in some way. One
possible way to do this, is by prescribing the isomorphism class of the Picard lattice (the Picard group
with its intersection form): demanding that a K3 surface have a given rank 𝑘𝑘 lattice in its Picard
group, gives a codimension 𝑘𝑘−1 condition on the moduli space of K3 surfaces (if such surfaces exist at
all). In particular, if we take a rank 2 lattice, then the corresponding locus, of K3 surfaces including
this lattice in their Picard groups, is a divisor in ℱ2𝑑𝑑. We will look at these divisors in section 4.2.1.

Right now, we take a slightly different approach: we look at the locus of polarised K3 surfaces
that have a class in their Picard group with given intersection numbers: specifically, self-intersection
number and degree (i.e., intersection number with the polarisation class).

Definition 4.2.4. Given ℎ ∈ ℕ𝐻 𝑎𝑎 ∈ ℤ such that 𝑎𝑎2 − 4𝑑𝑑(ℎ − 1𝐿 is positive, the Noether–Lefschetz
divisor 𝐷𝐷ℎ,𝑎𝑎 ⊂ ℱ2𝑑𝑑 is supported on the locus of polarised K3 surfaces (𝑆𝑆𝐻 𝐻𝐻𝐿 that have a divisor class
𝛽𝛽 ∈ Pic 𝑆𝑆 (with 𝛽𝛽 not in the span of 𝐻𝐻) of square 𝛽𝛽2 𝐻 2ℎ − 2 and degree 𝛽𝛽 𝛽 𝐻𝐻 𝐻 𝑎𝑎.

The multiplicity of the irreducible component of 𝐷𝐷ℎ,𝑎𝑎 consisting (generically) of K3 surfaces that
have Picard lattice isomorphic to the rank 2 lattice 𝐿𝐿 equals the number of elements 𝛽𝛽 ∈ 𝐿𝐿 with
𝛽𝛽2 𝐻 2ℎ − 2 and 𝛽𝛽 𝛽 𝐻𝐻 𝐻 𝑎𝑎 (where we write 𝐻𝐻 for the element of 𝐿𝐿 corresponding to the polarisation
class).
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Remark 4.2.5. Note that the number 𝑎𝑎2 − 4𝑑𝑑𝑑𝑑 − 𝑑𝑑 equals minus the determinant of the lattice
(2𝑑𝑑 𝑑𝑑

𝑑𝑑 2𝑎−2), and this lattice is isomorphic to the the sublattice of Pic𝑑𝑆𝑆𝑑 that is generated by 𝐻𝐻 and 𝛽𝛽.
Therefore, the positivity of 𝑎𝑎2 − 4𝑑𝑑𝑑𝑑 − 𝑑𝑑 is necessary for such surfaces to exist, by the Hodge index
theorem (which tells us that the lattice generated by 𝐻𝐻 and 𝛽𝛽 must have signature 𝑑𝑑, 𝑑𝑑).
Remark 4.2.6. The definition already refers to the irreducible components of 𝐷𝐷𝑎,𝑑𝑑, that are given
by K3 surfaces with rank 2 Picard lattice of fixed isomorphism class. We will look at those so-called
irreducible Noether–Lefschetz divisors in section 4.2.1.

As we alluded to before, these geometrically defined Noether–Lefschetz divisors in fact coincide with
the Heegner divisors:

Lemma 4.2.7 ([30, section 4.4, lemma 3]). We have 𝐷𝐷𝑎,𝑑𝑑 = 𝐻𝐻𝑑𝐻𝐻, 𝐻𝐻𝑑 if 𝐻𝐻 = 𝑎𝑎𝛾𝛾𝛾2𝑑𝑑 ∈ 𝐷𝐷𝐿𝐿 and
𝐻𝐻 = 𝑑 − 𝑑 − 𝑎𝑎2𝛾4𝑑𝑑.

Therefore, we will use the terms “Heegner divisor” and “Noether–Lefschetz divisor” interchangeably.
Having introduced a large set of divisors on the moduli space ℱ2𝑑𝑑, we would like to understand

their role in the Picard group Picℚ𝑑ℱ2𝑑𝑑𝑑.

Definition 4.2.8. The Noether–Lefschetz Picard group PicNL
ℚ 𝑑ℱ2𝑑𝑑𝑑 is the ℚ-subspace of Picℚ𝑑ℱ2𝑑𝑑𝑑

spanned by 𝐻𝐻𝑑0, 0𝑑 and the (infinite) set of Heegner divisors 𝐻𝐻𝑑𝐻𝐻, 𝐻𝐻𝑑, for all 𝐻𝐻 ∈ 𝐷𝐷𝐿𝐿 and all 𝐻𝐻 ∈ ℤ−𝐻𝐻2𝛾2
with 𝐻𝐻 𝑛 0.

A first natural question is, whether the subspace PicNL
ℚ 𝑑ℱ2𝑑𝑑𝑑 might in fact be equal to the full Picard

group Picℚ𝑑ℱ2𝑑𝑑𝑑.
Maulik and Pandharipande have conjectured [30] that this is indeed the case. It has been verified

for 𝑑𝑑 ∈ {𝑑, 2} in [46, 47], for 𝑑𝑑 ∈ {3, 4} in [29], and for 𝑑𝑑 ∈ {5, 6, 7, 8, 9, 𝑑𝑑} in [17], by using a different
description of the moduli space (as a GIT quotient). On the other hand, the corresponding conjecture
does not hold for all arithmetic quotients: it fails for some Hilbert modular surfaces, for instance.

Very recently, this conjecture has been proved by Bergeron, Li, Millson and Moeglin:

Theorem 4.2.9 ([5]). The rational Picard group is spanned by Noether–Lefschetz divisors, so indeed
PicNL

ℚ 𝑑ℱ2𝑑𝑑𝑑 = Picℚ𝑑ℱ2𝑑𝑑𝑑.
The proof does not use the geometric interpretation of ℱ2𝑑𝑑, as a moduli space of polarised K3 sur-
faces. Instead, it uses the representation theory of the orthogonal groups occurring in the arithmetic
description of ℱ2𝑑𝑑 as a locally symmetric domain.

A next question is to compute the dimension of Picℚ𝑑ℱ2𝑑𝑑𝑑 as a function of 𝑑𝑑. A formula for
dim PicNL

ℚ 𝑑ℱ2𝑑𝑑𝑑 has been found by Bruinier; by theorem 4.2.9 above, this is in fact the right answer.

Theorem 4.2.10 ([9]). The dimension of Picℚ𝑑ℱ2𝑑𝑑𝑑 equals

𝑑 + 𝑑5
8 𝑑𝑑𝑑 + 𝑑𝑑 − 𝑑𝑑1 − 𝑑𝑑2 − 𝑑𝑑3 − 𝑑𝑑4 , (4.7)

where
𝑑𝑑1 = 𝑑𝑑 + 𝑑

4 + 𝑑
4
√

2𝑑𝑑
ℜ𝑑𝐺𝐺𝑑2𝑑𝑑 ,

𝑑𝑑2 = 𝑑𝑑 + 𝑑
3 + 𝑑

3
√

6𝑑𝑑
ℜ𝑑e𝑑−𝑑9𝛾24𝑑𝑑𝐺𝐺𝑑𝑑𝑑 + 𝐺𝐺𝑑−3𝑑𝑑 ,

𝑑𝑑3 =
𝑑𝑑

∑
𝑘𝑘=𝑘

{𝑘𝑘2

4𝑑𝑑 } ,

𝑑𝑑4 = # {𝑘𝑘 ∈ 𝑑ℤ𝛾2𝑑𝑑ℤ𝑑𝛾𝑑 𝑑 𝑘𝑘2 ∈ 4𝑑𝑑ℤ𝑑 ,

(4.8)

and e𝑑𝑥𝑥𝑑 = 𝑥𝑥2𝜋𝜋𝜋𝜋𝜋𝜋, {𝑥𝑥} denotes the fractional part of 𝑥𝑥, and 𝐺𝐺𝑑𝐺𝐺𝑑 is a Gauss sum associated to the
lattice 𝐿𝐿, given by

𝐺𝐺𝑑𝐺𝐺𝑑 = ∑
𝛾𝛾∈𝐿𝐿∨𝛾𝐿𝐿

e𝑑𝐺𝐺𝐻𝐻2𝛾2𝑑 =
2𝑑𝑑−1
∑
𝑘𝑘=𝑘

e𝑑−𝐺𝐺𝑘𝑘2𝛾𝑑4𝑑𝑑𝑑𝑑 . (4.9)

We list some of these values in table 4.1.
As these values indicate, the dimension grows roughly linearly in the polarisation degree 2𝑑𝑑, but

with some variation. This is even clearer from a graph: see figure 4.1.
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Table 4.1: The first few values of dim Picℚ(ℱ2𝑑𝑑).

𝑑𝑑 1 2 3 4 5 6 7 8 9 10 11 12 13 14
dim Picℚ(ℱ2𝑑𝑑) 2 3 4 4 6 7 7 8 9 10 11 12 12 14

0

25

50

75

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99

Figure 4.1: The dimension of Picℚ(ℱ2𝑑𝑑) as a function of 𝑑𝑑.

4.2.1 Irreducible Noether–Lefschetz divisors
Let (𝑆𝑆𝑆 𝑆𝑆) be a polarised K3 surface. The moduli point corresponding to this surface lies on the
Noether–Lefschetz divisor 𝐷𝐷ℎ,𝑎𝑎 if and only if there exists a divisor class on 𝑆𝑆 with intersection
numbers ℎ𝑆 𝑎𝑎. This forces the Picard lattice of 𝑆𝑆 to be at least rank 2. Even if we suppose that the
Picard lattice of 𝑆𝑆 has rank exactly 2, we cannot determine the lattice structure of Pic(𝑆𝑆) from this
condition alone. The reason is that, in general, there are several non-isomorphic rank 2 lattices having
an element with the prescribed intersection numbers.

This is relevant from a geometric point of view: because of this phenomenon, the divisors 𝐷𝐷ℎ,𝑎𝑎
are not irreducible.

So, instead of just imposing the existence of a divisor class with given intersection numbers, as in
the definition of 𝐷𝐷ℎ,𝑎𝑎, we will introduce slightly different, more refined divisors on the moduli space:
the loci where the Picard lattice of the polarised K3 surface is of a given isomorphism class. To do
so, we first present a convenient parametrisation of these isomorphism classes.

Definition 4.2.11. Let (𝐿𝐿𝑆 𝑆𝑆) be a 2𝑑𝑑-polarised even lattice of rank 2 and signature (1𝑆 1). Then
the discriminant Δ ∈ ℤ+ and coset 𝛿𝛿 ∈ (ℤ/2𝑑𝑑ℤ)/𝑑 of 𝐿𝐿 are defined as follows: first choose an element
Γ ∈ 𝐿𝐿 such that 𝑆𝑆 and Γ form a basis of 𝐿𝐿. We write down the intersection matrix of 𝐿𝐿 with respect
to this basis:

(2𝑑𝑑 𝑑𝑑
𝑑𝑑 2𝑦𝑦)

(so 𝑑𝑑 𝑦 𝑆𝑆 𝑦 Γ and 2𝑦𝑦 𝑦 Γ2). Then Δ 𝑦 𝑑𝑑2 − 4𝑑𝑑𝑦𝑦, and 𝛿𝛿 𝑦 𝑑𝑑 ∈ (ℤ/2𝑑𝑑ℤ)/𝑑.
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(Note that the number Δ is in fact minus the usual discriminant of a lattice (i.e., the determinant
of the intersection matrix); we prefer to work with positive numbers.) It is an easy exercise to check
that the discriminant and coset are independent of the choice of element Γ, so they are invariants of
this particular class of polarised lattices. In fact, they are complete invariants:
Lemma 4.2.12. The 2𝑑𝑑-polarised even lattices of rank 2 and signature (1, 1) are classified by their
discriminant and coset.
The proof is not hard, and omitted here.

Note that we do not claim that there exists such a lattice for any choice of Δ and 𝛿𝛿. In fact, we
have the following proposition.
Proposition 4.2.13. There exists a rank 2 even hyperbolic 2𝑑𝑑-polarised lattice of discriminant Δ and
coset 𝛿𝛿 if and only if

Δ ≡ 𝛿𝛿2 mod 4𝑑𝑑 . (4.10)
Proof. Suppose that a lattice 𝐿𝐿 with the given properties exists. Choose an element Γ that, together
with the polarisation element 𝐻𝐻, generates 𝐿𝐿. Write the intersection form of 𝐿𝐿 with respect to the
basis 𝐻𝐻, Γ as

(2𝑑𝑑 𝑑𝑑
𝑑𝑑 2𝑦𝑦) . (4.11)

(Note that 2𝑦𝑦 𝑥 Γ2 is indeed even, because 𝐿𝐿 is even by assumption.) We know that the discriminant
Δ is minus the determinant of this matrix, so Δ 𝑥 𝑑𝑑2 − 4𝑑𝑑𝑦𝑦. Also, the coset of 𝐿𝐿 is equal to
𝑑𝑑 ∈ (ℤ/2𝑑𝑑ℤ)/𝑑, so 𝑑𝑑2 ≡ 𝛿𝛿2 mod 2𝑑𝑑, and certainly also 𝑑𝑑2 ≡ 𝛿𝛿2 mod 4𝑑𝑑. We conclude that Δ ≡ 𝛿𝛿2

mod 4𝑑𝑑.
On the other hand, suppose that Δ ≡ 𝛿𝛿2 mod 4𝑑𝑑. Let 𝑘𝑘 ∈ ℤ be a representative of the class 𝛿𝛿.

By assumption, we can write Δ 𝑥 𝑘𝑘2 + 4𝑑𝑑𝑑𝑑, with 𝑑𝑑 ∈ ℤ. Let 𝐿𝐿 be the rank 2 lattice with intersection
matrix

(2𝑑𝑑 𝑘𝑘
𝑘𝑘 −2𝑑𝑑) . (4.12)

Then this lattice has discriminant 𝑘𝑘2 − (2𝑑𝑑)(−2𝑑𝑑) 𝑥 𝑘𝑘2 + 4𝑑𝑑𝑑𝑑 𝑥 Δ, and coset 𝑘𝑘 𝑥 𝛿𝛿. Also, 𝐿𝐿 is clearly
even, 2𝑑𝑑-polarised (by the first basis vector), and hyperbolic (because the intersection matrix has
negative determinant, so it must have one positive and one negative eigenvalue).

Now, using this description of rank 2 lattices in terms of their invariants Δ and 𝛿𝛿, we arrive at the
following definition of the refined Noether–Lefschetz divisors.
Definition 4.2.14. Given Δ ∈ ℤ+ and 𝛿𝛿 ∈ (ℤ/2𝑑𝑑ℤ)/𝑑, the Noether–Lefschetz divisor 𝑃𝑃∆,𝛿𝛿 is the
closure of the set of polarised K3 surfaces (𝑆𝑆, 𝐻𝐻) such that Pic 𝑆𝑆 has discriminant Δ and coset 𝛿𝛿.
By taking the closure, we include surfaces with a Picard lattice that contains the given lattice, but
has rank higher than 2.

Our work in refining the Noether–Lefschetz divisors is rewarded by the following result:
Proposition 4.2.15 ([38]). For any given Δ ∈ ℤ+ and 𝛿𝛿 ∈ (ℤ/2𝑑𝑑ℤ)/𝑑 such that there exists a lattice
with discriminant Δ and coset 𝛿𝛿, the divisor 𝑃𝑃∆,𝛿𝛿 on ℱ2𝑑𝑑 is irreducible.

4.2.2 Triangular relations
It remains to relate the two sets of Noether–Lefschetz divisors 𝐷𝐷ℎ,𝑎𝑎 and 𝑃𝑃∆,𝛿𝛿 in a precise way. To
do so, we need to compute which rank 2 lattices (as specified by Δ, 𝛿𝛿) contain a class with given
intersection numbers ℎ, 𝑎𝑎. The result is as follows.
Lemma 4.2.16. We have the following expression for the 𝐷𝐷ℎ,𝑎𝑎 in terms of the 𝑃𝑃∆,𝛿𝛿:

𝐷𝐷ℎ,𝑎𝑎 𝑥 ∑
∆,𝛿𝛿

𝜇𝜇∆,𝛿𝛿,ℎ,𝑎𝑎𝑃𝑃∆,𝛿𝛿 , (4.13)

where the coefficient 𝜇𝜇∆,𝛿𝛿,ℎ,𝑎𝑎 ∈ {0, 1, 2} is the number of integral solutions (𝜉𝜉, 𝜉𝜉) ∈ ℤ2 to the following
pair of quadratic and linear equations:

Δ𝜉𝜉2 𝑥 𝑎𝑎2 − 4𝑑𝑑(ℎ − 1) ,
2𝑑𝑑𝜉𝜉 𝑥 𝑎𝑎 − 𝑑𝑑𝜉𝜉 ,

(4.14)

where 𝑑𝑑 ∈ ℤ is any representative of 𝛿𝛿 ∈ (ℤ/2𝑑𝑑ℤ)/𝑑.
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Proof. The number 𝜇𝜇∆,𝛿𝛿,𝛿,𝛿𝛿 is the number of vectors 𝛽𝛽 in the lattice 𝐿𝐿∆,𝛿𝛿 that satisfy the equations
𝛽𝛽 𝛽 𝛽𝛽 𝛽 𝛽𝛽 and 𝛽𝛽2 𝛽 2ℎ − 2. These are a linear and quadratic equation, respectively, in the coefficients
(𝜉𝜉𝜉 𝜉𝜉𝜉 of 𝛽𝛽 (with respect to any basis of 𝐿𝐿∆,𝛿𝛿).

We will rewrite these equations in more explicit terms. Choose a vector Γ ∈ 𝐿𝐿∆,𝛿𝛿 such that 𝛽𝛽
and Γ form a basis of 𝐿𝐿∆,𝛿𝛿. Write 2𝑑𝑑 𝛽 𝛽𝛽2 (as always), 𝑦𝑦 𝛽 𝛽𝛽 𝛽 Γ, and 2𝑥𝑥 𝛽 Γ2. Also, write 𝜉𝜉𝜉 𝜉𝜉
for the coefficients of 𝛽𝛽 with respect to this basis. The equations for 𝛽𝛽 become 2𝑑𝑑𝜉𝜉 𝑑 𝑦𝑦𝜉𝜉 𝛽 𝛽𝛽 and
2𝑑𝑑𝜉𝜉2 𝑑 2𝑦𝑦𝜉𝜉𝜉𝜉 𝑑 2𝑥𝑥𝜉𝜉2 𝛽 2ℎ − 2. We solve the first one for 𝜉𝜉, and insert this in the second one. (We will
check a posteriori that 𝜉𝜉 is an integer.) This gives the equation

2𝑑𝑑 𝑑 𝛽𝛽2

4𝑑𝑑2 − 2𝛽𝛽𝑦𝑦𝜉𝜉
4𝑑𝑑2 𝑑 𝑦𝑦2𝜉𝜉2

4𝑑𝑑2 ) 𝑑 2𝑦𝑦𝜉𝜉 𝛽𝛽 − 𝑦𝑦𝜉𝜉
2𝑑𝑑 𝑑 2𝑥𝑥𝜉𝜉2 𝛽 2ℎ − 2 . (4.15)

Rewriting, and completing the square for 𝜉𝜉, we get

(𝑦𝑦2 − 4𝑑𝑑𝑥𝑥𝜉𝜉𝜉2 𝛽 𝛽𝛽2 − 4𝑑𝑑(ℎ − 𝑑𝜉 . (4.16)

Note that the factor 𝑦𝑦2 − 4𝑑𝑑𝑥𝑥 is just the (positive) discriminant of the lattice 𝐿𝐿∆,𝛿𝛿, hence equals Δ.
Also, the right-hand side is just the (positive) discriminant of the lattice described by ℎ and 𝛽𝛽 (with
intersection matrix (2𝑑𝑑 𝛿𝛿

𝛿𝛿 2𝛿−2)).
In the form (4.16), it is easy to solve for 𝜉𝜉. Finally, a solution of (4.16) gives a solution to the

original equations if and only if 𝜉𝜉 𝛽 (𝛽𝛽 − 𝑦𝑦𝜉𝜉𝜉𝜉2𝑑𝑑 is an integer.

In view of proposition 4.2.15 and lemma 4.2.16, we will refer to the 𝐷𝐷𝛿,𝛿𝛿 as the reducible Noether–
Lefschetz divisors, and to the 𝑃𝑃∆,𝛿𝛿 as the irreducible ones. (Even though in particular cases, 𝐷𝐷𝛿,𝛿𝛿
could happen to be irreducible.) The irreducible divisors are perhaps more natural from a geometric
point of view, but the reducible combinations 𝐷𝐷𝛿,𝛿𝛿 are better behaved in the arithmetic description of
the moduli space, as witnessed by their direct correspondence to the Heegner divisors (lemma 4.2.7).

Example 4.2.17. We work out (4.13) for the case 𝑑𝑑 𝛽 𝑑𝜉 ℎ 𝛽 𝑑𝜉 𝛽𝛽 𝛽 𝑑. This gives the decomposition
of the Heegner divisor 𝐷𝐷0,0 𝛽 𝛽𝛽(𝑑𝜉 −𝑑𝜉 in ℱ2𝛽1, as a sum of irreducible divisors.

Note that 𝛽𝛽2 − 4𝑑𝑑(ℎ − 𝑑𝜉 𝛽 4. From (4.16), we see that Δ must be a divisor of 4, such that the
quotient 4𝜉Δ is a square. So, there are two possibilities: Δ 𝛽 𝑑 and Δ 𝛽 4.

First, we find the contributions with Δ 𝛽 𝑑. For every 𝛿𝛿 ∈ (ℤ𝜉2𝑑𝑑ℤ𝜉𝜉𝑑 𝛽 𝑑 ̄𝑑𝜉 ̄𝑑}, we need to find
a rank 2 lattice 𝐿𝐿1,𝛿𝛿 with discriminant Δ 𝛽 𝑑 and coset 𝛿𝛿 (if it exists), and compute the coefficient
𝜇𝜇1,𝛿𝛿,0,0 (i.e., the number of vectors 𝛽𝛽 in this lattice 𝐿𝐿1,𝛿𝛿 with 𝛽𝛽 𝛽 𝛽𝛽 𝛽 𝑑 and 𝛽𝛽2 𝛽 𝑑). We can
write ( 2 𝑦𝑦

𝑦𝑦 2𝑦𝑦) for the intersection matrix of the lattice, where 𝑥𝑥 and 𝑦𝑦 are to be determined. Now,
observe that 𝑑 𝛽 Δ 𝛽 𝑦𝑦2 − 4𝑥𝑥, and 𝛿𝛿 𝛽 𝑦𝑦 ∈ (ℤ𝜉2ℤ𝜉𝜉𝑑; combining both equations modulo 2, we get
that 𝛿𝛿 𝛽 ̄𝑑. We conclude that there is no rank 2 lattice with Δ 𝛽 𝑑 and 𝛿𝛿 𝛽 ̄𝑑, so 𝜇𝜇1,0̄,0,0 𝛽 𝑑.
For 𝛿𝛿 𝛽 ̄𝑑, we see that the choice 𝑥𝑥 𝛽 𝑑𝜉 𝑦𝑦 𝛽 𝑑 gives the right discriminant and coset. To get the
multiplicity, we take all solutions of (4.16), in this case 𝜉𝜉 𝛽 𝑑2, and verify for each of them whether
𝜉𝜉 is integer. For 𝜉𝜉 𝛽 2, we get 𝜉𝜉 𝛽 (𝛽𝛽 − 𝑦𝑦𝜉𝜉𝜉𝜉2𝑑𝑑 𝛽 −𝑑 ∈ ℤ, so this gives a solution. For 𝜉𝜉 𝛽 −2, we get
𝜉𝜉 𝛽 (𝛽𝛽 − 𝑦𝑦𝜉𝜉𝜉𝜉2𝑑𝑑 𝛽 𝑑 ∈ ℤ, giving another solution. We conclude that there are two vectors 𝛽𝛽 ∈ 𝐿𝐿1,1̄
with the properties 𝛽𝛽 𝛽 𝛽𝛽 𝛽 𝛽𝛽 𝛽 𝑑 and 𝛽𝛽2 𝛽 2ℎ − 2 𝛽 −2 (to wit, 𝛽𝛽 𝛽 (𝜉𝜉𝜉 𝜉𝜉𝜉 ∈ 𝑑(−𝑑𝜉 2𝜉𝜉 (𝑑𝜉 −2𝜉}), so
the multiplicity in this case is 𝜇𝜇1,1̄,0,0 𝛽 2.

Next, we find the contributions with Δ 𝛽 4; we leave out some details for brevity. In this case,
only 𝛿𝛿 𝛽 ̄𝑑 gives a contribution. One possible lattice is 𝐿𝐿4,0̄ with intersection matrix (2 0

0 −2). This has
again two vectors with the required intersection numbers: 𝛽𝛽 ∈ 𝑑(𝑑𝜉 𝑑𝜉𝜉 (𝑑𝜉 −𝑑𝜉}. So also in this case
the multiplicity is 𝜇𝜇4,0̄,0,0 𝛽 2.

The above shows that, for 𝑑𝑑 𝛽 𝑑,

𝐷𝐷0,0 𝛽 2 𝛽 𝑃𝑃1,1̄ 𝑑 2 𝛽 𝑃𝑃4,0̄ . (4.17)

Recalling the geometric description of these Noether–Lefschetz divisors, we can interpret this as fol-
lows. The locus 𝐷𝐷0,0 consists of the K3 surfaces whose Picard lattice has a divisor class 𝛽𝛽 with
𝛽𝛽 𝛽 𝛽𝛽 𝛽 𝑑, 𝛽𝛽2 𝛽 −2. This can happen in two ways: in (a dense subset of) the sublocus 𝑃𝑃4,0̄, the
Picard lattice of the K3 surface is in fact generated by the classes Η and 𝛽𝛽. In (a dense subset of)
𝑃𝑃1,1̄, the lattice generated by 𝛽𝛽 and 𝛽𝛽 𝛽 𝑑(𝛽𝛽 − 2Γ𝜉 has index 2 in the full Picard lattice of the
surface (which is generated by 𝛽𝛽 and Γ). Because in both cases there are two elements 𝛽𝛽 with the
required properties, both components contribute to 𝐷𝐷0,0 with multiplicity two.
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We now derive some properties of equation (4.13).

Proposition 4.2.18.

(i) The coefficient 𝜇𝜇∆,𝛿𝛿,𝛿,𝛿𝛿 is nonzero only if Δ divides 𝑎𝑎2 − 4𝑑𝑑𝑑𝑑 − 𝑑𝑑.

(ii) If Δ equals 𝑎𝑎2 − 4𝑑𝑑𝑑𝑑 − 𝑑𝑑, the coefficient 𝜇𝜇∆,𝛿𝛿,𝛿,𝛿𝛿 is nonzero if and only if 𝛿𝛿 𝛿 𝑎𝑎 ∈ 𝑑ℤ/2𝑑𝑑ℤ𝑑/𝑑.

Proof. (i) This follows directly from equation (4.16). (ii) Suppose first that 𝛿𝛿 𝛿 𝑎𝑎 ∈ 𝑑ℤ/2𝑑𝑑ℤ𝑑/𝑑. Look
at the lattice generated by 𝐻𝐻 and Γ, with 𝐻𝐻2 𝛿 2𝑑𝑑𝑑 𝐻𝐻 𝑑 Γ 𝛿 𝑎𝑎𝑑 Γ2 𝛿 2𝑑 − 2. This has discriminant
𝑎𝑎2 − 4𝑑𝑑𝑑𝑑 − 𝑑𝑑 and coset 𝛿𝛿. The vector Γ satisfies the equations for 𝛽𝛽 by construction, so there is at
least one vector with the right intersection numbers, hence 𝜇𝜇𝛿𝛿2−4𝑑𝑑𝑑𝛿−𝑑𝑑,𝛿𝛿,𝛿,𝛿𝛿 > 0.

Now, suppose that 𝜇𝜇𝛿𝛿2−4𝑑𝑑𝑑𝛿−𝑑𝑑,𝛿𝛿,𝛿,𝛿𝛿 is nonzero. Since 𝑎𝑎2 − 4𝑑𝑑𝑑𝑑 − 𝑑𝑑 𝛿 Δ, we see from equation
(4.16) that 𝜂𝜂 𝛿 𝑑𝑑. Therefore, from the final remark of the proof of lemma 4.2.16, we conclude
that 𝑎𝑎 𝑑 𝑎𝑎 is divisible by 2𝑑𝑑; recall that the class of 𝑎𝑎 in 𝑑ℤ/2𝑑𝑑ℤ𝑑/𝑑 is exactly 𝛿𝛿, so 𝑎𝑎 𝛿 𝑎𝑎 𝛿 𝛿𝛿 ∈
𝑑ℤ/2𝑑𝑑ℤ𝑑/𝑑.

By part (i) of the above proposition, the sum in (4.13) is finite. We can say something even stronger:
the set of equations (4.13) is triangular with respect to the divisibility ordering on Δ, i.e., in the
equation for 𝐷𝐷𝛿,𝛿𝛿, only terms occur with Δ a divisor of Δ0 𝛿 𝑎𝑎2 − 4𝑑𝑑𝑑𝑑 − 𝑑𝑑. This implies that we
can invert the (infinite!) set of equations (4.13), solving for 𝑃𝑃∆,𝛿𝛿 in terms of 𝐷𝐷𝛿,𝛿𝛿.

4.3 Borcherds’ construction of modular forms on ℱ2𝑑𝑑
In [6], Borcherds gives a construction of modular forms on the arithmetic quotient associated to a
lattice of signature 𝑑2𝑑 𝑛𝑛𝑑. We apply this to our situation, where the lattice is 𝐿𝐿 𝛿 𝐿𝐿2𝑑𝑑 (of signature
𝑑2𝑑 𝑑9𝑑), and the associated arithmetic quotient is exactly our moduli space ℱ2𝑑𝑑. This gives us a large
supply of modular forms on our space ℱ2𝑑𝑑.

In the following, recall from section 3.3.1 the space Sing𝑑𝐿𝐿𝑑 (Laurent polynomials with values in
ℂ[𝐷𝐷𝐿𝐿], which we use to describe the pole behaviour of meromorphic modular forms), and the space
Obstruct𝑑𝑘𝑘𝑑 𝐿𝐿𝑑 of obstructions to the existence of a meromorphic modular form of weight 𝑘𝑘 with given
principal part.

Theorem 4.3.1 ([6, Theorem 13.3]). Let 𝑓𝑓 𝛿 𝑓𝛾𝛾,𝛾𝛾𝛾0 𝑎𝑎𝛾𝛾,𝛾𝛾𝑞𝑞−𝛾𝛾𝐞𝐞𝛾𝛾 ∈ Sing𝑑𝐿𝐿𝑑 be the principal part of a
meromorphic modular form of weight 𝑑−𝑏𝑏𝑏/2 𝛿 𝑑−𝑑9/2 𝛿 −𝑑𝑏/2 (i.e., [𝑓𝑓] 𝛿 0 ∈ Obstruct𝑑−𝑑𝑏/2𝑑 𝐿𝐿𝑑).
Assume that all coefficients 𝑎𝑎𝛾𝛾,𝛾𝛾 are integral. Then there is a meromorphic modular form Ψ (scalar
valued) on ℱ2𝑑𝑑, of weight 𝑎𝑎0̄,0/2, with divisor 𝑑/2𝑑𝑓𝛾𝛾,𝛾𝛾>0 𝑎𝑎𝛾𝛾,𝛾𝛾𝐻𝐻𝑑𝐻𝐻𝑑 𝑛𝑛𝑑. Moreover, Ψ has the following
product expansion around the cusp associated to 𝑧𝑧, in the tube domain parametrisation (see section
5.2.1):

Ψ𝑧𝑧𝑑𝑍𝑍𝑀𝑀𝑑 𝛿 𝐶𝐶 𝐶𝑑𝑑𝑍𝑍𝑀𝑀𝑑 𝜌𝜌𝑀𝑀𝑑𝑑 ∏
𝜆𝜆∈𝑀𝑀∨

𝑑𝜆𝜆,𝜆𝜆𝑀𝑀𝑑>0

∏
𝛿𝛿∈𝐷𝐷𝐿𝐿
𝛿𝛿𝛿𝑀𝑀𝛿𝜆𝜆

(𝑑 − 𝐶𝑑𝑑𝜆𝜆𝑑 𝑍𝑍𝑀𝑀𝑑 + 𝑑𝛿𝛿𝑑 𝑧𝑧′𝑑𝑑)𝛿𝛿𝜆𝜆,𝜆𝜆2/2 . (4.18)

Here, the number 𝐶𝐶 is some nonzero constant; 𝑊𝑊𝑀𝑀 is a Weyl chamber (with respect to 𝑓𝑓) that
has 𝑧𝑧 in its closure (this is the subset of the period domain on which the expansion will be valid);
𝜌𝜌𝑀𝑀 𝛿 𝜌𝜌𝑑𝜌𝜌𝑑 𝑊𝑊𝑀𝑀𝑑 𝑓𝑓𝑑 ∈ 𝜌𝜌 𝑀 𝑀 is the corresponding Weyl vector; the notation 𝑑𝜆𝜆𝑑 𝑊𝑊𝑀𝑀𝑑 > 0 means that
𝑑𝜆𝜆𝑑 𝜆𝜆𝑑 > 0 for all 𝜆𝜆 ∈ 𝑊𝑊𝑀𝑀.

About the condition 𝑑𝜆𝜆𝑑 𝑊𝑊𝑀𝑀𝑑 > 0: if 𝜆𝜆 is such that 𝑎𝑎𝜆𝜆,𝜆𝜆2/2 ≠ 0 (and note that other 𝜆𝜆 do not
contribute!), then it suffices to check this for any single 𝜆𝜆0 ∈ 𝑊𝑊𝑀𝑀.

Note that even though 𝑓𝑓 ∈ Sing𝑑𝐿𝐿𝑑, only the terms of 𝑓𝑓 with 𝑛𝑛 𝑛 0 or 𝑑𝐻𝐻𝑑 𝑛𝑛𝑑 𝛿 𝑑 ̄0𝑑 0𝑑 are used, so
we might as well take 𝑓𝑓 ∈ Sing−

0𝑑𝐿𝐿𝑑. The theorem shows that if the combination

𝑎𝑎0̄,0𝐞𝐞0̄ + ∑
𝛾𝛾,𝛾𝛾>0

𝑎𝑎𝛾𝛾,𝛾𝛾𝑞𝑞−𝛾𝛾𝐞𝐞𝛾𝛾 ∈ Sing−
0𝑑𝐿𝐿𝑑 (4.19)

vanishes in the obstruction space Obstruct𝑑−𝑑𝑏/2𝑑 𝐿𝐿𝑑, then

𝑎𝑎0̄,0𝐻𝐻𝑑0𝑑 0𝑑 + ∑
𝛾𝛾,𝛾𝛾>0

𝑎𝑎𝛾𝛾,𝛾𝛾𝐻𝐻𝑑𝐻𝐻𝑑 𝑛𝑛𝑑 (4.20)
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is linearly equivalent to the zero divisor on ℱ2𝑑𝑑. (Recall that a modular form of weight 𝑘𝑘 is a section
of the line bundle 𝑘𝑘𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘𝑘(0, 0).) On the other hand, recall from section 3.3.1 (in particular
proposition 3.3.10 and remark 3.3.11) that

∑
𝛾𝛾𝛾𝛾𝛾𝛾𝛾

𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝑞𝑞𝑘𝛾𝛾𝐞𝐞𝛾𝛾 ∈ Sing𝑘
𝛾(𝐿𝐿) (4.21)

vanishes in Obstruct(𝑘17/2, 𝐿𝐿) if and only if the corresponding functional of coefficients of almost
cusp forms of weight 2 𝑘 (𝑘17/2) 𝑘 21/2 vanishes, i.e., if

∑
𝛾𝛾𝛾𝛾𝛾𝛾𝛾

𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝑐𝑐𝛾𝛾𝛾𝛾𝛾 𝑘 0 ∈ 𝐴𝐴𝐴𝐴(𝐴𝐴)∨ . (4.22)

Therefore, we may produce relations in Picℚ(ℱ2𝑑𝑑) among Heegner divisors and the Hodge class 𝑘𝑘 by
computing equalities among coefficients of vector-valued almost cusp forms.

Moreover, Bruinier [10, Theorem 1.2] shows that any meromorphic modular form on ℱ2𝑑𝑑 with
divisor supported on Heegner divisors occurs as a result of Borcherds’ construction. Translating to
geometric terms, this means that all relations among Noether–Lefschetz divisors come from linear
combinations of coefficients that vanish on all almost cusp forms.

Finally, by the recent work of [5], the rational Picard group of ℱ2𝑑𝑑 is generated by Noether–
Lefschetz divisors, so we may summarise all the above as follows.

Theorem 4.3.2. The rational Picard group of ℱ2𝑑𝑑 is isomorphic to the dual of the space of rational
vector-valued almost cusp forms of weight 21/2. This isomorphism Picℚ(ℱ2𝑑𝑑) → 𝐴𝐴𝐴𝐴(𝐴𝐴)∨

ℚ sends
[𝑘𝑘(𝐻𝐻, 𝐻𝐻)𝐻 to the coefficient function 𝑐𝑐𝛾𝛾𝛾𝛾𝛾 ∶ 𝐴𝐴𝐴𝐴(𝐴𝐴)∨

ℚ → ℚ; as a special case, 𝑘𝑘 𝑘 𝑘[𝑘𝑘(0, 0)𝐻 is sent to
𝑘𝑐𝑐�̄�𝛾𝛾.

Proof. As described above, this is a direct combination of Borcherds’ construction of forms on arith-
metic quotients [6], Bruinier’s converse theorem [10], and the result [5] by Bergeron, Li, Millson and
Moeglin that Picℚ(ℱ2𝑑𝑑) is generated by Noether–Lefschetz divisors.

4.4 Computing relations in Picℚ(ℱ2𝐴𝐴)
As we saw in the previous section, the relations among divisors on ℱ2𝑑𝑑 are exactly given by linear
relations between coefficients of vector-valued modular forms.

By the work of [42], explained in section 3.6, we may compute a basis of that space of vector-valued
modular forms up to any wanted number of Fourier coefficients. These data then give all relations
among Noether–Lefschetz divisors in concrete form, and by theorem 4.2.9, that gives us a complete
description of the rational Picard group.

Let us do a couple of examples by hand.

4.4.1 Example: 𝐴𝐴 𝑘 1
We may use the data on vector-valued modular forms we computed in section 3.6.3 to get a basis of
the rational Picard group. Recall that the space 𝑀𝑀(1) of vector-valued modular forms has dimension
2, and that there is only a single cusp, so that the space of almost cusp forms is the whole space
𝐴𝐴𝐴𝐴(1) 𝑘 𝑀𝑀(1).

As a basis for 𝐴𝐴𝐴𝐴(1)∨, we pick {𝜑𝜑1, 𝜑𝜑2}, where

𝜑𝜑1 𝑘 𝑐𝑐�̄�𝛾𝛾 ,

𝜑𝜑2 𝑘 105457575250
169227 𝑐𝑐�̄�𝛾𝛾 + 𝑐𝑐�̄�𝛾𝑘1 .

(4.23)

Note that this is the basis dual to the basis {𝑣𝑣1, 𝑣𝑣2} of 𝑀𝑀 that we computed in 3.6.3. Employing the
isomorphism between 𝐴𝐴𝐴𝐴(𝐴𝐴)∨ and Picℚ(ℱ2𝑑𝑑), we conclude that a basis of Picℚ(ℱ2·1) is formed by

𝑘𝑘(0, 0) 𝑘 𝑘𝑘𝑘 and

𝑘 105457575250
169227 𝑘𝑘 + 𝑘𝑘(0, 𝑘1) .

(4.24)
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Alternatively, we might take as a basis the class 𝜆𝜆 and the class of the Noether–Lefschetz divisor
𝐻𝐻𝐻0, −1) = 𝐷𝐷0,0.

Given any other Noether–Lefschetz divisor 𝐷𝐷ℎ,𝑎𝑎 = 𝐻𝐻𝐻𝐻𝐻, 𝐻𝐻), we may read off its coefficients with
respect to the basis {𝜑𝜑1, 𝜑𝜑2} directly from the corresponding coefficients of 𝑣𝑣1 and 𝑣𝑣2. For instance,
take 𝐷𝐷0,1 = 𝐻𝐻𝐻1, −1/4):

𝐷𝐷0,1 = 𝐻𝐻𝐻1, − 1
4 )

∼ 𝑐𝑐1̄,− 1
4

𝐻𝑣𝑣1) · 𝐻𝐻𝐻0, 0) + 𝑐𝑐1̄,− 1
4

𝐻𝑣𝑣2) · (105457575250
169227 𝐻𝐻𝐻0, 0) + 𝐻𝐻𝐻0, −1))

= 1882717700
169227 𝐻𝐻𝐻0, 0) − 1

56 · (105457575250
169227 𝐻𝐻𝐻0, 0) + 𝐻𝐻𝐻0, −1))

= −75
28𝐻𝐻𝐻0, 0) − 1

56𝐻𝐻𝐻0, −1)

= 75
28𝜆𝜆 − 1

56𝐷𝐷0,0 .

