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Abstract—We describe a state-of-charge, or ‘residual-
capacity” meter for lead-acid batteries that intelligently syn-
thesizes coulometric and terminal-voltage methods in a new
algorithm to provide reliable, continuous readout of remaining
capacity. Novel electronic circuit design eliminates the need to
install a shunt in the vehicle. The meter learns the characteristics
of a battery to which it is attached, removing the need for setup,
customisation, programming or calibration at time of installation
or battery replacement. The meter can thus be installed by
unqualified personnel. Initial measurements suggest the design
to be robust and accurate.

I. INTRODUCTION

LECTRIC vehicles are expected to have an equivalent of

the fuel gauge that appears on the dashboard of vehicles
powered by liquid fossil fuels. This proves to be difficult as
there is no readily-measured material being consumed as in
the case of a fossil-fuel vehicle. A number of approaches
have been reported in the literature and a number of prod-
ucts are available on the market, but the complexity of the
processes even in the widely-used and well-studied lead-acid
battery have thwarted the development of a gauge that finds
acceptance and works well in the field.

A number of methods to predict state-of-charge (SoC)
or residual capacity have appeared in the literature. Some
measure only terminal voltage, some measure cell impedance,
some current (charge) conducted, and many use a combination
of these. References [1] and [2] both settle on a technique
using coulometric measurement weighted for various dis-
charge rates, combined with transient open-circuit voltage to
periodically correct for the accumulated error of the Coulomb
method. The open-circuit voltage corresponding to full charge
is revised to account for ageing effects. The authors of [2]
found that this method gave accurate results for electric
vehicle applications using lead-acid batteries. The authors of
[1] modify the method of [2] only slightly, by removing
the transient open-circuit voltage component of the model
below 50% residual capacity where they observed it to be
less relaible. The authors of [1] also suggest adaption of the
adjustment of capacity with discharge rate, but they measure
this for their test batteries and do not elaborate on how the
revision of this factor might be achieved.

In [3] the authors present an electric circuit model for an
electrochemical battery and show how the open circuit voltage
can be estimated based on the battery’s terminal voltage and
current flow. They suggest that the open circuit voltage can be
found when the current is flowing in a parabolic profile. The
authors had issues where their extracted open circuit voltage
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did not agree forcing them to reset estimators. This method
does show potential but is not at a level where it can be
practically utilised.

Reference [4] studies the effects of high discharge rates
on battery capacity in some detail. The authors propose a
weighted coulometric method similar to those of [1] and [2].
Their main contribution is to identify the limitations of various
discharge-rate corrections applied in the Coulomb method for
predicting residual capacity. They present methods to deter-
mine the constants in their equations for given batteries. Their
methods have been tested with different discharge patterns for
electric vehicles. In conclusion, they do not find a generally-
applicable Coulometric correction technique.

A number of references, after [5] in 2004, report on gauges
that integrate current and voltage data and estimate SoC using
artificial neural network (ANN) or combinations of similar
biologically-inspired methods (dubbed “Soft Computing” in
[6]). The implementation reported in [7] represents an appli-
cation to the Coulomb method explored in [4]. In particular
the work addresses the dilemma identified in [4] concerning
the application of a model with linear change in Coulometric
capacity with discharge current in the case of rapidly-varying
discharge current that gave rise to the “A,” and “A,.;” algo-
rithms. This is achieved by using a fuzzy neural network to set
the Coulometric correction factor as shown in figure 2 of [7].
This approach is ingenious. The authors of [8] also employ a
neural approach with the explicit addition of heuristic rules.
They report remarkable success. While these methods are
powerful they require significant training, and the training data
must include the output variable—the remaining capacity—
that is typically only available as an estimate with hindsight.
A manufactured gauge would have to be trained, and with
data gathered in a controlled way. This challenge is actually
noted by the authors of [8]. The ANN approach amounts to an
elegant lookup table. The accuracies sought and reported are
beyond what would be welcome in practice, but the training
amounts to a marketing hurdle. This is naturally unsuitable
for a gauge that must be installed in a situation without great
preparation or skill.

The approach of refining the Coulomb method through im-
proving the current-dependent correction is pervasive. Radial
basis functions and fuzzy logic are applied to this end in
[9] and [10] respectively. The authors of [1] and [2] would
criticise the approach for its inability to cope with the apparent
recovery of capacity that can occur when a battery rests, a
kind of memory effect. From the point of view of achieving
a gauge with general applicability, it is the training or battery
parameter fitting that is the main impediment to this approach.

In contrast [11] describes a method that relies solely on the
equilibrium open-circuit EMF for SoC estimation. The authors
go to great lengths to estimate this voltage when the battery is



under load and out of equilibrium through use of terminal volt-
age, load current and measured battery impedance. Without
much ado the authors discount Coulomb methods while using
them in characterizing batteries at constant discharge rates, but
they do not appear to have considered the approach used in
[1] and [2]. As noted in [7], the measurement of impedance
requires a serious amount of hardware. Furthermore the au-
thors do not have any measurements using the kind of regime
encountered in traction applications such as scooters. It has
not been shown that the extra difficulty in using impedance
makes the approach in [11] any better than that in [1].

