4,337 research outputs found

    A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors

    Get PDF
    Electrochemical energy storage systems play an important role in diverse applications, such as electrified transportation and integration of renewable energy with the electrical grid. To facilitate model-based management for extracting full system potentials, proper mathematical models are imperative. Due to extra degrees of freedom brought by differentiation derivatives, fractional-order models may be able to better describe the dynamic behaviors of electrochemical systems. This paper provides a critical overview of fractional-order techniques for managing lithium-ion batteries, lead-acid batteries, and supercapacitors. Starting with the basic concepts and technical tools from fractional-order calculus, the modeling principles for these energy systems are presented by identifying disperse dynamic processes and using electrochemical impedance spectroscopy. Available battery/supercapacitor models are comprehensively reviewed, and the advantages of fractional types are discussed. Two case studies demonstrate the accuracy and computational efficiency of fractional-order models. These models offer 15–30% higher accuracy than their integer-order analogues, but have reasonable complexity. Consequently, fractional-order models can be good candidates for the development of advanced b attery/supercapacitor management systems. Finally, the main technical challenges facing electrochemical energy storage system modeling, state estimation, and control in the fractional-order domain, as well as future research directions, are highlighted

    Accuracy versus simplicity in online battery model identification

    Get PDF
    This paper presents a framework for battery modeling in online, real-time applications where accuracy is important but speed is the key. The framework allows users to select model structures with the smallest number of parameters that is consistent with the accuracy requirements of the target application. The tradeoff between accuracy and speed in a battery model identification process is explored using different model structures and parameter-fitting algorithms. Pareto optimal sets are obtained, allowing a designer to select an appropriate compromise between accuracy and speed. In order to get a clearer understanding of the battery model identification problem, “identification surfaces” are presented. As an outcome of the battery identification surfaces, a new analytical solution is derived for battery model identification using a closed-form formula to obtain a battery’s ohmic resistance and open circuit voltage from measurement data. This analytical solution is used as a benchmark for comparison of other fitting algorithms and it is also used in its own right in a practical scenario for state-of-charge estimation. A simulation study is performed to demonstrate the effectiveness of the proposed framework and the simulation results are verified by conducting experimental tests on a small NiMH battery pack

    Vehicle lead-acid battery state-of-charge meter

    Get PDF
    We describe a state-of-charge, or “residual-capacity” meter for lead-acid batteries that intelligently synthesizes coulometric and terminal-voltage methods in a new algorithm to provide reliable, continuous readout of remaining capacity. Novel electronic circuit design eliminates the need to install a shunt in the vehicle. The meter learns the characteristics of a battery to which it is attached, removing the need for setup, customisation, programming or calibration at time of installation or battery replacement. The meter can thus be installed by unqualified personnel. Initial measurements suggest the design to be robust and accurate

    Battery Management System for Electric Drive Vehicles – Modeling, State Estimation and Balancing

    Get PDF
    Electric-drive vehicles (EDVs) have drawn more and more attention worldwide. As one of the most important parts of EDVs, battery management systems (BMSs) manage the huge amount of battery cells in EDVs and assures their safety. To achieve these goals, researches in BMS, such as battery modeling, battery state estimation, and battery balancing have gained a new vigor. This chapter will review the existing researches and introduce several advances in these areas

    Review on Lithium-Ion battery modeling for different applications

    Get PDF
    Battery modeling is one of the most important functions in a battery management system for different applications such as electrical vehicles, This article focuses on state of the art of lithium-ion battery modeling by exploring different existing modeling methods, such as Electrochemical models, Analytical models and the equivalent electrical circuit. First, the characteristics of the lithium-ion battery for different applications are reviewed ,we chose to study this type of battery because it offers satisfactory characteristics compared to other battery types, then the different modeling methods have been explored, finaly a conclusion with suggestion of other modeling type such as fractional order model have been proposed to improve efficiency and precision of battery management system