(4.25)

4.4.2 Example: 𝑑𝑑 = 𝑑
Take 𝑑𝑑 = 𝑑. By theorem 4.2.10, 𝑀𝑀𝐻𝑑) has dimension 4. Because there is again only one cusp, the
space of almost cusp forms 𝐴𝐴𝐴𝐴𝐻𝑑) coincides with 𝑀𝑀𝐻𝑑), so Picℚ𝐻ℱ2·3) has dimension 4. We use Jacobi
forms and the restriction method to determine that 𝑀𝑀𝐻𝑑) is spanned by the following vectors:

𝑣𝑣1 = 𝐞𝐞0̄ · (1 + 0 𝑞𝑞 + −6𝑑756𝑞𝑞2 + …)
+ 𝐻𝐞𝐞1̄ + 𝐞𝐞5̄) · (0 𝑞𝑞1/12 − 𝑑15𝑞𝑞13/12 − 905𝑑1𝑞𝑞25/12 + 𝑂𝑂𝐻𝑞𝑞3))
+ 𝐻𝐞𝐞2̄ + 𝐞𝐞 ̄4) · (0 𝑞𝑞1/3 − 1017𝑞𝑞4/3 − 275580𝑞𝑞7/3 + 𝑂𝑂𝐻𝑞𝑞3))
+ 𝐞𝐞3̄ · (−49𝑞𝑞3/4 − 17190𝑞𝑞7/4 − 129𝑑075𝑞𝑞11/4 + 𝑂𝑂𝐻𝑞𝑞3)) ,

𝑣𝑣2 = 𝐞𝐞0̄ · (0 + 1 𝑞𝑞 − 12𝑞𝑞2 + …)

+ 𝐻𝐞𝐞1̄ + 𝐞𝐞5̄) · (0 𝑞𝑞1/12 − 𝑑
2𝑞𝑞13/12 + 45

2 𝑞𝑞25/12 + 𝑂𝑂𝐻𝑞𝑞3))

+ 𝐻𝐞𝐞2̄ + 𝐞𝐞 ̄4) · (0 𝑞𝑞1/3 + 𝑑𝑞𝑞4/3 − 51𝑞𝑞7/3 + 𝑂𝑂𝐻𝑞𝑞3))

+ 𝐞𝐞3̄ · (−1
2𝑞𝑞3/4 + 5𝑞𝑞7/4 − 𝑑

2𝑞𝑞11/4 + 𝑂𝑂𝐻𝑞𝑞3)) ,

𝑣𝑣3 = 𝐞𝐞0̄ · (0 + 0 · 𝑞𝑞 − 67𝑑92𝑞𝑞2 + …)
+ 𝐻𝐞𝐞1̄ + 𝐞𝐞5̄) · (1 𝑞𝑞1/12 − 𝑑20𝑞𝑞13/12 − 44𝑑𝑑5𝑞𝑞25/12 + 𝑂𝑂𝐻𝑞𝑞3))
+ 𝐻𝐞𝐞2̄ + 𝐞𝐞 ̄4) · (0 𝑞𝑞1/3 + 1248𝑞𝑞4/3 + 120640𝑞𝑞7/3 + 𝑂𝑂𝐻𝑞𝑞3))
+ 𝐞𝐞3̄ · (−54𝑞𝑞3/4 + 207𝑑6𝑞𝑞7/4 + 105𝑑000𝑞𝑞11/4 + 𝑂𝑂𝐻𝑞𝑞3)) ,

𝑣𝑣4 = 𝐞𝐞0̄ · (0 + 0 𝑞𝑞 − 7452𝑞𝑞2 + 𝑂𝑂𝐻𝑞𝑞3))
+ 𝐻𝐞𝐞1̄ + 𝐞𝐞5̄) · (0 𝑞𝑞1/12 − 25𝑞𝑞13/12 + 5𝑑75𝑞𝑞25/12 + 𝑂𝑂𝐻𝑞𝑞3))
+ 𝐻𝐞𝐞2̄ + 𝐞𝐞 ̄4) · (1 𝑞𝑞1/3 + 𝑑52𝑞𝑞4/3 + 5780𝑞𝑞7/3 + 𝑂𝑂𝐻𝑞𝑞3))
+ 𝐞𝐞3̄ · (−27𝑞𝑞3/4 − 2754𝑞𝑞7/4 − 𝑑1185𝑞𝑞11/4 + 𝑂𝑂𝐻𝑞𝑞3)) .

(4.26)

Classical numbers of special fibres in families

We have a method to compute relations among Noether–Lefschetz divisors, by using coefficients of
vector-valued modular forms. As Noether–Lefschetz divisors have a direct geometrical interpretation
(in terms of the existence of divisors on the K3 surface with prescribed intersection numbers), these
relations have a geometrical meaning as well.

To extract some of this information, we can take a 1-dimensional family of K3 surfaces, i.e., a
curve 𝐴𝐴 in our moduli space ℱ2𝑑𝑑. Intersecting a Noether–Lefschetz divisor 𝐻𝐻𝐻𝐻𝐻, 𝐻𝐻) with this curve
gives us a number, which we will denote by 𝐴𝐴𝐻𝐻𝐻, 𝐻𝐻) (this equals the degree of 𝐻𝐻𝐻𝐻𝐻, 𝐻𝐻) on 𝐴𝐴). Then a
relation among Noether–Lefschetz divisors gives an equation among these degrees.

Following [30, section 6.4], we will apply this to a case where we have a way to compute some of
these degrees; then our relation will compute another one.
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We express 𝐻𝐻(3, −3/4) in terms of the basis

𝜆𝜆 𝜆 −𝜆𝜆∨
1, 𝐻𝐻(0, 1) 𝜆 𝜆𝜆∨

2, 𝐻𝐻(1, −1/12) 𝜆 𝜆𝜆∨
3, 𝐻𝐻(2, −1/3) 𝜆 𝜆𝜆∨

4 , (4.27)

by reading off the coefficients of 𝐞𝐞3̄𝑞𝑞3/4 for the vectors in the table above. These are −49, −1/2, −54,
−27 respectively, so we get that

𝐻𝐻(3, −3
4) ∼ −49𝜆𝜆∨

1 − 1
2𝜆𝜆∨

2 − 54𝜆𝜆∨
3 − 27𝜆𝜆∨

4

𝜆 49𝜆𝜆 − 1
2𝐻𝐻(0, 1) − 54𝐻𝐻(1, − 1

12) − 27𝐻𝐻(2, −1
3) ,

(4.28)

or equivalently, multiplying by the common denominator,

2𝐻𝐻(3, −3
4) 𝜆 98𝜆𝜆 − 𝐻𝐻(0, −1) − 108𝐻𝐻(1, − 1

12) − 54𝐻𝐻(2, −1
3) . (4.29)

Now, recall that there is an open subset of ℱ2·3 of K3 surfaces that can be constructed as smooth
intersections of a quadric and a cubic in ℙ4. We take a fixed quadric, and a Lefschetz pencil of cubics.
This gives a 1-dimensional family of K3 surfaces, but not all of them are smooth. It is possible to
resolve the singularities (see [30, section 5.1]); this results in a curve 𝐶𝐶1 in ℱ2·3. We intersect this
curve with the above relation (4.29).

By classical computations the degree of the Hodge bundle 𝜆𝜆 on 𝐶𝐶1 is 1 (note that what [30] calls
the Hodge bundle is the dual of 𝜆𝜆, so they get −1 instead). Also, the degree of 𝐻𝐻(0, −1) on 𝐶𝐶1 equals
the number of singular fibres in the family, which is 98 in this case.

By a generic choice of the Lefschetz pencil of cubics, we can make sure that the points on 𝐶𝐶1 that
are on 𝐻𝐻(1, −1/12) or 𝐻𝐻(2, −1/3) have a very ample polarisation. Then Castelnuovo’s bound, in the
form of [30, Lemma 7], shows that such points in fact cannot exist. This implies that the degrees
𝐶𝐶1( ̄1, −1/12) and 𝐶𝐶1( ̄2, −1/3) vanish.

All this gives the following result for the intersection of (4.29) with 𝐶𝐶1:

2𝐶𝐶1( ̄3, −3
4) 𝜆 98 · 1 − 𝐶𝐶1( ̄0, 1) − 108𝐶𝐶1( ̄1, − 1

12) − 54𝐶𝐶1( ̄2, −1
3)

𝜆 98 − 98 − 108 · 0 − 54 · 0
𝜆 0 ,

(4.30)

so we conclude that
𝐶𝐶1( ̄3, −3

4) 𝜆 0 . (4.31)

To extract the geometric information contained in this last equality, it is convenient to translate it
to a statement about prime Noether–Lefschetz divisors 𝑃𝑃∆,𝛿𝛿, using the triangular relations of 4.2.2.

A simple computation gives

𝐻𝐻(3, −3
4) 𝜆 𝐷𝐷1,3 𝜆 2𝑃𝑃1,1̄ + 2𝑃𝑃9,3̄ . (4.32)

Here 𝑃𝑃9,3̄ corresponds to the lattices with Δ 𝜆 9, 𝛿𝛿 𝜆 ̄3; these are isomorphic to (6 3
3 0). The other

occurring primitive divisor, 𝑃𝑃1,1̄, corresponds to the lattices with Δ 𝜆 1, 𝛿𝛿 𝜆 ̄1; these are isomorphic
to (6 1

1 0).
As 𝑃𝑃1,1̄ 𝜆 𝐷𝐷1,1 𝜆 𝐻𝐻(1, −1/12) has degree 0 on our family 𝐶𝐶1 (as we saw above, by Castelnuovo’s

bound), this does not contribute. (By appropriately choosing the pencil of cubics, we may ensure that
𝐶𝐶1 cannot be contained in 𝑃𝑃1,1̄.) So, from (4.31), we conclude that in fact the number of K3 surfaces
in our family 𝐶𝐶1 that have Picard lattice (6 3

3 0) vanishes.
Now, this Noether–Lefschetz divisor consists exactly of the K3 surfaces with a primitive class 𝐸𝐸

such that 𝐸𝐸2 𝜆 0 and 𝐸𝐸 · 𝐻𝐻 𝜆 3, so a generic section will be a smooth elliptic plane curve. (Indeed a
plane curve, because 𝒪𝒪(𝐻𝐻) restricted to 𝐸𝐸 is degree 3, hence very ample, so gives an embedding of 𝐸𝐸
in ℙ2.)

The conclusion of this exercise is thus as follows:

Proposition 4.4.1. There are no K3 surfaces in the family 𝐶𝐶1 that contain a smooth elliptic plane
curve.
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4.4.3 Writing the Hodge class in terms of Noether–Lefschetz divisors
We get interesting relations in Picℚ(ℱ2𝑑𝑑), by writing the Hodge class 𝜆𝜆 in terms of Noether–Lefschetz
divisors. There is more than one way to do this, as there are many (even infinitely many) distinct
Noether–Lefschetz divisors.

We get a particularly interesting relation if we take a simple set of Noether–Lefschetz divisors:

Definition 4.4.2. For every 𝛾𝛾 ∈ { ̅0, … , ̅𝑑𝑑𝑑, let us write 𝐵𝐵𝛾𝛾 for the Heegner divisor 𝐻𝐻(𝛾𝛾, 𝐻𝐻) with the
highest possible value of 𝐻𝐻 (recall that 𝐻𝐻 𝑛 𝑛𝑛𝑛𝑛𝑑𝑑 is always negative; we exclude the Hodge bundle
𝐻𝐻(0, 0) 𝑛 𝑛𝜆𝜆 in this context). Let us write 𝐷𝐷 𝐷 𝐷 𝑛 𝐷i𝐷 Picℚ ℱ2𝑑𝑑. Note that 𝐷𝐷 𝐷 𝑑𝑑 (for all values
of 𝑑𝑑 we are interested in, we can see this by computing 𝐷𝐷 using theorem 4.2.10). Now, we define the
minimal basis to be the set of divisor classes [𝐵𝐵0̄], … , [𝐵𝐵𝐷𝐷].

The Hodge relation is the expression of the Hodge bundle 𝜆𝜆 in terms of the minimal basis, nor-
malised in such a way that the coefficient of 𝐻𝐻(0, 𝑛𝐷) equals one.

Remark 4.4.3. The definition assumes that the given divisor classes [𝐵𝐵0̄], … , [𝐵𝐵𝐷𝐷] are indeed inde-
pendent; we need to check this by explicit computation, using the basis we have of the space of almost
cusp forms.

It turns out that for some higher values of 𝑑𝑑, this assumption in fact fails: for example for 𝑑𝑑 ∈
{37, 𝑛𝐷, 𝑛3, 𝑛7, 𝑛9}.

One might wonder how natural this basis is: the dimension 𝐷𝐷 has a seemingly random variation as a
function of the parameter 𝑑𝑑, and it is not clear why the 𝐵𝐵𝛾𝛾 with 0 𝐷 𝛾𝛾 𝐷 𝐷𝐷 should be more important
than the ones with 𝛾𝛾 𝛾 𝐷𝐷. We will see later, when we compute the boundary coefficients that
complete this relation to a valid relation on ℱ2𝑑𝑑, that this particular choice has some nice numerical
consequences.

Example 4.4.4. For 𝑑𝑑 𝑛 𝐷, we have 𝐷𝐷 𝐷 𝐷 𝑛 𝐷i𝐷 Picℚ(ℱ2·1) 𝑛 2. Therefore, the minimal basis
consists of 𝐵𝐵0̄ 𝑛 𝐻𝐻(0, 𝑛𝐷) and 𝐵𝐵1̄ 𝑛 𝐻𝐻(𝐷, 𝑛𝐷𝑛𝑛).

We have seen before that

𝐻𝐻(𝐷, 𝑛𝐷𝑛𝑛) ∼ 𝑛75𝑛28 · 𝐻𝐻(0, 0) 𝑛 𝐷𝑛56 · 𝐻𝐻(0, 𝑛𝐷) . (4.25 revisited)

Rearranging to isolate 𝜆𝜆 𝑛 𝑛𝐻𝐻(0, 0), and multiplying by 56, we get

𝐷50𝜆𝜆 ∼ 𝐻𝐻(0, 𝑛𝐷) 𝐷 56𝐻𝐻(𝐷, 𝑛𝐷𝑛𝑛) (4.33)

as the Hodge relation for polarisation degree 𝐷.
We may compute the Hodge relation for other genera in the same way, from a basis of the space

of almost cusp forms. Some results:

Table 4.2: The Hodge relation for low values of 𝑑𝑑.

𝑑𝑑 Hodge relation

𝐷 𝐷50𝜆𝜆 ∼ 𝐻𝐻(0, 𝑛𝐷) 𝐷 56𝐻𝐻(𝐷, 𝑛𝐷𝑛𝑛)

2 𝐷08𝜆𝜆 ∼ 𝐻𝐻(0, 𝑛𝐷) 𝐷 𝐷28𝐻𝐻(𝐷, 𝑛𝐷𝑛8) 𝐷 𝐷𝑛𝐻𝐻(2, 𝑛𝐷𝑛2)

3 98𝜆𝜆 ∼ 𝐻𝐻(0, 𝑛𝐷) 𝐷 𝐷08𝐻𝐻(𝐷, 𝑛𝐷𝑛𝐷2) 𝐷 5𝑛𝐻𝐻(2, 𝑛𝐷𝑛3) 𝐷 2𝐻𝐻(3, 𝑛3𝑛𝑛)

𝑛 80𝜆𝜆 ∼ 𝐻𝐻(0, 𝑛𝐷) 𝐷 𝐷𝐷2𝐻𝐻(𝐷, 𝑛𝐷𝑛𝐷6) 𝐷 56𝐻𝐻(2, 𝑛𝐷𝑛𝑛) 𝐷 𝐷6𝐻𝐻(3, 𝑛9𝑛𝐷6)

5 8𝑛𝜆𝜆 ∼ 𝐻𝐻(0, 𝑛𝐷) 𝐷 88𝐻𝐻(𝐷, 𝑛𝐷𝑛20) 𝐷 66𝐻𝐻(2, 𝑛𝐷𝑛5) 𝐷 2𝑛𝐻𝐻(3, 𝑛9𝑛20)
𝐷 2𝐻𝐻(𝑛, 𝑛𝑛𝑛5) 𝐷 32𝐻𝐻(5, 𝑛𝐷𝑛𝑛)

6 70𝜆𝜆 ∼ 𝐻𝐻(0, 𝑛𝐷) 𝐷 96𝐻𝐻(𝐷, 𝑛𝐷𝑛2𝑛) 𝐷 60𝐻𝐻(2, 𝑛𝐷𝑛6) 𝐷 32𝐻𝐻(3, 𝑛3𝑛8)
𝐷 6𝐻𝐻(𝑛, 𝑛2𝑛3) 𝐷 96𝐻𝐻(5, 𝑛𝐷𝑛2𝑛) 𝐷 𝐷0𝐻𝐻(6, 𝑛𝐷𝑛2)

7 96𝜆𝜆 ∼ 𝐻𝐻(0, 𝑛𝐷) 𝐷 56𝐻𝐻(𝐷, 𝑛𝐷𝑛28) 𝐷 5𝑛𝐻𝐻(2, 𝑛𝐷𝑛7) 𝐷 5𝑛𝐻𝐻(3, 𝑛9𝑛28)
𝐷 2𝐻𝐻(𝑛, 𝑛𝑛𝑛7) 𝐷 2𝐻𝐻(5, 𝑛25𝑛28) 𝐷 5𝑛𝐻𝐻(6, 𝑛2𝑛7)
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Table 4.2: The Hodge relation for low values of 𝑑𝑑 (continued).

𝑑𝑑 Hodge relation

8 66𝜆𝜆 𝜆 𝜆𝜆𝜆0, −1) + 84𝜆𝜆𝜆1, −1/32) + 56𝜆𝜆𝜆2, −1/8) + 42𝜆𝜆𝜆3, −9/32)
+ 14𝜆𝜆𝜆4, −1/2) + 2𝜆𝜆𝜆5, −25/32) + 72𝜆𝜆𝜆6, −1/8) + 14𝜆𝜆𝜆7, −17/32)

9
58/3 · 𝜆𝜆 𝜆 𝜆𝜆𝜆0, −1) + 112𝜆𝜆𝜆1, −1/36) + 308/3 · 𝜆𝜆𝜆2, −1/9) − 56/9 · 𝜆𝜆𝜆3, −1/4)

+ 280/9 · 𝜆𝜆𝜆4, −4/9) + 56/9 · 𝜆𝜆𝜆5, −25/36) − 10/9 · 𝜆𝜆𝜆6, −1)
+ 448/9 · 𝜆𝜆𝜆7, −13/36) + 28/9 · 𝜆𝜆𝜆8, −7/9)

10
28𝜆𝜆 𝜆 𝜆𝜆𝜆0, −1) + 96𝜆𝜆𝜆1, −1/40) + 94𝜆𝜆𝜆2, −1/10) + 16𝜆𝜆𝜆3, −9/40)

+ 16𝜆𝜆𝜆4, −2/5) + 16𝜆𝜆𝜆5, −5/8) − 2𝜆𝜆𝜆6, −9/10) + 16𝜆𝜆𝜆7, −9/40)
+ 18𝜆𝜆𝜆8, −3/5) + 96𝜆𝜆𝜆9, −1/40)

11
66𝜆𝜆 𝜆 𝜆𝜆𝜆0, −1) + 56𝜆𝜆𝜆1, −1/44) + 70𝜆𝜆𝜆2, −1/11) + 42𝜆𝜆𝜆3, −9/44)

+ 16𝜆𝜆𝜆4, −4/11) + 14𝜆𝜆𝜆5, −25/44) + 0𝜆𝜆𝜆6, −9/11) + 70𝜆𝜆𝜆7, −5/44)
+ 14𝜆𝜆𝜆8, −5/11) + 2𝜆𝜆𝜆9, −37/44) + 42𝜆𝜆𝜆10, −3/11)

12
56𝜆𝜆 𝜆 𝜆𝜆𝜆0, −1) + 72𝜆𝜆𝜆1, −1/48) + 54𝜆𝜆𝜆2, −1/12) + 44𝜆𝜆𝜆3, −3/16)

+ 24𝜆𝜆𝜆4, −1/3) + 12𝜆𝜆𝜆5, −25/48) + 2𝜆𝜆𝜆6, −3/4) + 72𝜆𝜆𝜆7, −1/48)
+ 30𝜆𝜆𝜆8, −1/3) + 4𝜆𝜆𝜆9, −11/16) + 54𝜆𝜆𝜆10, −1/12) + 12𝜆𝜆𝜆11, −25/48)

Many of the coefficients in the Hodge relations have a geometric interpretation, counting curves with
special properties; see section 4.4.2 for a worked example.

4.5 The effective cone of ℱ2𝑑𝑑
Now that we have a good description of the Picard group Picℚ𝜆ℱ2𝑑𝑑), we may next try to understand
the effective cone inside the Picard group.

There is a natural subcone of the effective cone, generated by the irreducible Noether–Lefschetz
divisors 𝑃𝑃∆,𝛿𝛿:

Definition 4.5.1. The Noether–Lefschetz cone EffNL𝜆ℱ2𝑑𝑑) ⊆ Eff𝜆ℱ2𝑑𝑑) is the cone generated by the
set of all irreducible Noether–Lefschetz divisors 𝑃𝑃∆,𝛿𝛿.

Remark that the reducible Noether–Lefschetz divisors 𝜆𝜆𝜆𝐻𝐻, 𝐻𝐻) are positive linear combinations of the
irreducible ones (by lemma 4.2.16), so they will all lie in this subcone.

First of all, it would be nice to understand the structure of the Noether–Lefschetz cone. In
particular:

Question 4.5.2. Is the Noether–Lefschetz cone finitely generated? If so, can we give a list of gener-
ators and/or a list of bounding hyperplanes?

Apart from this, it would be nice to know how much we lose by restricting to this special subcone:

Question 4.5.3. Is the Noether–Lefschetz cone EffNL𝜆ℱ2𝑑𝑑) equal to the effective cone Eff𝜆ℱ2𝑑𝑑) ?

Note that the equality PicNL
ℚ 𝜆ℱ2𝑑𝑑) = Picℚ𝜆ℱ2𝑑𝑑), recently proved by [5], does not imply a positive

answer to this last question: there could be effective divisors on ℱ2𝑑𝑑 that are linearly equivalent to some
combination of irreducible Noether–Lefschetz divisors, but with some of the coefficients necessarily
negative.

Also note that if EffNL𝜆ℱ2𝑑𝑑) ≠ Eff𝜆ℱ2𝑑𝑑), then there are modular forms on ℱ2𝑑𝑑 with a vanishing
locus containing prime divisors that are not Noether–Lefschetz divisors.

4.5.1 Results
We have done computer calculations to determine the structure of the Noether–Lefschetz cone for
many values of 𝑑𝑑. Let us outline the steps that we took.
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Algorithm 4.5.4.

(i) Choose some large but finite set of irreducible Noether–Lefschetz divisors. (Possibly look at
earlier results when determining this set: on the one hand, we want to take enough elements to
have some confidence that we do not miss any generators; on the other hand, we would like to
avoid an unnecessarily high number of redundant elements that only lengthen the computation.
In practice, we took for every 𝛿𝛿 ∈ (ℤ/2𝑑𝑑ℤ𝑑/𝑑 the 4 divisors 𝑃𝑃∆,𝛿𝛿 with lowest possible Δ; this
seems to be on the safe side.)

(ii) Write each of these irreducible divisors 𝑃𝑃∆,𝛿𝛿 as a linear combination of reducible Noether–
Lefschetz divisors 𝐻𝐻(𝐻𝐻𝐻 𝐻𝐻𝑑, using the triangular relations of section 4.2.2.

(iii) Rewrite the resulting expressions in terms of a chosen basis of Picℚ(ℱ2𝑑𝑑𝑑, using the relations
among divisors we found in section 4.4. This gives a finite set of points in the finite-dimensional
ℚ-vector space Picℚ(ℱ2𝑑𝑑𝑑.

(iv) Compute the cone generated by these points, as a rational convex cone inside Picℚ(ℱ2𝑑𝑑𝑑.
Our experiments indicate that this cone is generated by a relatively small number of irreducible
Noether–Lefschetz divisors, all of small discriminant Δ. See table 4.3.

As the polarisation degree 2𝑑𝑑 increases, the dimension of the (rational) Picard group grows, and
the Noether–Lefschetz cone inside this space becomes more and more complicated. The number of
bounding hyperplanes, which gives an indication of the complexity of the structure of the cone, grows
to unmanageable numbers: ten of thousands for 𝑑𝑑 around 30, and at least hundreds of thousands for
𝑑𝑑 𝑑 40 – we did not finish this last computation, because the amount of computer memory needed
became outrageous.
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4.6 Computing the canonical class of ℱ2𝑑𝑑

There is an explicit formula for the canonical class 𝐾𝐾 of ℱ2𝑑𝑑. Because ℱ2𝑑𝑑 is singular, we should be
careful and restrict ourselves to the regular part. The formula is

𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 𝐾 𝐾𝐾2 𝐾 𝐾𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 , (4.34)

where 𝐾𝐾 is the branch divisor of the quotient map 𝒟𝒟2𝑑𝑑 → ℱ2𝑑𝑑, and 𝐾 𝐾 ℱ2𝑑𝑑 ⧵ ℱ2𝑑𝑑 𝐾 ∑𝑖𝑖 𝐾𝑖𝑖 is the
boundary divisor.

We want to know whether ℱ2𝑑𝑑 is of general type. More precisely, as ℱ2𝑑𝑑 is neither smooth nor
projective, we take a smooth projective birational model of ℱ2𝑑𝑑, and ask the same question of that
model.

If ℱ2𝑑𝑑 were smooth and projective, being of general type would correspond to 𝐾𝐾 being a big divisor;
since the class 𝐾𝐾 is ample, that is the case if and only if 𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 is ℚ-effective for some positive 𝐾𝐾.

The results of [18] show that the singularities of ℱ2𝑑𝑑, and even of a toroidal compactification ℱ2𝑑𝑑
(if we choose it in the right way), are canonical. This allows our naive formulation, using ampleness
and effectiveness of divisor classes, to go through.

Our strategy will be to rewrite 𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 in terms of only Noether–Lefschetz divisors 𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻 and
boundary divisors 𝐾𝑖𝑖, and then compare the resulting expression to our supply of Noether–Lefschetz
divisors on ℱ2𝑑𝑑 (which are all effective by construction).

The hardest part of this is the computation of what happens at the boundary (concretely, comput-
ing boundary coefficients of relations among Noether–Lefschetz divisors). As a first approximation,
we can try to ignore that hard part, and restrict to the open part ℱ2𝑑𝑑. This might seem like a silly
thing to do: for the moduli space of curves, the Picard group of the open part has rank 𝐾, so in that
case all essential information (the ratio between the 𝐾𝐾-coefficient and the boundary coefficients) is lost
by restricting to the open part. In our case, though, the Picard group of the open part is (much)
bigger (how big exactly depends on the polarisation degree), so more information may be preserved.
In fact, when looking over the results (see section 4.7) of this approximation – ignoring the boundary
completely – it seems that we retain enough information to see whether the Kodaira dimension is 𝐾∞
or not (although we need boundary calculations to make some of the cases rigorous).

But let us not get ahead of ourselves. We first need to compute the branch divisor 𝐾𝐾.

4.6.1 Computation of the branch divisor
In [20, section 2], the branch divisor 𝐾𝐾 is computed: a formula is given for the number of components,
and the proofs in fact indicate a procedure to determine exactly which components occur. We will
formulate these results, and do a few example computations for low polarisation degree.

Proposition 4.6.1 ([20]). The ramification divisor of the map 𝒟𝒟2𝑑𝑑 → ℱ2𝑑𝑑 is given by

⋃
±𝑟𝑟 ∈ 𝑆𝑆𝐾±

𝒟𝒟𝑟𝑟 , (4.35)

where 𝒟𝒟𝑟𝑟 𝐾 𝑟𝑟⟂ ⊂ 𝒟𝒟2𝑑𝑑 is the subvariety associated to the vector 𝑟𝑟, and 𝑆𝑆 𝐾 𝑆𝑆1 ∪ 𝑆𝑆2 is a set of vectors
given by

𝑆𝑆1 𝐾 {𝑟𝑟 ∈ 𝐿𝐿 𝐿 𝑟𝑟2 𝐾 𝐾2} ,
𝑆𝑆2 𝐾 {𝑟𝑟 ∈ 𝐿𝐿 𝐿 𝑟𝑟2 𝐾 𝐾2𝑑𝑑𝐻 r is primitive, and div𝐻𝑟𝑟𝐻 ∈ {𝑑𝑑𝐻 2𝑑𝑑𝑑} .

(4.36)

Note that, in order to get the branch divisor 𝐾𝐾, we need to take the quotient of the ramification divisor
under the action of the group Õ+𝐻𝐿𝐿𝐻. So, we need to know how 𝑆𝑆1 and 𝑆𝑆2 decompose in orbits of
this action. This can also be found in [20]:

Proposition 4.6.2 ([20]).

(i) The number of Õ+𝐻𝐿𝐿𝐻-orbits in 𝑆𝑆1 is

{2𝐻 if 𝑑𝑑 ≡ 𝐾 mod 4
𝐾𝐻 if 𝑑𝑑 ≢ 𝐾 mod 4 . (4.37)
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(ii) For 𝑑𝑑 𝑑 𝑑, the number of Õ+(𝐿𝐿𝐿-orbits in 𝑆𝑆2 with div(𝑟𝑟𝐿 𝑟 𝑟𝑑𝑑 is 𝑟𝜌𝜌(𝑑𝑑𝐿, where 𝜌𝜌(𝑑𝑑𝐿 is the number
of distinct prime divisors of 𝑑𝑑. The number of Õ+(𝐿𝐿𝐿-orbits in 𝑆𝑆2 with div(𝑟𝑟𝐿 𝑟 𝑑𝑑 is equal to

⎧{
⎨{⎩

𝑟𝜌𝜌(𝑑𝑑𝐿, if 𝑑𝑑 is odd or 𝑑𝑑 ≡ 4 mod 8
𝑟𝜌𝜌(𝑑𝑑𝐿+𝜌, if 𝑑𝑑 ≡ 0 mod 8
𝑟𝜌𝜌(𝑑𝑑𝐿𝜌𝜌, if 𝑑𝑑 ≡ 𝑟 mod 8

. (4.38)

Let us calculate the branch divisor 𝐵𝐵 in a few cases.

Example 4.6.3. First take 𝑑𝑑 𝑟 𝑑. In this case all terms of the ramification divisor come from
𝜌𝑟-vectors. By proposition 4.6.2, since 𝑑𝑑 ≡ 𝑑 mod 4, there are two orbits of such vectors: one
is represented by 𝑒𝑒 𝜌 𝑒𝑒 ∈ 𝑈𝑈 (in either of the copies of the hyperbolic plane), the other by 𝑤𝑤 (the
generator of the non-unimodular part ⟨𝜌𝑟⟩). So, we get two terms in the branch divisor.

The hyperspace orthogonal to 𝑒𝑒 𝜌 𝑒𝑒 is just the Heegner divisor 𝐻𝐻(0, 𝜌𝑑𝐿, except that the latter
has multiplicity two (since ̄0 𝑟 𝜌 ̄0). So the contribution to the branch divisor is 𝑑/𝑟𝐻𝐻(0, 𝜌𝑑𝐿.

Similarly, the hyperspace orthogonal to 𝑤𝑤, or equivalently to 𝑤𝑤∗ 𝑟 𝑤𝑤/𝑟 (the primitive positive
multiple of 𝑤𝑤 in 𝐿𝐿∨), is the Heegner divisor 𝐻𝐻(𝑑, 𝜌𝑑/4𝐿, except that the latter is multiplicity 𝑟
(because 𝜌 ̄𝑑 𝑟 ̄𝑑). So here, the contribution is 𝑑/𝑟𝐻𝐻(𝑑, 𝜌𝑑/4𝐿.

We conclude that the branch divisor in this case is 𝐵𝐵 𝑟 𝑑/𝑟𝐻𝐻(0, 𝜌𝑑𝐿 + 𝑑/𝑟𝐻𝐻(𝑑, 𝜌𝑑/4𝐿.

Example 4.6.4. Next take 𝑑𝑑 𝑟 𝑟. Now we get terms both from 𝜌𝑟-vectors and from 𝜌4-vectors.
As 𝑑𝑑 ≢ 𝑑 mod 4, there is only one orbit of 𝜌𝑟-vectors, and we may again take 𝑒𝑒 𝜌 𝑒𝑒 as a repre-

sentative. This gives the contribution 𝑑/𝑟𝐻𝐻(0, 𝜌𝑑𝐿, again because the Heegner divisor 𝐻𝐻(0, 𝜌𝑑𝐿 has
multiplicity 𝑟.

There are 𝑟𝜌𝜌(2𝐿 𝑟 𝑟 orbits of 𝜌4-vectors of divisibility 𝑟𝑑𝑑 𝑟 4. To find these, first solve 𝑥𝑥2 ≡ 𝑑
mod 8, for 𝑥𝑥 modulo 4; this gives 𝑥𝑥 𝑟 𝑥𝑑 mod 4. For each solution 𝑥𝑥, we need to find a vector
𝑢𝑢 ∈ 𝑟𝑈𝑈 𝑈 𝑟𝑈𝑈8(𝜌𝑑𝐿 such that 𝑢𝑢2 𝑟 (𝑥𝑥2 𝜌 𝑑𝐿/𝑟𝑑𝑑; we may take 𝑢𝑢 𝑟 𝑒𝑒 ∈ 𝑈𝑈 for both. The two orbits are
now represented by 𝑟𝑑𝑑𝑢𝑢 + 𝑥𝑥𝑤𝑤, so 4𝑒𝑒 + 𝑤𝑤 and 4𝑒𝑒 𝜌 𝑤𝑤. The corresponding primitive elements of 𝐿𝐿∨ are
𝑒𝑒 + 𝑤𝑤/4 and 𝑒𝑒 𝜌 𝑤𝑤/4, giving Heegner divisors 𝐻𝐻(𝑑, 𝜌𝑑/8𝐿 and 𝐻𝐻(3, 𝜌𝑑/8𝐿 𝑟 𝐻𝐻(𝑑, 𝜌𝑑/8𝐿, respectively.
However, according to proposition 4.6.1, we should only take the Heegner divisor corresponding to
one of these vectors, because the orbit of one is the orbit of minus the other. So, the total contribution
from 𝜌4-vectors of divisibility 4 is 𝐻𝐻(𝑑, 𝜌𝑑/8𝐿.

Finally, as 𝑑𝑑 ≡ 𝑟 mod 8, there is 𝑟𝜌𝜌(2𝐿𝜌𝜌 𝑟 𝑑 orbit of 𝜌4-vectors of divisibility 𝑑𝑑 𝑟 𝑟. To
find it, we solve 𝑥𝑥2 ≡ 𝑑 mod 𝑟 for 𝑥𝑥 modulo 𝑟, giving 𝑥𝑥 𝑟 𝑑 mod 𝑟; next we take a 𝑢𝑢 such that
𝑢𝑢2 𝑟 𝑟(𝑥𝑥2 𝜌 𝑑𝐿/𝑑𝑑 𝑟 0, say 𝑢𝑢 𝑟 𝑒𝑒; then we get as our vector 𝑑𝑑𝑢𝑢 + 𝑥𝑥𝑤𝑤 𝑟 𝑟𝑢𝑢 + 𝑤𝑤. The corresponding
primitive vector of 𝐿𝐿∨ is 𝑢𝑢 + 𝑤𝑤/𝑟, giving rise to half the Heegner divisor 𝐻𝐻(𝑟, 𝜌𝑑/𝑟𝐿 (since the latter
has multiplicity two!).

All in all, the branch divisor is 𝐵𝐵 𝑟 𝑑/𝑟𝐻𝐻(0, 𝜌𝑑𝐿 + 𝐻𝐻(𝑑, 𝜌𝑑/8𝐿 + 𝑑/𝑟𝐻𝐻(𝑟, 𝜌𝑑/𝑟𝐿.

Example 4.6.5. Next take 𝑑𝑑 𝑟 3. In this case, we get terms from 𝜌𝑟-vectors, and from 𝜌6-vectors.
As 𝑑𝑑 ≢ 𝑑 mod 4, there is only one orbit of 𝜌𝑟-vectors, say of 𝑒𝑒 𝜌 𝑒𝑒 , giving the contribution

𝑑/𝑟𝐻𝐻(0, 𝜌𝑑𝐿, as before.
There are 𝑟𝜌𝜌(𝜌𝐿 𝑟 𝑟 orbits of 𝜌6-vectors of divisibility 𝑟𝑑𝑑 𝑟 6. To find these, first solve 𝑥𝑥2 ≡

𝑑 mod 𝑑𝑟, for 𝑥𝑥 modulo 6; this gives 𝑥𝑥 𝑟 𝑥𝑑 mod 6. As before, we may take 𝑢𝑢 𝑟 𝑒𝑒 ∈ 𝑈𝑈 for
both solutions. The two orbits are now represented by 𝑟𝑑𝑑𝑢𝑢 + 𝑥𝑥𝑤𝑤, so 6𝑒𝑒 + 𝑤𝑤 and 6𝑒𝑒 𝜌 𝑤𝑤. The
corresponding primitive elements of 𝐿𝐿∨ are 𝑒𝑒 + 𝑤𝑤/6 and 𝑒𝑒 𝜌 𝑤𝑤/6, giving Heegner divisors 𝐻𝐻(𝑑, 𝜌𝑑/𝑑𝑟𝐿
and 𝐻𝐻(5, 𝜌𝑑/𝑑𝑟𝐿 𝑟 𝐻𝐻(𝑑, 𝜌𝑑/𝑑𝑟𝐿, respectively. Again, according to proposition 4.6.1, we should only
take the Heegner divisor corresponding to one of these vectors. So, the total contribution from 𝜌6-
vectors of divisibility 6 is 𝐻𝐻(𝑑, 𝜌𝑑/𝑑𝑟𝐿.

Finally, as 𝑑𝑑 is odd, there are 𝑟𝜌𝜌(𝜌𝐿 𝑟 𝑟 orbits of 𝜌6-vectors of divisibility 𝑑𝑑 𝑟 3. To find
them, we solve 𝑥𝑥2 ≡ 𝑑 mod 3 for 𝑥𝑥 modulo 3, giving 𝑥𝑥 𝑟 𝑥𝑑 mod 3; next we take a 𝑢𝑢 such that
𝑢𝑢2 𝑟 𝑟(𝑥𝑥2 𝜌 𝑑𝐿/𝑑𝑑 𝑟 0, say, once more, 𝑢𝑢 𝑟 𝑒𝑒; then we get as our vectors 𝑑𝑑𝑢𝑢 + 𝑥𝑥𝑤𝑤 𝑟 3𝑢𝑢 𝑥 𝑤𝑤.
The corresponding primitive vectors of 𝐿𝐿∨ are 𝑢𝑢 + 𝑤𝑤/3 and 𝑢𝑢 𝜌 𝑤𝑤/3; the first gives a contribution
𝐻𝐻(𝑟, 𝜌𝑑/3𝐿, and the second 𝐻𝐻(4, 𝜌𝑑/3𝐿. The opposite of one of these vectors is in the orbit of the
other, so we should take only one of these.

All in all, the branch divisor is 𝐵𝐵 𝑟 𝑑/𝑟𝐻𝐻(0, 𝜌𝑑𝐿 + 𝐻𝐻(𝑑, 𝜌𝑑/𝑑𝑟𝐿 + 𝐻𝐻(𝑟, 𝜌𝑑/3𝐿.

We summarise the results of these and some more cases in table 4.4.



208154-L-bw-Peterson208154-L-bw-Peterson208154-L-bw-Peterson208154-L-bw-Peterson

42 CHAPTER 4. THE MODULI SPACE OF POLARISED K3 SURFACES: OPEN PART

𝑑𝑑 𝑑𝑑
1 1/2 · 𝐻𝐻𝐻0, −1) + 1/2 · 𝐻𝐻𝐻1, −1/4)
2 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/8) + 1/2 · 𝐻𝐻𝐻2, −1/2)
3 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/12) + 𝐻𝐻𝐻2, −1/3)
4 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/16) + 𝐻𝐻𝐻2, −1/4)
5 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/20) + 𝐻𝐻𝐻2, −1/5) + 1/2 · 𝐻𝐻𝐻5, −1/4)
6 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/24) + 𝐻𝐻𝐻2, −1/6) + 𝐻𝐻𝐻5, −1/24)
7 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/28) + 𝐻𝐻𝐻2, −1/7)
8 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/32) + 𝐻𝐻𝐻2, −1/8) + 𝐻𝐻𝐻6, −1/8)
9 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/36) + 𝐻𝐻𝐻2, −1/9) + 1/2 · 𝐻𝐻𝐻9, −1/4)
10 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/40) + 𝐻𝐻𝐻2, −1/10) + 𝐻𝐻𝐻9, −1/40)
11 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/44) + 𝐻𝐻𝐻2, −1/11)
12 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/48) + 𝐻𝐻𝐻2, −1/12) + 𝐻𝐻𝐻7, −1/48) + 𝐻𝐻𝐻10, −1/12)
13 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/52) + 𝐻𝐻𝐻2, −1/13) + 1/2 · 𝐻𝐻𝐻13, −1/4)
14 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/56) + 𝐻𝐻𝐻2, −1/14) + 𝐻𝐻𝐻13, −1/56)
15 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/60) + 𝐻𝐻𝐻2, −1/15) + 𝐻𝐻𝐻8, −1/15) + 𝐻𝐻𝐻11, −1/60)
16 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/64) + 𝐻𝐻𝐻2, −1/16) + 𝐻𝐻𝐻14, −1/16)
17 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/68) + 𝐻𝐻𝐻2, −1/17) + 1/2 · 𝐻𝐻𝐻17, −1/4)
18 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/72) + 𝐻𝐻𝐻2, −1/18) + 𝐻𝐻𝐻17, −1/72)
19 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/76) + 𝐻𝐻𝐻2, −1/19)
20 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/80) + 𝐻𝐻𝐻2, −1/20) + 𝐻𝐻𝐻18, −1/20) + 𝐻𝐻𝐻9, −1/80)

21
1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/84) + 𝐻𝐻𝐻2, −1/21) + 𝐻𝐻𝐻16, −1/21) + 𝐻𝐻𝐻13, −1/84)

+ 1/2 · 𝐻𝐻𝐻21, −1/4)
22 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/88) + 𝐻𝐻𝐻2, −1/22) + 𝐻𝐻𝐻21, −1/88)
23 1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/92) + 𝐻𝐻𝐻2, −1/23)

24
1/2 · 𝐻𝐻𝐻0, −1) + 𝐻𝐻𝐻1, −1/96) + 𝐻𝐻𝐻2, −1/24) + 𝐻𝐻𝐻10, −1/24) + 𝐻𝐻𝐻14, −1/24)

+ 𝐻𝐻𝐻22, −1/24) + 𝐻𝐻𝐻17, −1/96)

Table 4.4: The branch divisor of ℱ2𝑑𝑑 for some values of 𝑑𝑑.