    Review on Lithium-Ion battery modeling for different applications

    Get PDF
    Battery modeling is one of the most important functions in a battery management system for different applications such as electrical vehicles, This article focuses on state of the art of lithium-ion battery modeling by exploring different existing modeling methods, such as Electrochemical models, Analytical models and the equivalent electrical circuit. First, the characteristics of the lithium-ion battery for different applications are reviewed ,we chose to study this type of battery because it offers satisfactory characteristics compared to other battery types, then the different modeling methods have been explored, finaly a conclusion with suggestion of other modeling type such as fractional order model have been proposed to improve efficiency and precision of battery management system

    Automatic Identification Algorithm of Equivalent Electrochemical Circuit Based on Electroscopic Impedance Data for a Lead Acid Battery

    Get PDF
    Obtaining tools to analyze and predict the performance of batteries is a non-trivial challenge because it involves non-destructive evaluation procedures. At the research level, the development of sensors to allow cell-level monitoring is an innovative path, and electrochemical impedance spectrometry (EIS) has been identified as one of the most promising tools, as is the generation of advanced multivariable models that integrate environmental and internal-battery information. In this article, we describe an algorithm that automatically identifies a battery-equivalent electrochemical model based on electroscopic impedance data. This algorithm allows in operando monitoring of variations in the equivalent circuit parameters that will be used to further estimate variations in the state of health (SoH) and state of charge (SoC) of the battery based on a correlation with experimental aging data corresponding to states of failure or degradation. In the current work, the authors propose a two-step parameter identification algorithm. The first consists of a rough differential evolution algorithm-based identification. The second is based on the Nelder–Mead Simplex search method, which gives a fine parameter estimation. These algorithm results were compared with those of the commercially available Z-view, an equivalent circuit tool estimation that requires expert human input.Special thanks should also be expressed for the Torres Quevedo (PTQ) 2019 Aid from the State Research Agency, within the framework of the State Program for the Promotion of Talent and its Employability in R + D + i, Ref. PTQ2019-010787 /AEI/10.13039/501100011033

    Structural Identifiability of Impedance Spectroscopy Fractional-Order Equivalent Circuit Models With Two Constant Phase Elements

    Full text link
    Structural identifiability analysis of fractional-order equivalent circuit models (FO-ECMs), obtained through electrochemical impedance spectroscopy (EIS) is still a challenging problem. No peer-reviewed analytical or numerical proof does exist showing that whether impedance spectroscopy FO-ECMs are structurally identifiable or not, regardless of practical issues such as measurement noises and the selection of excitation signals. By using the coefficient mapping technique, this paper proposes novel computationally-efficient algebraic equations for the numerical structural identifiability analysis of a widely used FO-ECM with Gr\"{u}nwald-Letnikov fractional derivative approximation and two constant phase elements (CPEs) including the Warburg term. The proposed numerical structural identifiability analysis method is applied to an example from batteries, and the results are discussed. Matlab codes are available on github

    Advanced Battery Technologies: New Applications and Management Systems

    Get PDF
    In recent years, lithium-ion batteries (LIBs) have been increasingly contributing to the development of novel engineering systems with energy storage requirements. LIBs are playing an essential role in our society, as they are being used in a wide variety of applications, ranging from consumer electronics, electric mobility, renewable energy storage, biomedical applications, or aerospace systems. Despite the remarkable achievements and applicability of LIBs, there are several features within this technology that require further research and improvements. In this book, a collection of 10 original research papers addresses some of those key features, including: battery testing methodologies, state of charge and state of health monitoring, and system-level power electronics applications. One key aspect to emphasize when it comes to this book is the multidisciplinary nature of the selected papers. The presented research was developed at university departments, institutes and organizations of different disciplines, including Electrical Engineering, Control Engineering, Computer Science or Material Science, to name a few examples. The overall result is a book that represents a coherent collection of multidisciplinary works within the prominent field of LIBs
    • 

    corecore