4.6.2 Example: 𝑑𝑑 𝑑 1
We are now in a position to compute the canonical class 𝐾𝐾, and the important class 𝐾𝐾 − 𝐾𝐾𝐾𝐾, in terms
of Noether–Lefschetz divisors, at least on the open part ℱ2𝑑𝑑. Let us take the simplest case: 𝑑𝑑 𝑑 1.
We write 𝐾𝐾𝐾 for the restriction of 𝐾𝐾 to the open part ℱ2𝑑𝑑.

We have seen before that 150𝐾𝐾 𝜆 𝐻𝐻𝐻0, −1)+56𝐻𝐻𝐻1, −1/4), and we just saw that 𝑑𝑑 𝑑 1/2𝐻𝐻𝐻0, −1)+
1/2𝐻𝐻𝐻1, −1/4), so we get

𝐾𝐾𝐾 𝑑 19𝐾𝐾 − 𝑑𝑑

𝜆 19
150 (𝐻𝐻𝐻0, −1) + 56𝐻𝐻𝐻1, −1/4)) − (1/2𝐻𝐻𝐻0, −1) + 1/2𝐻𝐻𝐻1, −1/4))

𝑑 −28
75𝐻𝐻𝐻0, −1) + 989

150𝐻𝐻𝐻1, −1/4)

𝑑 −56
75𝑃𝑃4,0 + 933

75 𝑃𝑃1,1 ,

(4.39)

where we have used the triangular equations 𝐻𝐻𝐻0, −1) 𝑑 2𝑃𝑃1,1 + 2𝑃𝑃4,0 and 𝐻𝐻𝐻1, −1/4) 𝑑 2𝑃𝑃1,1.
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Suppose we knew the answer to question 4.5.3 to be positive. Then the effective cone of ℱ2·1
would be generated by 𝑃𝑃4,0 and 𝑃𝑃1,1, and we could conclude from the above calculation that 𝐾𝐾𝐾 is
not in the effective cone of ℱ2·1. Then a fortiori, the canonical divisor 𝐾𝐾 𝐾 𝐾𝐾𝐾 𝐾 𝐾 would also not
be effective on ℱ2·1, so we could conclude that the Kodaira dimension of ℱ2·1 is 𝐾∞. We know of
course that this conclusion holds, by earlier results.

In this particular case, though, we arrive at this same conclusion without knowing the answer to
question 4.5.3. (This is essentially a worked example of theorem 4.7.3.) The reason is that we know
(by proposition 3.4.2) that the effective cone of ℱ2𝑑𝑑 is inside the positive half-space of Picℚ(ℱ2𝑑𝑑) given
by the Eisenstein form 𝐾𝐸𝐸0̄. Because

𝐾𝐾𝐾 𝐾 𝐾28
75𝐻𝐻(0, 𝐾1) + 989

150𝐻𝐻(1, 𝐾1/4) , (4.40)

we may compute whether 𝐾𝐾𝐾 is in this positive half-space by computing the linear combination of
coefficients

𝐾28
75𝑐𝑐0̄,𝐾1(𝐸𝐸0̄) + 989

150𝑐𝑐1̄,𝐾1/4(𝐸𝐸0̄) (4.41)

of the Eisenstein series. Substituting the coefficients of the Eisenstein series that we know from
example 3.4.5, we get

𝐾28
75𝑐𝑐0̄,𝐾1(𝐸𝐸0̄) + 989

150𝑐𝑐1̄,𝐾1/4(𝐸𝐸0̄) 𝐾 𝐾28
75 · 𝐾52377700

174611 + 989
150 · 𝐾100

174611 𝐾 19553682
174611 . (4.42)

Now the degree 𝐾𝐾𝐾 · 𝐾𝐾18 of 𝐾𝐾𝐾 is a negative constant times this last number (by proposition 3.4.2), so
it is negative. This implies that 𝐾𝐾𝐾 cannot be an effective divisor on ℱ2𝑑𝑑, so certainly 𝐾𝐾 𝐾 𝐾𝐾𝐾 𝐾 𝐾
cannot be effective on ℱ2𝑑𝑑.

4.7 Deciding effectivity of the canonical class
In the cases for which we were able to compute the Noether–Lefschetz cone completely (up to 𝑑𝑑 𝐾 32),
we may use those results to compute whether the canonical class 𝐾𝐾𝐾 is inside or outside the cone.

However, for the cases in the interesting region – say 𝑑𝑑 around 40, where we expect the Kodaira
dimension of ℱ2𝑑𝑑 to change – it seemed not feasible to compute the Noether–Lefschetz cone in full
detail. Fortunately, we do not need the full structure of the cone per se: we just need to know the
relative position of the canonical class with respect to the cone, and if it is inside, we need to express
the canonical class explicitly as a positive combination of (irreducible) Noether–Lefschetz divisors (as
input for the calculation of the boundary coefficients).

It turns out that we may formulate this as a so-called linear programming problem. We want to
write

𝐾𝐾𝐾 𝐾 𝐾
∆,𝛿𝛿

𝑡𝑡∆,𝛿𝛿[𝑃𝑃∆,𝛿𝛿] , (4.43)

where 𝐾𝐾𝐾 𝐾 19𝐾𝐾 𝐾 1/2 · [𝐾𝐾] is the canonical class restricted to the open part of the moduli space,
the 𝑃𝑃∆,𝛿𝛿 are irreducible Noether–Lefschetz divisors (see section 4.2.1), and the 𝑡𝑡∆,𝛿𝛿 are non-negative
rational numbers.

Remark 4.7.1. We must restrict to a finite subset of the (infinite) set of irreducible Noether–Lefschetz
divisors in order to get a finite problem. We may use the information gathered in our calculations of
section 4.5 to guess which ones suffice to generate the full Noether–Lefschetz cone. This is of course
not rigorous, and as a result we cannot conclude with certainty that a point is outside the Noether–
Lefschetz cone. However, we do not even know that this cone equals the full effective cone of ℱ2𝑑𝑑 (see
question 4.5.3), so this only adds to the uncertainty of an argument that was already incomplete.

Moreover, the results of this procedure and their perfect agreement with the results of [18] suggest
that in practice no information is lost at all: see remark 4.7.2.

So, pick a finite set of irreducible Noether–Lefschetz divisors 𝑃𝑃∆,𝛿𝛿, and introduce corresponding
variables 𝑡𝑡∆,𝛿𝛿. Equation (4.43) is then a set of (linear) constraints for these variables (one constraint
for every coordinate on the ℚ-vector space Picℚ(ℱ2𝑑𝑑)). Existing programs for linear programming can
solve these constraints, for non-negative values of the variables 𝑡𝑡∆,𝛿𝛿 – or assert that this is impossible.

We used the software package QSopt-Exact (for exact linear programming over the rationals). The
results are listed in table 4.5. The entry “negative” means that the canonical class has negative degree,
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that is, it is not even inside the positive half-space defined by the Eisenstein series 𝐸𝐸0̄; this implies
that the canonical class is outside the Noether–Lefschetz cone (as all effective divisors certainly have
positive degree), but the stronger negativity statement facilitates a direct argument that the Kodaira
dimension must be −∞ in such a case (see theorem 4.7.3).

𝑑𝑑 position of 𝐾𝐾𝐾
1 negative
2 negative
3 negative
4 negative
5 negative
6 negative
7 negative
8 negative
9 negative
10 negative
11 negative
12 negative
13 negative
14 negative
15 negative
16 outside
17 outside
18 outside
19 outside
20 outside
21 outside
22 outside
23 outside
24 outside
25 outside
26 outside
27 outside
28 outside
29 outside
30 outside
31 outside
32 outside

𝑑𝑑 position of 𝐾𝐾𝐾
33 outside
34 outside
35 outside
36 outside
37 outside
38 outside
39 outside
40 inside
41 outside
42 inside
43 inside
44 outside
45 outside
46 inside
47 outside
48 inside
49 inside
50 inside
51
52 inside
53
54 inside
55 inside
56 inside
57
58
59
60
61
62
63
64

Table 4.5: The position of 𝐾𝐾𝐾 with respect to the Noether–Lefschetz cone of ℱ2𝑑𝑑.

Remark 4.7.2. We note one feature of these results right away: we have found that 𝐾𝐾𝐾 is inside the
Noether–Lefschetz cone exactly in the cases where Gritsenko, Hulek and Sankaran have found (see
[18]) that the Kodaira dimension is non-negative (𝜅𝜅𝜅ℱ2𝑑𝑑) ≥ 0 in some cases, 𝜅𝜅𝜅ℱ2𝑑𝑑) = 19 in others).

This compatibility between our results and those of [18] – obtained by different methods – can be
viewed as a confirmation of both.

Interestingly, it also shows that the method of [18] is more powerful than one might expect. Recall
that their method relies on the construction (as a quasi-pullback of the Borcherds form Φ12) of a
special modular form on ℱ2𝑑𝑑; it is not clear at all that the failure of this particular construction
to result in a form with the wanted properties signifies non-existence of such a form. However, their
special construction apparently works and manages to find a good modular form in all the cases where
our results indicate that one exists.

We now discuss the implications of these results for the Kodaira dimension of ℱ2𝑑𝑑. We start with the
lowest values of 𝑑𝑑, where 𝐾𝐾𝐾 is most negative.

Theorem 4.7.3. If 1 ≤ 𝑑𝑑 ≤ 15, the moduli space ℱ2𝑑𝑑 has Kodaira dimension −∞.
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Proof. Let us assume that the Kodaira dimension is not −∞. Then there is some positive integer 𝑚𝑚
such that the multiple 𝑚𝑚𝑚𝑚 is effective on ℱ2𝑑𝑑. Restricting to the open part of the moduli space, we
conclude that 𝑚𝑚𝑚𝑚𝑚 is effective on ℱ2𝑑𝑑. It follows that the intersection product 𝑚𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚18 is positive,
because 𝑚𝑚 is ample. Now, by proposition 3.4.2, the number 𝑚𝑚𝑚 𝑚 𝑚𝑚18 = deg(𝑚𝑚𝑚𝐾 is, up to a positive
constant, given by the modular form −𝐸𝐸0̄ (seen as a function on Picℚ(ℱ2𝑑𝑑𝐾) applied to 𝑚𝑚𝑚. However,
we saw above that if 𝑑𝑑 is as in the hypothesis of the theorem, then 𝑚𝑚𝑚 is not in the positive half-space
determined by 𝐸𝐸0̄. This contradiction proves that 𝜅𝜅(ℱ2𝑑𝑑𝐾 = −∞.

Remark 4.7.4. The use of intersection numbers on the quasi-projective variety ℱ2𝑑𝑑 may appear to
be dubious. However, because the boundary components in the Satake compactification have very
low dimension (only 0 and 1), and because 𝑚𝑚 is ample even on this compactification, we may represent
the class 𝑚𝑚18 – or in fact even 𝑚𝑚2 – on the compactification by a subvariety that is supported away
from the boundary.

Most of these cases have been known for a long time by the work of Mukai ([32] [33] [34] [35] [36]),
which uses the more explicit structure of the moduli space that is known in these cases. Our proof
is a lot simpler, using only coefficients of Eisenstein series and computation of the branch divisor.
Moreover, the cases 𝑑𝑑 ∈ {13, 14} are new.

We now turn to the intermediate values of 𝑑𝑑 where 𝑚𝑚𝑚 is inside the positive half-space, but outside
the Noether–Lefschetz cone.

Theorem 4.7.5. Let 𝑑𝑑 be such that 16 ≤ 𝑑𝑑 ≤ 3𝑑 or 𝑑𝑑 ∈ {41, 44, 45, 47}. If the effective cone of
ℱ2𝑑𝑑 is generated by irreducible Noether–Lefschetz divisors and our list of generators is complete (see
questions 4.5.2 and 4.5.3), then 𝜅𝜅(ℱ2𝑑𝑑𝐾 = −∞.

Proof. We have computed (see table 4.5) that for these values of 𝑑𝑑, the open part 𝑚𝑚𝑚 of the canonical
class cannot be written as a non-negative combination of the supposedly generating Noether–Lefschetz
divisors. By assumption these divisors indeed generate the effective cone, so we conclude that 𝑚𝑚𝑚 is
not effective. Then 𝑚𝑚 = 𝑚𝑚𝑚 − 𝐾 is definitely not effective, so 𝜅𝜅(ℱ2𝑑𝑑𝐾 = −∞.

An unconditional proof that 𝜅𝜅(ℱ2𝑑𝑑𝐾 = −∞ in these cases thus needs a positive answer to question
4.5.3. It is suggestive that these values of 𝑑𝑑 (together with the cases 1 ≤ 𝑑𝑑 ≤ 15) are exactly the ones
for which the alternative approach of [18], which aims to prove that 𝜅𝜅(ℱ2𝑑𝑑𝐾 ≥ 0, fails.

We may formulate this result positively as follows:

Theorem 4.7.6. Let 𝑑𝑑 be such that 16 ≤ 𝑑𝑑 ≤ 3𝑑 or 𝑑𝑑 ∈ {41, 44, 45, 47}. Either 𝜅𝜅(ℱ2𝑑𝑑𝐾 = −∞, or
there exists an irreducible codimension 1 subvariety of ℱ2𝑑𝑑 that is not a Noether–Lefschetz divisor.

Finally, we turn to the cases where 𝑚𝑚𝑚 is inside the Noether–Lefschetz cone.
We can make a further distinction, by looking at the expression 𝑚𝑚𝑚 − 𝐾𝐾𝑚𝑚, where 𝐾𝐾 is some non-

negative rational number. Recall that the canonical divisor 𝑚𝑚 is big if and only if 𝑚𝑚 − 𝐾𝐾𝑚𝑚 is effective
for some positive number 𝐾𝐾. So, if that is the case, then its restriction to the open part ℱ2𝑑𝑑, which is
𝑚𝑚𝑚 − 𝐾𝐾𝑚𝑚, must also be effective. Under the assumption that the answers to questions 4.5.3 and 4.5.2
are positive, we may compute whether this is possible. We simply extend the linear programming
problem described by equation (4.43) by adding another variable 𝐾𝐾, and changing the equations to

𝑚𝑚𝑚 − 𝐾𝐾𝑚𝑚 = 𝐾
∆,𝛿𝛿

𝑡𝑡∆,𝛿𝛿[𝑃𝑃∆,𝛿𝛿] . (4.44)

We instruct the linear solver to minimise the solution with respect to the value of the variable 𝐾𝐾.
The full results of this procedure, in the form of equations for 𝑚𝑚𝑚 − 𝐾𝐾𝑚𝑚 as a sum of irreducible

Noether–Lefschetz divisors 𝑃𝑃∆,𝛿𝛿, are listed in appendix B. Moreover, we also converted the resulting
equations by rewriting the irreducible divisors 𝑃𝑃∆,𝛿𝛿 in terms of their reducible counterparts 𝐻𝐻(𝐻𝐻, 𝐻𝐻𝐾.
Remark 4.7.7. It is interesting to note that the expression of 𝑚𝑚𝑚−𝐾𝐾𝑚𝑚 in terms of reducible Noether–
Lefschetz divisors 𝐻𝐻(𝐻𝐻, 𝐻𝐻𝐾 does not include any negative coefficients. This is somewhat surprising,
because we have seen before that – at least for some small values of 𝑑𝑑 – the cone generated by the
positive combinations of the irreducible divisors 𝑃𝑃∆,𝛿𝛿 is strictly bigger than the one generated by the
reducible ones 𝐻𝐻(𝐻𝐻, 𝐻𝐻𝐾. Apparently, either this difference does not occur for larger values of 𝑑𝑑, or at
least the position of our specific element 𝑚𝑚𝑚 − 𝐾𝐾𝑚𝑚 is insensitive to the difference.

We list in table 4.6 the most important part of the results: the minimal value of 𝐾𝐾 among solutions of
equation (4.44).

Now, let us consider what these data mean for the Kodaira dimension of ℱ2𝑑𝑑.
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Table 4.6: The minimal value of 𝜀𝜀 among solutions of equation (4.44).

𝑑𝑑 40 42 43 46 48 49 50 51 52 53 54 55 56 57 58 59 60 61
𝜀𝜀 0 0 0 1 0 0 1 1 1 0 0

Theorem 4.7.8. Let 𝑑𝑑 be one of {40, 42, 43, 48, 49, 55, 56}. If the effective cone of ℱ2𝑑𝑑 is generated
by irreducible Noether–Lefschetz divisors (and our list of generators is complete), then the Kodaira
dimension of ℱ2𝑑𝑑 satisfies 𝜅𝜅𝜅ℱ2𝑑𝑑) < 19.

Proof. We see from table 4.6 that for these values of 𝑑𝑑, equation (4.44) can only be solved for 𝜀𝜀 𝜀 0;
therefore, by the assumption on the effective cone, 𝐾𝐾𝐾 𝐾 𝜀𝜀𝐾𝐾 cannot be effective for positive 𝜀𝜀. In such
a case 𝐾𝐾 cannot be big, so the Kodaira dimension of ℱ2𝑑𝑑 is less than 19.

Again, we may formulate this result positively as follows:

Theorem 4.7.9. Let 𝑑𝑑 ∈ {40, 42, 43, 48, 49, 55, 56}. Either 𝜅𝜅𝜅ℱ2𝑑𝑑) < 19, or there exists an irreducible
codimension 1 subvariety of ℱ2𝑑𝑑 that is not a Noether–Lefschetz divisor.

Remark 4.7.10. In fact, for these values of 𝑑𝑑 we can also prove unconditionally that 𝜅𝜅𝜅ℱ2𝑑𝑑) ≥ 0,
but for that we need to consider the boundary of the moduli space; see theorem 5.5.3.

The agreement with the results of [18] is again striking: these 𝑑𝑑 are exactly the values for which their
method only proves that 𝜅𝜅𝜅ℱ2𝑑𝑑) ≥ 0.

For the other values of 𝑑𝑑, the ones giving a solution to (4.44) with positive 𝜀𝜀, the divisor 𝐾𝐾 𝐾 𝜀𝜀𝐾𝐾
on ℱ2𝑑𝑑 stands a chance of being effective, which would mean that 𝜅𝜅𝜅ℱ2𝑑𝑑) 𝜀 19. However, in order
to prove this we need to take the boundary of the moduli space into account. Specifically, we would
like to take the expression of 𝐾𝐾𝐾 𝐾 𝜀𝜀𝐾𝐾 as a combination of Heegner divisors, and extend it to a valid
relation in the Picard group of ℱ2𝑑𝑑. In the next chapter, we show how to do this, by computing
boundary coefficients of relations among Noether–Lefschetz divisors (see theorem 5.3.3); in theorem
5.5.1 we apply this to prove that ℱ2𝑑𝑑 is of general type for the relevant values of 𝑑𝑑.
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Chapter 5

The moduli space of polarised K3
surfaces: boundary

The moduli space of polarised K3 surfaces, like most moduli spaces, is not complete (‘compact’ in
the complex-analytical language). Therefore, we will need to consider compactifications of our moduli
space, even to answer some questions about the moduli space itself.

We will use two compactifications of ℱ2𝑑𝑑: the Satake compactification, and toroidal compactifica-
tions.

The Satake compactification is easy to define in terms of the lattice 𝐿𝐿2𝑑𝑑. However, it is not so
well-behaved from a geometric point of view; in particular, it is very singular.

Toroidal compactifications resolve most of the singularities of the Satake compactification, but
they are less natural, and somewhat harder to work with.

5.1 Satake compactification
The Satake compactification ℱ∗

2𝑑𝑑, also called Baily–Borel compactification, was introduced by Baily
and Borel [2]; see also [22, section 5.2]. It adds only 0- and 1-dimensional components, called cusps.

Definition 5.1.1. We may define the Satake compactification abstractly as the projective variety
associated to the graded ring of modular forms associated to the lattice 𝐿𝐿

ℱ∗
2𝑑𝑑 = Proj ( ⨁

𝑘𝑘
𝑀𝑀𝑀𝑀𝑀𝑀 Õ+(𝐿𝐿𝐿𝐿𝐿 , (5.1)

where 𝑀𝑀𝑀𝑀𝑀𝑀 Õ+(𝐿𝐿𝐿𝐿 is the space of modular forms on the period domain 𝒟𝒟2𝑑𝑑 with respect to the group
Õ+(𝐿𝐿𝐿.

A more explicit description can be derived from the description of the moduli space as an arithmetic
quotient. Among other things, this gives a convenient description of the cusps in terms of the lattice 𝐿𝐿:

Proposition 5.1.2. The 𝑀𝑀-dimensional cusps correspond bijectively to the orbits of the set of (𝑀𝑀 + 1𝐿-
dimensional isotropic subspaces of 𝐿𝐿 𝐿 𝐿 under the action of the group Õ+(𝐿𝐿𝐿.

Given this proposition, it is clear why the boundary components all have dimension 0 or 1: since the
signature of 𝐿𝐿 is (2𝑀 19𝐿, its non-trivial isotropic subspaces have dimension 1 or 2.

Additionally, the correspondence of proposition 5.1.2 respects inclusions, in the following sense:

Lemma 5.1.3. A given 0-cusp corresponding to the isotropic subspace 𝐸𝐸 𝐸 𝐿𝐿 of rank 1 is a limit
point of the 1-cusp corresponding to the isotropic subspace 𝐹𝐹 𝐸 𝐿𝐿2𝑑𝑑 of rank 2 if and only if some
Õ+(𝐿𝐿𝐿-translate of 𝐸𝐸 is contained in 𝐹𝐹 .

Definition 5.1.4. We denote the set of 0-cusps by 𝑆𝑆0 and the set of 1-cusps by 𝑆𝑆1. Note that they
depend implicitly on the parameter 𝑑𝑑.

We will now analyse the structure of the sets of 0-cusps and 1-cusps for varying 𝑑𝑑.

47
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5.1.1 0-cusps
As proposition 5.1.2 tells us, the 0-cusps of ℱ∗

2𝑑𝑑 correspond to orbits of 1-dimensional isotropic sub-
spaces of 𝐿𝐿𝐿𝐿 under the action of Õ+(𝐿𝐿𝐿. Now, a 1-dimensional isotropic subspace is just an isotropic
vector up to a scalar; we may as well normalise the vector, and take it to be a primitive vector of 𝐿𝐿.

Furthermore, we know (lemma 2.3.8) that the orbits of primitive vectors 𝑣𝑣 ∈ 𝐿𝐿 under Õ+(𝐿𝐿𝐿 are
classified by their norm 𝑣𝑣2 and the discriminant class 𝑣𝑣∗ + 𝐿𝐿 ∈ 𝐷𝐷𝐿𝐿. Therefore, the orbits of isotropic
vectors are classified by their discriminant class alone. The only thing left to determine is: which
discriminant classes arise as the class of 𝑣𝑣∗ for some isotropic vector 𝑣𝑣?

Proposition 5.1.5 ([44, Lemma 4.1.1]). Let 𝛾𝛾 ∈ 𝐷𝐷𝐿𝐿. There exists an isotropic vector 𝑣𝑣 ∈ 𝐿𝐿 with
𝛾𝛾 𝛾 𝑣𝑣∗ + 𝐿𝐿 if and only if 𝛾𝛾2/2 𝛾 0 ∈ 𝐿/ℤ.

Proof. If 𝛾𝛾 𝛾 𝑣𝑣∗ + 𝐿𝐿, then 𝛾𝛾2/2 𝛾 (𝑣𝑣∗𝐿2/2 + ℤ 𝛾 (𝑣𝑣/ 𝑣𝑣𝑣(𝑣𝑣𝐿𝐿2/2 + ℤ 𝛾 𝑣𝑣2/2 𝑣𝑣𝑣(𝑣𝑣𝐿2 + ℤ 𝛾 0 + ℤ.
On the other hand, suppose that 𝛾𝛾2/2 𝛾 0 + ℤ. Represent 𝛾𝛾 by any 𝑥𝑥 ∈ 𝐿𝐿∨. We want to construct

a different representative 𝑣𝑣∗ of 𝛾𝛾, for some vector 𝑣𝑣 ∈ 𝐿𝐿 with 𝑣𝑣2 𝛾 0.
As a first step, we strip off the part of 𝑥𝑥 that lies in a hyperbolic plane: recalling that 𝐿𝐿 𝛾

2𝑈𝑈 𝑈2𝑈𝑈8(−1𝐿𝑈⟨−2𝑑𝑑𝑑 𝛾 𝑈𝑈 𝑈𝑑𝑑 , write 𝑥𝑥 𝛾 𝑥𝑥𝑈𝑥𝑥, with 𝑥𝑥 ∈ 𝑈𝑈∨ and 𝑥𝑥 ∈ 𝑑𝑑∨. Because 𝑈𝑈 is unimodular,
𝑈𝑈∨ 𝛾 𝑈𝑈 , so 𝛾𝛾 𝛾 𝑥𝑥 + 𝐿𝐿 𝛾 𝑥𝑥 + 𝐿𝐿.

Next, we put back a vector in the first copy of 𝑈𝑈 , in order to get the right norm, and to ensure
primitivity. We know that 0 + ℤ 𝛾 𝛾𝛾2/2 𝛾 𝑥𝑥2/2 + ℤ, so 𝑥𝑥2 ∈ 2ℤ, say 𝑥𝑥2 𝛾 2𝑁𝑁 , with 𝑁𝑁 ∈ ℤ. Take
𝑥𝑥′ 𝛾 𝑒𝑒 − 𝑁𝑁𝑒𝑒 ∈ 𝑈𝑈 ; then (𝑥𝑥′𝐿2 𝛾 −2𝑁𝑁 , so if we let 𝑦𝑦 𝛾 𝑥𝑥′ + 𝑥𝑥, then 𝑦𝑦2 𝛾 −2𝑁𝑁 + 2𝑁𝑁 𝛾 0. Moreover,
because 𝑥𝑥′ is already primitive in 𝑈𝑈∨ 𝛾 𝑈𝑈 , definitely 𝑦𝑦 will be primitive in 𝐿𝐿∨. Therefore, if we let
𝑣𝑣 be the unique multiple of 𝑦𝑦 that is primitive in 𝐿𝐿, then 𝑣𝑣∗ 𝛾 𝑦𝑦, and of course 𝑣𝑣2 is a multiple of
𝑦𝑦2 𝛾 0, so 𝑣𝑣2 𝛾 0.

Finally, note that 𝛾𝛾 𝛾 𝑥𝑥 + 𝐿𝐿 𝛾 𝑥𝑥 + 𝐿𝐿 𝛾 𝑦𝑦 + 𝐿𝐿, so we have found a primitive isotropic 𝑣𝑣 ∈ 𝐿𝐿 such
that 𝛾𝛾 𝛾 𝑣𝑣∗ + 𝐿𝐿.

This proposition gives us an easy formula to count the number #𝑆𝑆0 of 0-cusps for a given polarisation
degree 2𝑑𝑑: this number equals

# {𝛾𝛾 ∈ 𝐷𝐷𝐿𝐿 ∶ 𝛾𝛾2/2 𝛾 0 ∈ 𝐿/ℤ} 𝛾 # {𝑘𝑘 ∈ {0, … , 2𝑑𝑑 − 1𝑑 ∶ 𝑑𝑑𝑑𝑑𝑘𝑘2} . (5.2)

Note that this is exactly the term 𝛼𝛼4 from theorem 4.2.10. In the formula stated in that theorem,
it occurs as the codimension of the space 𝑆𝑆(𝑑𝑑𝐿 of cusp forms in the space 𝑑𝑑(𝑑𝑑𝐿 of all modular forms.

Let us list this number for some low values of 𝑑𝑑.

Table 5.1: The number of 0-cusps #𝑆𝑆0 in ℱ∗
2𝑑𝑑.

𝑑𝑑 1 2 3 4 5 6 7 8 9 10 11 12 13 14
#𝑆𝑆0 1 1 1 2 1 1 1 2 2 1 1 2 1 1

In the range that interests us, say 1 ≤ 𝑑𝑑 ≤ 𝑑1, the maximum number that occurs is 𝑑.

5.1.2 1-cusps
By proposition 5.1.2, the 1-cusps of ℱ∗

2𝑑𝑑 correspond to orbits of 2-dimensional isotropic subspaces of
𝐿𝐿 𝐿 𝐿 under the action of Õ+(𝐿𝐿𝐿.

Example 5.1.6. There is an obvious choice of isotropic plane, which we can make for every degree
2𝑑𝑑: take the plane spanned by the two vectors 𝑒𝑒 (one in each of the two copies of 𝑈𝑈). We will call the
associated cusp the standard 1-cusp.

Unlike the number of 0-cusps, which grows sublinearly in 𝑑𝑑, the number of 1-cusps grows very fast,
and the set of 1-cusps is hard to compute exactly for larger 𝑑𝑑. Scattone [44] has computed it for 𝑑𝑑 𝛾 1
(giving 𝑑 1-cusps) and for 𝑑𝑑 𝛾 2 (giving 9 1-cusps); he also found some bounds for the size of this set,
showing the asymptotics:

Theorem 5.1.7 ([44]). The number of 1-cusps in ℱ∗
2𝑑𝑑 is at least the number of lattices in the genus

of 𝐿𝐿 ([44, Theorem 5.0.2]). This latter number grows as 𝑑𝑑8 ([44, Example 3.4.2]).
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Imprimitivity

Recall that orbits of primitive isotropic vectors in 𝐿𝐿 are classified by their discriminant class. This
class, an element of the discriminant group 𝐷𝐷𝐿𝐿, measures how far the vector is from being primitive
in 𝐿𝐿∨ as well. Something similar happens for isotropic planes in 𝐿𝐿.

Definition 5.1.8 ([44]). Let 𝐼𝐼 be an isotropic plane in 𝐿𝐿. Define 𝐻𝐻𝐼𝐼 = (𝐼𝐼⊥
𝐿𝐿∨)⊥

𝐿𝐿∨/𝐼𝐼 ; if 𝐻𝐻𝐼𝐼 ≅ ℤ/𝑁𝑁ℤ,
then the positive integer 𝑁𝑁 is by definition the imprimitivity of 𝐼𝐼 .

Note that the group 𝐻𝐻𝐼𝐼 is naturally a subgroup of the discriminant group 𝐿𝐿∨/𝐿𝐿 = 𝐷𝐷𝐿𝐿, so, because
𝐷𝐷𝐿𝐿 ≅ ℤ/2𝑑𝑑ℤ is cyclic, the subgroup 𝐻𝐻𝐼𝐼 is cyclic as well; thus the definition makes sense. Moreover,
because the elements of 𝐻𝐻𝐼𝐼 are isotropic elements of the discriminant module 𝐷𝐷𝐿𝐿, we can conclude
that 𝑁𝑁2 divides 𝑑𝑑. (Proof: viewing 𝐻𝐻𝐼𝐼 as a subgroup of 𝐷𝐷𝐿𝐿 ≅ ℤ/2𝑑𝑑ℤ of cardinality 𝑁𝑁 , we write
𝛾𝛾 = 𝛾𝛾 𝛾 2𝑑𝑑ℤ for the generator of 𝐻𝐻𝐼𝐼, where 𝛾𝛾 = 2𝑑𝑑/𝑁𝑁 ∈ ℕ𝛾. Then 𝛾𝛾 is isotropic if and only if
𝛾𝛾2/2 = 𝛾𝛾2/4𝑑𝑑 = 𝑑 ∈ ℚ/ℤ if and only if (2𝑑𝑑/𝑁𝑁)2/4𝑑𝑑 = 𝑑 ∈ ℚ/ℤ if and only if 𝑑𝑑/𝑁𝑁2 = 𝑑 ∈ ℚ/ℤ if and
only if 𝑁𝑁2 divides 𝑑𝑑.)

Also note that if 𝜎𝜎 is a stable orthogonal transformation of 𝐿𝐿, then by definition 𝜎𝜎 acts as the
identity on 𝐷𝐷𝐿𝐿, so 𝐻𝐻𝜎𝜎𝐼𝐼 = 𝐻𝐻𝐼𝐼, and in particular 𝜎𝜎𝐼𝐼 has the same imprimitivity as 𝐼𝐼 . In view
of proposition 5.1.2, this means that the subgroup 𝐻𝐻𝐼𝐼 and the imprimitivity index 𝑁𝑁 are in fact
properties of the cusp, not just its representative 𝐼𝐼 :

Definition 5.1.9. If 𝐹𝐹 is a 1-cusp represented by an isotropic plane 𝐼𝐼 , then we set 𝐻𝐻𝐹𝐹 = 𝐻𝐻𝐼𝐼, and
the imprimitivity 𝑁𝑁𝐹𝐹 of 𝐹𝐹 is by definition the imprimitivity 𝑁𝑁 of 𝐼𝐼 .

(The invariant 𝑁𝑁 is called 𝑒𝑒 in [44], but that letter is already overloaded in our context.)
From a lattice point of view, the imprimitivity measures the failure of the embedding 𝐼𝐼 𝐼 𝐿𝐿 to be

isomodular (roughly, isomodularity means preserving discriminant classes; see section 2.2.1).

Example 5.1.10. Let 𝑁𝑁 be such that 𝑁𝑁2 divides 𝑑𝑑. We construct an isotropic plane 𝐼𝐼𝑁𝑁 in 𝐿𝐿 of
imprimitivity 𝑁𝑁 .

Because 𝑁𝑁 divides 2𝑑𝑑, we can take 𝛾𝛾 = 2𝑑𝑑/𝑁𝑁 ∈ ℕ𝛾, so that 𝛾𝛾 𝛾 2𝑑𝑑ℤ is an element of ℤ/2𝑑𝑑ℤ of
order 𝑁𝑁 . Also write 𝑚𝑚 = 𝑑𝑑/𝑁𝑁2, a positive integer. Now define

𝑧𝑧 = 𝑧𝑧 𝛾 𝑁𝑁𝑒𝑒 𝛾 𝑁𝑁𝑚𝑚𝑧𝑧 ∈ 𝐿𝐿 . (5.3)

Note that 𝑧𝑧2 = −2𝑑𝑑 𝛾 2𝑁𝑁2𝑚𝑚 = −2𝑑𝑑 𝛾 2𝑑𝑑 = 𝑑, so 𝑧𝑧 is isotropic; also 𝑧𝑧 is clearly primitive in 𝐿𝐿.
Further, remark that the divisor of 𝑧𝑧 is exactly 𝑁𝑁 , so

𝑧𝑧∗ = 1
𝑁𝑁 𝑧𝑧 𝛾 𝑒𝑒 𝛾 𝑚𝑚𝑧𝑧 ∈ 𝐿𝐿∨ , (5.4)

from which we see that the discriminant class of 𝑧𝑧∗ is 2𝑑𝑑/𝑁𝑁 𝛾 2𝑑𝑑ℤ = 𝛾𝛾 𝛾 2𝑑𝑑ℤ.
Now, the isotropic plane 𝐼𝐼𝑁𝑁 we take is the one generated by this 𝑧𝑧 ∈ 𝐿𝐿 and the vector 𝑒𝑒2 (this is

just 𝑒𝑒 in the other copy of the hyperbolic plane 𝑈𝑈).
We claim that 𝐼𝐼𝑁𝑁 has imprimitivity 𝑁𝑁 . To see this, note that the double orthogonal complement

𝐼𝐼⊥⊥
𝑁𝑁 is just ℤ𝑧𝑧 𝛾 ℤ𝑒𝑒2 = 𝐼𝐼𝑁𝑁 if taken in 𝐿𝐿; if we take these complements in 𝐿𝐿∨ instead, we get

((𝐼𝐼𝑁𝑁)⊥
𝐿𝐿∨)⊥

𝐿𝐿∨ = ℤ𝑧𝑧/𝑁𝑁 𝛾 ℤ𝑒𝑒2, so 𝐻𝐻𝐼𝐼𝑁𝑁
= ((𝐼𝐼𝑁𝑁)⊥

𝐿𝐿∨)⊥
𝐿𝐿∨/𝐼𝐼𝑁𝑁 = (ℤ𝑧𝑧/𝑁𝑁 𝛾 ℤ𝑒𝑒2)/(ℤ𝑧𝑧 𝛾 ℤ𝑒𝑒2) ≅ ℤ/𝑁𝑁ℤ, as

claimed.

The set of 1-cusps thus decomposes into sets of cusps of the same imprimitivity 𝑁𝑁 , where 𝑁𝑁 ranges
over all positive integers such that 𝑁𝑁2 divides 𝑑𝑑. The above example shows that each of these sets is
non-empty.

Associated definite lattices

Given a 1-cusp 𝐹𝐹 , represented by a rank 2 isotropic sublattice 𝐼𝐼 of 𝐿𝐿, we can take the orthogo-
nal complement 𝐼𝐼⊥ of 𝐼𝐼 (inside 𝐿𝐿). Because 𝐼𝐼 is isotropic, it is itself contained in its orthogonal
complement.

Definition 5.1.11. Let a 1-cusp 𝐹𝐹 be given, represented by the isotropic plane 𝐼𝐼 𝐼 𝐿𝐿. The associated
definite lattice is the quotient 𝐾𝐾 = 𝐾𝐾(𝐹𝐹) = 𝐾𝐾(𝐼𝐼) = 𝐼𝐼⊥/𝐼𝐼 .
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Note that the quotient is a non-degenerate lattice of signature (2 − 2, 19 − 2) = (0, 17), so it is indeed
(negative) definite.

This associated definite lattice 𝐾𝐾(𝐾𝐾) turns out to capture some essential properties of the 1-cusp
𝐾𝐾 . In particular, our computations of coefficients of relations in Picℚ(ℱ2𝑑𝑑) at a given 1-cusp 𝐾𝐾 will
only depend on the lattice 𝐾𝐾(𝐾𝐾).
Example 5.1.12. If 𝐾𝐾 is the standard 1-cusp, the associated definite lattice is 𝐾𝐾0 = 2𝐸𝐸8(−1)⊕⟨−2𝑑𝑑𝑑.
The genus of the definite lattice 𝐾𝐾(𝐾𝐾) is not the same for all 1-cusps 𝐾𝐾 . However, the genus only
depends on the imprimitivity invariant 𝑁𝑁 of the cusp. This is not so strange from a lattice point of
view: the genus of an even lattice is captured by the signature and the discriminant module; since the
signature of 𝐾𝐾 is fixed, only the discriminant module matters, and the discriminant module of the
quotient 𝐼𝐼⊥/𝐼𝐼 is directly related to the failure of isomodularity (see definition 2.2.11) of the sublattice
𝐼𝐼 𝐼 𝐼𝐼, in the spirit of proposition 2.2.13.

The precise statement is as follows:
Proposition 5.1.13 ([44, Lemma 5.1.3]). If the isotropic plane 𝐼𝐼 𝐼 𝐼𝐼 has imprimitivity 𝑁𝑁 , then the
discriminant module of 𝐾𝐾(𝐾𝐾) = 𝐼𝐼⊥/𝐼𝐼 is isomorphic to ℤ/2𝑚𝑚ℤ, where 𝑚𝑚 = 𝑑𝑑/𝑁𝑁2 is as in example
5.1.10.
We will later need the following explicit version of the above statement, giving the relation between
the groups ℤ/2𝑑𝑑ℤ and ℤ/2𝑚𝑚ℤ. The discriminant module 𝐷𝐷𝐾𝐾 ≅ ℤ/2𝑚𝑚ℤ of the subquotient lattice
𝐾𝐾(𝐾𝐾) = 𝐼𝐼⊥/𝐼𝐼 of 𝐼𝐼 is naturally a subquotient of the discriminant module 𝐷𝐷𝐿𝐿: it is 𝐻𝐻⊥

𝐹𝐹 /𝐻𝐻𝐹𝐹 (see
below).
Definition 5.1.14. The subgroup 𝐻𝐻⊥

𝐹𝐹 ⊆ 𝐷𝐷𝐿𝐿 is the subgroup orthogonal to 𝐻𝐻𝐹𝐹 (recall from definition
5.1.9 that 𝐻𝐻𝐹𝐹 𝐼 𝐷𝐷𝐿𝐿 is the isotropic subgroup associated to the cusp 𝐾𝐾 ):

𝐻𝐻⊥
𝐹𝐹 = {𝛾𝛾 ∈ 𝐷𝐷𝐿𝐿 ∶ for all 𝛿𝛿 ∈ 𝐻𝐻𝐹𝐹 ∶ (𝛾𝛾, 𝛿𝛿) = 0𝛾 . (5.5)

We define 𝑝𝑝 ∶ 𝐻𝐻⊥
𝐹𝐹 → 𝐷𝐷𝐾𝐾 to be the surjective map derived from the isomorphism 𝐷𝐷𝐾𝐾 ≅ 𝐻𝐻⊥

𝐹𝐹 /𝐻𝐻𝐹𝐹 .
For example, if the cusp 𝐾𝐾 has imprimitivity 𝑁𝑁 = 1 (this is the case for the standard cusp, for instance),
then 𝐻𝐻𝐹𝐹 = { ̄0}, so 𝐻𝐻⊥

𝐹𝐹 = 𝐷𝐷𝐿𝐿, and the map 𝑝𝑝 ∶ 𝐷𝐷𝐿𝐿 → 𝐷𝐷𝐾𝐾 is an isomorphism of discriminant modules.
Now, proposition 5.1.13 implies that if 𝐾𝐾 has imprimitivity 𝑁𝑁 , then 𝐾𝐾(𝐾𝐾) ∈ 𝒢𝒢(𝐾𝐾(𝐼𝐼𝑁𝑁)) = 𝒢𝒢(⟨−2𝑚𝑚𝑑⊕

2𝐸𝐸8(−1)).
It is not clear if every definite lattice in the genus of 𝐾𝐾(𝐼𝐼𝑁𝑁) is obtained in this way. It is true

under the assumption that gcd(𝑁𝑁, 2𝑚𝑚) = 1: see [44, Section 5.4].
The relevance of this for our applications is the following: when considering the vanishing behaviour

of modular forms at the 1-cusps, instead of enumerating all 1-cusps, it suffices to enumerate the lattices
in the genera 𝒢𝒢(𝐾𝐾(𝐼𝐼𝑁𝑁)) instead, for all 𝑁𝑁 such that 𝑁𝑁2 divides 𝑑𝑑.

Scattone gives an algorithm to compute this list of lattices 𝒢𝒢(𝐾𝐾(𝐼𝐼𝑁𝑁)) = 𝒢𝒢(⟨−2𝑚𝑚𝑑 ⊕ 2𝐸𝐸8(−1)).
Algorithm 5.1.15 ([44, Proposition 6.1.2]). Choose a primitive vector 𝑣𝑣 ∈ 𝐸𝐸8(−1) of length −2𝑚𝑚.
Compute 𝐶𝐶 = 𝑣𝑣⊥, the orthogonal complement of 𝑣𝑣 in 𝐸𝐸8(−1); this is a rank 7 negative definite lattice.

Compute the set of equivalence classes of all possible embeddings of the lattice 𝐶𝐶 in a unimodular
negative definite lattice 𝑇𝑇 of rank 24. (Note that such lattices are classified up to isomorphism; this
is Niemeier’s list.) For every such embedding, compute 𝐾𝐾 = 𝐶𝐶⊥

𝑇𝑇 , the orthogonal complement of 𝐶𝐶 in
𝑇𝑇 .

The set of lattices 𝐾𝐾 obtained in this way is exactly the genus 𝒢𝒢(⟨−2𝑚𝑚𝑑 ⊕ 2𝐸𝐸8(−1)).
This algorithm is not very practical for large values of 𝑚𝑚. In fact, the size of the genus grows quite
rapidly as 𝑚𝑚 increases, so any procedure that needs to deal with each of the lattices in the genus
separately will be prohibitively expensive for large values of 𝑚𝑚.

However, let us apply the algorithm to the simplest case, 𝑚𝑚 = 1, to get a feeling for the type of
lattices that occur.
Example 5.1.16. Take 𝑚𝑚 = 1. We want to compute the genus 𝒢𝒢(⟨−2𝑑 ⊕ 2𝐸𝐸8(−1)). We apply
the above algorithm. It is a standard fact that the complement 𝑁𝑁 in 𝐸𝐸8 of a vector of length 2 is
always isomorphic to 𝐸𝐸7. Going through Niemeier’s list of unimodular definite lattices of rank 24,
we see that four of them allow an embedding of 𝐸𝐸7: in the notation of [12], these are the lattices
called 𝛽𝛽, 𝛾𝛾, 𝜁𝜁, and 𝜂𝜂. In each of these four cases, the embedding of 𝐸𝐸7 is unique up to isomorphism.
Computing the orthogonal complement in all cases, we get four lattices 𝑀𝑀 that make up the genus in
this case: 𝛽𝛽 gives 𝐾𝐾𝛽𝛽 = 𝐷𝐷+

16 ⊕ ⟨−2𝑑; 𝛾𝛾 gives 𝐾𝐾𝛾𝛾 = 2𝐸𝐸8 ⊕ ⟨−2𝑑 = 𝐾𝐾0; 𝜁𝜁 gives 𝐾𝐾𝜁𝜁 = 𝐴𝐴17[6]; 𝜂𝜂 gives
𝐾𝐾𝜂𝜂 = (𝐷𝐷10 ⊕ 𝐸𝐸7)[1, 1].
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Let us see what this means for the set of 1-cusps of ℱ2·1. First of all, note that the only possible
value of 𝑁𝑁 is 𝑁𝑁 𝑁 1, so there is only one genus to consider, the one above, with 𝑚𝑚 𝑁 1. However,
we still need to analyse the fibres of the map that sends a 1-cusp represented by 𝐼𝐼 to the element
𝐼𝐼⊥/𝐼𝐼 ∈ 𝒢𝒢𝒢𝒢𝒢𝒢𝒢 𝒢 𝒢𝒢𝒢8𝒢𝒢1)).

Clearly, if two isotropic planes 𝐼𝐼1,𝐼𝐼2 are related by an automorphism 𝜎𝜎 ∈ Õ+𝒢𝐿𝐿), then 𝐾𝐾𝒢𝐼𝐼1) ≅
𝐾𝐾𝒢𝐼𝐼2). However, the reverse implication does not hold in general: if 𝐾𝐾𝒢𝐼𝐼1) ≅ 𝐾𝐾𝒢𝐼𝐼2), then there exists
an automorphism 𝜏𝜏 ∈ O+𝒢𝐿𝐿) such that 𝜏𝜏𝒢𝐼𝐼1) 𝑁 𝐼𝐼2, but this automorphism may not lie in Õ+𝒢𝐿𝐿).

Under some quite strong conditions on the divisibility of 𝑑𝑑, this problem disappears, and the set of
1-cusps of imprimitivity 𝑁𝑁 is in fact equal to the genus 𝒢𝒢𝒢𝒢𝒢𝒢𝑑𝑑/𝑁𝑁2⟩ 𝒢 𝒢𝒢𝒢8𝒢𝒢1)): see [44, Corollary
5.6.10]. These conditions are satisfied for 𝑑𝑑 𝑁 1, so the above example shows that ℱ2·1, the moduli
space of polarised K3 surfaces with 𝒢𝑑𝑑 𝑁 𝒢, has exactly four 1-cusps.

Theta series

As a further simplification, note that in the calculation of boundary coefficients (see theorem 5.3.3),
we use the definite lattice 𝐾𝐾𝒢𝐾𝐾) associated to the cusp 𝐾𝐾 only through its vector-valued theta series
𝚯𝚯𝐾𝐾𝒢𝐾𝐾). In the above example case of 𝑚𝑚 𝑁 1, we get four distinct definite lattices 𝐾𝐾, but only two
different theta series: 𝐷𝐷+

16 has the same theta series as 𝒢𝒢𝒢8, so the lattices 𝐾𝐾𝛽𝛽 and 𝐾𝐾𝛾𝛾 have identical
vector-valued theta series; the same holds for 𝐾𝐾𝜁𝜁 and 𝐾𝐾𝜂𝜂.

For future use, let us compute a few terms of the vector-valued theta series of these lattices.

Example 5.1.17. Again, take 𝑚𝑚 𝑁 1. We have

𝚯𝚯𝐾𝐾𝛽𝛽
𝑁 𝚯𝚯𝐾𝐾𝛾𝛾

𝑁 𝐞𝐞0̄ 𝒢1 + 48𝒢 𝑞𝑞 + 𝑞) + 𝐞𝐞1̄𝒢𝒢𝑞𝑞1/4 + 𝑞) . (5.6)

and
𝚯𝚯𝐾𝐾𝜁𝜁

𝑁 𝚯𝚯𝐾𝐾𝜂𝜂
𝑁 𝐞𝐞0̄ 𝒢1 + 306 𝑞𝑞 + 𝑞) + 𝐞𝐞1̄𝒢0𝑞𝑞1/4 + 𝑞) . (5.7)

It would be interesting to know how many distinct vector-valued theta series the lattices in the genus
𝒢𝒢𝒢𝒢𝒢𝒢𝑚𝑚𝒢 𝒢 𝒢𝒢𝒢8𝒢𝒢1)) have, as 𝑚𝑚 increases. This determines how many different classes of 1-cusps
need to be dealt with separately, when doing boundary calculations for Noether–Lefschetz divisors.

In section 5.4, we try to determine what vector-valued modular forms can occur as the theta series
of a definite lattice of a given genus.

5.1.3 Centrality of the standard 0-cusp
The standard 0-cusp plays a special role in the Satake compactification, because of the following fact:

Lemma 5.1.18 ([18, Lemma 4.1]). The standard 0-cusp is a limit point of every 1-cusp of ℱ2𝑑𝑑.

5.2 Toroidal compactification
The main disadvantage of the Satake compactification is that it is very singular. In particular, it
is not suited to investigating the birational geometry of the moduli space via the ampleness of the
pluricanonical bundle.

Toroidal compactifications are extensively studied in the classic book [1]. They replace the cusps
by divisors, essentially blowing up the singularities of the Satake compactification. This process is not
completely canonical: it needs some combinatorial data as input.

It is possible to choose these combinatorial data in such a way that the resulting toroidal com-
pactification has only finite quotient singularities; this is proved in [1]. (This is best possible, in the
sense that the open part ℱ2𝑑𝑑 itself may have finite quotient singularities.) Moreover, with the right
choice of combinatorical data these quotient singularities are canonical singularities; this result is a
core part of [18].

In this section, we will describe toroidal compactifications ℱ2𝑑𝑑 of our locally symmetric domain
ℱ2𝑑𝑑.
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5.2.1 Tube domain realisation of the period space
Before we begin our description of the toroidal compactifications, we recall the tube domain model,
a well-known alternative parametrisation of the period space 𝒟𝒟2𝑑𝑑 ⊆ ℙ(𝐿𝐿 𝐿 𝐿𝐿 (see for instance [8, p.
79]). This parametrisation depends on a choice of 0-cusp, i.e., a 1-dimensional isotropic subspace of
𝐿𝐿𝐿𝐿, together with some extra data. So fix a primitive 𝑧𝑧 ∈ 𝐿𝐿 with 𝑧𝑧2 = 0 (this spans a 1-dimensional
isotropic subspace, corresponding to a 0-cusp), together with a 𝑧𝑧′ ∈ 𝐿𝐿∨ such that (𝑧𝑧𝑧 𝑧𝑧′𝐿 = 1.

Now, define the sublattice
𝑀𝑀 = 𝐿𝐿 𝑀 𝑧𝑧⊥ 𝑀 𝑧𝑧′⊥ , (5.8)

of signature (1𝑧 18𝐿. Then we have the decompositions 𝐿𝐿 𝐿 𝐿 = (𝑀𝑀 𝐿 𝐿𝐿 𝐿 𝐿𝑧𝑧 𝐿 𝐿𝑧𝑧′ and 𝐿𝐿 𝐿 𝐿 =
(𝑀𝑀 𝐿 𝐿𝐿 𝐿 𝐿𝑧𝑧 𝐿 𝐿𝑧𝑧′. Typically, we will write 𝑍𝑍𝑀𝑀 for an element of 𝑀𝑀 𝐿 𝐿, and 𝑋𝑋𝑀𝑀, 𝑌𝑌𝑀𝑀 for its real
and imaginary parts (and similarly for 𝐿𝐿).

Next, we look at the map

𝑀𝑀 𝐿 𝐿 → ℙ(𝐿𝐿 𝐿 𝐿𝐿 (5.9)
𝑍𝑍𝑀𝑀 ↦ [𝑍𝑍𝑀𝑀 𝐿 (−𝑍𝑍2

𝑀𝑀/2 − (𝑧𝑧′𝐿2/2𝐿𝑧𝑧 𝐿 𝑧𝑧′] . (5.10)

We may restrict this to a bijection 𝑀𝑀 𝐿 𝐿 𝐿 𝑀𝑀𝑀𝑀 → 𝒟𝒟2𝑑𝑑, where 𝑀𝑀 is some real cone (specifically, one of
the two components of {𝑌𝑌 ∈ 𝑀𝑀 𝐿 𝐿 𝑀 𝑌𝑌 2 > 0}).

This gives a realisation of the symmetric domain 𝒟𝒟2𝑑𝑑 as a subset of the complex space 𝑀𝑀𝐿: it is
the subset of vectors such that the real part is unrestricted, and the imaginary part is restricted to lie
in the cone 𝑀𝑀. This parametrisation of 𝒟𝒟2𝑑𝑑 is therefore called the tube domain realisation.

5.2.2 Abstract definition
Throughout this section, we follow the notation and description of [22, section 5.3]; see also [1] for
more details.

We will describe the toroidal compactifications at first on the level of the period domain 𝒟𝒟2𝑑𝑑 (i.e.,
before the gluing procedure, and before locally taking the quotient by the orthogonal group). As said
before, we need to add divisors over each of the cusps; we will do this one cusp at a time.

So, let 𝐹𝐹 be a cusp. We introduce some associated subgroups of the (real) orthogonal group of the
lattice.

Definition 5.2.1. We define 𝑁𝑁(𝐹𝐹𝐿 𝑁 Õ+(𝐿𝐿𝐿𝐿 to be the stabiliser of 𝐹𝐹 ; also, let 𝑊𝑊(𝐹𝐹𝐿 𝑁 𝑁𝑁(𝐹𝐹𝐿 be
the unipotent radical of 𝑁𝑁(𝐹𝐹𝐿, and 𝑈𝑈(𝐹𝐹𝐿 ⊆ 𝑊𝑊(𝐹𝐹𝐿 the centre of 𝑊𝑊(𝐹𝐹𝐿.

(𝑁𝑁(𝐹𝐹𝐿 is also called the parabolic subgroup associated to the cusp.)
Now, the partial compactification of 𝒟𝒟2𝑑𝑑 at 𝐹𝐹 is taken inside the larger space 𝒟𝒟𝐿𝐿(𝐹𝐹𝐿. This space

𝒟𝒟𝐿𝐿(𝐹𝐹𝐿 can be abstractly defined as

𝒟𝒟𝐿𝐿(𝐹𝐹𝐿 = 𝑈𝑈(𝐹𝐹𝐿𝐿𝒟𝒟2𝑑𝑑 , (5.11)

where 𝑈𝑈(𝐹𝐹𝐿𝐿 acts on the period domain 𝒟𝒟2𝑑𝑑 within the larger space (the so-called compact dual)

�̌�𝒟2𝑑𝑑 = {𝐿𝑧𝑧 𝑀 (𝑧𝑧𝑧 𝑧𝑧𝐿 = 0𝑧 𝑁 ℙ(𝐿𝐿 𝐿 𝐿𝐿 . (5.12)

This space 𝒟𝒟𝐿𝐿(𝐹𝐹𝐿 has a product decomposition

𝒟𝒟𝐿𝐿(𝐹𝐹𝐿 ≅ 𝐹𝐹 𝐹 𝐹𝐹 (𝐹𝐹𝐿 𝐹 𝑈𝑈(𝐹𝐹𝐿𝐿 , (5.13)

where 𝐹𝐹 (𝐹𝐹𝐿 = 𝑊𝑊(𝐹𝐹𝐿/𝑈𝑈(𝐹𝐹𝐿.
We now have an alternative description of the symmetric domain 𝒟𝒟2𝑑𝑑, at least locally around this

cusp 𝐹𝐹 , as the subset 𝒟𝒟 of 𝒟𝒟𝐿𝐿(𝐹𝐹𝐿 defined by the condition that the imaginary part of the projection
to 𝑈𝑈(𝐹𝐹𝐿𝐿 is contained in a certain cone 𝐶𝐶(𝐹𝐹𝐿 𝑁 𝑈𝑈(𝐹𝐹𝐿.

Let us see what the group action looks like in this alternative description. We will want to look
at the action of the stabiliser 𝑁𝑁(𝐹𝐹𝐿 𝑀 Õ+(𝐿𝐿𝐿 on 𝒟𝒟. However, let us first restrict to the action of
the unipotent subgroup 𝑈𝑈(𝐹𝐹𝐿ℤ = 𝑈𝑈(𝐹𝐹𝐿 𝑀 Õ+(𝐿𝐿𝐿. This action induces a fibre bundle 𝒟𝒟/𝑈𝑈(𝐹𝐹𝐿ℤ →
𝒟𝒟/𝑈𝑈(𝐹𝐹𝐿𝐿 with fibre 𝑈𝑈(𝐹𝐹𝐿𝐿/𝑈𝑈(𝐹𝐹𝐿ℤ, which is a torus: a product of dim 𝑈𝑈(𝐹𝐹𝐿 copies of 𝐿𝐹. This is
where the toroidal compactifications get their name from.
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The compactification procedure now proceeds by replacing this torus by a toric variety 𝑋𝑋Σ(𝐹𝐹𝐹 (see
below), and accordingly modifying the map 𝒟𝒟𝒟𝒟𝒟(𝒟𝒟𝐹ℤ → 𝒟𝒟𝒟𝒟𝒟(𝒟𝒟𝐹ℂ by replacing its fibres by this
𝑋𝑋Σ(𝐹𝐹𝐹, and then extending 𝒟𝒟𝒟𝒟𝒟(𝒟𝒟𝐹ℤ to its closure in the resulting fibre map.

The toric variety 𝑋𝑋Σ(𝐹𝐹𝐹 in this procedure is not unique; this is where the compactification process
requires us to make a choice. The datum Σ(𝒟𝒟𝐹 describing the toric variety is a fan: a decomposition
of the rational closure of the cone 𝐶𝐶(𝒟𝒟𝐹 as a union of subcones (with some required properties).

There are two further steps to take in constructing the toroidal compactifications. Firstly, we must
take a further quotient of each of these unfinished partial compactifications, dividing out by the full
integral stabiliser group 𝑁𝑁(𝒟𝒟𝐹ℤ, instead of just 𝒟𝒟(𝒟𝒟𝐹ℤ. This gives an actual (partial) compactification
of the arithmetic quotient space (at the chosen cusp 𝒟𝒟 ). Secondly, we must glue together the resulting
partial compactifications by taking a Hausdorff open neighbourhood of each and identifying the copies
of the arithmetic quotient 𝒟𝒟2𝑑𝑑𝒟Õ+(𝐿𝐿𝐹 in each of them. As a result, we get two conditions on the fans
Σ(𝒟𝒟𝐹: the decomposition at every cusp 𝒟𝒟 must be respected by the action of 𝑁𝑁(𝒟𝒟𝐹, and if we have
two cusps, one of which is in the closure of the other, then the corresponding decompositions must be
compatible in some way.

We now describe how this abstract definition unfolds in our case of the moduli space ℱ2𝑑𝑑 associated
to the lattice 𝐿𝐿 𝐿 𝐿𝐿𝐿𝐿𝐿𝐿 𝐿 𝐿𝒟𝒟 𝐿 𝐿𝐿𝐿8(𝐿1𝐹. We start with the 1-cusps: although there are many of
them, their treatment in any toroidal compactification is easy.

5.2.3 1-cusps
Suppose that the cusp 𝒟𝒟 is a 1-cusp corresponding to an isotropic plane in 𝐿𝐿. The stabiliser 𝑁𝑁(𝒟𝒟𝐹,
unipotent radical 𝑊𝑊(𝒟𝒟𝐹 and its centre 𝒟𝒟(𝒟𝒟𝐹 can be described explicitly with respect to a particular
basis of 𝐿𝐿: see [18, section 2.3]. The subgroup 𝒟𝒟(𝒟𝒟𝐹 is 1-dimensional in this case, and with respect
to that basis it looks like

𝒟𝒟(𝒟𝒟𝐹 𝐿
⎧{
⎨{⎩

⎛⎜
⎝

𝐼𝐼 𝐼 𝐼 0 𝑁𝑁𝑁𝑁
𝐿𝑁𝑁 0 )

𝐼 𝐼𝐼 𝐼
𝐼 𝐼 𝐼𝐼

⎞⎟
⎠

| 𝑥𝑥 ∈ ℝ
⎫}
⎬}⎭

, (5.14)

where 𝑁𝑁 is the imprimitivity of the 1-cusp 𝒟𝒟 (see section 5.1.2).
The decomposition (5.13) in this case looks like

𝒟𝒟𝐿𝐿(𝒟𝒟𝐹 ≅ ℂ × ℂ17 × ℍ ; (5.15)

let us write 𝑠𝑠 for the coordinate on the first factor ℂ.
The group 𝒟𝒟(𝒟𝒟𝐹 is 1-dimensional, so the torus 𝒟𝒟(𝒟𝒟𝐹ℂ𝒟𝒟𝒟(𝒟𝒟𝐹ℤ is just ℂ×. A calculation shows that

the element of 𝒟𝒟(𝒟𝒟𝐹 parametrised by 𝑥𝑥 ∈ ℝ acts on 𝒟𝒟𝐿𝐿(𝒟𝒟𝐹 by increasing 𝑠𝑠 by 𝑁𝑁𝑥𝑥 (and fixing the
other coordinates) – see [18, proposition 2.26]. Therefore, we choose as a coordinate on the torus
𝒟𝒟(𝒟𝒟𝐹ℂ𝒟𝒟𝒟(𝒟𝒟𝐹ℤ ≅ ℂ× the function 𝑢𝑢 𝐿 𝑢𝑢𝑢(𝐿𝑢𝑢𝑢𝑠𝑠𝒟𝑁𝑁𝐹; the compactification then adds the point 𝑢𝑢 𝐿 𝐼.

1-cusp as a limit in the tube domain

We may describe a point on the boundary divisor in the tube domain model (see 5.2.1) as the limit
of the path

𝑡𝑡 ↦ 𝑍𝑍𝑀𝑀 𝐿 𝑢𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡′ + 𝜅𝜅 , (5.16)
where 𝑡𝑡 ∈ ℍ and 𝜅𝜅 ∈ 𝐾𝐾 𝐾 ℂ together parametrise the point within the boundary divisor (up to the
action of the arithmetic group).

The order of vanishing of a function at this particular boundary divisor can be computed by
reading off the power of the local parameter 𝑢𝑢 in the local description of the function:
Proposition 5.2.2. Let Ψ be a modular form on ℱ2𝑑𝑑, seen as a function on the period domain 𝒟𝒟2𝑑𝑑;
write Ψ𝑧𝑧 for Ψ as a function on the tube domain. Suppose that the value of Ψ𝑧𝑧 on the above path is
asymptotically equal to 𝑐𝑐 𝑐 𝑢𝑢𝑢(𝐿𝐿𝑢𝑢𝑐𝑐𝑡𝑡𝐹 for some constants 𝑐𝑐 ∈ ℂ and 𝑐𝑐 ∈ ℤ. Then the vanishing order
of Ψ at the boundary divisor under consideration equals 𝑁𝑁𝑐𝑐.

(Recall that 𝑁𝑁 is the imprimitivity of the 1-cusp 𝒟𝒟 under consideration.)

Proof. We compute that the function 𝑢𝑢 (the local parameter of the boundary divisor; see section 5.2.3)
along this path is given by 𝑢𝑢 𝐿 𝑢𝑢𝑢(𝐿𝑢𝑢𝑢(𝑢𝑡𝑡𝐹𝒟𝑁𝑁𝐹 𝐿 𝑢𝑢𝑢(𝐿𝐿𝑢𝑢𝑡𝑡𝒟𝑁𝑁𝐹.

Therefore the the given asymptotical value of Ψ is 𝑐𝑐 𝑐 𝑢𝑢𝑢(𝐿𝐿𝑢𝑢𝑐𝑐𝑡𝑡𝐹 𝐿 𝑐𝑐 𝑐 𝑢𝑢𝑁𝑁𝑁𝑁, so the order of
vanishing of Ψ is 𝑁𝑁𝑐𝑐.
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Because the group 𝑈𝑈𝑈𝑈𝑈𝑈 is 1-dimensional, the real cone 𝐶𝐶𝑈𝑈𝑈𝑈 is just ℝ+, and for such a trivial cone
there is only a single choice of fan. Therefore, as far as the toroidal boundary over the 1-cusps is
concerned, we do not need to make any choices. This is different for the 0-cusps, though, as we will
see below.

5.2.4 0-cusps
Suppose that the cusp 𝑈𝑈 is a 0-cusp, corresponding to a primitive isotropic vector 𝑧𝑧 ∈ 𝐿𝐿. Writing
𝑀𝑀 𝑀 𝑧𝑧⊥/ℤ𝑧𝑧 as before, the stabiliser is given by the semi-direct product 𝑁𝑁𝑈𝑈𝑈𝑈 𝑀 Õ+𝑈𝑀𝑀𝑈 𝑀 𝑀𝑀𝑧𝑧𝑈𝐿𝐿𝑈,
where 𝑀𝑀𝑧𝑧𝑈𝐿𝐿𝑈 is the group of Eichler transvections associated to 𝑧𝑧:

Definition 5.2.3. Let 𝐿𝐿, 𝑧𝑧 and 𝑀𝑀 be as above. For any 𝑚𝑚 ∈ 𝑀𝑀 , the Eichler transvection associated
to 𝑚𝑚 is the map 𝐿𝐿 → 𝐿𝐿 given by

𝑥𝑥 ↦ 𝑥𝑥 𝑥 𝑈𝑥𝑥𝑥 𝑧𝑧𝑈𝑚𝑚 + 𝑈𝑥𝑥𝑥 𝑚𝑚𝑈𝑧𝑧 𝑥 𝑚𝑚2/2 · 𝑈𝑥𝑥𝑥 𝑧𝑧𝑈𝑧𝑧 . (5.17)

The group of all such transformations is denoted by 𝑀𝑀𝑧𝑧𝑈𝐿𝐿𝑈.
In fact, this group of Eichler transvections is isomorphic to the additive group of the lattice 𝑀𝑀 .

Furthermore, the unipotent radical 𝑊𝑊𝑈𝑈𝑈𝑈 is the subgroup 𝑀𝑀𝑧𝑧𝑈𝐿𝐿𝑈 ≅ 𝑀𝑀 ; as this is an abelian group,
its centre 𝑈𝑈𝑈𝑈𝑈𝑈 coincides with 𝑊𝑊𝑈𝑈𝑈𝑈.

Now, looking at equation (5.13), we see that in this case 𝑈𝑈 ≅ {pt} (as 𝑈𝑈 is a 0-cusp), and
𝑉𝑉 𝑈𝑈𝑈𝑈 𝑀 𝑊𝑊𝑈𝑈𝑈𝑈/𝑈𝑈𝑈𝑈𝑈𝑈 𝑀 {0}, so the space 𝒟𝒟𝐿𝐿𝑈𝑈𝑈𝑈 is actually isomorphic to 𝑈𝑈𝑈𝑈𝑈𝑈ℂ ≅ 𝑀𝑀 𝑀 ℂ. In fact,
the inclusion 𝒟𝒟2𝑑𝑑 ⊆ 𝒟𝒟𝐿𝐿𝑈𝑈𝑈𝑈 is just the tube domain realisation associated to 𝑧𝑧 (see section 5.2.1), so
under the isomorphism 𝒟𝒟𝐿𝐿𝑈𝑈𝑈𝑈 ≅ 𝑀𝑀 𝑀 ℂ, the period domain 𝒟𝒟2𝑑𝑑 is given by the set 𝑀𝑀 𝑀 ℝ 𝑀 𝑀𝑀𝐶𝐶𝑈𝑈𝑈𝑈,
where 𝐶𝐶𝑈𝑈𝑈𝑈 is a real cone in 𝑀𝑀 𝑀 ℝ. In fact, 𝐶𝐶𝑈𝑈𝑈𝑈 is just the positive cone in 𝑀𝑀 𝑀 ℝ, given by
𝐶𝐶𝑈𝑈𝑈𝑈 𝑀 𝐶𝐶𝐶 ∈ 𝑀𝑀 𝑀 ℝ 𝑀 𝐶𝐶2 > 0𝑥 𝑈𝑧𝑧′𝑥 𝐶𝐶𝑈 > 0𝑣. (Recall that 𝑧𝑧′ is an element of 𝐿𝐿 𝑀 𝐿 such that 𝑈𝑧𝑧𝑥 𝑧𝑧′𝑈 𝑀 1;
here, it just serves to pick out one of the two connected components of the set of vectors of positive
norm.)

The torus 𝑇𝑇 𝑈𝑈𝑈𝑈 is 𝑈𝑈𝑈𝑈𝑈𝑈ℂ/𝑈𝑈𝑈𝑈𝑈𝑈ℤ ≅ 𝑈𝑀𝑀 𝑀ℂ𝑈/𝑀𝑀 ≅ 𝑈ℂ×𝑈19. The toroidal compactifications complete
this torus to a toric variety, but this now essentially depends on a choice of fan Σ𝑈𝑈𝑈𝑈 (i.e., cone
decomposition) of the rational closure of the cone 𝐶𝐶𝑈𝑈𝑈𝑈, a real cone in the 19-dimensional vector
space 𝑀𝑀 𝑀 ℝ.

The components of the boundary divisor over a cusp in general correspond to the rays in the cone
decomposition of the rational closure of 𝐶𝐶𝑈𝑈𝑈𝑈, up to action by the orthogonal group Õ+𝑈𝑀𝑀𝑈 and
identification in the final gluing procedure. In the case of a 0-cusp, this set of rays depends on the
choice of fan Σ𝑈𝑈𝑈𝑈: at the very least, it will include the boundary rays of the rational closure of 𝐶𝐶𝑈𝑈𝑈𝑈,
but there may be more (internal) rays.

Note that the boundary rays of the rational closure of the positive cone 𝐶𝐶𝑈𝑈𝑈𝑈 𝐶 𝑀𝑀 𝑀ℝ are exactly
the rays through the isotropic vectors of 𝑀𝑀 . Such a vector, taken together with the isotropic vector
𝑧𝑧 ∈ 𝐿𝐿 representing the 0-cusp under consideration, gives an isotropic plane in 𝐿𝐿, which in turns
represents a 1-cusp of ℱ2𝑑𝑑. Moreover, the component of the boundary divisor over the 0-cusp that
corresponds to this ray is identified by the gluing procedure with the boundary component over this
1-cusp (as described in section 5.2.4).

There is one somewhat natural choice of fan in this case: the perfect cone decomposition (see [1]
for details). It is minimal, in the sense that the set of rays in this decomposition consists of only the
boundary rays. This is useful: by the above paragraph, we see that if we choose this fan for every
0-cusp, the only boundary components that we get are the ones over 1-cusps. The main disadvantage
of the perfect cone decomposition is that it gives a compactification that may have bad (i.e., non-
canonical) singularities. A further subdivision of the decomposition is necessary to get rid of these
singularities ([18, section 2] proves that that is possible), but this reintroduces additional boundary
components that are harder to control.

One feature of our case simplifies the situation significantly: because the cone decompositions
over the 1-cusps are unique, the compatibility conditions between the fans associated to a 1-cusp and
0-cusps in its closure are trivially satisfied.

Sufficient conditions for cuspidality

For our applications we want modular forms on ℱ2𝑑𝑑 that are cusp forms in a very strong sense: for any
toroidal compactification, we want the modular form to vanish on every component of the boundary
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divisor. In fact, because the vanishing order need not be an integer number, we should strengthen
this by demanding that the vanishing order is at least 1.

Lemma 5.2.4 ([19]). If the modular form Ψ on ℱ2𝑑𝑑 vanishes at all cusps, then it vanishes to order
at least 1 on every component of the boundary divisor in any toroidal compactification.

This fact is used implicitly in [18], without proof. The essential point is that the vanishing order of a
modular form on ℱ2𝑑𝑑 at a component of the boundary divisor is an integer number; this is proved in
[21, proposition 2.1] (also see [19]). The proof relies on the fact that the arithmetic group Õ+(𝐿𝐿2𝑑𝑑)
has only one non-trivial character (the determinant); see [21, corollary 1.8].

Moreover, it is enough to have cuspidality at the 1-cusps:

Proposition 5.2.5. If the modular form Ψ on ℱ2𝑑𝑑 vanishes at all 1-cusps, then it vanishes to order
at least 1 on every component of the boundary divisor in any toroidal compactification.

Proof. Every 0-cusp occurs as a limit point of at least one 1-cusp, so Ψ vanishes at every 0-cusp as
well by continuity. Lemma 5.2.4 gives the desired result.

5.3 Extending divisor relations to the compactification
We would like to understand the rational Picard group of the toroidal compactifications ℱ2𝑑𝑑 of the
moduli space.

We should be careful though: depending on the choice of cone decomposition, the toroidal com-
pactification might not be locally (ℚ-)factorial, so the Picard group might be smaller than the divisor
class group: some boundary components might not be (ℚ-)Cartier divisors. We could deal with this
by looking at the full divisor class group instead of the Picard group. However, because in the end we
are only interested in (combinations of) divisors that arise as vanishing locus of modular forms, and
those are Cartier, we may as well restrict to the Picard group.

We already know the rational Picard group of the open part ℱ2𝑑𝑑: see the previous chapter. The
Picard group of the compactification is generated by the Picard group of the open part, together with
(some combinations of) the boundary divisors. So the task that remains is to understand the relations
in Picℚ(ℱ2𝑑𝑑).

Now, a relation in Picℚ(ℱ2𝑑𝑑) is by definition given by the vanishing of the divisor of a meromorphic
function on ℱ2𝑑𝑑. This function restricts to a meromorphic function on ℱ2𝑑𝑑, giving a relation in
Picℚ(ℱ2𝑑𝑑). So, the relations in Picℚ(ℱ2𝑑𝑑) are just the relations in Picℚ(ℱ2𝑑𝑑), together with the extra
information of the vanishing behaviour of the corresponding functions at all the boundary components.

Remark 5.3.1. Note that in a precise sense we do not lose information by restricting relations to the
open part ℱ2𝑑𝑑: a relation on ℱ2𝑑𝑑 that becomes trivial after restriction corresponds to a meromorphic
modular form on ℱ2𝑑𝑑 that is holomorphic (and non-zero) on ℱ2𝑑𝑑. Koecher’s principle implies that
this modular form is in fact holomorphic on the whole of ℱ2𝑑𝑑, but then it must be constant (thus in
particular have weight 0), so it represents the trivial relation on ℱ2𝑑𝑑 as well.

5.3.1 Weyl chambers
Given 𝑓𝑓 ∈ Sing(𝑀𝑀) (the space of Laurent polynomials), we decompose the cone 𝒞𝒞 𝒞 𝑀𝑀 𝒞 𝒞 into
so-called Weyl chambers 𝑊𝑊𝑀𝑀 associated to 𝑓𝑓 (see for instance [8, page 88]): these are the connected
components of the set

𝒞𝒞 ⧵ ⋃
𝛽𝛽𝛽𝛽𝛽

𝑐𝑐𝛽𝛽𝛽𝛽𝛽(𝑓𝑓)𝑓𝑓

𝐻𝐻(𝐻𝐻𝐻 𝐻𝐻) . (5.18)

Here 𝐻𝐻(𝐻𝐻𝐻 𝐻𝐻) is a Heegner divisor in 𝑀𝑀 𝒞 𝒞. This also gives a decomposition of the tube domain
model of the period space 𝒟𝒟2𝑑𝑑 ≅ 𝑀𝑀 𝒞 𝒞 𝑀 𝑀𝑀𝒞𝒞 into Weyl chambers 𝑊𝑊𝐿𝐿, as the inverse images under
the imaginary part map ℑ of the Weyl chambers 𝑊𝑊𝑀𝑀.

5.3.2 Completing relations
To complete a given relation in Picℚ(ℱ2𝑑𝑑) to a relation in Picℚ(ℱ2𝑑𝑑), we will proceed as follows.
Recall that the map 𝑐𝑐𝛾𝛾𝛽𝛽𝛽 ↦ 𝐻𝐻(𝐻𝐻𝐻 𝐻𝐻) sends identities among coefficients of modular forms to linear



208154-L-bw-Peterson208154-L-bw-Peterson208154-L-bw-Peterson208154-L-bw-Peterson

56 CHAPTER 5. THE MODULI SPACE OF POLARISED K3 SURFACES: BOUNDARY

equivalences of divisors. The function – in fact, a meromorphic modular form – on ℱ2𝑑𝑑 exhibiting
this linear equivalence can be described quite explicitly, by the work of Borcherds. We will determine
the vanishing order of this function at the cusps, and consequently compute the boundary terms of
its divisor. This will give a relation in Picℚ(ℱ2𝑑𝑑).

Remark 5.3.2. In view of the discussion of section 5.2.4, for this to make sense we need to pick
a specific toroidal compactification, because that choice determines the structure of the boundary
divisors over the 0-cusps.

We pick the toroidal compactification determined by the perfect cone decomposition. We have
seen in section 5.2.4 that in that case the irreducible components of the boundary divisor are easy to
describe: there is one component for every 1-cusp, and there are no others. Let us write Δ𝐹𝐹 for the
component corresponding to the 1-cusp 𝐹𝐹 .

Now, we can formulate the boundary behaviour of the modular form Ψ.

Theorem 5.3.3. Let ∑𝛾𝛾𝛾𝛾𝛾 𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝐻𝐻(𝐻𝐻𝐻 𝐻𝐻) 𝐻 0 be a linear equivalence of Noether–Lefschetz divisors on
ℱ2𝑑𝑑. Then the following linear equivalence holds on ℱ2𝑑𝑑 (the toroidal compactification of ℱ2𝑑𝑑 with the
perfect cone decomposition):

∑
𝛾𝛾𝛾𝛾𝛾

𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝐻𝐻(𝐻𝐻𝐻 𝐻𝐻) 𝐻 ∑
𝐹𝐹∈𝑆𝑆1

∑
𝛾𝛾𝛾𝛾𝛾

𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝑐𝑐(𝐻𝐻𝐻 𝐻𝐻𝐻 𝑐𝑐𝐹𝐹 𝐻 𝐾𝐾(𝐹𝐹))Δ𝐹𝐹 𝐻 0 . (5.19)

Here 𝐹𝐹 ranges over the 1-cusps 𝑆𝑆1 of ℱ2𝑑𝑑, 𝑐𝑐𝐹𝐹 is the imprimitivity of the cusp 𝐹𝐹 (see section 5.1.2),
and 𝐾𝐾(𝐹𝐹) is the negative definite lattice of rank 17 associated to the cusp 𝐹𝐹 (also explained in section
5.1.2). The function 𝑐𝑐(𝐻𝐻𝐻 𝐻𝐻𝐻 𝑐𝑐𝐹𝐹 𝐻 𝐾𝐾(𝐹𝐹)) calculating the contribution of a given Heegner divisor 𝐻𝐻(𝐻𝐻𝐻 𝐻𝐻)
at the cusp of imprimitivity 𝑐𝑐𝐹𝐹 having definite lattice 𝐾𝐾(𝐹𝐹) is given by

𝑐𝑐(𝐻𝐻𝐻 𝐻𝐻𝐻 𝑐𝑐𝐻 𝐾𝐾) 𝑐 𝑐𝑐𝑐𝑁𝑁𝑁 𝑁 (𝑁𝑁2𝚯𝚯𝐾𝐾)(𝑝𝑝(𝐻𝐻)𝐻 𝐻𝐻) if 𝐻𝐻 ∈ 𝐻𝐻⊥
𝐹𝐹

0 otherwise
, (5.20)

where 𝑁𝑁2 is the usual Eisenstein series, 𝚯𝚯𝐾𝐾 is the vector-valued theta series of the lattice 𝐾𝐾, and the
subgroup 𝐻𝐻⊥

𝐹𝐹 ⊆ 𝐷𝐷𝐿𝐿 and the map 𝑝𝑝 𝑝 𝐻𝐻⊥
𝐹𝐹 → 𝐷𝐷𝐾𝐾 are defined in 5.1.14.

The proof of this theorem will be given in section 5.3.4; we first look at an example application in the
next section.

5.3.3 Example: completing the Hodge relation for 𝑑𝑑 𝑐 1

As an example, we take the Hodge relation in Picℚ(ℱ2𝑁1):

150 𝜆𝜆 𝐻 𝐻𝐻(0𝐻 −1) 𝐻 56 𝐻𝐻(1𝐻 −1𝑁𝑁) . (5.21)

For 𝑑𝑑 𝑐 1, there is one 0-cusp, and there are four 1-cusps, 𝐹𝐹𝛽𝛽𝐻 𝐹𝐹𝛾𝛾𝐻 𝐹𝐹𝜁𝜁𝐻 𝐹𝐹𝜂𝜂 (see the example at the
end of section 5.1.2). Let us write Δ 𝑐 Δ𝛽𝛽𝐻 Δ𝛾𝛾𝐻 Δ𝜁𝜁𝐻 Δ𝜂𝜂 for the corresponding decomposition of the
boundary divisor.

These four 1-cusps give only two distinct vector-valued theta series; see example 5.1.17. Applying
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theorem 5.3.3 to this relation, we get

0 ∼ 150 𝐻𝐻𝐻0, 0) + 𝐻𝐻𝐻0, −1) + 56 𝐻𝐻𝐻1, −1/4)
+ 𝐻150 𝑐𝑐𝐻 ̄0, 0, 1, 𝐾𝐾𝛽𝛽) + 𝑐𝑐𝐻 ̄0, 1, 1, 𝐾𝐾𝛽𝛽) + 56𝑐𝑐𝐻 ̄1, −1/4, 1, 𝐾𝐾𝛽𝛽))𝐻Δ𝛽𝛽 + Δ𝛾𝛾)
+ 𝐻150 𝑐𝑐𝐻 ̄0, 0, 1, 𝐾𝐾𝜁𝜁) + 𝑐𝑐𝐻 ̄0, 1, 1, 𝐾𝐾𝜁𝜁) + 56𝑐𝑐𝐻 ̄1, −1/4, 1, 𝐾𝐾𝜁𝜁))𝐻Δ𝜁𝜁 + Δ𝜂𝜂)

∼ 150 𝐻𝐻𝐻0, 0) + 𝐻𝐻𝐻0, −1) + 56 𝐻𝐻𝐻1, −1/4)

+ 1
24𝐻150 𝚯𝚯𝐾𝐾𝛽𝛽

𝐻 ̄0, 0) + 1 · 𝐻𝚯𝚯𝐾𝐾𝛽𝛽
𝐻 ̄0, 1) + 𝐸𝐸2𝐻1)𝚯𝚯𝐾𝐾𝛽𝛽

𝐻 ̄0, 0)) + 56 𝚯𝚯𝐾𝐾𝛽𝛽
𝐻 ̄1, −1/4)) 𝐻Δ𝛽𝛽 + Δ𝛾𝛾)

+ 1
24𝐻150 𝚯𝚯𝐾𝐾𝜁𝜁

𝐻 ̄0, 0) + 1 · 𝐻𝚯𝚯𝐾𝐾𝜁𝜁
𝐻 ̄0, 1) + 𝐸𝐸2𝐻1)𝚯𝚯𝐾𝐾𝜁𝜁

𝐻 ̄0, 0)) + 56 𝚯𝚯𝐾𝐾𝜁𝜁
𝐻 ̄1, −1/4)) 𝐻Δ𝜁𝜁 + Δ𝜂𝜂)

∼ 150 𝐻𝐻𝐻0, 0) + 𝐻𝐻𝐻0, −1) + 56 𝐻𝐻𝐻1, −1/4)

+ 1
24𝐻150 · 1 + 1 · 𝐻482 + 𝐻−24) · 1) + 56 · 2) 𝐻Δ𝛽𝛽 + Δ𝛾𝛾)

+ 1
24𝐻150 · 1 + 1 · 𝐻306 + 𝐻−24) · 1) + 56 · 0) 𝐻Δ𝜁𝜁 + Δ𝜂𝜂)

∼ 150 𝐻𝐻𝐻0, 0) + 𝐻𝐻𝐻0, −1) + 56 𝐻𝐻𝐻1, −1/4) + 30 𝐻Δ𝛽𝛽 + Δ𝛾𝛾) + 18𝐻Δ𝜁𝜁 + Δ𝜂𝜂) .
(5.22)

We thus see that

150 𝜆𝜆 ∼ 𝐻𝐻𝐻0, −1) + 56 𝐻𝐻𝐻1, −1/4) + 30 𝐻Δ𝛽𝛽 + Δ𝛾𝛾) + 18𝐻Δ𝜁𝜁 + Δ𝜂𝜂) . (5.23)

Remark 5.3.4. Computations such as this one are possible, in principle, for every 𝑑𝑑. However,
the number of 1-cusps increases very rapidly with 𝑑𝑑, and so does the potential number of different
boundary coefficients that must be computed. This quickly becomes unfeasible.

There is one particular pattern that we observed, though, which seems to hold for all 𝑑𝑑. (At least, for
all 𝑑𝑑 for which the minimal basis exists.)

Observation 5.3.5. For every 𝑑𝑑 such that the minimal basis exists, if we complete the Hodge relation
in Picℚ𝐻ℱ2𝑑𝑑), then the coefficient at the standard 1-cusp Δ𝛾𝛾 (the one associated to the isotropic
subspace ℤ𝑒𝑒1 ⊕ ℤ𝑒𝑒2 ⊂ 𝑈𝑈 ⊕ 𝑈𝑈 ⊂ 𝑈𝑈2𝑑𝑑, with definite lattice 𝐾𝐾 𝐾 𝐾−2𝑑𝑑𝐾 ⊕ 2𝐸𝐸8𝐻−1)) is always 30. At
other 1-cusps, the coefficient can be smaller (as seen above, for Δ𝜁𝜁 and Δ𝜂𝜂) or greater, though.

This observation might be explained by the existence of a series of modular forms, uniformly defined
for all relevant 𝑑𝑑, whose vanishing divisor is supported on the minimal basis, and which always has
vanishing order 30 at Δ𝛾𝛾.

5.3.4 Analysis of the product expansion at the cusps
In this section we prove theorem 5.3.3.

Let
∑
𝛾𝛾𝛾𝛾𝛾

𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝐻𝐻𝐻𝐻𝐻, 𝐻𝐻) ∼ 0 (5.24)

be a linear equivalence of Noether–Lefschetz divisors on ℱ2𝑑𝑑. By theorem 4.3.2, this relation corre-
sponds to a principal part

𝑓𝑓 𝐾 ∑
𝛾𝛾𝛾𝛾𝛾

𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝑞𝑞𝛾𝛾𝐞𝐞𝛾𝛾 ∈ Sing−
0𝐻𝑈𝑈) (5.25)

that vanishes in the obstruction space Obstruct; the modular form Ψ on ℱ2𝑑𝑑 that gives rise to the
given relation is exactly the result of applying Borcherds construction 4.3.1 to this principal part. See
section 4.3 for details.

We will determine the vanishing order (negative in the case of a pole) of the function Ψ at the
boundary divisor over a given 1-cusp 𝐹𝐹 ; by remark 5.3.2, if we can prove that this vanishing order
equals

𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝑐𝑐𝐻𝐻𝐻, 𝐻𝐻, 𝑐𝑐, 𝐾𝐾) 𝐾 𝑐𝑐 · 𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝐻𝐸𝐸2𝚯𝚯𝐾𝐾)𝐻𝐻𝐻, 𝐻𝐻)/24 , (5.26)
then this will also be the vanishing order at any component of Δ𝐹𝐹 , and we are done.

Lemma 5.3.6. We may assume, without loss of generality, that the isotropic plane 𝐼𝐼 ⊂ 𝑈𝑈 representing
𝐹𝐹 is generated by 𝑧𝑧 𝐾 𝑒𝑒 ∈ 𝑈𝑈 ⊂ 𝑈𝑈 and another element 𝑦𝑦 ∈ 𝑈𝑈 (so in particular, 𝑦𝑦2 𝐾 0 and 𝐻𝑧𝑧, 𝑦𝑦) 𝐾 0)
and moreover 𝐻𝑧𝑧, 𝑈𝑈) 𝐾 ℤ (i.e., div𝐻𝑧𝑧) 𝐾 1).



208154-L-bw-Peterson208154-L-bw-Peterson208154-L-bw-Peterson208154-L-bw-Peterson

58 CHAPTER 5. THE MODULI SPACE OF POLARISED K3 SURFACES: BOUNDARY

For a proof, see [18, lemmas 2.23 and 4.1].
Notation: we write 𝑀𝑀 𝑀 𝑀𝑀⊥/ℤ𝑀𝑀 ≅ 𝑈𝑈 𝑈 𝑈𝑈𝑈8(−1) 𝑈 ⟨−𝑈𝑑𝑑𝑑; this is a lattice of signature (1, 18). We

employ a slight abuse of notation and also write 𝑦𝑦 ∈ 𝑀𝑀 for the image of 𝑦𝑦 ∈ 𝐿𝐿 in 𝑀𝑀 ; also, we write
𝐾𝐾 𝑀 𝑦𝑦⊥

𝑀𝑀/ℤ𝑦𝑦; this lattice 𝐾𝐾 thus also equals 𝐼𝐼⊥/𝐼𝐼 𝑀 𝐾𝐾(𝐼𝐼), and has signature (0, 17).
Now, we analyse the product expansion (4.18) of Ψ at the standard 0-cusp, corresponding to the

isotropic vector 𝑀𝑀 𝑀 𝑧𝑧 ∈ 𝑈𝑈 . Let us recall the formula for the product expansion:

Ψ𝑧𝑧(𝑍𝑍𝑀𝑀) 𝑀 𝐶𝐶 𝐶((𝑍𝑍𝑀𝑀, 𝜌𝜌𝑀𝑀)) ∏
𝜆𝜆∈𝑀𝑀∨

(𝜆𝜆𝜆𝜆𝜆𝑀𝑀)>0

∏
𝛿𝛿∈𝐷𝐷𝐿𝐿
𝛿𝛿𝛿𝑀𝑀𝑀𝜆𝜆

(1 − 𝐶((𝜆𝜆, 𝑍𝑍𝑀𝑀) + (𝛿𝛿, 𝑀𝑀′)))𝑎𝑎𝜆𝜆𝜆𝜆𝜆2/2 (4.18 revisited)

This expansion is valid only on a single Weyl chamber 𝑊𝑊𝑀𝑀 ⊂ 𝑀𝑀 𝑀 𝑀. (When the coordinate 𝑍𝑍𝑀𝑀
crosses a Heegner divisor 𝐻𝐻(𝐻𝐻, 𝐻𝐻) that occurs in the relation ∑𝛾𝛾𝜆𝛾𝛾 𝑎𝑎𝛾𝛾𝜆𝛾𝛾𝐻𝐻(𝐻𝐻, 𝐻𝐻) 𝐻 0, the product
formula changes. See [6] for details on this wall-crossing phenomenon.) The choice of Weyl chamber
𝑊𝑊𝑀𝑀 is not completely free, but determined – perhaps not completely – by the choice of 1-cusp 𝐼𝐼 : we
must choose 𝑊𝑊𝑀𝑀 in such a way that the isotropic vector 𝑦𝑦 ∈ 𝑀𝑀 ⊂ 𝑀𝑀𝑀 lies in its closure.

Recall from section 5.2.3 that we may describe a point on the boundary divisor in the tube domain
model as the limit of the path

𝑡𝑡 ↦ 𝑍𝑍𝑀𝑀 𝑀 i𝑡𝑡𝑦𝑦 + 𝑡𝑡𝑦𝑦′ + 𝜅𝜅 , (5.27)
where 𝑡𝑡 ∈ ℍ and 𝜅𝜅 ∈ 𝐾𝐾 𝑀 𝐾 together parametrise the limit point in the boundary divisor (up to the
action of the arithmetic group).

Lemma 5.3.7. The value of Ψ𝑧𝑧 along the above path is asymptotically (as 𝑡𝑡 → ∞) equal to
𝐶xp(−𝑈𝜋𝜋(𝑦𝑦, 𝜌𝜌𝑀𝑀)𝑡𝑡).
Proof. We analyse the value of the product expansion on this path. The non-zero constant 𝐶𝐶 is
irrelevant. We will deal with the factor 𝐶((𝑍𝑍𝑀𝑀, 𝜌𝜌𝑀𝑀)) later, and now first look at a single factor in the
big product. Let us introduce a notation for such a factor: say 𝐼𝐼𝜆𝜆 ≔ 1 − 𝐶((𝜆𝜆, 𝑍𝑍𝑀𝑀)) for fixed 𝜆𝜆 ∈ 𝑀𝑀∨

with (𝜆𝜆, 𝑊𝑊𝑀𝑀) > 0. Note that, because (𝑀𝑀, 𝐿𝐿) 𝑀 ℤ, we may choose 𝑀𝑀′ in such a way that 𝑀𝑀′ ∈ 𝐿𝐿, so
(𝛿𝛿, 𝑀𝑀′) ∈ ℤ, and thus we may leave that term out.

We distinguish two cases. If (𝜆𝜆, 𝑦𝑦) 𝑀 0, then

(𝜆𝜆, 𝑍𝑍𝑀𝑀) 𝑀 (𝜆𝜆, i𝑡𝑡𝑦𝑦 + 𝑡𝑡𝑦𝑦′ + 𝜅𝜅) 𝑀 𝑡𝑡(𝜆𝜆, 𝑦𝑦′) + (𝜆𝜆, 𝜅𝜅) . (5.28)

This shows that 𝐼𝐼𝜆𝜆 is constant along the path to the cusp, and 𝐼𝐼𝜆𝜆 vanishes only if (𝜆𝜆, 𝑍𝑍𝑀𝑀) ∈ ℤ, or
equivalently if 𝑡𝑡(𝜆𝜆, 𝑦𝑦′) + (𝜆𝜆, 𝜅𝜅) ∈ ℤ, which cannot happen for generic (𝑡𝑡, 𝜅𝜅).

On the other hand, suppose that (𝜆𝜆, 𝑦𝑦) 𝜆 0. Because (𝜆𝜆, 𝑊𝑊𝑀𝑀) > 0, and 𝑦𝑦 is in the closure of 𝑊𝑊𝑀𝑀,
this inner product cannot be negative, so (𝜆𝜆, 𝑦𝑦) > 0. Then

lim
𝑡𝑡→∞

𝐶((𝜆𝜆, 𝑍𝑍𝑀𝑀)) 𝑀 lim
𝑡𝑡→∞

𝐶((𝜆𝜆, i𝑡𝑡𝑦𝑦 + 𝑡𝑡𝑦𝑦′ + 𝜅𝜅)) 𝑀 lim
𝑡𝑡→∞

𝐶(i𝑡𝑡(𝜆𝜆, 𝑦𝑦)) 𝑀 lim
𝑡𝑡→∞

𝐶xp(−𝑈𝜋𝜋(𝜆𝜆, 𝑦𝑦)) 𝑀 0 (5.29)

and hence the limit of 𝐼𝐼𝜆𝜆 is 1 − 0 𝑀 1.
Finally, we look at the factor 𝐶((𝑍𝑍𝑀𝑀, 𝜌𝜌𝑀𝑀)) 𝑀 𝐶((i𝑡𝑡𝑦𝑦 + 𝑡𝑡𝑦𝑦′ + 𝜅𝜅, 𝜌𝜌𝑀𝑀)). In the limit, the term

with i𝑡𝑡𝑦𝑦 dominates (unless (𝑦𝑦, 𝜌𝜌𝑀𝑀) 𝑀 0; in that case, this factor is constant on the path to the
boundary point, and non-zero for a generic choice of point on the boundary divisor), so asymptotically
𝐶((𝑍𝑍𝑀𝑀, 𝜌𝜌𝑀𝑀)) 𝑀 𝐶xp(−𝑈𝜋𝜋(𝑦𝑦, 𝜌𝜌𝑀𝑀)𝑡𝑡).

We conclude that the only factor that contributes asymptotically is 𝐶((𝑍𝑍𝑀𝑀, 𝜌𝜌𝑀𝑀)), and it has the
asymptotics of 𝐶xp(−𝑈𝜋𝜋(𝑦𝑦, 𝜌𝜌𝑀𝑀)𝑡𝑡), as claimed.

We see that as we approach the boundary divisor, the function Ψ𝑧𝑧 can get a zero or a pole, depending
on the sign of the constant (𝑦𝑦, 𝜌𝜌𝑀𝑀). By proposition 5.2.2, since our function is asymptotically given
by 𝐶(i𝑡𝑡(𝑦𝑦, 𝜌𝜌𝑀𝑀)), the vanishing order that we want to compute equals 𝑁𝑁 𝑁 (𝑦𝑦, 𝜌𝜌𝑀𝑀) (where 𝑁𝑁 is the
imprimitivity of the 1-cusp 𝐼𝐼 , as always).

Finally, we may evaluate the constant (𝑦𝑦, 𝜌𝜌𝑀𝑀) using the theorems in Chapter 10 of Borcherds’
paper [6].

Lemma 5.3.8. The inner product with the Weyl vector 𝜌𝜌𝑀𝑀 is given by

(𝑦𝑦, 𝜌𝜌𝑀𝑀) 𝑀 ∑
𝛾𝛾𝜆𝛾𝛾

𝛾𝛾∈𝐻𝐻⊥
𝐹𝐹

𝑎𝑎𝛾𝛾𝜆𝛾𝛾(𝑈𝑈2𝚯𝚯𝐾𝐾)(𝑝𝑝(𝐻𝐻), 𝐻𝐻)/𝑈𝑝 , (5.30)

where 𝐻𝐻⊥
𝐹𝐹 ⊆ 𝐷𝐷𝐿𝐿 and the map 𝑝𝑝 𝑝 𝐻𝐻⊥

𝐹𝐹 → 𝐷𝐷𝐾𝐾 are defined in 5.1.14.
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Proof. By [6, Theorem 10.4], we know that 𝜌𝜌𝑀𝑀 equals 𝜌𝜌𝐾𝐾 + 𝑟𝑟𝑦𝑦′𝑦𝑦′ + 𝑟𝑟𝑦𝑦𝑦𝑦, where

𝜌𝜌𝐾𝐾 = −1
2 ∑

𝜆𝜆∈𝐾𝐾∨
∑

𝛿𝛿∈𝑀𝑀∨/𝑀𝑀
𝛿𝛿𝛿𝐾𝐾=𝜆𝜆

(𝛿𝛿𝛿𝛿𝛿𝑀𝑀)>0

𝑎𝑎𝛿𝛿(𝜆𝜆2/2) ; (5.31)

𝑟𝑟𝑦𝑦′ is the constant term of 𝚯𝚯𝐾𝐾(𝜏𝜏)𝜏𝜏𝐾𝐾(𝜏𝜏)𝜏𝜏2(𝜏𝜏)/2𝜏 ; (5.32)

𝑟𝑟𝑦𝑦 = −𝑟𝑟𝑦𝑦′(𝑦𝑦′)2/2 + 1
2 ∑

𝜆𝜆∈𝐾𝐾∨
∑

𝛿𝛿∈𝑀𝑀∨/𝑀𝑀
𝛿𝛿𝛿𝐾𝐾=𝜆𝜆

(𝛿𝛿𝛿𝛿𝛿𝑀𝑀)>0

𝑎𝑎𝛿𝛿(𝜆𝜆2/2)𝐵𝐵2((𝛿𝛿𝛿 𝛿𝛿′)) ; (5.33)

further, 𝐵𝐵2(𝑥𝑥) is a modified Bernoulli function, given by

𝐵𝐵2(𝑥𝑥 + 1) = 𝐵𝐵2(𝑥𝑥) for all 𝑥𝑥 ∈ ℝ , and (5.34)

𝐵𝐵2(𝑥𝑥) = 𝑥𝑥2 − 𝑥𝑥 + 1
6 for 0 ≤ 𝑥𝑥 𝑥 1 ; (5.35)

also, 𝚯𝚯𝐾𝐾 is the vector-valued theta series associated to the lattice 𝐾𝐾, and 𝚯𝚯𝐾𝐾 its complex conjugate
(or equally 𝚯𝚯𝐾𝐾(−𝐾), the theta series of the positive definite lattice 𝐾𝐾(−1)), so

𝚯𝚯𝐾𝐾(𝜏𝜏) = ∑
𝜆𝜆∈𝐾𝐾∨

𝑞𝑞−𝜆𝜆2/2𝐞𝐞𝜆𝜆+𝐾𝐾 ; (5.36)

𝜏𝜏𝐾𝐾 is the adaptation of the principal part 𝑓𝑓 to the subquotient lattice 𝐾𝐾:

𝜏𝜏𝐾𝐾 = ∑
𝛾𝛾𝛿𝛾𝛾

𝛾𝛾∈𝐻𝐻⊥
𝐹𝐹

𝑎𝑎𝛾𝛾𝛿𝛾𝛾𝑞𝑞𝛾𝛾𝐞𝐞𝑝𝑝(𝛾𝛾) ∈ Sing−
0(𝐾𝐾) , (5.37)

and 𝜏𝜏2(𝜏𝜏) is the usual Eisenstein series of weight 2, given by

𝜏𝜏2(𝜏𝜏) = 1 − 2𝜏 ∑
𝛾𝛾>0

𝜎𝜎𝐾(𝑛𝑛)𝑞𝑞𝛾𝛾 , (5.38)

where 𝜎𝜎𝐾 is the divisor function (i.e., the sum of the prime divisors of its argument).
This description of 𝜌𝜌𝑀𝑀 is explicit enough to compute the constant (𝑦𝑦𝛿 𝜌𝜌𝑀𝑀). First note that (𝑦𝑦𝛿 𝑦𝑦) =

0 (recall that 𝑦𝑦 is isotropic) and also (𝑦𝑦𝛿 𝜌𝜌𝐾𝐾) = 0 (by definition of 𝐾𝐾), leaving only (𝑦𝑦𝛿 𝜌𝜌𝑀𝑀) = 𝑟𝑟𝑦𝑦′ , the
constant term of 𝚯𝚯𝐾𝐾(𝜏𝜏)𝜏𝜏𝐾𝐾(𝜏𝜏)𝜏𝜏2(𝜏𝜏)/2𝜏. Substituting the expression for 𝜏𝜏𝐾𝐾 in terms of its coefficients
𝑎𝑎𝛾𝛾𝛿𝛾𝛾, we get the claimed equality (5.30).

We conclude that the vanishing order of Ψ at the boundary divisor Δ𝐹𝐹 over 𝜏𝜏 is equal to

𝑁𝑁 𝑁 ∑
𝛾𝛾𝛿𝛾𝛾

𝛾𝛾∈𝐻𝐻⊥
𝐹𝐹

𝑎𝑎𝛾𝛾𝛿𝛾𝛾(𝜏𝜏2𝚯𝚯𝐾𝐾)(𝑝𝑝(𝑝𝑝)𝛿 𝑛𝑛)/2𝜏 . (5.39)

This finishes the proof.

5.4 Theta ghosts
We would like to use theorem 5.3.3 to complete relations in Pic(ℱ2𝑑𝑑) to the boundary, in particular
to prove that given modular forms on ℱ2𝑑𝑑 are cusp forms.

Looking at equations 5.19 and 5.20, this means that we have to enumerate the 1-cusps of ℱ2𝑑𝑑 and
for each of them compute the associated definite lattice 𝐾𝐾 and its vector-valued theta series 𝚯𝚯𝐾𝐾.
We know from proposition 5.1.13 that the lattice genus of 𝐾𝐾 is known (although dependent on the
imprimitivity 𝑁𝑁 of 𝜏𝜏 ): it is 𝒢𝒢(2𝜏𝜏8(−1) ⊕ ⟨−2𝑚𝑚𝑚) where 𝑚𝑚 = 𝑚𝑚/𝑁𝑁2.

Let us rephrase our task in a slightly more general setting. Let 𝐾𝐾0 be a non-degenerate definite
lattice. We would like to determine what vector-valued modular forms occur as theta series of a
definite lattice of genus 𝒢𝒢(𝐾𝐾0). (For an introduction to vector-valued modular forms, see section 3.3;
for vector-valued theta series (these count the number of vectors in the dual lattice of given length
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and discriminant class), see 2.5; for an explanation of lattice genera, see 2.4.) In other words, we want
to identify the image of the map

𝚯𝚯 𝚯 𝚯𝚯𝚯𝚯𝚯0) → 𝑀𝑀rank𝚯𝐾𝐾0)/2𝚯𝚯𝚯0)
𝚯 𝚯𝚯 ↦ 𝚯𝚯𝐾𝐾 .

(5.40)

In our application we have 𝚯𝚯0 = 2𝐸𝐸8⊕⟨2𝑚𝑚𝑚, where 𝑚𝑚 = 𝑚𝑚/𝑚𝑚2 is directly related to the polarisation
degree of the K3 surface (in particular there is always the case 𝑚𝑚 = 𝑁𝑁 𝑚𝑚 = 𝑚𝑚). As 𝑚𝑚 increases,
computing the image of 𝚯𝚯 is computationally too hard to approach directly, i.e., by enumerating the
lattices in the genus 𝚯𝚯𝚯𝚯𝚯0) and computing the theta series of each lattice. This is already clear from
the size of the set 𝚯𝚯𝚯𝚯𝚯0), which grows rapidly (as 𝑚𝑚8: see theorem 5.1.7).

We will take another approach: we use some properties shared by all theta series to define a finite
superset of the image of 𝚯𝚯. For some reasonably low values of 𝑚𝑚, we can compute this superset
explicitly. More importantly, for all 𝑚𝑚 in the range that interests us we can compute a lower bound for
the boundary coefficients of any given relation in Pic𝚯ℱ2𝑑𝑑) by solving a linear programming problem,
minimising a linear expression for these boundary coefficients over the superset.

Because the superset might be a strict superset, this does not answer the original question (of
computing the exact image of the image of the map 𝚯𝚯). It turns out that this loss of information is
acceptable for our needs, and we may use this method to prove that many modular forms on ℱ2𝑑𝑑 are
cusp forms.

5.4.1 Definition and first examples
Definition 5.4.1. Let 𝚯𝚯 be a definite lattice (let us say positive definite). A vector-valued modular
form Ψ = ∑𝛾𝛾𝛾𝛾𝛾 Ψ𝚯𝛾𝛾𝑁 𝛾𝛾)𝛾𝛾𝛾𝛾𝐞𝐞𝛾𝛾 ∈ 𝑀𝑀rank 𝐾𝐾/2𝚯𝚯𝚯) is a theta ghost if

(i) it is an almost-cusp form (see definition 3.3.8);

(ii) Ψ𝚯𝛾𝛾𝑁 𝛾𝛾) ∈ ℕ for all 𝛾𝛾 ∈ 𝐷𝐷𝐾𝐾 and 𝛾𝛾 𝑛 𝑛;

(iii) Ψ𝚯𝛾𝛾𝑁 𝛾𝛾) = Ψ𝚯𝛾𝛾𝛾𝑁 𝛾𝛾) for all 𝛾𝛾 ∈ 𝐷𝐷𝐾𝐾 and 𝛾𝛾 𝑛 𝑛;

(iv) Ψ𝚯𝛾𝛾𝑁 𝛾𝛾) ∈ 2ℕ for all 𝛾𝛾 ∈ 𝐷𝐷𝐾𝐾 such that 𝛾𝛾 = 𝛾𝛾𝛾 and for all 𝛾𝛾 𝑛 𝑛;

(v) Ψ𝚯𝑛𝑁 𝑛) = 𝑁.

Proposition 5.4.2. If 𝚯𝚯 is a definite lattice, then 𝚯𝚯𝐾𝐾 is a theta ghost.

Proof. (i) Let 𝛾𝛾 ∈ 𝐷𝐷𝐾𝐾 be a non-standard cusp (i.e., 𝛾𝛾2 = 𝑛 but 𝛾𝛾 𝛾 𝑛). We look at 𝚯𝚯𝐾𝐾𝚯𝛾𝛾𝑁 𝑛), the
number of elements 𝑣𝑣 ∈ 𝚯𝚯∨ of discriminant class 𝛾𝛾 and norm 𝑣𝑣2 = 𝑛. Now, since 𝚯𝚯 is definite, 𝑣𝑣2 = 𝑛
implies that 𝑣𝑣 = 𝑛, but the zero vector has discriminant class 𝑛, not 𝛾𝛾. This shows that 𝚯𝚯𝐾𝐾𝚯𝛾𝛾𝑁 𝑛) = 𝑛,
so 𝚯𝚯𝐾𝐾 is indeed an almost-cusp form. (ii) As a count of a finite set, Ψ𝚯𝛾𝛾𝑁 𝛾𝛾) is of course a natural
number. (iii) The map 𝑣𝑣 ↦ 𝛾𝑣𝑣 gives a bijection from the set of vectors of class 𝛾𝛾 to the set of vectors
of class 𝛾𝛾𝛾, preserving the norm 2𝛾𝛾. (iv) The map 𝑣𝑣 ↦ 𝛾𝑣𝑣 gives a bijective map from the set of
vectors 𝑣𝑣 ∈ 𝚯𝚯∨ of class 𝛾𝛾 and norm 2𝛾𝛾 to itself. Because 𝑣𝑣2 = 2𝛾𝛾 𝑛 𝑛 for these vectors, the zero vector
is not among them, so this involution has no fixed points, and the size of the set must be even. (v)
The number Ψ𝚯𝑛𝑁 𝑛) counts the elements 𝑣𝑣 ∈ 𝚯𝚯∨ of discriminant class 𝑛 (that is, elements of 𝚯𝚯) with
norm 𝑣𝑣2 = 𝑛; because 𝚯𝚯 is definite, the only such vector is the zero vector.

Next, we would like to compute the set of theta ghosts. Using the methods of chapter 3, we may
compute a Heegner basis 𝑐𝑐∨

𝛾𝛾𝑖𝑖𝛾𝛾𝛾𝑖𝑖
of the space 𝑀𝑀17/2𝚯𝚯𝚯0), and write any other coefficient function

𝑐𝑐𝛾𝛾𝛾𝛾𝛾 as an explicit (rational) linear combination of these basis vectors. Write Ψ = ∑𝑖𝑖 𝑚𝑚𝑖𝑖𝑐𝑐∨
𝛾𝛾𝑖𝑖𝛾𝛾𝛾𝑖𝑖

for a
general theta ghost. For every choice of 𝛾𝛾 and 𝛾𝛾, we rewrite condition (ii) on the coefficient Ψ𝚯𝛾𝛾𝑁 𝛾𝛾)
as a condition on the numbers 𝑚𝑚𝑖𝑖. This gives a restriction of the form

∑
𝑖𝑖

𝑎𝑎𝑖𝑖𝑚𝑚𝑖𝑖 ∈ ℕ , (5.41)

where the 𝑎𝑎𝑖𝑖 are rational numbers. Clearing denominators, we see that this is a problem of linear
integer programming, and our task is to enumerate all solutions.
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Remark 5.4.3. If we are given a modular form in a numerical way, where the calculation of every
coefficient requires some amount of work, then it is impossible to verify the infinite set of conditions
(ii) directly.

However, examples show that a finite number of these conditions (ii) seem to suffice: if a modular
form satisfies condition (ii) for this finite set of coefficients (𝛾𝛾𝛾 𝛾𝛾𝛾, then apparently it is fulfilled for
all other coefficients as well (as far as we could check). We will call such modular forms apparent
theta ghosts. Note that this situation is analogous to the question of finite generation of the Noether–
Lefschetz cone (see in particular question 4.5.2).

Although the sets of theta ghosts and apparent theta ghosts apparently coincide, we do not know
for sure that they do, and we will not use that fact. We do know that the set of theta ghosts is
contained in the set of apparent theta ghosts, and thus the set of theta series is contained in the set
of apparent theta ghosts; that last fact is enough for our purposes.

Example 5.4.4. Let us compute the set of apparent theta ghosts in the case 𝑑𝑑 𝑑 𝑑.
The theta series of definite lattices in the genus of 𝐾𝐾0 𝑑 ⟨2⟩ ⊕ 2𝐸𝐸8 are vector-valued modular

forms of weight 𝑑7/2 in the Weil representation associated to the quadratic module ℤ/2𝑑𝑑ℤ 𝑑 ℤ/2ℤ.
We can use the methods of section 3.6 to compute the space of all such forms. It turns out that this
space is 2-dimensional; one possible choice of basis is the set 𝑐𝑐∨

0̄,0𝛾 𝑐𝑐∨
0̄,1.

Let 𝚯𝚯 be a theta ghost. Thus, we may write

𝚯𝚯 𝑑 𝚯𝚯1𝑐𝑐∨
0̄,0 + 𝚯𝚯2𝑐𝑐∨

0̄,1 , (5.42)

for some 𝚯𝚯𝑖𝑖 ∈ ℚ. Moreover, because 𝚯𝚯( ̄0𝛾 0𝛾 𝑑 𝑑, we see that 𝚯𝚯1 𝑑 𝑑; also, because 𝚯𝚯( ̄0𝛾 𝑑𝛾 ∈ ℕ,
we see that 𝚯𝚯2 ∈ ℕ. So, the theta ghosts are in this case completely determined by a single natural
number 𝚯𝚯2.

We can constrain this further, by using the fact that other coefficients must also be natural num-
bers. For instance, we have

𝑐𝑐1̄,1/4 𝑑 −𝑑53
44 𝑐𝑐0̄,0 + 𝑑

88𝑐𝑐0̄,1 (5.43)

on this space of modular forms, so we get the extra condition on 𝚯𝚯 that

−𝑑53
44 𝚯𝚯( ̄0𝛾 0𝛾 + 𝑑

88𝚯𝚯( ̄0𝛾 𝑑𝛾 ∈ ℕ . (5.44)

This just means that −𝑑53𝚯𝚯1/44+𝚯𝚯2/88 ∈ ℕ, or equivalently – since 𝚯𝚯1 𝑑 𝑑 – that 𝚯𝚯2 ∈ 306+88ℕ,
giving a lower bound and divisibility condition on 𝚯𝚯2.

Taking another coefficient, we get another condition: since

𝑐𝑐1̄,5/4 𝑑 30804
𝑑𝑑 𝑐𝑐0̄,0 − 42

𝑑𝑑𝑐𝑐0̄,1 , (5.45)

we get that
30804

𝑑𝑑 𝚯𝚯( ̄0𝛾 0𝛾 − 42
𝑑𝑑𝚯𝚯( ̄0𝛾 𝑑𝛾 ∈ ℕ , (5.46)

or equivalently, that 42𝚯𝚯2 ∈ 30804 − 𝑑𝑑ℕ.
Combining the two conditions 𝚯𝚯2 ∈ 306 + 88ℕ and 42𝚯𝚯2 ∈ 30804 − 𝑑𝑑ℕ, we see that 𝚯𝚯2 ∈

{306𝛾 394𝛾 482𝛾 570𝛾 658}.
Finally, we can use the evenness condition (iv) of theta ghosts to cut down this list even further.

Since 𝛾𝛾 𝑑 ̄𝑑 ∈ ℤ/2ℤ satisfies −𝛾𝛾 𝑑 𝛾𝛾, condition (iv) applies for the coefficient (𝛾𝛾𝛾 𝛾𝛾𝛾 𝑑 ( ̄𝑑𝛾 𝑑/4𝛾, so we
know that 𝚯𝚯( ̄𝑑𝛾 𝑑/4𝛾 must be even. This holds in the cases 𝚯𝚯2 ∈ {306𝛾 482𝛾 658} but not in the cases
𝚯𝚯2 ∈ {394𝛾 570}.

We conclude that there are 3 apparent theta ghosts in the case 𝑑𝑑 𝑑 𝑑. (Calculation of some tens
of coefficients did not reveal any further relevant conditions of type (ii).)

This example indicates that the set of theta ghosts might be bigger than the set of actual theta series
of definite lattices: we know from example 5.1.17 that there are only two distinct actual theta series
in this case, one with 𝚯𝚯( ̄0𝛾 𝑑𝛾 𝑑 482 and one with 𝚯𝚯( ̄0𝛾 𝑑𝛾 𝑑 306; the third apparent theta ghost, with
𝚯𝚯( ̄0𝛾 𝑑𝛾 𝑑 658, does not come from a definite lattice.

We will later (section 5.4.2) describe further conditions on vector valued modular forms – adding
to the list of conditions of definition 5.4.1 – that eliminate some of these theta ghosts.
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There is one further example where we can compare the set of theta series and the set of theta
ghosts: for 𝑑𝑑 𝑑 𝑑, we know that the size of the genus of the lattice 𝐾𝐾0 𝑑 ⟨4⟩⊕𝑑𝐸𝐸8 is 9, so the number
of distinct theta series is at most 9. Computing a basis of vector-valued modular forms in this case,
and solving the linear programming problem, we count that there are 35 apparent theta ghosts. This
shows that the number of apparent theta ghosts can be substantially larger than the number of theta
series.

We have counted the number of apparent theta ghosts for 𝑑𝑑 at most 10: see table 5.2.

Table 5.2: The number 𝐺𝐺 of apparent theta ghosts for given 𝑑𝑑.

𝑑𝑑 1 2 3 4 5 6 7 8 9 10
𝐺𝐺 3 35 11 107 58 164 483 1344 196 4887

Interestingly, the number increases with 𝑑𝑑, but not nearly as rapidly as the size of the genus (which
grows as 𝑑𝑑8). In particular, this proves that the fibres of the map 𝐾𝐾 ↦ 𝚯𝚯𝐾𝐾 are large: there must be
many distinct definite lattices with the same theta series. (Note that if there are relevant conditions
on theta ghosts that we disregarded, or the map 𝐾𝐾 ↦ 𝚯𝚯𝐾𝐾 is not surjective, this further decreases
the possible number of theta series, so this only strengthens the conclusion that there must be many
lattices with the same theta series.)

This is useful, because it allows us to prove cuspidality of modular forms on the moduli space
ℱ2𝑑𝑑 by enumerating only the much smaller set of apparent theta ghosts, instead of the huge set of
1-cusps. The validity of this simplification stems from the fact that when completing relations on
ℱ2𝑑𝑑 to ℱ2𝑑𝑑, the coefficient at the 1-cusp corresponding to the definite lattice 𝐾𝐾 only depends on the
theta series 𝚯𝚯𝐾𝐾 (see theorem 5.3.3). The uncertainty in determining the set of theta ghosts, and the
non-surjectivity of the map 𝐾𝐾 ↦ 𝚯𝚯𝐾𝐾, result in spurious conditions in our cuspidality criterion. This
means that we may well be able to prove that a given modular form is a cusp form, but the failure of
this method does not imply that it is not a cusp form.

5.4.2 Further conditions
The above definition of a theta ghost applies to any genus of definite lattices. In the case that interests
us, where 𝐾𝐾 has rank 17, we can analyse the behaviour of the theta series of a lattice in 𝒢𝒢𝒢𝐾𝐾0) in
more detail, and formulate properties that such a theta series must have. Any theta ghost that does
not have these extra properties can then be deleted from the list of potential theta series.

As a first step, we show that there cannot be many distinct dual vectors that contribute to
𝚯𝚯𝐾𝐾𝒢 ̄1, 1/4𝑑𝑑). For brevity, let us call such a dual vector – having discriminant class corresponding to
1 + 𝑑𝑑𝑑𝑑 and norm 𝑑 · 1/4𝑑𝑑 – a 𝒢 ̄1, 1/4𝑑𝑑)-vector.

Lemma 5.4.5. Let 𝐾𝐾 ∈ 𝒢𝒢𝒢𝐾𝐾0), so 𝐾𝐾 is a positive definite even lattice of rank 17 and discriminant
module 𝑑/𝑑𝑑𝑑𝑑.

(i) If 𝑑𝑑 𝑑 1, then 𝚯𝚯𝐾𝐾𝒢 ̄1, 1/4𝑑𝑑) 𝑑 𝑑.

(ii) If 𝑑𝑑 𝑑 1, then 𝚯𝚯𝐾𝐾𝒢 ̄1, 1/4𝑑𝑑) 𝑑 1.

Proof. Let us first show that there cannot be two linearly independent 𝒢 ̄1, 1/4𝑑𝑑)-vectors. Suppose
otherwise; let 𝑣𝑣 and 𝑤𝑤 be such vectors. Then 𝑣𝑣 and 𝑤𝑤 span a 𝑑-dimensional subspace of 𝐾𝐾ℚ. Because
𝐾𝐾 is positive definite, this subspace is positive definite as well, so we have the following inequality:

0 < ∣ 𝑣𝑣2 𝒢𝑣𝑣, 𝑤𝑤)
𝒢𝑣𝑣, 𝑤𝑤) 𝑤𝑤2 ∣ 𝑑 1

𝑑𝑑𝑑 · 1
𝑑𝑑𝑑 − 𝒢𝑣𝑣, 𝑤𝑤)2 , (5.47)

so |𝒢𝑣𝑣, 𝑤𝑤)| < 1
2𝑑𝑑 . However, from the structure of the quadratic module 𝐷𝐷𝐾𝐾, we know that 𝒢𝑣𝑣, 𝑤𝑤) ∈

1
2𝑑𝑑 + 𝑑. This is a contradiction.

Now, we may prove the lemma. (i) Suppose 𝚯𝚯𝐾𝐾𝒢 ̄1, 1/4𝑑𝑑) 𝑑 𝑑. Note that the only proper rational
multiple of a 𝒢 ̄1, 1/4𝑑𝑑)-vector 𝑣𝑣 that is again a 𝒢 ̄1, 1/4𝑑𝑑)-vector is −𝑣𝑣 (other multiples have the wrong
norm). Thus, among the 𝒢 ̄1, 1/4𝑑𝑑)-vectors (at least 3) there must be two that are linearly independent.
By the above, this is impossible. (ii) Suppose 𝚯𝚯𝐾𝐾𝒢 ̄1, 1/4𝑑𝑑) 𝑑 1. This time there is no proper
rational multiple of a 𝒢 ̄1, 1/4𝑑𝑑)-vector 𝑣𝑣 that is again a 𝒢 ̄1, 1/4𝑑𝑑)-vector: as before, because of the
norm condition, it could only be −𝑣𝑣, but that has discriminant class −1 + 𝑑𝑑𝑑𝑑 𝑑 1 + 𝑑𝑑𝑑𝑑 (the
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inequality needs 𝑑𝑑 𝑑 𝑑). Therefore any two of the ( ̄𝑑, 𝑑/4𝑑𝑑𝑑-vectors are linearly independent, and we
get a contradiction as before.

Let us see if this gives us any new information on the possible theta series.
For 𝑑𝑑 𝑑 𝑑, we saw in example 5.1.17 that there are three theta ghosts in that case (with Ψ( ̄0, 𝑑𝑑 ∈

{306, 482, 658}), only two of which are actual theta series. Using our knowledge of the relations on
vector-valued modular forms, we may compute that these three theta ghosts have Ψ( ̄𝑑, 𝑑/4𝑑 ∈ {0, 2, 4}.
The third one, with Ψ( ̄𝑑, 𝑑/4𝑑 𝑑 4, is prohibited by the above lemma. In this case, the extra condition
in fact allows us to separate the theta series from the unwanted theta ghost.

Unfortunately, for 𝑑𝑑 𝑑 𝑑 this particular condition seems to be satisfied by all theta ghosts – as far
as we have tried – and thus gives no new information.

As a second step, we look at dual vectors of the form 𝑣𝑣 𝑣 𝑣𝑣, where 𝑣𝑣 is a ( ̄𝑑, 𝑑/4𝑑𝑑𝑑-vector, and 𝑣𝑣
is a root of 𝐾𝐾 orthogonal to 𝑣𝑣. As we vary 𝑣𝑣, this gives a set of ( ̄𝑑, 𝑑 𝑣 𝑑/4𝑑𝑑𝑑-vectors, thus giving a
lower bound on 𝚯𝚯𝐾𝐾( ̄𝑑, 𝑑 𝑣 𝑑/4𝑑𝑑𝑑. We now make this precise.

Lemma 5.4.6. Let 𝐾𝐾 ∈ 𝒢𝒢(𝐾𝐾0𝑑. If 𝚯𝚯𝐾𝐾( ̄𝑑, 𝑑/4𝑑𝑑𝑑 𝑑 0, then 𝚯𝚯𝐾𝐾( ̄𝑑, 𝑑 𝑣 𝑑/4𝑑𝑑𝑑 𝑑 480.

Proof. Pick an element of 𝐾𝐾∨ of discriminant class corresponding to 𝑑 𝑣 2𝑑𝑑𝑑 and of norm 2 · 𝑑/4𝑑𝑑.
By the structure of the discriminant group, we may write this element as 𝑣𝑣/2𝑑𝑑, where 𝑣𝑣 ∈ 𝐾𝐾.

We claim that the embedding 𝑑𝑣𝑣 𝑤 𝐾𝐾 is primitive and isomodular; let us prove this first. If 𝑣𝑣
were not primitive in 𝐾𝐾, then we could write 𝑣𝑣 𝑑 𝑤𝑤𝑣𝑣, with 𝑣𝑣 ∈ 𝐾𝐾 and 𝑤𝑤 𝑑 𝑑 an integer. Then
2𝑑𝑑 𝑑 𝑣𝑣2 𝑑 𝑤𝑤2𝑣𝑣2 ∈ 𝑤𝑤2𝑑, so we may write 2𝑑𝑑 𝑑 𝑑𝑑𝑤𝑤 with 𝑑 < 𝑑𝑑 < 2𝑑𝑑. But then 𝑣𝑣 𝑑 𝑣𝑣/𝑤𝑤 𝑑 𝑑𝑑𝑣𝑣/2𝑑𝑑 has
discriminant class corresponding to 𝑑𝑑 𝑘𝑘𝑘 2𝑑𝑑, which is impossible because 𝑣𝑣 ∈ 𝐾𝐾. This contradiction
proves that 𝑣𝑣 is primitive.

For the isomodularity, look at the map 𝜋𝜋 𝜋 𝐾𝐾∨ → (𝑑𝑣𝑣𝑑∨ → (𝑑𝑣𝑣𝑑∨/𝑑𝑣𝑣; we must prove that the
kernel of 𝜋𝜋 is exactly 𝐾𝐾. The first part of 𝜋𝜋 sends an element 𝜅𝜅 ∈ 𝐾𝐾∨ to the function that maps 𝑣𝑣
to (𝜅𝜅, 𝑣𝑣𝑑 ∈ 𝑑; the second part of 𝜋𝜋 sends this function to the discriminant class that corresponds to
(𝜅𝜅, 𝑣𝑣𝑑 𝑣 2𝑑𝑑𝑑.

Now, if 𝑣𝑣 ∈ 𝐾𝐾, then (𝑣𝑣, 𝑣𝑣/2𝑑𝑑𝑑 ∈ 𝑑, so (𝑣𝑣, 𝑣𝑣𝑑 ∈ 2𝑑𝑑𝑑, so 𝜋𝜋(𝑣𝑣𝑑 𝑑 (𝑣𝑣, 𝑣𝑣𝑑 𝑣 2𝑑𝑑𝑑 𝑑 0 𝑣 2𝑑𝑑𝑑, and
we see that indeed 𝑣𝑣 ∈ ker(𝜋𝜋𝑑. Conversely, suppose that 𝜅𝜅 ∈ 𝐾𝐾∨ is in the kernel of 𝜋𝜋. By the
structure of the discriminant group, we may write 𝜅𝜅 𝑑 𝑑𝑑𝑣𝑣/2𝑑𝑑 𝑣 𝑣𝑣, with 𝑑𝑑 ∈ 𝑑 and 𝑣𝑣 ∈ 𝐾𝐾. Then
0 𝑣 2𝑑𝑑𝑑 𝑑 𝜋𝜋(𝜅𝜅𝑑 𝑑 (𝜅𝜅, 𝑣𝑣𝑑 𝑣 2𝑑𝑑𝑑 𝑑 𝑑𝑑 𝑣 (𝑣𝑣, 𝑣𝑣𝑑 𝑣 2𝑑𝑑𝑑 𝑑 𝑑𝑑 𝑣 2𝑑𝑑𝑑, so 𝑑𝑑 is a multiple of 2𝑑𝑑, but then
𝑑𝑑𝑣𝑣/2𝑑𝑑 ∈ 𝐾𝐾, so 𝜅𝜅 ∈ 𝐾𝐾. This proves the claim.

Since the embedding 𝑑𝑣𝑣 𝑤 𝐾𝐾 is isomodular, we can apply lemma 2.2.13, and conclude that the
orthogonal complement 𝐽𝐽 𝑑 𝑣𝑣⊥ is unimodular. It is therefore a unimodular even positive definite
lattice of rank 𝑑6. Such lattices are classified, and there are only two of them up to isomorphism:
𝐸𝐸8 ⊕ 𝐸𝐸8 and 𝐷𝐷𝑣

16. Moreover, these two lattices have the same theta series. In particular, 𝐽𝐽 has
exactly 480 roots (elements 𝑣𝑣 ∈ 𝐽𝐽 with 𝑣𝑣2 𝑑 2).

Now, look at the elements 𝑣𝑣 𝑣 𝑣𝑣/2𝑑𝑑, where 𝑣𝑣 is a root of 𝐽𝐽 . These are 480 different elements of
𝐾𝐾∨. They have discriminant class corresponding to 𝑑 𝑣 2𝑑𝑑𝑑 by construction, and because (𝑣𝑣, 𝑣𝑣𝑑 𝑑 0,
we have (𝑣𝑣 𝑣 𝑣𝑣/2𝑑𝑑𝑑2/2 𝑑 (2 𝑣 1

2𝑑𝑑 𝑑/2 𝑑 𝑑 𝑣 𝑑/4𝑑𝑑. This shows that 𝚯𝚯𝐾𝐾( ̄𝑑, 𝑑 𝑣 𝑑/4𝑑𝑑𝑑 𝑑 480.

Let us apply this lemma to 𝑑𝑑 𝑑 2, and see if it excludes any theta ghosts. We noted earlier that
for 𝑑𝑑 𝑑 2 there are 35 theta ghosts. Of these 35, 𝑑7 have non-zero ( ̄𝑑, 𝑑/8𝑑-coefficient. Of these 𝑑7,
only 2 have ( ̄𝑑, 9/8𝑑-coefficient at least 480. The other 𝑑5 cannot be theta series, because they would
contradict lemma 5.4.6. So, for 𝑑𝑑 𝑑 2 this new condition reduces the number of possible theta series
from 35 to 20.

One might continue along these lines: try to find even more conditions on theta series (from
properties of definite lattices, as the lemmas above), and perform more enumerations of lattice genera
to see if there are any theta ghosts left that can be excluded. For our purposes though, we have done
enough.

5.4.3 Application to cuspidality of modular forms on ℱ2𝑑𝑑

We show how to use theta ghosts to prove that a given modular form on ℱ2𝑑𝑑 is a cusp form.
Given any modular form on ℱ2𝑑𝑑 that has vanishing locus supported on Noether–Lefschetz divisors,

we know by Bruinier’s result that it arises from Borcherds’ construction (see section 4.3). Our theorem
5.3.3 then describes the vanishing order of the modular form at every 𝑑-cusp (or more precisely: at
the components over all the 𝑑-cusps of any toroidal compactification). Because the number of 𝑑-cusps
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increases rapidly with the polarisation degree 2𝑑𝑑, we use our idea of theta ghosts to bound these
vanishing orders.

We recall here the contents of theorem 5.3.3, reinterpreted in terms of modular forms instead
of relations in Picℚ(ℱ2𝑑𝑑). Let Ψ be any modular form on ℱ2𝑑𝑑 with vanishing locus supported on
Noether–Lefschetz divisors; we may assume without loss of generality that Ψ is associated to the
linear relation ∑𝛾𝛾𝛾𝛾𝛾 𝑎𝑎𝛾𝛾𝛾𝛾𝛾𝑐𝑐𝛾𝛾𝛾𝛾𝛾 = 0 of coefficients functions 𝑐𝑐𝛾𝛾𝛾𝛾𝛾 on 𝐴𝐴𝐴𝐴(𝑑𝑑), the space of almost cusp
forms associated to the lattice 𝐿𝐿2𝑑𝑑. Then the vanishing order of Ψ at the boundary components
associated to the 1-cusp 𝐹𝐹 is given by

∑
𝛾𝛾𝛾𝛾𝛾

𝛾𝛾∈𝐻𝐻⊥
𝐹𝐹

𝑎𝑎𝛾𝛾𝛾𝛾𝛾 · 𝑁𝑁𝑁2𝑁 · (𝑁𝑁2𝚯𝚯𝐾𝐾)(𝑝𝑝(𝑝𝑝)𝑝 𝑝𝑝) , (5.48)

where 𝑁𝑁 is the imprimitivity of the cusp 𝐹𝐹 (see definition 5.1.9), 𝐾𝐾 is the definite lattice of rank 17
associated to the cusp 𝐹𝐹 (see definition 5.1.11), 𝚯𝚯𝐾𝐾 is the vector-valued theta series of the lattice 𝐾𝐾
(see section 2.5), and 𝑁𝑁2 is the usual Eisenstein series.

For a fixed modular form Ψ, this vanishing order is thus a linear expression in the coefficients
𝚯𝚯𝐾𝐾(𝑝𝑝𝑝 𝑝𝑝).

We have complete knowledge of the space of which 𝚯𝚯𝐾𝐾 is a member, and this is the same space
for all 1-cusps 𝐹𝐹 of the same imprimitivity 𝑁𝑁 : it is 𝐴𝐴𝐴𝐴17𝑁2(𝑚𝑚), the space of almost cusp forms of
weight 17𝑁2 associated to the lattice ℤ𝑁2𝑚𝑚ℤ, where 𝑚𝑚 = 𝑑𝑑𝑁𝑁𝑁2. In particular, using the methods
from section 3.6 we may compute a basis of that space and express any coefficient 𝑐𝑐𝛾𝛾𝛾𝛾𝛾 in terms of
that basis. Let us write 𝜆𝜆𝑖𝑖 for the unknown coefficients in the expression for 𝚯𝚯𝐾𝐾 in terms of the basis.
Now, the fact that the coefficients 𝚯𝚯𝐾𝐾(𝑝𝑝𝑝 𝑝𝑝) are natural numbers gives us an infinite set of inequalities
and integrality constraints for the numbers 𝜆𝜆𝑖𝑖.

All in all, this means that the vanishing order of Ψ, viewed as a function of the cusp 𝐹𝐹 , has a linear
expression in terms of variables 𝜆𝜆𝑖𝑖, and we have linear inequalities and integrality constraints for these
𝜆𝜆𝑖𝑖. Therefore, we may apply integer linear programming techniques to minimise the expression (5.48)
with respect to the constraints. This gives us a lower bound for the vanishing order of Ψ among all
the 1-cusps with imprimitivity 𝑁𝑁 .

Repeating this for all possible imprimitivities 𝑁𝑁 (i.e., the positive integers with 𝑁𝑁2 dividing 𝑑𝑑),
and taking the lowest outcome, we get a lower bound for the vanishing order of Ψ among all the
1-cusps. If this is a positive number, then we conclude that Ψ is a cusp form.
Remark 5.4.7. Because there might be theta ghosts that do not come from definite lattices, we
cannot use this to prove that a form is not a cusp form.

Results

Applying the procedure outlined above to the modular forms represented by the equations in ap-
pendix B, we get the lower bounds for the vanishing orders listed in table 5.3.

Table 5.3: A lower bound 𝑙𝑙 for the vanishing order at the cusps – of imprimitivity 𝑁𝑁 – of the modular
forms on ℱ2𝑑𝑑 represented by the equations in appendix B.

𝑑𝑑 𝑁𝑁 𝑙𝑙

40 1 3/2
2 4

42 1 2
43 1 3/2
46 1 3/2

48
1 3/2
2 53/12
4 19

𝑑𝑑 𝑁𝑁 𝑙𝑙

49 1 2
7 140/3

50 1 3/2
5 45/2

52 1 3/2
2 47/12

54 1 3/2
3 37/4

𝑑𝑑 𝑁𝑁 𝑙𝑙
55 1 3/2

56 1 2
2 15/4

Remark 5.4.8. To get these results we have only used the inequalities Ψ(𝑝𝑝𝑝 𝑝𝑝) 𝛾 0, not the integrality
constraints Ψ(𝑝𝑝𝑝 𝑝𝑝) ∈ ℕ. Using those last constraints, and perhaps further conditions as in section
5.4.2, the bounds might be improved.
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From the fact that all the lower bounds 𝑙𝑙 in the table are positive we may conclude that all the
corresponding modular forms are cusp forms.

5.5 Application to the Kodaira dimension of ℱ2𝑑𝑑
Theorem 5.5.1. If 𝑑𝑑 ∈ {46, 50, 52, 54}, then ℱ2𝑑𝑑 is of general type (i.e., the Kodaira dimension is
𝜅𝜅𝜅ℱ2𝑑𝑑) = 19).

Proof. By the results of section 4.7, for these values of 𝑑𝑑 we can write 𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 = 𝜅19 𝐾 𝐾𝐾)𝐾𝐾 𝐾 1𝐾2 𝐾 𝐾𝐾𝐾𝐾
as a positive linear combination of (irreducible) Noether–Lefschetz divisors for some positive value of
𝐾𝐾:

𝜅19 𝐾 𝐾𝐾)𝐾𝐾 𝐾 1𝐾2 𝐾 𝐾𝐾𝐾𝐾 = 𝜀
∆,𝛿𝛿

𝑡𝑡∆,𝛿𝛿𝐾𝑃𝑃∆,𝛿𝛿𝐾 . (5.49)

Concrete equations for various 𝑑𝑑 are provided in appendix B.
Translating, this means that there is a modular form Ψ on ℱ2𝑑𝑑 of weight 19 𝐾 𝐾𝐾 𝜀 19 that vanishes

on the ramification divisor (which is exactly the pullback of 1𝐾2 𝐾 𝐾𝐾). By [18, theorem 1.1], if we can
prove that Ψ is a cusp form, then we know that ℱ2𝑑𝑑 is of general type.

First of all, we rewrite the irreducible Noether–Lefschetz divisors 𝑃𝑃∆,𝛿𝛿 in terms of the reducible
divisors 𝐻𝐻𝜅𝐻𝐻, 𝐻𝐻) using the triangular relations of section 4.2.2.

Next, we apply theorem 5.3.3 to relation (5.49), completing it to a relation on some toroidal
compactification. In theory, this gives us the boundary coefficient of (5.49) at every 1-cusp. The set
of 1-cusps is very large, though, so we cannot compute all of these boundary coefficients explicitly.

We apply the method of theta ghosts (see section 5.4) to compute a lower bound for the boundary
coefficient of Ψ at all the 1-cusps: we take the expression produced by theorem 5.3.3 for the vanishing
order in terms of theta coefficients, and use linear programming to get a lower bound for this expression.
From the results of this procedure (see section 5.4.3), we see that for the values of 𝑑𝑑 under consideration
the lower bound is at least 1. This means that the modular form Ψ vanishes at every 1-cusp.

By proposition 5.2.5, this is enough to conclude that Ψ is indeed a cusp form, and we are done.

Remark 5.5.2. Note that in the proof we use two distinct toroidal compactifications of ℱ2𝑑𝑑: theorem
5.3.3 (which completes relation on ℱ2𝑑𝑑 to ℱ2𝑑𝑑) applies to the toroidal compactification associated to
the perfect cone decomposition; in the proof of [18, theorem 1.1] on the other hand it is essential to
use a toroidal compactification with canonical singularities. This is not a problem: the only thing we
need from theorem 5.3.3 is the vanishing order of Ψ at the 1-cusps, and this is independent of the
choice of toroidal compactification.

Theorem 5.5.3. If 𝑑𝑑 ∈ {40, 42, 43, 48, 49, 55, 56}, then 𝜅𝜅𝜅ℱ2𝑑𝑑) ≥ 0.

Proof. The only difference with the theorem above is that we now have a modular form of weight
exactly 19 (because 𝐾𝐾 = 0 in these cases). This means we can apply the second case of [18, theorem
1.1], and conclude that the Kodaira dimension of ℱ2𝑑𝑑 is non-negative. (Again, the vanishing order at
the standard 1-cusp of the form we find equals 15 in all of these cases.)

Combining this result with theorem 4.7.8, we get the following.

Theorem 5.5.4. Let 𝑑𝑑 ∈ {40, 42, 43, 48, 49, 55, 56}. If the effective cone of ℱ2𝑑𝑑 is generated by
irreducible Noether–Lefschetz divisors and our list of generators is complete (see questions 4.5.2 and
4.5.3), then we have intermediate Kodaira dimension: 0 ≤ 𝜅𝜅𝜅ℱ2𝑑𝑑) 𝜀 19.
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Chapter 6

The Koszul divisor

This chapter is not part of the main thread of this thesis: it plays no role in the computation of the
Kodaira dimension of the moduli space ℱ2𝑑𝑑 of polarised K3 surfaces.

In our investigation of the moduli space, we had a particular need to construct effective divisors.
A natural way to get an effective divisor on a moduli space is to impose a geometric condition on the
objects that it parametrises. Often, such conditions are given in terms of an invariant of the object
that takes a constant value on the generic object but jumps at a divisorial subset. The Noether–
Lefschetz divisors we met in chapter 4 are an example of this, where the invariant is the Picard lattice
of the K3 surface.

In the case of polarised K3 surfaces, another such invariant is the Clifford index of a smooth curve
in the polarisation class. In this chapter, we will compute the divisor where this invariant jumps. For
some cases (values of 𝑑𝑑), there are a few terms of which we could not determine the multiplicity with
certainty.

6.1 Clifford index
Recall that a line bundle 𝐴𝐴 on a curve 𝐶𝐶 is said to contribute to the Clifford index of the curve 𝐶𝐶
if h0(𝐶𝐶𝐶 𝐴𝐴𝐶 𝐶 𝐶 and h1(𝐶𝐶𝐶 𝐴𝐴𝐶 𝐶 𝐶; for such a line bundle, we define its Clifford index by Cliff(𝐴𝐴𝐶 𝐴
deg𝐶𝐶(𝐴𝐴𝐶𝐴𝐶𝐴𝐴(𝐴𝐴𝐶, where 𝐴𝐴(𝐴𝐴𝐶 𝐴 h0(𝐶𝐶𝐶 𝐴𝐴𝐶𝐴𝐶 is the projective dimension of the linear system |𝐴𝐴|. The
Clifford index of 𝐶𝐶 is the minimum of the values Cliff(𝐴𝐴𝐶, where 𝐴𝐴 ranges over all line bundles that
contribute. Any bundle 𝐴𝐴 with this minimal Clifford index is said to compute the Clifford index of C.

Thus, the Clifford index of a curve measures the presence of line bundles with many sections
relative to their degree.

A few facts we will use later:

(i) The Clifford index of a generic curve of genus 𝑔𝑔 is ⌊(𝑔𝑔 𝐴 𝐶𝐶 𝑔 𝐶𝑔.

(ii) For a line bundle 𝐵𝐵 on a curve 𝐶𝐶, we have Cliff(𝐵𝐵𝐶 𝐴 Cliff(𝐵𝐵𝐶𝐶 ⊗ 𝐵𝐵𝐴1𝐶; therefore, for a line
bundle 𝐴𝐴 on a K3 surface 𝑆𝑆, by adjunction, Cliff(𝐴𝐴|𝐶𝐶𝐶 𝐴 Cliff((𝒪𝒪𝑆𝑆(𝐶𝐶𝐶 ⊗ 𝐴𝐴𝐴1𝐶|𝐶𝐶𝐶.

Remark 6.1.1. Note that we try to use multiplicative notation for the tensor product of line bundles.
However, because line bundles on K3 surfaces form a discrete group – even a lattice: see definition
1.0.4 – we will at some places switch to additive notation to make the connection to the corresponding
lattice more explicit.

6.2 Clifford index of a K3 section
Suppose given a K3 surface 𝑆𝑆 with a polarisation 𝐻𝐻 of degree 𝐻𝐻2 𝐴 𝐶𝑑𝑑 𝐶 𝐶 and with Picard lattice
𝐿𝐿 of rank 𝐶. We want to compute the Clifford index of a smooth curve 𝐶𝐶 in the class 𝐻𝐻 (so 𝐶𝐶 has
genus 𝑔𝑔 𝐴 𝑑𝑑 𝑔 𝐶 𝐶 𝐶). The main tool that makes this possible is the following result by Green and
Lazarsfeld.

Theorem 6.2.1 ([16]). In the situation described above, if Cliff(𝐶𝐶𝐶 is less than the generic value
⌊(𝑔𝑔 𝐴 𝐶𝐶 𝑔 𝐶𝑔, then there is a line bundle 𝐷𝐷 on 𝑆𝑆 such that 𝐷𝐷|𝐶𝐶 computes the Clifford index of 𝐶𝐶.

67
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Moreover, we may choose 𝐷𝐷 in such a way that

(i) h0(𝑆𝑆𝑆 𝐷𝐷𝑆 𝑆 𝑆,

(ii) h0(𝑆𝑆𝑆 𝑆𝑆(𝑆𝑆𝑆 𝑆 𝐷𝐷−1𝑆 𝑆 𝑆, and

(iii) 𝑆𝑆 𝐶 𝐷𝐷 𝐶 𝐶𝐶 − 𝐶.

Let us call a line bundle 𝐷𝐷 on 𝑆𝑆 with these last three properties a candidate bundle. The fact that
the bundle 𝐷𝐷 from the theorem may be chosen to have these properties is not explicitly mentioned in
[16]; variants of the theorem, such as the older version in [13], do mention this. An inspection of the
proof by Green and Lazarsfeld shows that it holds in their general case as well.

This theorem gives us a strategy to compute Cliff(𝑆𝑆𝑆: we enumerate all candidate line bundles 𝐷𝐷
on 𝑆𝑆 (there will be only finitely many). For each of these, we compute the Clifford index of 𝐷𝐷𝐷𝐶𝐶; the
smallest of these values will equal Cliff(𝑆𝑆𝑆. If there are no candidate line bundles, then the Clifford
index must be the generic value ⌊(𝐶𝐶 − 𝐶𝑆 𝑔 𝑆𝑔.

Now, to compute the Clifford index of the restriction 𝐷𝐷𝐷𝐶𝐶, we may use an exact sequence relating
it to the bundles 𝑆𝑆𝑆𝑆(𝑆𝑆𝑆 and 𝐷𝐷 on 𝑆𝑆. Standard results describe how to compute cohomology groups
of line bundles on 𝑆𝑆, in terms of their lattice-theoretic properties in Pic 𝑆𝑆 ≅ 𝐿𝐿; see section 1.1.

6.3 Procedure
We describe the general procedure to compute, given a rank 𝑆 even hyperbolic lattice 𝐿𝐿, the Clifford
index of irreducible curves in the polarisation class of the corresponding K3 surfaces.

Procedure 6.3.1.

(i) Compute the set {𝐸𝐸 ∈ 𝐿𝐿 𝐿 𝐸𝐸2 = 0}, and check if any of these 𝐸𝐸 has 𝐸𝐸 𝐶 𝐸𝐸 = 𝐶. If so, then 𝐸𝐸 is
monogonal (by proposition 1.1.6), so there are no smooth irreducible curves in the class 𝐸𝐸, so
there is no Clifford index to calculate.

(ii) Compute the set of (−𝑆𝑆-vectors Δ = {𝛿𝛿 ∈ 𝐿𝐿 𝐿 𝛿𝛿2 = −𝑆}. Compute the intersection of each of
these with 𝐸𝐸; if any has 𝛿𝛿 𝐶𝐸𝐸 = 0, then we know that we can choose 𝐸𝐸 to be nef, but not ample;
if all intersections are nonzero, then we may even choose 𝐸𝐸 to be ample.

(iii) Compute the positive cone 𝒞𝒞. Use Vinberg’s algorithm to compute a fundamental domain of the
action of the group {𝑠𝑠𝛿𝛿 𝐿 𝛿𝛿 ∈ Δ} on 𝒞𝒞; by [4, VIII.3.9], this fundamental domain is exactly the
nef cone. This also tells us what the irreducible (−𝑆𝑆-curves are: these are exactly the ones that
define a face of the nef cone.

(iv) Determine the set of effective classes: by [4, VIII.3.7], this is the semigroup generated by the
irreducible (−𝑆𝑆-curves together with the classes that lie in the closure of the positive cone.
Compute the set of classes 𝐷𝐷 such that 𝐷𝐷 is effective, and 𝐸𝐸 𝑆𝐷𝐷−1 is effective, and 𝐷𝐷𝐶𝐸𝐸 𝐶 𝐶𝐶−𝐶.
This contains all candidates. It will be a finite set, even without the last condition.

(v) For each of these 𝐷𝐷, calculate the Betti numbers h0(𝑆𝑆𝑆 𝐷𝐷𝑆, h1(𝑆𝑆𝑆 𝐷𝐷𝑆, h0(𝑆𝑆𝑆 𝑆𝑆(𝑆𝑆𝑆 𝑆 𝐷𝐷−1𝑆 and
h1(𝑆𝑆𝑆 𝑆𝑆(𝑆𝑆𝑆 𝑆 𝐷𝐷−1𝑆.

(vi) From the Betti numbers of 𝐷𝐷 and 𝑆𝑆(𝑆𝑆𝑆 𝑆 𝐷𝐷−1, compute the Betti numbers of 𝐷𝐷𝐷𝐶𝐶. This gives
us the Clifford index of 𝐷𝐷𝐷𝐶𝐶.

(vii) Take the minimum of these Clifford indices to get the Clifford index of 𝑆𝑆.

Remark 6.3.2. The only part that might not succeed, is step (vi): in some cases, we do not have
enough information to isolate the Betti numbers of 𝐷𝐷𝐷𝐶𝐶 from the long exact sequence that relates
them to 𝐷𝐷 and 𝑆𝑆 𝑆 𝐷𝐷−1.
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6.4 Examples
6.4.1 𝐻𝐻2 = 4, 𝐻𝐻 𝐻 𝐻 = 𝐻, 𝐻2 = 0
Take the lattice 𝐿𝐿 = 𝐿𝐻𝐻 𝐿 𝐿𝐻, where 𝐻𝐻2 = 4, 𝐻𝐻 𝐻 𝐻 = 𝐻, 𝐻2 = 0. Let 𝑆𝑆 be a K3 surface with Picard
lattice 𝐿𝐿, and choose the isomorphism in such a way that 𝐻𝐻 corresponds to a nef class, using lemma
1.2.2. In the following, we will identify Pic 𝑆𝑆 and 𝐿𝐿 using this isomorphism.

The equation 𝑥𝑥2 > 0, for 𝑥𝑥 = 𝑥𝑥𝐻𝐻 𝑥 𝑥𝑥𝐻, gives 4𝑥𝑥2 𝑥 6𝑥𝑥𝑥𝑥 > 0. Since 𝐻𝐻 is nef, hence positive, the
positive cone must be 𝒞𝒞 = 𝒞𝑥𝑥𝐻𝐻 𝑥 𝑥𝑥𝐻 ∈ 𝑉𝑉 𝑉 𝑥𝑥 > 0𝑉 𝑉𝑥𝑥 𝑥 𝐻𝑥𝑥 > 0𝑉.

First of all, we compute the set of 𝐸𝐸 ∈ 𝐿𝐿 with 𝐸𝐸2 = 0, to see if 𝐻𝐻 could be monogonal. Now,
4𝑥𝑥2 𝑥 6𝑥𝑥𝑥𝑥 = 0 gives 𝑥𝑥 = 0 or 𝐻𝑥𝑥 = 𝑏𝑉𝑥𝑥, so this has solutions 𝐸𝐸 ∈ 𝐿 𝐻 𝐻 and 𝐸𝐸 ∈ 𝐿 𝐻 (𝐻𝐻𝐻 𝑏 𝑉𝐻𝐻. We
need to check whether there is such an 𝐸𝐸 with the property 𝐸𝐸 𝐻 𝐻𝐻 = 𝐸 (in that case, 𝐸𝐸 is necessarily
primitive). This does not hold in our case, since 𝐻 𝐻 𝐻𝐻 = 𝐻, and (𝐻𝐻𝐻 𝑏 𝑉𝐻𝐻 𝐻 𝐻𝐻 = 6. We conclude that
𝐻𝐻 is not monogonal.

Next, we compute the set of 𝛿𝛿 ∈ 𝐿𝐿 such that 𝛿𝛿2 = 𝑏𝑉. Writing 𝛿𝛿 = 𝑥𝑥𝐻𝐻 𝑥𝑥𝑥𝐻, we get 4𝑥𝑥2 𝑥6𝑥𝑥𝑥𝑥 = 𝑏𝑉,
with solutions 𝛿𝛿 = 𝐻𝐻 𝑏 𝐻 and 𝑏𝛿𝛿. Now, the nef cone is a fundamental domain of the action of 𝑠𝑠𝛿𝛿 (the
reflection in ±𝛿𝛿) on 𝒞𝒞. Since 𝛿𝛿 𝐻 𝐻𝐻 = 𝐸, we know that 𝐻𝐻 is ample, and that 𝛿𝛿 is effective (not 𝑏𝛿𝛿),
and the nef cone is given by

Nef(𝑆𝑆𝐻 = 𝑆𝑥𝑥 ∈ 𝒞𝒞 𝑉 𝛿𝛿 𝐻 𝑥𝑥 𝒞 0𝒞 = 𝒞𝑥𝑥𝐻𝐻 𝑥 𝑥𝑥𝐻 ∈ 𝑉𝑉 𝑉 𝑥𝑥 𝒞 0𝑉 𝑥𝑥 𝑥 𝐻𝑥𝑥 𝒞 0𝑉 . (6.1)

See figure 6.1.

Figure 6.1: The various cones in Pic(𝑆𝑆𝐻 𝑆 𝑆 ≅ 𝑆2 of a K3 surface with rank 𝑉 Picard lattice with
intersection numbers 𝐻𝐻2 = 4, 𝐻𝐻 𝐻 𝐻 = 𝐻, 𝐻2 = 0. (Note that the colours are superimposed: the
effective cone includes the positive cone, which includes the ample cone.)

irreducible (-2)-curve
effective with effective adjoint
effective cone
positive cone
nef cone

The effective classes are generated by 𝛿𝛿 together with the lattice points in 𝒞𝒞. The ones of these
that satisfy 𝐷𝐷 𝐻 𝐻𝐻 𝐷 𝐷𝐷 𝑏 𝐸 are 𝐻𝐻 𝑏 𝐻(= 𝛿𝛿𝐻 and 𝑉𝐻𝐻 𝑏 𝑉𝐻(= 𝑉𝛿𝛿𝐻. Neither of these are candidates: 𝛿𝛿
has h0(𝑆𝑆𝑉 𝛿𝛿𝐻 = 𝐸, since 𝛿𝛿 corresponds to a (𝑏𝑉𝐻-curve, while 𝑉𝛿𝛿 has a non-effective adjoint bundle
(𝐻𝐻 𝑏 𝑉𝛿𝛿 = 𝑏𝐻𝐻 𝑥 𝑉𝐻, and h0(𝑆𝑆𝑉 𝐻𝐻 𝑏 𝑉𝛿𝛿𝐻 = 0).

We conclude that the Clifford index of 𝐶𝐶 is ⌊(𝐷𝐷 𝑏 𝐸𝐻 𝑔 𝑉𝑔 = 𝐸.

6.4.2 𝐻𝐻2 = 4, 𝐻𝐻 𝐻 𝐻 = 𝑉, 𝐻2 = 0
Take the lattice 𝐿𝐿 = 𝐿𝐻𝐻 𝐿 𝐿𝐻, where 𝐻𝐻2 = 4, 𝐻𝐻 𝐻 𝐻 = 𝑉, 𝐻2 = 0. Let 𝑆𝑆 be a K3 surface with Picard
lattice 𝐿𝐿, and choose the isomorphism in such a way that 𝐻𝐻 corresponds to a nef class, using lemma
1.2.2.

The equation 𝑥𝑥2 > 0, for 𝑥𝑥 = 𝑥𝑥𝐻𝐻 𝑥 𝑥𝑥𝐻, gives 4𝑥𝑥2 𝑥 4𝑥𝑥𝑥𝑥 > 0. Since 𝐻𝐻 is nef, hence positive, the
positive cone must be 𝒞𝒞 = 𝒞𝑥𝑥𝐻𝐻 𝑥 𝑥𝑥𝐻 ∈ 𝑉𝑉 𝑉 𝑥𝑥 > 0𝑉 𝑥𝑥 𝑥 𝑥𝑥 > 0𝑉.
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First, we compute the set of 𝐸𝐸 ∈ 𝐿𝐿 with 𝐸𝐸2 = 0. Now 4𝑎𝑎2 + 4𝑎𝑎𝑎𝑎 = 0 gives 𝑎𝑎 = 0 or 𝑎𝑎 = 𝑏𝑎𝑎, so
this has solutions 𝐸𝐸 ∈ ℤ · Γ and 𝐸𝐸 ∈ ℤ · (𝐻𝐻 𝑏 Γ𝐻; these have an intersection with 𝐻𝐻 of Γ · 𝐻𝐻 = 𝐻 𝐻 𝐻,
and (𝐻𝐻 𝑏 Γ𝐻 · 𝐻𝐻 = 𝐻 𝐻 𝐻, so we see that 𝐻𝐻 is not monogonal.

Next, we compute the set of 𝛿𝛿 ∈ 𝐿𝐿 such that 𝛿𝛿2 = 𝑏𝐻. Writing 𝛿𝛿 = 𝑎𝑎𝐻𝐻 +𝑎𝑎Γ, we get 4𝑎𝑎2 +4𝑎𝑎𝑎𝑎 = 𝑏𝐻;
since the right-hand side is 𝐻 mod 4, this has no solutions. Because there are no negative curves, the
nef cone equals the closure of the positive cone. See figure 6.2.

Figure 6.2: The various cones in Pic(𝑆𝑆𝐻 𝑆 𝑆 ≅ 𝑆2 of a K3 surface with rank 𝐻 Picard lattice with
intersection numbers 𝐻𝐻2 = 4, 𝐻𝐻 · Γ = 𝐻, Γ2 = 0. All three cones coincide (up to differences at the
boundary).

irreducible (-2)-curve
effective with effective adjoint
effective cone
positive cone
nef cone

As there are no irreducible (𝑏𝐻𝐻-curves, the effective classes are exactly the lattice points in 𝒞𝒞.
The ones of these that satisfy 𝐷𝐷 · 𝐻𝐻 𝐷 𝐷𝐷 𝑏 𝐻 are Γ and 𝐻𝐻 𝑏 Γ. Since Cliff(𝐷𝐷𝐻 = Cliff(𝐻𝐻 𝑆 𝐷𝐷𝑏1𝐻, we
only need to compute the Clifford index for 𝐷𝐷 = Γ.

So, look at the long exact sequence associated to

0 ⟶ 𝒪𝒪𝑆𝑆(Γ 𝑏 𝐻𝐻𝐻 ⟶ 𝒪𝒪𝑆𝑆(Γ𝐻 ⟶ 𝒪𝒪𝐶𝐶(𝐴𝐴𝐻 ⟶ 0 , (6.2)

where 𝐴𝐴 is the restriction of 𝒪𝒪𝑆𝑆(Γ𝐻 to the smooth curve 𝐶𝐶 ∈ |𝐻𝐻| of genus 𝐷𝐷 = 𝑔:

0 ⟶ H0(𝑆𝑆𝑆 Γ 𝑏 𝐻𝐻𝐻 ⟶ H0(𝑆𝑆𝑆 Γ𝐻 ⟶ H0(𝐶𝐶𝑆 𝐴𝐴𝐻 (6.3)
⟶ H1(𝑆𝑆𝑆 Γ 𝑏 𝐻𝐻𝐻 ⟶ H1(𝑆𝑆𝑆 Γ𝐻 ⟶ H1(𝐶𝐶𝑆 𝐴𝐴𝐻 (6.4)
⟶ H2(𝑆𝑆𝑆 Γ 𝑏 𝐻𝐻𝐻 ⟶ H2(𝑆𝑆𝑆 Γ𝐻 ⟶ 0 . (6.5)

We use our knowledge of linear series on a K3 surface to compute the left and middle terms.
(i) Since 𝐻𝐻 𝑏Γ is effective, H2(𝑆𝑆𝑆 𝐻𝐻 𝑏Γ𝐻 = 0; because it is also nef and primitive, H1(𝑆𝑆𝑆 𝐻𝐻 𝑏Γ𝐻 = 0

and h0(𝑆𝑆𝑆 𝐻𝐻 𝑏 Γ𝐻 = 𝐻 + (𝐻𝐻 𝑏 Γ𝐻2/𝐻 = 𝐻. Using h𝑖𝑖(𝑆𝑆𝑆 𝐷𝐷𝐻 = h2𝑏𝑖𝑖(𝑆𝑆𝑆 𝑏𝐷𝐷𝐻, we get all left terms.

(ii) Because Γ is effective, H2(𝑆𝑆𝑆 Γ𝐻 = 0; since it is nef and primitive, H1(𝑆𝑆𝑆 Γ𝐻 = 0, so h0(𝑆𝑆𝑆 Γ𝐻 =
𝐻 + Γ2/𝐻 = 𝐻. This gives all middle terms.

From this, we get that h0(𝐶𝐶𝑆 𝐴𝐴𝐻 = 𝐻 and h1(𝐶𝐶𝑆 𝐴𝐴𝐻 = 𝐻, so 𝐴𝐴 contributes, and Cliff(𝐴𝐴𝐻 = d𝐴𝐴𝐶𝐶(𝐴𝐴𝐻 𝑏
𝐻(h0(𝐶𝐶𝑆 𝐴𝐴𝐻 𝑏 𝐻𝐻 = 𝐻𝐻 · Γ 𝑏 𝐻 · (𝐻 𝑏 𝐻𝐻 = 0. Therefore the Clifford index of 𝐶𝐶 is 0, which is lower than
the expected value ⌊(𝐷𝐷 𝑏 𝐻𝐻 𝑔 𝐻𝑔 = 𝐻.

6.4.3 𝐻𝐻2 = 𝐻, 𝐻𝐻 · Γ = 𝐻, Γ2 = 𝑏𝐻
For the next example, we take the lattice 𝐿𝐿 = ℤ𝐻𝐻 𝐿 ℤΓ, where 𝐻𝐻2 = 𝐻, 𝐻𝐻 · Γ = 𝐻, Γ2 = 𝑏𝐻. We just
give the results.

There are two 𝑏𝐻-curves. All the relevant cones are drawn in figure 6.3.
There are four candidate bundles 𝐻𝐻𝑆 Γ𝑆 𝐻𝐻 𝑏 Γ𝑆 0, but none of them contribute. The polarisation

curve therefore has as Clifford index the generic value ⌊(𝐷𝐷 𝑏 𝐻𝐻 𝑔 𝐻𝑔 = 0 (which we could have known
without computation, because this is the only possible Clifford index of a curve of genus 𝐻).
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Figure 6.3: The various cones in Pic(𝑆𝑆𝑆 𝑆 𝑆 ≅ 𝑆2 of a K3 surface with rank 2 Picard lattice with
intersection numbers 𝐻𝐻2 = 2, 𝐻𝐻 𝐻 𝐻 = 𝐻, 𝐻2 = −2.
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6.4.4 𝐻𝐻2 = 𝐻6, 𝐻𝐻 𝐻 𝐻 = 6, 𝐻2 = 2
For the next example, we take the lattice 𝐿𝐿 = 𝐿𝐻𝐻 𝐿 𝐿𝐻, where 𝐻𝐻2 = 𝐻6, 𝐻𝐻 𝐻 𝐻 = 6, 𝐻2 = 2. We just
give the results.

There are two −2-curves. All the relevant cones are drawn in figure 6.4.

Figure 6.4: The various cones in Pic(𝑆𝑆𝑆 𝑆 𝑆 ≅ 𝑆2 of a K3 surface with rank 2 Picard lattice with
intersection numbers 𝐻𝐻2 = 𝐻6, 𝐻𝐻 𝐻 𝐻 = 6, 𝐻2 = 2.

irreducible (-2)-curve
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effective cone
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We list the candidate bundles together with their possible Clifford indices in table 6.1.
Because the Clifford index of the bundle 3𝐻𝐻 − 6𝐻 and its adjoint −2𝐻𝐻 𝐻 6𝐻 (located in figure 6.4

at the top and bottom vertex of the red area) could be either 0 or 2 (we cannot tell this from the Betti
numbers in the long exact sequence: see remark 6.3.2), the Clifford index of the polarisation curve is
also either 0 or 2.
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Table 6.1: Candidate bundles on a K3 surface with rank 2 Picard lattice with intersection numbers
𝐻𝐻2 = 16, 𝐻𝐻 𝐻 𝐻 = 6, 𝐻2 = 2.

Candidate bundle possible Clifford indices
3𝐻𝐻 𝐻 6𝐻 0,2
2𝐻𝐻 𝐻 𝐻𝐻 2,4
2𝐻𝐻 𝐻 3𝐻 (does not contribute)
1𝐻𝐻 𝐻 2𝐻 2
1𝐻𝐻 𝐻 1𝐻 2
0𝐻𝐻 𝐻 0𝐻 (does not contribute)
1𝐻𝐻 𝐻 0𝐻 (does not contribute)
0𝐻𝐻 𝐻 1𝐻 2
0𝐻𝐻 𝐻 2𝐻 2

𝐻1𝐻𝐻 𝐻 3𝐻 (does not contribute)
𝐻1𝐻𝐻 𝐻 𝐻𝐻 2,4
𝐻2𝐻𝐻 𝐻 6𝐻 0,2

6.5 Results
We present some results of this procedure, for 𝑑𝑑 = 3 and 𝑑𝑑 = 6, in table 6.2.

There is a clear pattern in the distribution of blanks vs. non-blanks in the table: the non-blanks
form an infinite set of parabolas, shifted in the Δ-direction. This is explained by proposition 4.2.13.

To get a more compact representation of these results, we choose another parametrisation of the
lattices.

Definition 6.5.1. The rank 2 even hyperbolic 2𝑑𝑑-polarised lattice of coset 𝑘𝑘 ∈ ℤ (note that the coset
of the lattice is in fact [𝑘𝑘𝑘 ∈ (ℤ/2𝑑𝑑ℤ𝑑/𝑑) and series 𝑙𝑙 ∈ ℤ is the lattice (2𝑑𝑑 𝑑𝑑

𝑑𝑑 𝐻2𝑘𝑘). The Clifford index
of a K3 surface with this Picard lattice is denoted by 𝐶𝐶(𝑘𝑘𝐶 𝑙𝑙𝑑, if this is well defined; it is not clear
whether the Picard lattice of a K3 surface always determines the Clifford index of a smooth section
of the polarisation class, due to the problematic step (vi) in the procedure.

Note that this lattice is only hyperbolic under the condition that Δ = 𝑘𝑘2 𝐻 𝐻𝑑𝑑𝑙𝑙 is positive, so for
fixed 𝑘𝑘, the parameter 𝑙𝑙 must not be too negative.

In terms of these new parameters, we give some more results of our Clifford index computations
in table 6.3.
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Table 6.2: The Clifford index of a polarised K3 surface with rank 2 Picard lattice with discriminant
−Δ and coset 𝛿𝛿. The rows are labelled by Δ, the columns by 𝛿𝛿. A blank indicates that there exists
no rank 2 lattice with those particular invariants. The symbol M denotes that the corresponding
polarised K3 surface is monogonal (definition 1.1.5).
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45 1

46

47

48 1

(b) 𝑑𝑑 𝑑 𝑑
0 1 2 3 4 5 6

1 M 0

2

3

4 0

5

6

7

8

9 1

10

11

12 2

13

14

15

16 2

17

18

19

20

21

22

23

24 3

25 3 3

26

27

28 3

29

30

31

32

33 3

34

35

36 3

37

38

39

40 3

41

42

43

44

45

46

47

48 3
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Table 6.3: The Clifford index of a polarised K3 surface with rank 2 Picard lattice of given coset 𝑘𝑘
(column) and series 𝑙𝑙 (row). A blank indicates that there exists no rank 2 lattice with those particular
invariants. The symbol M denotes that the corresponding polarised K3 surface is monogonal (defini-
tion 1.1.5). A question mark denotes that our procedure failed to give a definite result (see remark
6.3.2).

(a) 𝑑𝑑 𝑑 𝑑
0 1

0 M
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0

(b) 𝑑𝑑 𝑑 𝑑
0 1 2

0 M 0
1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1

(c) 𝑑𝑑 𝑑 𝑑
0 1 2 3

0 M 0 1
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1
5 1 1 1 1

(d) 𝑑𝑑 𝑑 𝑑
0 1 2 3 4

0 M 0 1 2
1 2 2 2 2 2
2 2 2 2 2 2
3 2 2 2 2 2
4 2 2 2 2 2
5 2 2 2 2 2

(e) 𝑑𝑑 𝑑 𝑑
0 1 2 3 4 5

-1 1
0 M 0 1 2 2
1 2 2 2 2 2 2
2 2 2 2 2 2 2
3 2 2 2 2 2 2
4 2 2 2 2 2 2

(f) 𝑑𝑑 𝑑 𝑑
0 1 2 3 4 5 6

-1 0 2
0 M 0 1 2 3 3
1 3 3 3 3 3 3 3
2 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3
4 3 3 3 3 3 3 3

(g) 𝑑𝑑 𝑑 𝑑
0 1 2 3 4 5 6 7

-1 2 3
0 M 0 1 2 3 3 3
1 3 3 3 3 3 3 3 3
2 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3
4 3 3 3 3 3 3 3 3

(h) 𝑑𝑑 𝑑 𝑑
0 1 2 3 4 5 6 7 8

-1 ? 3 4
0 M 0 1 2 3 4 4 4
1 4 4 4 4 4 4 4 4 4
2 4 4 4 4 4 4 4 4 4
3 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4

(i) 𝑑𝑑 𝑑 𝑑
0 1 2 3 4 5 6 7 8 9

-2 3
-1 3 4 4
0 M 0 1 2 3 4 4 4 4
1 4 4 4 4 4 4 4 4 4 4
2 4 4 4 4 4 4 4 4 4 4
3 4 4 4 4 4 4 4 4 4 4

(j) 𝑑𝑑 𝑑 𝑑𝑑
0 1 2 3 4 5 6 7 8 9 10

-2 0 4
-1 3 4 5 5
0 M 0 1 2 3 4 5 5 5 5
1 5 5 5 5 5 5 5 5 5 5 5
2 5 5 5 5 5 5 5 5 5 5 5
3 5 5 5 5 5 5 5 5 5 5 5

(k) 𝑑𝑑 𝑑 𝑑𝑑
0 1 2 3 4 5 6 7 8 9 10 11

-2 4 5
-1 3 4 5 5 5
0 M 0 1 2 3 4 5 5 5 5 5
1 5 5 5 5 5 5 5 5 5 5 5 5
2 5 5 5 5 5 5 5 5 5 5 5 5
3 5 5 5 5 5 5 5 5 5 5 5 5

(l) 𝑑𝑑 𝑑 𝑑𝑑
0 1 2 3 4 5 6 7 8 9 10 11 12

-2 2 5 6
-1 ? 4 5 6 6 6
0 M 0 1 2 3 4 5 6 6 6 6 6
1 6 6 6 6 6 6 6 6 6 6 6 6 6
2 6 6 6 6 6 6 6 6 6 6 6 6 6
3 6 6 6 6 6 6 6 6 6 6 6 6 6

(m) 𝑑𝑑 𝑑 𝑑𝑑
0 1 2 3 4 5 6 7 8 9 10 11 12 13

-3 5
-2 5 6 6
-1 4 5 6 6 6 6
0 M 0 1 2 3 4 5 6 6 6 6 6 6
1 6 6 6 6 6 6 6 6 6 6 6 6 6 6
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6

(n) 𝑑𝑑 𝑑 𝑑𝑑
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

-3 0 6
-2 4 6 7 7
-1 4 5 6 7 7 7 7
0 M 0 1 2 3 4 5 6 7 7 7 7 7 7
1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
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(o) 𝑑𝑑 𝑑 𝑑𝑑
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-3 4 7
-2 ? 6 7 7 7
-1 ? 5 6 7 7 7 7 7
0 M 0 1 2 3 4 5 6 7 7 7 7 7 7 7
1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

(p) 𝑑𝑑 𝑑 𝑑𝑑
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-3 2 7 8
-2 6 7 8 8 8
-1 5 6 7 8 8 8 8 8
0 M 0 1 2 3 4 5 6 7 8 8 8 8 8 8 8
1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

(q) 𝑑𝑑 𝑑 𝑑𝑑
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

-4 7
-3 7 8 8
-2 6 7 8 8 8 8
-1 5 6 7 8 8 8 8 8 8
0 M 0 1 2 3 4 5 6 7 8 8 8 8 8 8 8 8
1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

(r) 𝑑𝑑 𝑑 𝑑𝑑
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-4 0 8
-3 4 8 9 9
-2 7 8 9 9 9 9
-1 5 6 7 8 9 9 9 9 9 9
0 M 0 1 2 3 4 5 6 7 8 9 9 9 9 9 9 9 9
1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

(s) 𝑑𝑑 𝑑 𝑑𝑑
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

-4 8 9
-3 8 9 9 9
-2 7 8 9 9 9 9 9
-1 5 6 7 8 9 9 9 9 9 9 9
0 M 0 1 2 3 4 5 6 7 8 9 9 9 9 9 9 9 9 9
1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

(t) 𝑑𝑑 𝑑 𝑑𝑑
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-4 2 9 10
-3 6 9 10 10 10
-2 ? 8 9 10 10 10 10 10
-1 ? 6 7 8 9 10 10 10 10 10 10 10
0 M 0 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10
1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

(u) 𝑑𝑑 𝑑 𝑑𝑑
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

-5 9
-4 9 10 10
-3 4 9 10 10 10 10
-2 ? 8 9 10 10 10 10 10 10
-1 6 7 8 9 10 10 10 10 10 10 10 10
0 M 0 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10

(v) 𝑑𝑑 𝑑 𝑑𝑑
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

-5 0 10
-4 4 10 11 11
-3 8 10 11 11 11 11
-2 8 9 10 11 11 11 11 11 11
-1 6 7 8 9 10 11 11 11 11 11 11 11 11
0 M 0 1 2 3 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11
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6.6 Analysis of results
Most of the results can be described by a relatively simple formula, but a few values differ from it.

The easiest cases are the positive series, and the series 𝑙𝑙 𝑙 𝑙.

Conjecture 6.6.1. If 𝑙𝑙 𝑙 𝑙, we have the following formula for 𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝐶:
(i) 𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝑙𝐶 𝑙 𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶 𝐶 𝐶𝐶 if 𝑙𝑙 𝑙 𝑙;

(ii) 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝐶 𝑙 𝐶𝐶𝐶 𝐶𝐶𝐶 𝐶 𝐶𝐶 𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶 𝐶 𝐶𝐶𝐶 if 𝐶 ≤ 𝐶𝐶 ≤ 𝑘𝑘.

All values that we have computed agree with this conjecture.
Note that case (ii) essentially covers the whole series 𝑙𝑙 𝑙 𝑙, because 𝐶𝐶𝐶𝐶𝑙𝐶𝐶 𝑙𝐶 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑙𝐶 are not

defined: the first because the corresponding lattice (2𝑑𝑑 𝑑
𝑑 𝑑) is degenerate, and the second because the

lattice (2𝑑𝑑 𝑑
𝑑 𝑑) is always monogonal.

For the negative series, we have to work a little harder.
For convenience, let us parametrise the rank 𝐶 lattices in yet another way: by 𝑘𝑘 (as before) and

integers 𝑏𝑏 and 𝑐𝑐, where the lattice is (2𝑑𝑑 𝑑𝑑
𝑑𝑑 2𝑏𝑏). We also introduce some derived quantities

𝑥𝑥 𝑙 𝑏𝑏 𝐶 𝐶𝑐𝑐 𝐶 𝐶 (6.6)
𝑦𝑦 𝑙 𝑏𝑏 𝐶 𝑘𝑘 𝐶 𝑐𝑐 𝐶 𝐶 (6.7)

𝑒𝑒 𝑙 𝑒𝑘𝑘
𝐶 ⌋ 𝑙 𝐶𝐶𝐶𝐶 𝐶 𝐶𝐶 𝐶 𝐶𝐶 . (6.8)

Let us write 𝐶𝐶𝑑 for the Clifford index conjectured by 6.6.1. In terms of the above parameters, the
formula for 𝐶𝐶𝑑 becomes

𝐶𝐶𝑑 𝑙 {𝐶𝐶𝐶 𝐶𝑥𝑥𝐶 𝑒𝑒𝐶 if 𝑥𝑥 𝑙 𝑙 and 𝑐𝑐 𝑙 𝑙
𝑒𝑒 otherwise.

(6.9)

It is easiest to see how to adapt this formula to the negative series by keeping 𝑐𝑐 fixed and varying 𝑘𝑘
and 𝑏𝑏. There is a triangle of points in the 𝐶𝑘𝑘𝐶 𝑏𝑏𝐶-plane where the Clifford index differs from 𝐶𝐶𝑑 in a
regular way: see table 6.4.

This leads us to submit the following refined formula for the Clifford index:

𝐶𝐶2 𝑙
⎧{
⎨{⎩

𝐶ax 𝐶𝑥𝑥𝐶 𝑙𝐶 𝑥 𝑥𝑥 if 𝑥𝑥 𝑙 𝐶 and 𝑦𝑦 𝑙 𝑙
𝐶𝐶𝐶 𝐶𝑥𝑥𝐶 𝑒𝑒𝐶 if 𝑥𝑥 𝑙 𝑙 and 𝑐𝑐 𝑙 𝑙
𝑒𝑒 otherwise;

(6.10)

where
𝑥𝑥 𝑙 𝑡𝑐𝑐 𝑥 𝐶

𝐶 𝐶 |𝑥𝑥|
𝐶 𝐶 |𝑦𝑦|

𝐶 ⌋ . (6.11)

Unfortunately, there are still some lattices for which this formula gives the wrong result. (These
are typeset in bold in the tables of results.)

Testing our formula for all hyperbolic and non-monogonal lattices with 𝐶 ≤ 𝑘𝑘 ≤ 𝐶𝑙𝑙𝐶 𝑙 ≤ 𝑏𝑏 ≤
𝐶𝑙𝑙𝐶 𝐶 ≤ 𝑐𝑐 ≤ 𝑐𝑙 gives the following statistics: of these 137000 lattices,

• 3451 have a non-generic Clifford index;

• 14130 do not comply with the simple formula 𝐶𝐶𝑑;

• 1105 do not comply with the refined formula 𝐶𝐶2;

• of these last ones, 1023 are only narrowly hyperbolic, in the sense that decreasing 𝑏𝑏 by one makes
it non-hyperbolic.

So, formula 𝐶𝐶2 fails in less than a percent of all tested lattices. Of the ones for which it fails,
more than 9𝑙 percent is only narrowly hyperbolic. This is significant, as of all 137000 tested lattices
only 2361 are narrowly hyperbolic. It appears that the problematic lattices – the ones for which our
refined formula fails – are near the boundary of the set of hyperbolic lattices.

As a further analysis, we may look at the discriminants Δ 𝑙 𝑏𝑏2 𝐶 4𝑘𝑘𝑐𝑐 of the problematic lattices.
This is motivated by the observation that hyperbolic lattices are just the ones having Δ 𝑙 𝑙, so ones
that are narrowly hyperbolic have a small positive Δ.
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Table 6.4: The Clifford index of polarised K3 surface with rank 2 Picard lattice of degree 2𝑑𝑑 (row),
parametrised by 𝑏𝑏 (column) and 𝑐𝑐 𝑐 𝑐. The colours indicate the difference of the computed value with
simple formula 𝐶𝐶1: black means 0, red means 1, blue means 2, green means 3.

2𝑑𝑑
𝑏𝑏

5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 1 1 1 1 1 1 1 1 1 1
6 0 1 1 1 1 1 1 1 1 1 1
8 M 2 2 2 2 2 2 2 2 2
10 2 2 2 2 2 2 2 2
12 M 3 3 3 3 3 3 3
14 0 3 3 3 3 3 3
16 1 4 4 4 4 4
18 2 4 4 4 4
20 3 5 5 5
22 3 4 5 5
24 4 5 6
26 5 6
28 4 6
30 6
32 2

Looking at the list of values of Δ for the problematic lattices, together with their number of
occurrences, one immediately notices the predominance of perfect squares. In fact, the 12 values
occurring most often are exactly the first 12 squares. Among the rest, squares and sums of two
squares are in majority, although other numbers occur as well. Again, we have found an interesting,
relatively simple pattern, together with a small minority of cases that do not conform, in some way
that is not readily recognisable.
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Appendix A

Computer implementation

A.1 Sage implementation of Eisenstein coefficients
We implemented the formula of theorem 3.4.4, to compute the coefficients of the Eisenstein series 𝐸𝐸0̄,
in Sage [50].

Listing A.1: Sage code computing coefficients of Eisenstein series
from sage . quadratic_forms . spec ia l_va lues import *

k = 21/2
bplus = 0 ; bmin = 1
m = bplus + bmin

def e i s e n s t e i n (d ,gamma, n ) :
(n_0 , f ) = decomp(d , n)
d_g = d_gamma(d , n)
n_bar = n * d_g^2
n_0_bar = n_0 * d_g^2
detS = − 2 * d
D_curl = ZZ(2 * (−1)^((m + 1) / 2) * n_0_bar * detS )
c = kronecker_character (D_curl )
x1 = 2^(k + 1) * pi^k * n^(k − 1) * (−1)^((2 * k − bmin + bplus ) / 4) \

/ ( sqr t (2 * d) * gamma__exact(k ) )
x2 = quadratic_L_function__exact (ZZ(k − 1/2) ,D_curl ) / zeta__exact (2 * k − 1)
x3 = 1
for p in (2 * n_bar * detS ) . support ( ) :

x3 *= (1 − c (p) * p^(ZZ(1/2 − k ) ) ) / (1 − p^(1 − 2 * k ) ) \
* L_local (d ,gamma, n , p ,w_p(d ,d_g , n , p ) )

r e s u l t = (x1 * x2 * x3 ) . s imp l i f y_rad i ca l ( )
return r e s u l t

def d_gamma(d ,gamma) :
r e s u l t = 2 * d / gcd (2 * d ,gamma)
return r e s u l t

def w_p(d ,d_gamma, n , p ) :
return 1 + 2 * (2 * n * d_gamma) . va luat ion (p)

def decomp(d , n ) :
nOutsideS = n . prime_to_S_part (QQ(2 * d ) . support ( ) )
nOnS = n/nOutsideS
nOutsideS_0 = nOutsideS . squarefree_part ( )
n_0 = nOutsideS_0 * nOnS
f = ( nOutsideS/nOutsideS_0 ) . sqr t (None , False )
return (n_0 , f )

def L_local (d ,gamma, n , p ,w_p) :
r e s u l t = (1 − p^(m / 2 − k ) ) * \

79
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sum(N(d ,gamma, n , p^nu) * p^(nu * (1 − m / 2 − k ) ) \
for nu in [ 0 . . (w_p − 1 ) ] ) \

+ N(d ,gamma, n , p^w_p) * p^(w_p * (1 − m / 2 − k ) )
return r e s u l t

def N(d ,gamma, n , a ) :
np = ZZ(n − gamma ^ 2 / (4 * d ) )
count = 0
for x in [ 0 . . ( a − 1 ) ] :

q = x * gamma − d * x^2 + np
i f q .mod(a ) == 0:

count += 1
return count
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Appendix B

Equations for 𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 as an effective
class

We list here the expressions we found of the class 𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 as a positive combination of Noether–
Lefschetz divisors, with the smallest possible (non-negative) value of 𝐾𝐾 ∈ ℚ. The procedure is described
in section 4.7.

B.1 In terms of irreducible Noether–Lefschetz divisors

𝑑𝑑 𝑑 𝑑𝑑:
𝐾𝐾𝐾 𝐾 𝑑𝐾𝐾 𝑑 𝐾𝐾𝐾 𝐾𝐾𝐾1,1] + 𝑑8𝐾𝐾𝐾4,2] + 29𝐾𝐾𝐾9,3] + 2𝐾𝐾𝐾𝐾16,4] + 𝐾3𝐾𝐾𝐾25,5] + 9𝐾𝐾𝐾36,6] + 9𝐾𝐾𝐾49,7] + 6𝐾𝐾𝐾64,8]

+ 3 𝐾𝐾𝐾81,9] + 𝐾𝐾𝐾𝐾100,10] + 𝐾𝐾𝐾𝐾121,11] + 29𝐾𝐾𝐾9,13] + 𝐾𝐾𝐾𝐾𝐾36,14] + 6𝐾𝐾𝐾65,15] + 3𝐾𝐾𝐾96,16] + 𝑑8𝐾𝐾𝐾4,18]
+ 9 𝐾𝐾𝐾41,19] + 3𝐾𝐾𝐾80,20] + 𝐾𝐾𝐾𝐾121,21] + 56𝐾𝐾𝐾4,22] + 9𝐾𝐾𝐾49,23] + 2𝐾𝐾𝐾96,24] + 9𝐾𝐾𝐾36,26] + 3𝐾𝐾𝐾89,27]
+ 9 𝐾𝐾𝐾41,29] + 3𝐾𝐾𝐾100,30] + 𝐾𝐾𝐾𝐾𝐾𝐾1,31] + 𝑑𝐾𝐾𝐾64,32] + 𝐾𝐾𝐾𝐾𝐾36,34] + 2𝐾𝐾𝐾105,35] + 2𝐾𝐾𝐾𝐾16,36] + 3𝐾𝐾𝐾89,37]
+ 56 𝐾𝐾𝐾4,38] + 3𝐾𝐾𝐾81,39] .

(B.1)

𝑑𝑑 𝑑 𝑑2:
𝐾𝐾𝐾 𝐾 𝑑𝐾𝐾 𝑑 𝐾𝐾𝐾 𝐾𝐾𝐾1,1] + 𝑑8𝐾𝐾𝐾4,2] + 32𝐾𝐾𝐾9,3] + 𝐾9𝐾𝐾𝐾16,4] + 𝐾5𝐾𝐾𝐾25,5] + 𝐾𝑑𝐾𝐾𝐾36,6] + 8𝐾𝐾𝐾49,7] + 5𝐾𝐾𝐾64,8]

+ 𝑑 𝐾𝐾𝐾81,9] + 2𝐾𝐾𝐾100,10] + 𝐾𝐾𝐾𝐾121,11] + 𝐾𝐾𝐾𝐾𝐾𝐾1,13] + 𝐾5𝐾𝐾𝐾28,14] + 6𝐾𝐾𝐾57,15] + 𝑑𝐾𝐾𝐾88,16] + 𝐾𝐾𝐾𝐾121,17]
+ 𝐾5 𝐾𝐾𝐾25,19] + 5𝐾𝐾𝐾64,20] + 2𝐾𝐾𝐾105,21] + 𝐾5𝐾𝐾𝐾25,23] + 6𝐾𝐾𝐾72,24] + 𝐾𝐾𝐾𝐾121,25] + 𝑑8𝐾𝐾𝐾4,26] + 6𝐾𝐾𝐾57,27]
+ 𝐾 𝐾𝐾𝐾112,28] + 𝐾𝐾𝐾𝐾𝐾𝐾1,29] + 8𝐾𝐾𝐾60,30] + 𝐾𝐾𝐾𝐾121,31] + 𝐾9𝐾𝐾𝐾16,32] + 𝑑𝐾𝐾𝐾81,33] + 8𝐾𝐾𝐾49,35] + 𝐾𝐾𝐾𝐾120,36]
+ 𝐾5 𝐾𝐾𝐾25,37] + 2𝐾𝐾𝐾100,38] + 32𝐾𝐾𝐾9,39] + 𝑑𝐾𝐾𝐾88,40] + 𝐾𝐾𝐾𝐾𝐾𝐾1,41] + 2𝐾𝐾𝐾84,42] .

(B.2)

𝑑𝑑 𝑑 𝑑3:
𝐾𝐾𝐾 𝐾 𝑑𝐾𝐾 𝑑 𝐾𝐾𝐾 𝐾𝐾𝐾1,1] + 56𝐾𝐾𝐾4,2] + 29𝐾𝐾𝐾9,3] + 22𝐾𝐾𝐾16,4] + 𝐾5𝐾𝐾𝐾25,5] + 𝐾𝐾𝐾𝐾𝐾36,6] + 7 𝐾𝐾𝐾49,7] + 6𝐾𝐾𝐾64,8]

+ 3 𝐾𝐾𝐾81,9] + 3𝐾𝐾𝐾100,10] + 𝐾𝐾𝐾𝐾121,11] + 𝐾𝑑𝐾𝐾𝐾24,14] + 9𝐾𝐾𝐾53,15] + 3𝐾𝐾𝐾84,16] + 2𝐾𝐾𝐾117,17] + 2𝐾𝐾𝐾𝐾17,19]
+ 6 𝐾𝐾𝐾56,20] + 3𝐾𝐾𝐾97,21] + 3𝑑𝐾𝐾𝐾13,23] + 5𝐾𝐾𝐾60,24] + 3𝐾𝐾𝐾109,25] + 9𝐾𝐾𝐾41,27] + 2𝐾𝐾𝐾96,28] + 𝐾𝑑𝐾𝐾𝐾40,30]
+ 3 𝐾𝐾𝐾101,31] + 6𝐾𝐾𝐾57,33] + 𝐾𝐾𝐾𝐾124,34] + 𝐾7 𝐾𝐾𝐾21,35] + 3𝐾𝐾𝐾92,36] + 6𝐾𝐾𝐾68,38] + 9𝐾𝐾𝐾52,40] + 𝐾𝐾𝐾𝐾133,41]
+ 9 𝐾𝐾𝐾44,42] .

(B.3)

𝑑𝑑 𝑑 𝑑6:
𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾𝐾2 𝐾𝐾𝐾1,1] + 𝑑9𝐾𝐾𝐾4,2] + 3𝑑𝐾𝐾𝐾9,3] + 2𝑑𝐾𝐾𝐾16,4] + 𝐾7 𝐾𝐾𝐾25,5] + 𝐾𝑑𝐾𝐾𝐾36,6] + 8𝐾𝐾𝐾49,7] + 5𝐾𝐾𝐾64,8]

+ 𝑑 𝐾𝐾𝐾81,9] + 3𝐾𝐾𝐾100,10] + 2𝐾𝐾𝐾121,11] + 27 𝐾𝐾𝐾12,14] + 𝐾𝑑𝐾𝐾𝐾41,15] + 6𝐾𝐾𝐾72,16] + 2𝐾𝐾𝐾105,17] + 𝐾𝐾𝐾𝐾140,18]
+ 𝐾2 𝐾𝐾𝐾32,20] + 6𝐾𝐾𝐾73,21] + 𝐾𝐾𝐾𝐾116,22] + 𝐾5𝐾𝐾𝐾24,24] + 6𝐾𝐾𝐾73,25] + 2𝐾𝐾𝐾124,26] + 7 𝐾𝐾𝐾48,28] + 2𝐾𝐾𝐾105,29]
+ 𝐾𝑑 𝐾𝐾𝐾41,31] + 3𝐾𝐾𝐾104,32] + 7 𝐾𝐾𝐾52,34] + 2𝐾𝐾𝐾121,35] + 37 𝐾𝐾𝐾8,36] + 𝑑𝐾𝐾𝐾81,37] + 8𝐾𝐾𝐾49,39] + 𝐾𝐾𝐾𝐾128,40]
+ 𝐾7 𝐾𝐾𝐾25,41] + 3𝐾𝐾𝐾108,42] + 3𝑑𝐾𝐾𝐾9,43] + 2𝐾𝐾𝐾96,44] + 𝐾𝐾2𝐾𝐾𝐾1,45] + 𝑑𝐾𝐾𝐾92,46] .

(B.4)

𝑑𝑑 𝑑 𝑑8:
𝐾𝐾𝐾 𝐾 𝑑𝐾𝐾 𝑑 𝐾𝐾𝐾 𝐾𝐾𝐾1,1] + 𝑑8𝐾𝐾𝐾4,2] + 32𝐾𝐾𝐾9,3] + 2𝐾𝐾𝐾𝐾16,4] + 𝐾5𝐾𝐾𝐾25,5] + 𝐾𝑑𝐾𝐾𝐾36,6] + 9𝐾𝐾𝐾49,7] + 6𝐾𝐾𝐾64,8]

+ 3 𝐾𝐾𝐾81,9] + 3𝐾𝐾𝐾100,10] + 3𝐾𝐾𝐾121,11] + 56𝐾𝐾𝐾4,14] + 𝐾𝐾𝐾𝐾𝐾33,15] + 6𝐾𝐾𝐾64,16] + 3𝐾𝐾𝐾97,17] + 2𝐾𝐾𝐾132,18]
+ 𝐾9 𝐾𝐾𝐾16,20] + 9𝐾𝐾𝐾57,21] + 3𝐾𝐾𝐾100,22] + 9𝐾𝐾𝐾49,25] + 3𝐾𝐾𝐾100,26] + 𝐾𝐾𝐾𝐾153,27] + 2𝐾𝐾𝐾𝐾16,28] + 6𝐾𝐾𝐾73,29]
+ 𝐾𝐾𝐾 𝐾𝐾𝐾1,31] + 9𝐾𝐾𝐾64,32] + 𝐾𝐾𝐾𝐾129,33] + 𝑑8𝐾𝐾𝐾4,34] + 6𝐾𝐾𝐾73,35] + 𝐾𝐾𝐾𝐾144,36] + 𝐾5𝐾𝐾𝐾25,37] + 3𝐾𝐾𝐾100,38]
+ 6 𝐾𝐾𝐾64,40] + 𝐾2𝐾𝐾𝐾36,42] + 3𝐾𝐾𝐾121,43] + 𝐾9𝐾𝐾𝐾16,44] + 2𝐾𝐾𝐾105,45] + 56𝐾𝐾𝐾4,46] + 3𝐾𝐾𝐾97,47] .

(B.5)

81
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82 APPENDIX B. EQUATIONS FOR 𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾𝐾 AS AN EFFECTIVE CLASS

𝑑𝑑 𝑑 𝑑𝑑:

𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾𝐾𝐾 𝐾𝐾𝐾1,1] + 56𝐾𝐾𝐾4,2] + 2𝑑𝐾𝐾𝐾9,3] + 2𝑑𝐾𝐾𝐾16,4] + 𝐾6𝐾𝐾𝐾25,5] + 𝐾𝐾𝐾𝐾𝐾36,6] + 8𝐾𝐾𝐾49,7] + 8𝐾𝐾𝐾64,8]
+ 3 𝐾𝐾𝐾81,9] + 𝑑𝐾𝐾𝐾100,10] + 𝐾𝐾𝐾𝐾121,11] + 𝐾𝐾𝐾𝐾144,12] + 𝐾5𝐾𝐾𝐾29,15] + 7 𝐾𝐾𝐾60,16] + 𝑑𝐾𝐾𝐾93,17] + 2𝐾𝐾𝐾128,18]
+ 36 𝐾𝐾𝐾8,20] + 7 𝐾𝐾𝐾49,21] + 𝑑𝐾𝐾𝐾92,22] + 𝐾𝐾𝐾𝐾137,23] + 𝐾𝑑𝐾𝐾𝐾37,25] + 𝑑𝐾𝐾𝐾88,26] + 𝐾𝐾𝐾𝐾141,27] + 6𝐾𝐾𝐾57,29]
+ 2 𝐾𝐾𝐾116,30] + 𝑑𝐾𝐾𝐾44,32] + 𝑑𝐾𝐾𝐾109,33] + 𝑑𝐾𝐾𝐾49,35] + 𝐾𝐾𝐾𝐾120,36] + 5𝐾𝐾𝐾72,38] + 𝐾𝐾𝐾𝐾149,39] + 𝐾𝑑𝐾𝐾𝐾32,40]
+ 2 𝐾𝐾𝐾113,41] + 6𝐾𝐾𝐾85,43] + 6𝐾𝐾𝐾65,45] + 𝑑𝐾𝐾𝐾53,47] + 𝐾𝐾𝐾𝐾148,48] + 7 𝐾𝐾𝐾49,49] .

(B.6)

𝑑𝑑 𝑑 5𝐾:

𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾𝐾2 𝐾𝐾𝐾1,1] + 𝑑𝑑𝐾𝐾𝐾4,2] + 36𝐾𝐾𝐾9,3] + 2𝐾𝐾𝐾𝐾16,4] + 𝐾𝑑𝐾𝐾𝐾25,5] + 𝐾2𝐾𝐾𝐾36,6] + 8𝐾𝐾𝐾49,7] + 6𝐾𝐾𝐾64,8]
+ 6 𝐾𝐾𝐾81,9] + 2𝐾𝐾𝐾100,10] + 2𝐾𝐾𝐾121,11] + 𝐾𝐾𝐾𝐾144,12] + 𝐾7 𝐾𝐾𝐾25,15] + 7 𝐾𝐾𝐾56,16] + 𝑑𝐾𝐾𝐾89,17] + 3𝐾𝐾𝐾124,18]
+ 𝐾𝐾 𝐾𝐾𝐾41,21] + 3𝐾𝐾𝐾84,22] + 2𝐾𝐾𝐾129,23] + 𝐾6𝐾𝐾𝐾25,25] + 6𝐾𝐾𝐾76,26] + 2𝐾𝐾𝐾129,27] + 𝐾𝐾𝐾𝐾𝐾41,29] + 3𝐾𝐾𝐾100,30]
+ 𝐾8 𝐾𝐾𝐾24,32] + 𝑑𝐾𝐾𝐾89,33] + 𝐾𝐾𝐾𝐾156,34] + 𝐾7 𝐾𝐾𝐾25,35] + 3𝐾𝐾𝐾96,36] + 𝐾𝐾𝐾𝐾𝐾44,38] + 2𝐾𝐾𝐾121,39] + 6𝐾𝐾𝐾81,41]
+ 8 𝐾𝐾𝐾49,43] + 2𝐾𝐾𝐾136,44] + 𝐾𝑑𝐾𝐾𝐾25,45] + 𝐾𝐾𝐾𝐾116,46] + 36𝐾𝐾𝐾9,47] + 3𝐾𝐾𝐾104,48] + 𝐾𝐾2𝐾𝐾𝐾1,49] + 𝑑𝐾𝐾𝐾100,50] .

(B.7)

𝑑𝑑 𝑑 52:

𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾𝐾2 𝐾𝐾𝐾1,1] + 𝑑𝑑𝐾𝐾𝐾4,2] + 3𝐾𝐾𝐾𝐾9,3] + 22𝐾𝐾𝐾16,4] + 𝐾6𝐾𝐾𝐾25,5] + 𝐾𝐾𝐾𝐾𝐾36,6] + 𝐾𝐾𝐾𝐾𝐾49,7] + 6𝐾𝐾𝐾64,8]
+ 𝑑 𝐾𝐾𝐾81,9] + 3𝐾𝐾𝐾100,10] + 3𝐾𝐾𝐾121,11] + 𝐾𝐾𝐾𝐾144,12] + 22𝐾𝐾𝐾17,15] + 𝐾𝐾𝐾𝐾𝐾48,16] + 𝑑𝐾𝐾𝐾81,17] + 3𝐾𝐾𝐾116,18]
+ 𝐾 𝐾𝐾𝐾153,19] + 𝐾6𝐾𝐾𝐾25,21] + 6𝐾𝐾𝐾68,22] + 3𝐾𝐾𝐾113,23] + 𝐾𝐾2𝐾𝐾𝐾1,25] + 𝐾𝐾𝐾𝐾𝐾52,26 + 3𝐾𝐾𝐾105,27] + 𝐾𝐾𝐾𝐾160,28]]
+ 3𝐾 𝐾𝐾𝐾9,29] + 6𝐾𝐾𝐾68,30] + 𝐾𝐾𝐾𝐾129,31] + 𝐾𝐾𝐾𝐾𝐾49,33] + 3𝐾𝐾𝐾116,34] + 7 𝐾𝐾𝐾48,36] + 3𝐾𝐾𝐾121,37] + 6𝐾𝐾𝐾65,39]
+ 𝐾 𝐾𝐾𝐾144,40] + 22𝐾𝐾𝐾17,41] + 3𝐾𝐾𝐾100,42] + 𝑑𝐾𝐾𝐾64,44] + 𝐾𝐾𝐾𝐾153,45] + 𝐾𝐾𝐾𝐾𝐾36,46] + 𝐾𝐾𝐾𝐾129,47] + 23𝐾𝐾𝐾16,48]
+ 3 𝐾𝐾𝐾113,49] + 𝑑𝑑𝐾𝐾𝐾4,50] + 3𝐾𝐾𝐾105,51] .

(B.8)

𝑑𝑑 𝑑 5𝑑:

𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾𝐾2 𝐾𝐾𝐾1,1] + 𝑑𝑑𝐾𝐾𝐾4,2] + 33𝐾𝐾𝐾9,3] + 2𝐾𝐾𝐾𝐾16,4] + 𝐾7 𝐾𝐾𝐾25,5] + 𝐾𝐾𝐾𝐾𝐾36,6] + 𝐾𝐾𝐾𝐾𝐾49,7] + 5𝐾𝐾𝐾64,8]
+ 6 𝐾𝐾𝐾81,9] + 3𝐾𝐾𝐾100,10] + 2𝐾𝐾𝐾121,11] + 2𝐾𝐾𝐾144,12] + 3𝐾𝐾𝐾𝐾9,15] + 𝐾𝐾𝐾𝐾𝐾40,16] + 6𝐾𝐾𝐾73,17] + 3𝐾𝐾𝐾108,18]
+ 2 𝐾𝐾𝐾145,19] + 36𝐾𝐾𝐾9,21] + 7 𝐾𝐾𝐾52,22] + 𝑑𝐾𝐾𝐾97,23] + 𝐾𝐾𝐾𝐾144,24] + 𝐾7 𝐾𝐾𝐾28,26] + 𝑑𝐾𝐾𝐾81,27] + 3𝐾𝐾𝐾136,28]
+ 𝐾𝐾 𝐾𝐾𝐾36,30] + 𝑑𝐾𝐾𝐾97,31] + 36𝐾𝐾𝐾9,33] + 5𝐾𝐾𝐾76,34] + 2𝐾𝐾𝐾145,35] + 6𝐾𝐾𝐾73,37] + 𝐾𝐾𝐾𝐾148,38] + 3𝐾𝐾𝐾𝐾9,39]
+ 6 𝐾𝐾𝐾88,40] + 𝐾2𝐾𝐾𝐾36,42] + 2𝐾𝐾𝐾121,43] + 6𝐾𝐾𝐾81,45] + 𝐾𝐾𝐾𝐾172,46] + 𝐾𝐾𝐾𝐾𝐾49,47] + 𝐾7 𝐾𝐾𝐾25,49] + 2𝐾𝐾𝐾124,50]
+ 33 𝐾𝐾𝐾9,51] + 3𝐾𝐾𝐾112,52] + 𝐾𝐾2𝐾𝐾𝐾1,53] + 𝑑𝐾𝐾𝐾108,54] .

(B.9)

𝑑𝑑 𝑑 55:

𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾𝐾𝐾 𝐾𝐾𝐾1,]𝐾] + 56𝐾𝐾𝐾4,]2] + 2𝑑𝐾𝐾𝐾9,]3] + 22𝐾𝐾𝐾16,]𝑑] + 𝐾3𝐾𝐾𝐾25,]5] + 𝐾𝐾𝐾𝐾𝐾36,]6] + 𝑑𝐾𝐾𝐾49,]7] + 7 𝐾𝐾𝐾64,]8]
+ 6 𝐾𝐾𝐾81,]𝑑] + 3𝐾𝐾𝐾100,]𝐾𝐾] + 3 𝐾𝐾𝐾121,]𝐾𝐾] + 𝐾 𝐾𝐾𝐾169,]𝐾3] + 56 𝐾𝐾𝐾5,]𝐾5] + 𝐾𝐾 𝐾𝐾𝐾36,]𝐾6] + 𝑑 𝐾𝐾𝐾69,]𝐾7] + 3 𝐾𝐾𝐾104,]𝐾8]
+ 2 𝐾𝐾𝐾141,]𝐾𝑑] + 𝐾𝐾𝐾 𝐾𝐾𝐾1,]2𝐾] + 𝑑 𝐾𝐾𝐾44,]22] + 3 𝐾𝐾𝐾89,]23] + 3 𝐾𝐾𝐾136,]2𝑑] + 3𝐾 𝐾𝐾𝐾16,]26] + 5 𝐾𝐾𝐾69,]27] + 3 𝐾𝐾𝐾124,]28]
+ 2𝐾 𝐾𝐾𝐾20,]3𝐾] + 3 𝐾𝐾𝐾81,]3𝐾] + 2 𝐾𝐾𝐾144,]32] + 𝑑 𝐾𝐾𝐾56,]3𝑑] + 3 𝐾𝐾𝐾125,]35] + 𝑑 𝐾𝐾𝐾49,]37] + 𝐾 𝐾𝐾𝐾124,]38] + 5 𝐾𝐾𝐾60,]𝑑𝐾]
+ 3 𝐾𝐾𝐾141,]𝑑𝐾] + 56 𝐾𝐾𝐾4,]𝑑2] + 6 𝐾𝐾𝐾89,]𝑑3] + 𝐾𝐾 𝐾𝐾𝐾45,]𝑑5] + 𝐾 𝐾𝐾𝐾136,]𝑑6] + 2𝑑 𝐾𝐾𝐾9,]𝑑7] + 3 𝐾𝐾𝐾104,]𝑑8] + 6 𝐾𝐾𝐾80,]5𝐾]
+ 𝐾 𝐾𝐾𝐾181,]5𝐾] + 𝑑 𝐾𝐾𝐾64,]52] + 𝑑 𝐾𝐾𝐾56,]5𝑑] .

(B.10)

B.2 In terms of reducible Noether–Lefschetz divisors
In the following variants of the above equations, we have rewritten the irreducible divisors 𝑃𝑃∆,𝛿𝛿 in
terms of reducible Noether–Lefschetz divisors 𝐻𝐻𝐻𝐻𝐻𝐻 𝐻𝐻𝐻.

𝑑𝑑 𝑑 𝑑𝐾:

𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 2𝐾𝐾𝐾𝐾𝐻𝐾, 𝐾𝐾/𝐾6𝐾𝐻] + 𝐾7𝐾𝐾𝐾𝐻2, 𝐾𝐾/𝑑𝐾𝐻] + 𝐾7𝐾𝐾𝐾𝐻3, 𝐾𝑑/𝐾6𝐾𝐻] + 𝐾5𝐾𝐾𝐾𝐻𝑑, 𝐾𝐾/𝐾𝐾𝐻] + 𝐾2𝐾𝐾𝐾𝐻5, 𝐾5/32𝐻]
+ 𝑑𝐾𝐾𝐾𝐻6, 𝐾𝑑/𝑑𝐾𝐻] + 𝑑𝐾𝐾𝐾𝐻7, 𝐾𝑑𝑑/𝐾6𝐾𝐻] + 6𝐾𝐾𝐾𝐻8, 𝐾2/5𝐻] + 3𝐾𝐾𝐾𝐻𝑑, 𝐾8𝐾/𝐾6𝐾𝐻] + 𝐾𝐾𝐾𝐾𝐻𝐾𝐾, 𝐾5/8𝐻]
+ 𝐾𝐾𝐾𝐾𝐻𝐾𝐾, 𝐾𝐾2𝐾/𝐾6𝐾𝐻] + 𝐾7𝐾𝐾𝐾𝐻𝐾3, 𝐾𝑑/𝐾6𝐾𝐻] + 𝐾𝐾𝐾𝐾𝐾𝐻𝐾𝑑, 𝐾𝑑/𝑑𝐾𝐻] + 6𝐾𝐾𝐾𝐻𝐾5, 𝐾𝐾3/32𝐻] + 3𝐾𝐾𝐾𝐻𝐾6, 𝐾3/5𝐻]
+ 𝐾7𝐾𝐾𝐾𝐻𝐾8, 𝐾𝐾/𝑑𝐾𝐻] + 𝑑𝐾𝐾𝐾𝐻𝐾𝑑, 𝐾𝑑𝐾/𝐾6𝐾𝐻] + 3𝐾𝐾𝐾𝐻2𝐾, 𝐾𝐾/2𝐻] + 𝐾𝐾𝐾𝐾𝐻2𝐾, 𝐾𝐾2𝐾/𝐾6𝐾𝐻] + 2𝐾𝐾𝐾𝐾𝐻22, 𝐾𝐾/𝑑𝐾𝐻]
+ 𝑑𝐾𝐾𝐾𝐻23, 𝐾𝑑𝑑/𝐾6𝐾𝐻] + 2𝐾𝐾𝐾𝐻2𝑑, 𝐾3/5𝐻] + 𝑑𝐾𝐾𝐾𝐻26, 𝐾𝑑/𝑑𝐾𝐻] + 3𝐾𝐾𝐾𝐻27, 𝐾8𝑑/𝐾6𝐾𝐻] + 𝑑𝐾𝐾𝐾𝐻2𝑑, 𝐾𝑑𝐾/𝐾6𝐾𝐻]
+ 3𝐾𝐾𝐾𝐻3𝐾, 𝐾5/8𝐻] + 2𝐾𝐾𝐾𝐾𝐻3𝐾, 𝐾𝐾/𝐾6𝐾𝐻] + 𝑑𝐾𝐾𝐾𝐻32, 𝐾2/5𝐻] + 𝐾𝐾𝐾𝐾𝐾𝐻3𝑑, 𝐾𝑑/𝑑𝐾𝐻] + 2𝐾𝐾𝐾𝐻35, 𝐾2𝐾/32𝐻]
+ 𝐾5𝐾𝐾𝐾𝐻36, 𝐾𝐾/𝐾𝐾𝐻] + 3𝐾𝐾𝐾𝐻37, 𝐾8𝑑/𝐾6𝐾𝐻] + 2𝐾𝐾𝐾𝐾𝐻38, 𝐾𝐾/𝑑𝐾𝐻] + 3𝐾𝐾𝐾𝐻3𝑑, 𝐾8𝐾/𝐾6𝐾𝐻] .

(B.11)
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B.2. IN TERMS OF REDUCIBLE NOETHER–LEFSCHETZ DIVISORS 83

𝑑𝑑 𝑑 𝑑𝑑:

𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾𝐾 𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾/𝐾68)] + 𝐾7 𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾/𝑑𝑑)] + 𝐾8 𝐾𝐾𝐾𝐾3, 𝐾3/56)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝑑, 𝐾𝑑/𝑑𝐾)] + 𝐾3 𝐾𝐾𝐾𝐾5, 𝐾𝑑5/𝐾68)]
+ 𝐾𝐾 𝐾𝐾𝐾𝐾6, 𝐾3/𝐾𝑑)] + 8 𝐾𝐾𝐾𝐾7, 𝐾7/𝑑𝑑)] + 5 𝐾𝐾𝐾𝐾8, 𝐾8/𝑑𝐾)] + 𝑑 𝐾𝐾𝐾𝐾𝐾, 𝐾𝑑7/56)] + 𝑑 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝑑5/𝑑𝑑)]
+ 𝐾 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾𝑑𝐾/𝐾68)] + 𝐾𝐾 𝐾𝐾𝐾𝐾𝐾3, 𝐾𝐾/𝐾68)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾/6)] + 6 𝐾𝐾𝐾𝐾𝐾5, 𝐾𝐾𝐾/56)] + 𝑑 𝐾𝐾𝐾𝐾𝐾6, 𝐾𝐾𝐾/𝑑𝐾)]
+ 𝐾 𝐾𝐾𝐾𝐾𝐾7, 𝐾𝐾𝑑𝐾/𝐾68)] + 𝐾3 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝑑5/𝐾68)] + 5 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾8/𝑑𝐾)] + 𝑑 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾5/8)] + 𝐾3 𝐾𝐾𝐾𝐾𝑑3, 𝐾𝑑5/𝐾68)]
+ 6 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾3/7)] + 𝐾 𝐾𝐾𝐾𝐾𝑑5, 𝐾𝐾𝑑𝐾/𝐾68)] + 𝐾7 𝐾𝐾𝐾𝐾𝑑6, 𝐾𝐾/𝑑𝑑)] + 6 𝐾𝐾𝐾𝐾𝑑7, 𝐾𝐾𝐾/56)] + 𝐾 𝐾𝐾𝐾𝐾𝑑8, 𝐾𝑑/3)]
+ 𝐾𝐾 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾/𝐾68)] + 8 𝐾𝐾𝐾𝐾3𝐾, 𝐾5/𝐾𝑑)] + 𝐾 𝐾𝐾𝐾𝐾3𝐾, 𝐾𝐾𝑑𝐾/𝐾68)] + 𝐾𝑑 𝐾𝐾𝐾𝐾3𝑑, 𝐾𝑑/𝑑𝐾)] + 𝑑 𝐾𝐾𝐾𝐾33, 𝐾𝑑7/56)]
+ 8 𝐾𝐾𝐾𝐾35, 𝐾7/𝑑𝑑)] + 𝐾 𝐾𝐾𝐾𝐾36, 𝐾5/7)] + 𝐾3 𝐾𝐾𝐾𝐾37, 𝐾𝑑5/𝐾68)] + 𝑑 𝐾𝐾𝐾𝐾38, 𝐾𝑑5/𝑑𝑑)] + 𝐾8 𝐾𝐾𝐾𝐾3𝐾, 𝐾3/56)]
+ 𝑑 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾𝐾/𝑑𝐾)] + 𝐾𝐾 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾/𝐾68)] + 𝐾 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾𝐾/𝑑)] .

(B.12)

𝑑𝑑 𝑑 𝑑3:

𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾7 𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾/𝐾7𝑑)] + 𝑑𝐾 𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾/𝑑3)] + 𝐾5 𝐾𝐾𝐾𝐾3, 𝐾𝐾/𝐾7𝑑)] + 𝐾6 𝐾𝐾𝐾𝐾𝑑, 𝐾𝑑/𝑑3)] + 𝐾𝑑 𝐾𝐾𝐾𝐾5, 𝐾𝑑5/𝐾7𝑑)]
+ 𝐾𝐾 𝐾𝐾𝐾𝐾6, 𝐾𝐾/𝑑3)] + 7 𝐾𝐾𝐾𝐾7, 𝐾𝑑𝐾/𝐾7𝑑)] + 6 𝐾𝐾𝐾𝐾8, 𝐾𝐾6/𝑑3)] + 3 𝐾𝐾𝐾𝐾𝐾, 𝐾8𝐾/𝐾7𝑑)] + 3 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝑑5/𝑑3)]
+ 𝐾 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾𝑑𝐾/𝐾7𝑑)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝐾𝑑, 𝐾6/𝑑3)] + 𝐾 𝐾𝐾𝐾𝐾𝐾5, 𝐾53/𝐾7𝑑)] + 3 𝐾𝐾𝐾𝐾𝐾6, 𝐾𝑑𝐾/𝑑3)] + 𝑑 𝐾𝐾𝐾𝐾𝐾7, 𝐾𝐾𝐾7/𝐾7𝑑)]
+ 𝐾5 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾7/𝐾7𝑑)] + 6 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾𝑑/𝑑3)] + 3 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾7/𝐾7𝑑)] + 𝐾𝐾 𝐾𝐾𝐾𝐾𝑑3, 𝐾𝐾3/𝐾7𝑑)] + 5 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾𝐾5/𝑑3)]
+ 3 𝐾𝐾𝐾𝐾𝑑5, 𝐾𝐾𝐾𝐾/𝐾7𝑑)] + 𝐾 𝐾𝐾𝐾𝐾𝑑7, 𝐾𝑑𝐾/𝐾7𝑑)] + 𝑑 𝐾𝐾𝐾𝐾𝑑8, 𝐾𝑑𝑑/𝑑3)] + 𝐾𝐾 𝐾𝐾𝐾𝐾3𝐾, 𝐾𝐾𝐾/𝑑3)]
+ 3 𝐾𝐾𝐾𝐾3𝐾, 𝐾𝐾𝐾𝐾/𝐾7𝑑)] + 6 𝐾𝐾𝐾𝐾33, 𝐾57/𝐾7𝑑)] + 𝐾 𝐾𝐾𝐾𝐾3𝑑, 𝐾3𝐾/𝑑3)] + 𝐾𝑑 𝐾𝐾𝐾𝐾35, 𝐾𝑑𝐾/𝐾7𝑑)] + 3 𝐾𝐾𝐾𝐾36, 𝐾𝑑3/𝑑3)]
+ 6 𝐾𝐾𝐾𝐾38, 𝐾𝐾7/𝑑3)] + 𝐾 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾3/𝑑3)] + 𝐾 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾33/𝐾7𝑑)] + 𝐾 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾𝐾𝐾/𝑑3)] .

(B.13)
𝑑𝑑 𝑑 𝑑6:

𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾𝐾 𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾/𝐾8𝑑)] + 𝐾6 𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾/𝑑6)] + 𝐾6 𝐾𝐾𝐾𝐾3, 𝐾𝐾/𝐾8𝑑)] + 𝐾5 𝐾𝐾𝐾𝐾𝑑, 𝐾𝑑/𝑑3)] + 𝐾𝑑 𝐾𝐾𝐾𝐾5, 𝐾𝑑5/𝐾8𝑑)]
+ 𝐾𝐾 𝐾𝐾𝐾𝐾6, 𝐾𝐾/𝑑6)] + 8 𝐾𝐾𝐾𝐾7, 𝐾𝑑𝐾/𝐾8𝑑)] + 5 𝐾𝐾𝐾𝐾8, 𝐾8/𝑑3)] + 𝑑 𝐾𝐾𝐾𝐾𝐾, 𝐾8𝐾/𝐾8𝑑)] + 3 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝑑5/𝑑6)]
+ 𝑑 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾𝑑𝐾/𝐾8𝑑)] + 𝐾7 𝐾𝐾𝐾𝐾𝐾𝑑, 𝐾3/𝑑6)] + 𝐾𝐾 𝐾𝐾𝐾𝐾𝐾5, 𝐾𝑑𝐾/𝐾8𝑑)] + 6 𝐾𝐾𝐾𝐾𝐾6, 𝐾𝐾/𝑑3)] + 𝑑 𝐾𝐾𝐾𝐾𝐾7, 𝐾𝐾𝐾5/𝐾8𝑑)]
+ 𝐾 𝐾𝐾𝐾𝐾𝐾8, 𝐾35/𝑑6)] + 𝐾𝐾 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝑑/𝑑3)] + 6 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾73/𝐾8𝑑)] + 𝐾 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾𝑑𝐾/𝑑6)] + 𝐾3 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾3/𝑑3)]
+ 6 𝐾𝐾𝐾𝐾𝑑5, 𝐾73/𝐾8𝑑)] + 𝑑 𝐾𝐾𝐾𝐾𝑑6, 𝐾3𝐾/𝑑6)] + 7 𝐾𝐾𝐾𝐾𝑑8, 𝐾6/𝑑3)] + 𝑑 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾𝐾5/𝐾8𝑑)] + 𝐾𝐾 𝐾𝐾𝐾𝐾3𝐾, 𝐾𝑑𝐾/𝐾8𝑑)]
+ 3 𝐾𝐾𝐾𝐾3𝑑, 𝐾𝐾3/𝑑3)] + 7 𝐾𝐾𝐾𝐾3𝑑, 𝐾𝐾3/𝑑6)] + 𝑑 𝐾𝐾𝐾𝐾35, 𝐾𝐾𝑑𝐾/𝐾8𝑑)] + 𝐾𝐾 𝐾𝐾𝐾𝐾36, 𝐾𝐾/𝑑3)] + 𝑑 𝐾𝐾𝐾𝐾37, 𝐾8𝐾/𝐾8𝑑)]
+ 8 𝐾𝐾𝐾𝐾3𝐾, 𝐾𝑑𝐾/𝐾8𝑑)] + 𝐾 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾6/𝑑3)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝑑5/𝐾8𝑑)] + 3 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾𝑑7/𝑑6)] + 𝐾6 𝐾𝐾𝐾𝐾𝑑3, 𝐾𝐾/𝐾8𝑑)]
+ 𝑑 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾𝐾𝑑/𝑑3)] + 𝐾𝐾 𝐾𝐾𝐾𝐾𝑑5, 𝐾𝐾/𝐾8𝑑)] + 𝑑 𝐾𝐾𝐾𝐾𝑑6, 𝐾𝐾/𝑑)] .

(B.14)
𝑑𝑑 𝑑 𝑑8:

𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾7 𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾/𝐾𝐾𝑑)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾/𝑑8)] + 𝐾𝐾 𝐾𝐾𝐾𝐾3, 𝐾3/6𝑑)] + 𝐾5 𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾/𝐾𝑑)] + 𝐾𝑑 𝐾𝐾𝐾𝐾5, 𝐾𝑑5/𝐾𝐾𝑑)]
+ 𝐾𝐾 𝐾𝐾𝐾𝐾6, 𝐾3/𝐾6)] + 𝐾 𝐾𝐾𝐾𝐾7, 𝐾𝑑𝐾/𝐾𝐾𝑑)] + 6 𝐾𝐾𝐾𝐾8, 𝐾𝐾/3)] + 3 𝐾𝐾𝐾𝐾𝐾, 𝐾𝑑7/6𝑑)] + 3 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝑑5/𝑑8)]
+ 3 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾𝑑𝐾/𝐾𝐾𝑑)] + 𝑑𝐾 𝐾𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾/𝑑8)] + 𝐾𝐾 𝐾𝐾𝐾𝐾𝐾5, 𝐾𝐾𝐾/6𝑑)] + 6 𝐾𝐾𝐾𝐾𝐾6, 𝐾𝐾/3)] + 3 𝐾𝐾𝐾𝐾𝐾7, 𝐾𝐾7/𝐾𝐾𝑑)]
+ 𝑑 𝐾𝐾𝐾𝐾𝐾8, 𝐾𝐾𝐾/𝐾6)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾/𝐾𝑑)] + 𝐾 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾𝐾/6𝑑)] + 3 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾𝑑5/𝑑8)] + 𝐾 𝐾𝐾𝐾𝐾𝑑5, 𝐾𝑑𝐾/𝐾𝐾𝑑)]
+ 3 𝐾𝐾𝐾𝐾𝑑6, 𝐾𝑑5/𝑑8)] + 𝐾 𝐾𝐾𝐾𝐾𝑑7, 𝐾5𝐾/6𝑑)] + 𝐾5 𝐾𝐾𝐾𝐾𝑑8, 𝐾𝐾/𝐾𝑑)] + 6 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾73/𝐾𝐾𝑑)] + 𝐾7 𝐾𝐾𝐾𝐾3𝐾, 𝐾𝐾/𝐾𝐾𝑑)]
+ 𝐾 𝐾𝐾𝐾𝐾3𝑑, 𝐾𝐾/3)] + 𝐾 𝐾𝐾𝐾𝐾33, 𝐾𝑑3/6𝑑)] + 𝐾𝑑 𝐾𝐾𝐾𝐾3𝑑, 𝐾𝐾/𝑑8)] + 6 𝐾𝐾𝐾𝐾35, 𝐾73/𝐾𝐾𝑑)] + 𝐾 𝐾𝐾𝐾𝐾36, 𝐾3/𝑑)]
+ 𝐾𝑑 𝐾𝐾𝐾𝐾37, 𝐾𝑑5/𝐾𝐾𝑑)] + 3 𝐾𝐾𝐾𝐾38, 𝐾𝑑5/𝑑8)] + 6 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾/3)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾3/𝐾6)] + 3 𝐾𝐾𝐾𝐾𝑑3, 𝐾𝐾𝑑𝐾/𝐾𝐾𝑑)]
+ 𝐾𝑑 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾𝐾/𝐾𝑑)] + 𝑑 𝐾𝐾𝐾𝐾𝑑5, 𝐾35/6𝑑)] + 𝑑𝐾 𝐾𝐾𝐾𝐾𝑑6, 𝐾𝐾/𝑑8)] + 3 𝐾𝐾𝐾𝐾𝑑7, 𝐾𝐾7/𝐾𝐾𝑑)] .

(B.15)

𝑑𝑑 𝑑 𝑑𝐾:

𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾6 𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾/𝐾𝐾6)] + 𝐾8 𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾/𝑑𝐾)] + 𝐾5 𝐾𝐾𝐾𝐾3, 𝐾𝐾/𝐾𝐾6)] + 𝐾5 𝐾𝐾𝐾𝐾𝑑, 𝐾𝑑/𝑑𝐾)]
+ 𝐾𝑑 𝐾𝐾𝐾𝐾5, 𝐾𝑑5/𝐾𝐾6)] + 𝐾𝐾 𝐾𝐾𝐾𝐾6, 𝐾𝐾/𝑑𝐾)] + 8 𝐾𝐾𝐾𝐾7, 𝐾𝐾/𝑑)] + 8 𝐾𝐾𝐾𝐾8, 𝐾𝐾6/𝑑𝐾)] + 3 𝐾𝐾𝐾𝐾𝐾, 𝐾8𝐾/𝐾𝐾6)]
+ 𝑑 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝑑5/𝑑𝐾)] + 𝐾 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾𝑑𝐾/𝐾𝐾6)] + 𝐾 𝐾𝐾𝐾𝐾𝐾𝑑, 𝐾36/𝑑𝐾)] + 𝐾3 𝐾𝐾𝐾𝐾𝐾5, 𝐾𝑑𝐾/𝐾𝐾6)] + 7 𝐾𝐾𝐾𝐾𝐾6, 𝐾𝐾5/𝑑𝐾)]
+ 𝑑 𝐾𝐾𝐾𝐾𝐾7, 𝐾𝐾3/𝐾𝐾6)] + 𝑑 𝐾𝐾𝐾𝐾𝐾8, 𝐾3𝑑/𝑑𝐾)] + 𝐾7 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝑑/𝑑𝐾)] + 7 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾/𝑑)] + 𝑑 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾𝑑3/𝑑𝐾)]
+ 𝐾 𝐾𝐾𝐾𝐾𝑑3, 𝐾𝐾37/𝐾𝐾6)] + 𝐾3 𝐾𝐾𝐾𝐾𝑑5, 𝐾37/𝐾𝐾6)] + 𝑑 𝐾𝐾𝐾𝐾𝑑6, 𝐾𝑑𝑑/𝑑𝐾)] + 𝐾 𝐾𝐾𝐾𝐾𝑑7, 𝐾𝐾𝑑𝐾/𝐾𝐾6)]
+ 6 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾57/𝐾𝐾6)] + 𝑑 𝐾𝐾𝐾𝐾3𝐾, 𝐾𝑑𝐾/𝑑𝐾)] + 𝐾 𝐾𝐾𝐾𝐾3𝑑, 𝐾𝐾𝐾/𝑑𝐾)] + 𝑑 𝐾𝐾𝐾𝐾33, 𝐾𝐾𝐾𝐾/𝐾𝐾6)] + 𝐾 𝐾𝐾𝐾𝐾35, 𝐾𝐾/𝑑)]
+ 𝐾 𝐾𝐾𝐾𝐾36, 𝐾3𝐾/𝑑𝐾)] + 5 𝐾𝐾𝐾𝐾38, 𝐾𝐾8/𝑑𝐾)] + 𝐾 𝐾𝐾𝐾𝐾3𝐾, 𝐾𝐾𝑑𝐾/𝐾𝐾6)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾8/𝑑𝐾)] + 𝑑 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾𝐾3/𝐾𝐾6)]
+ 6 𝐾𝐾𝐾𝐾𝑑3, 𝐾85/𝐾𝐾6)] + 6 𝐾𝐾𝐾𝐾𝑑5, 𝐾65/𝐾𝐾6)] + 𝐾 𝐾𝐾𝐾𝐾𝑑7, 𝐾53/𝐾𝐾6)] + 𝐾 𝐾𝐾𝐾𝐾𝑑8, 𝐾37/𝑑𝐾)] + 7/𝑑 · 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾/𝑑)] .

(B.16)
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𝑑𝑑 𝑑 𝑑𝑑:
𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾𝐾 𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾/2𝑑𝑑)] + 𝐾6 𝐾𝐾𝐾𝐾2, 𝐾𝐾/𝑑𝑑)] + 𝐾8 𝐾𝐾𝐾𝐾3, 𝐾9/2𝑑𝑑)] + 𝐾3 𝐾𝐾𝐾𝐾4, 𝐾2/2𝑑)] + 𝐾2 𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾/8)]

+ 𝐾𝐾 𝐾𝐾𝐾𝐾6, 𝐾9/𝑑𝑑)] + 8 𝐾𝐾𝐾𝐾𝐾, 𝐾49/2𝑑𝑑)] + 6 𝐾𝐾𝐾𝐾8, 𝐾8/2𝑑)] + 6 𝐾𝐾𝐾𝐾9, 𝐾8𝐾/2𝑑𝑑)] + 2 𝐾𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾/2)]
+ 2 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾2𝐾/2𝑑𝑑)] + 𝐾 𝐾𝐾𝐾𝐾𝐾2, 𝐾𝐾8/2𝑑)] + 𝐾4 𝐾𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾/8)] + 𝐾 𝐾𝐾𝐾𝐾𝐾6, 𝐾𝐾/2𝑑)] + 4 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾89/2𝑑𝑑)]
+ 3 𝐾𝐾𝐾𝐾𝐾8, 𝐾3𝐾/𝑑𝑑)] + 𝐾𝑑 𝐾𝐾𝐾𝐾2𝐾, 𝐾4𝐾/2𝑑𝑑)] + 3 𝐾𝐾𝐾𝐾22, 𝐾2𝐾/𝑑𝑑)] + 2 𝐾𝐾𝐾𝐾23, 𝐾𝐾29/2𝑑𝑑)] + 𝐾2 𝐾𝐾𝐾𝐾2𝑑, 𝐾𝐾/8)]
+ 6 𝐾𝐾𝐾𝐾26, 𝐾𝐾9/𝑑𝑑)] + 2 𝐾𝐾𝐾𝐾2𝐾, 𝐾𝐾29/2𝑑𝑑)] + 𝐾𝑑 𝐾𝐾𝐾𝐾29, 𝐾4𝐾/2𝑑𝑑)] + 3 𝐾𝐾𝐾𝐾3𝑑, 𝐾𝐾/2)] + 𝐾𝑑 𝐾𝐾𝐾𝐾32, 𝐾3/2𝑑)]
+ 4 𝐾𝐾𝐾𝐾33, 𝐾89/2𝑑𝑑)] + 𝐾 𝐾𝐾𝐾𝐾34, 𝐾39/𝑑𝑑)] + 𝐾4 𝐾𝐾𝐾𝐾3𝑑, 𝐾𝐾/8)] + 3 𝐾𝐾𝐾𝐾36, 𝐾𝐾2/2𝑑)] + 𝐾𝑑 𝐾𝐾𝐾𝐾38, 𝐾𝐾𝐾/𝑑𝑑)]
+ 2 𝐾𝐾𝐾𝐾39, 𝐾𝐾2𝐾/2𝑑𝑑)] + 6 𝐾𝐾𝐾𝐾4𝐾, 𝐾8𝐾/2𝑑𝑑)] + 8 𝐾𝐾𝐾𝐾43, 𝐾49/2𝑑𝑑)] + 2 𝐾𝐾𝐾𝐾44, 𝐾𝐾𝐾/2𝑑)] + 𝐾2 𝐾𝐾𝐾𝐾4𝑑, 𝐾𝐾/8)]
+ 𝐾 𝐾𝐾𝐾𝐾46, 𝐾29/𝑑𝑑)] + 𝐾8 𝐾𝐾𝐾𝐾4𝐾, 𝐾9/2𝑑𝑑)] + 3 𝐾𝐾𝐾𝐾48, 𝐾𝐾3/2𝑑)] + 𝐾𝐾 𝐾𝐾𝐾𝐾49, 𝐾𝐾/2𝑑𝑑)] + 2 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾𝐾/2)] .

(B.17)

𝑑𝑑 𝑑 𝑑2:
𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾𝐾 𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾/2𝑑8)] + 𝐾𝑑 𝐾𝐾𝐾𝐾2, 𝐾𝐾/𝑑2)] + 𝐾6 𝐾𝐾𝐾𝐾3, 𝐾9/2𝑑8)] + 𝐾𝑑 𝐾𝐾𝐾𝐾4, 𝐾𝐾/𝐾3)] + 𝐾3 𝐾𝐾𝐾𝐾𝑑, 𝐾2𝑑/2𝑑8)]

+ 9 𝐾𝐾𝐾𝐾6, 𝐾9/𝑑2)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝐾, 𝐾49/2𝑑8)] + 6 𝐾𝐾𝐾𝐾8, 𝐾4/𝐾3)] + 4 𝐾𝐾𝐾𝐾9, 𝐾8𝐾/2𝑑8)] + 3 𝐾𝐾𝐾𝐾𝐾𝑑, 𝐾2𝑑/𝑑2)]
+ 3 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾2𝐾/2𝑑8)] + 𝐾 𝐾𝐾𝐾𝐾𝐾2, 𝐾9/𝐾3)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾𝐾/2𝑑8)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝐾6, 𝐾3/𝐾3)] + 4 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾8𝐾/2𝑑8)]
+ 3 𝐾𝐾𝐾𝐾𝐾8, 𝐾29/𝑑2)] + 𝐾 𝐾𝐾𝐾𝐾𝐾9, 𝐾𝐾𝑑3/2𝑑8)] + 𝐾3 𝐾𝐾𝐾𝐾2𝐾, 𝐾2𝑑/2𝑑8)] + 6 𝐾𝐾𝐾𝐾22, 𝐾𝐾𝐾/𝑑2)]
+ 3 𝐾𝐾𝐾𝐾23, 𝐾𝐾𝐾3/2𝑑8)] + 𝐾𝐾 𝐾𝐾𝐾𝐾2𝑑, 𝐾𝐾/2𝑑8)] + 𝐾𝑑 𝐾𝐾𝐾𝐾26, 𝐾𝐾/4)] + 3 𝐾𝐾𝐾𝐾2𝐾, 𝐾𝐾𝑑𝑑/2𝑑8)] + 𝐾 𝐾𝐾𝐾𝐾28, 𝐾𝐾𝑑/𝐾3)]
+ 𝐾6 𝐾𝐾𝐾𝐾29, 𝐾9/2𝑑8)] + 6 𝐾𝐾𝐾𝐾3𝑑, 𝐾𝐾𝐾/𝑑2)] + 𝐾 𝐾𝐾𝐾𝐾3𝐾, 𝐾𝐾29/2𝑑8)] + 𝐾𝑑 𝐾𝐾𝐾𝐾33, 𝐾49/2𝑑8)]
+ 3 𝐾𝐾𝐾𝐾34, 𝐾29/𝑑2)] + 𝐾 𝐾𝐾𝐾𝐾36, 𝐾3/𝐾3)] + 3 𝐾𝐾𝐾𝐾3𝐾, 𝐾𝐾2𝐾/2𝑑8)] + 6 𝐾𝐾𝐾𝐾39, 𝐾𝑑/𝐾6)] + 𝐾 𝐾𝐾𝐾𝐾4𝑑, 𝐾9/𝐾3)]
+ 𝐾𝑑 𝐾𝐾𝐾𝐾4𝐾, 𝐾𝐾𝐾/2𝑑8)] + 3 𝐾𝐾𝐾𝐾42, 𝐾2𝑑/𝑑2)] + 9 𝐾𝐾𝐾𝐾44, 𝐾4/𝐾3)] + 𝐾 𝐾𝐾𝐾𝐾4𝑑, 𝐾𝐾𝑑3/2𝑑8)] + 9 𝐾𝐾𝐾𝐾46, 𝐾9/𝑑2)]
+ 𝐾 𝐾𝐾𝐾𝐾4𝐾, 𝐾𝐾29/2𝑑8)] + 𝐾6 𝐾𝐾𝐾𝐾48, 𝐾𝐾/𝐾3)] + 3 𝐾𝐾𝐾𝐾49, 𝐾𝐾𝐾3/2𝑑8)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾𝐾/𝑑2)]
+ 3 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾𝑑𝑑/2𝑑8)] .

(B.18)

𝑑𝑑 𝑑 𝑑4:
𝐾𝐾𝐾 𝐾 𝐾𝐾𝐾 𝑑 𝐾𝑑 𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾/2𝐾6)] + 𝐾𝐾 𝐾𝐾𝐾𝐾2, 𝐾𝐾/𝑑4)] + 𝐾6 𝐾𝐾𝐾𝐾3, 𝐾𝐾/24)] + 𝐾3 𝐾𝐾𝐾𝐾4, 𝐾2/2𝐾)] + 𝐾4 𝐾𝐾𝐾𝐾𝑑, 𝐾2𝑑/2𝐾6)]

+ 9 𝐾𝐾𝐾𝐾6, 𝐾𝐾/6)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝐾, 𝐾49/2𝐾6)] + 𝑑 𝐾𝐾𝐾𝐾8, 𝐾8/2𝐾)] + 6 𝐾𝐾𝐾𝐾9, 𝐾3/8)] + 3 𝐾𝐾𝐾𝐾𝐾𝑑, 𝐾2𝑑/𝑑4)]
+ 2 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾2𝐾/2𝐾6)] + 2 𝐾𝐾𝐾𝐾𝐾2, 𝐾2/3)] + 𝐾4 𝐾𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾/24)] + 𝐾𝐾 𝐾𝐾𝐾𝐾𝐾6, 𝐾𝑑/2𝐾)] + 6 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾3/2𝐾6)]
+ 3 𝐾𝐾𝐾𝐾𝐾8, 𝐾𝐾/2)] + 2 𝐾𝐾𝐾𝐾𝐾9, 𝐾𝐾4𝑑/2𝐾6)] + 𝐾8 𝐾𝐾𝐾𝐾2𝐾, 𝐾𝐾/24)] + 𝐾 𝐾𝐾𝐾𝐾22, 𝐾𝐾3/𝑑4)] + 4 𝐾𝐾𝐾𝐾23, 𝐾9𝐾/2𝐾6)]
+ 𝐾 𝐾𝐾𝐾𝐾24, 𝐾2/3)] + 𝐾4 𝐾𝐾𝐾𝐾26, 𝐾𝐾/𝑑4)] + 4 𝐾𝐾𝐾𝐾2𝐾, 𝐾3/8)] + 3 𝐾𝐾𝐾𝐾28, 𝐾𝐾𝐾/2𝐾)] + 𝐾𝑑 𝐾𝐾𝐾𝐾3𝑑, 𝐾𝐾/6)]
+ 4 𝐾𝐾𝐾𝐾3𝐾, 𝐾9𝐾/2𝐾6)] + 𝐾8 𝐾𝐾𝐾𝐾33, 𝐾𝐾/24)] + 𝑑 𝐾𝐾𝐾𝐾34, 𝐾𝐾9/𝑑4)] + 2 𝐾𝐾𝐾𝐾3𝑑, 𝐾𝐾4𝑑/2𝐾6)] + 6 𝐾𝐾𝐾𝐾3𝐾, 𝐾𝐾3/2𝐾6)]
+ 𝐾 𝐾𝐾𝐾𝐾38, 𝐾3𝐾/𝑑4)] + 𝐾4 𝐾𝐾𝐾𝐾39, 𝐾𝐾/24)] + 6 𝐾𝐾𝐾𝐾4𝑑, 𝐾𝐾𝐾/2𝐾)] + 𝐾𝐾 𝐾𝐾𝐾𝐾42, 𝐾𝐾/6)] + 2 𝐾𝐾𝐾𝐾43, 𝐾𝐾2𝐾/2𝐾6)]
+ 6 𝐾𝐾𝐾𝐾4𝑑, 𝐾3/8)] + 𝐾 𝐾𝐾𝐾𝐾46, 𝐾43/𝑑4)] + 𝐾𝑑 𝐾𝐾𝐾𝐾4𝐾, 𝐾49/2𝐾6)] + 𝐾4 𝐾𝐾𝐾𝐾49, 𝐾2𝑑/2𝐾6)] + 2 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾3𝐾/𝑑4)]
+ 𝐾6 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾/24)] + 3 𝐾𝐾𝐾𝐾𝑑2, 𝐾𝐾4/2𝐾)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝑑3, 𝐾𝐾/2𝐾6)] + 2 𝐾𝐾𝐾𝐾𝑑4, 𝐾𝐾/2)] .

(B.19)

𝑑𝑑 𝑑 𝑑𝑑:
𝐾𝐾𝐾 𝐾 𝑑𝐾𝐾 𝑑 𝐾4 𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾/22𝑑)] + 2𝑑 𝐾𝐾𝐾𝐾2, 𝐾𝐾/𝑑𝑑)] + 𝐾2 𝐾𝐾𝐾𝐾3, 𝐾9/22𝑑)] + 𝐾𝑑 𝐾𝐾𝐾𝐾4, 𝐾4/𝑑𝑑)] + 𝐾𝑑 𝐾𝐾𝐾𝐾𝑑, 𝐾𝑑/44)]

+ 𝐾𝐾 𝐾𝐾𝐾𝐾6, 𝐾9/𝑑𝑑)] + 9 𝐾𝐾𝐾𝐾𝐾, 𝐾49/22𝑑)] + 𝐾 𝐾𝐾𝐾𝐾8, 𝐾𝐾6/𝑑𝑑)] + 6 𝐾𝐾𝐾𝐾9, 𝐾8𝐾/22𝑑)] + 3 𝐾𝐾𝐾𝐾𝐾𝑑, 𝐾𝑑/𝐾𝐾)]
+ 3 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾𝐾𝐾/2𝑑)] + 𝐾 𝐾𝐾𝐾𝐾𝐾3, 𝐾𝐾69/22𝑑)] + 2𝐾 𝐾𝐾𝐾𝐾𝐾𝑑, 𝐾𝐾/44)] + 9 𝐾𝐾𝐾𝐾𝐾6, 𝐾9/𝑑𝑑)] + 9 𝐾𝐾𝐾𝐾𝐾𝐾, 𝐾69/22𝑑)]
+ 3 𝐾𝐾𝐾𝐾𝐾8, 𝐾26/𝑑𝑑)] + 2 𝐾𝐾𝐾𝐾𝐾9, 𝐾𝐾4𝐾/22𝑑)] + 𝐾𝑑 𝐾𝐾𝐾𝐾2𝐾, 𝐾𝐾/22𝑑)] + 9 𝐾𝐾𝐾𝐾22, 𝐾𝐾/𝑑)] + 3 𝐾𝐾𝐾𝐾23, 𝐾89/22𝑑)]
+ 3 𝐾𝐾𝐾𝐾24, 𝐾34/𝑑𝑑)] + 𝐾9 𝐾𝐾𝐾𝐾26, 𝐾4/𝑑𝑑)] + 𝑑 𝐾𝐾𝐾𝐾2𝐾, 𝐾69/22𝑑)] + 3 𝐾𝐾𝐾𝐾28, 𝐾3𝐾/𝑑𝑑)] + 𝐾𝑑 𝐾𝐾𝐾𝐾3𝑑, 𝐾𝐾/𝐾𝐾)]
+ 3 𝐾𝐾𝐾𝐾3𝐾, 𝐾8𝐾/22𝑑)] + 2 𝐾𝐾𝐾𝐾32, 𝐾36/𝑑𝑑)] + 9 𝐾𝐾𝐾𝐾34, 𝐾𝐾4/𝑑𝑑)] + 3 𝐾𝐾𝐾𝐾3𝑑, 𝐾2𝑑/44)] + 9 𝐾𝐾𝐾𝐾3𝐾, 𝐾49/22𝑑)]
+ 𝐾 𝐾𝐾𝐾𝐾38, 𝐾3𝐾/𝑑𝑑)] + 𝑑 𝐾𝐾𝐾𝐾4𝑑, 𝐾3/𝐾𝐾)] + 3 𝐾𝐾𝐾𝐾4𝐾, 𝐾𝐾4𝐾/22𝑑)] + 𝐾4 𝐾𝐾𝐾𝐾42, 𝐾𝐾/𝑑𝑑)] + 6 𝐾𝐾𝐾𝐾43, 𝐾89/22𝑑)]
+ 𝐾𝐾 𝐾𝐾𝐾𝐾4𝑑, 𝐾9/44)] + 𝐾 𝐾𝐾𝐾𝐾46, 𝐾34/𝑑𝑑)] + 𝐾𝑑 𝐾𝐾𝐾𝐾4𝐾, 𝐾9/22𝑑)] + 3 𝐾𝐾𝐾𝐾48, 𝐾26/𝑑𝑑)] + 6 𝐾𝐾𝐾𝐾𝑑𝑑, 𝐾4/𝐾𝐾)]
+ 𝐾 𝐾𝐾𝐾𝐾𝑑𝐾, 𝐾𝐾8𝐾/22𝑑)] + 9 𝐾𝐾𝐾𝐾𝑑2, 𝐾𝐾6/𝑑𝑑)] + 9 𝐾𝐾𝐾𝐾𝑑4, 𝐾𝐾4/𝑑𝑑)] .

(B.20)
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Summary

This thesis concerns a subject from algebraic geometry, a branch of mathematics. Geometry is
the study of spatial structures; algebraic geometry looks at spatial objects that can be described
using polynomial formulas and uses abstract algebraic methods to study properties of those objects.
The possibility to use the power and precision of algebraic methods in combination with geometric
intuition makes this a beautiful subject.

K3 surfaces are a class of 2-dimensional geometric objects. There are infinitely many distinct K3
surfaces; it is not possible to enumerate them all. However, it is possible to create a “catalogue”, in
which every possible K3 surface occurs exactly once. This catalogue itself can be seen to be a geometric
object; it is called the moduli space of K3 surfaces. A point of this moduli space corresponds to a
particular K3 surface; a small displacement within the moduli space gives a small deformation of the
surface.

In this thesis we study the structure of the moduli space of K3 surfaces. It turns out that so-called
modular forms are relevant to this. These are functions that behave in a very special way under the
action of a discrete group of transformations. These modular forms contain a surprising amount of
number-theoretic information.

Samenvatting

Dit proefschrift behandelt een onderwerp uit de algebraische meetkunde, een vakgebied binnen
de wiskunde. Meetkunde is de studie van ruimtelijke structuren; algebraische meetkunde bestudeert
ruimtelijke objecten die kunnen worden beschreven met polynomiale formules, en gebruikt abstracte
rekenkundige methoden om eigenschappen van die objecten te onderzoeken. De mogelijkheid om zowel
de precisie en kracht van algebraische methoden alsook ruimtelijke intuïtie te gebruiken maakt dit tot
een boeiend vakgebied.

K3-oppervlakken vormen een klasse van 2-dimensionale meetkundige objecten. Er zijn oneindig
veel verschillende K3-oppervlakken; het is niet goed mogelijk om ze allemaal op te sommen. Toch is het
mogelijk om een “catalogus” te maken, waarin elk mogelijk K3-oppervlak precies een keer voorkomt.
Deze catalogus heeft zelf ook een ruimtelijke structuur en wordt de moduliruimte van K3-oppervlakken
genoemd: een punt van deze moduliruimte correspondeert met een specifiek K3-oppervlak; een kleine
verplaatsing binnen de moduliruimte geeft een kleine vervorming van het oppervlak.

In dit proefschrift wordt de structuur van de moduliruimte van K3-oppervlakken onderzocht. Hi-
erbij blijken zogeheten modulaire vormen een grote rol te spelen. Dit zijn functies die zich op een
bijzondere manier gedragen onder de werking van een discrete groep van transformaties. Deze mod-
ulaire vormen bevatten een verrassende hoeveelheid getaltheoretische informatie.
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