The state-space battery model employed in [12] adds the
elegant physical observation that energy from cell reactions
delivering current that is not delivered to the user must
contribute to heating of the battery. It is hard to use this
effectively because a detailed thermal model is needed, and
it does not appear to allow for chemical that becomes un-
available from the plates without reacting to contribute charge.
[4] Furthermore, temperature sensors must be placed in the
electrolyte. In the end the significant computational effort
and complicated state-space model produce good results but
require excessive hardware and careful parameter fitting.

The authors of [13] propose a model which allows data
provided by the manufacturer to be used to predict battery
output characteristics for different operating profiles. Their
Spice simulation results showed that the model does provide
a reasonable representation of the battery terminal voltage for
different discharge conditions. However, the work is mostly
aimed at predicting performance of batteries in a given appli-
cation based upon their specifications.

In [14] the authors study how various factors effect battery
capacity. Their main contribution is to include temperature as a
variable. The authors do not go into detail about the proposed
mathematical model. They are concerned more with standby
power applications than with traction applications, and thus
their results are not closely applicable.

In reference [15] the authors use a method of residual ca-
pacity estimation involving electrochemical theory. The paper
has a detailed literature review on the conventional methods
of determining residual capacity. Their proposed method is
largely based around the chemistry within each cell and claims
to be quite effective. However, the method relies on battery
parameters that are difficult to obtain, and therefore it is
inapplicable in the case of a compact model implemented
without detailed fitting to a particular battery.

II. PROPOSED DESIGN

Anyone who has used an electric scooter or golf cart will
attest to the shortcomings of existing commercial products. On
the other hand, reports in the literature suggest that reasonable
performance is readily possible, and battery-powered com-
puters report their battery’s remaining capacity with decent
accuracy. We reconcile this paradox by identifying two aspects
of effective gauges that prevent their acceptance in electric
vehicle situations:

1) The manufacturer is reluctant to fit a shunt purely to
allow current measurement by the meter, especially in

the case of low cost vehicles such as scooters. Not only
does this add cost and complexity, but the shunt will
typically have to be sized for the particular application,
and the meter may need to be programmed with the
shunt resistance.

2) Manufacturers are not equipped to determine character-
istics of the batteries they use, even if they remained
constant between batches and suppliers, and are thus
reluctant or unable to use a meter that must be pro-
grammed with specific constants whose meaning they
may not understand in any detail.

In this manuscript we report a meter design that implements
proven state-of-charge methods, yet requires neither the in-
stallation of a shunt, nor the programming of any battery-
specific parameters. We believe that this will open the way to
capacity gauges that find commercial and deployment success.
We liken the situation to that surrounding the deployment
of the first monolithic operational amplifiers in the 1960s:
The opamp only became widely successful when a unity-
gain compensated version was available, for no less trivial
reason than designers who could not or were not willing
to go to the length of determining a suitable value of the
compensation capacitor. Only when the battery gauge is little
more complicated to use than a simple voltmeter will it be
accepted. We present such a design here.

A. Current Measurement

Figure 1 depicts a block diagram of the gauge. There
are four electrical connections between the gauge and the
vehicle battery system. Two of these are the ground and
positive power connections, and two lead to an integrator.
The circuitry senses current using an extant section of vehicle
wiring as a shunt, typically the battery ground strap. Current
is sensed by integrating the small voltage dropped across the
cable. This requires the integrator to have very low offsets,
but this is not difficult for modern opamps, with a chopper-
stabilized amplifier costing only a couple of dollars in small
quantity. [16]

The proper operation of the integrator and pseudo-shunt is
readily checked by means of a current sink that is controlled
by the small microcontroller that carries out the state-of-charge
calculations. The accuracy of the sink and shunt is not critical,
since the gauge is intended to read a fractional capacity, not an
absolute value in Ampere-hours, for example. This approach
has two collateral advantages: The shunt value tends to be
automatically scaled with the vehicle design, since a vehicle
that draws larger battery currents is cabled using appropriately
thick wire to minimise power loss in the interconnection,
while a vehicle that expects to draw smaller currents uses
lighter gauge cable to save weight and cost. The two integrator
connections do not need to be positioned on the cable a
particular way around nor is the distance between them critical,
since the current sink will tell the microcontroller the polarity
and verify that sufficient cable resistance lies between the
integrator connections to allow operation. In our experience
the integrator connections should be about 300mm apart for
satisfactory operation.
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Fig. 1. Block diagram of the gauge associated with a battery and a display.

Of interest is the integrator and the switchable current sink controlled by an
embedded microcontroller.

B. Operational Algorithm

The algorithm implemented by the prototype gauge is a
periodically-corrected Coulomb method after [2]. The gauge
must initially operate in a pure-voltage mode until it deduces
the capacity of the battery. Coefficients for both the voltage
and the Coulomb methods are refined as opportunity allows
during operation.

Specifically, the algorithm operates as follows:

e On cold boot, after charging, or at periodic intervals, the
source resistance to the battery is measured using a brief
5-Ampere current pulse. At the same time the current
sense polarity is confirmed, and value of the shunt cable
is checked to be within acceptable limits.

o The gauge enters a “newborn” mode when first connected
to a battery, the battery recovery time constant is set to
600 seconds, and the a; coefficient in the formula that
relates open-circuit voltage to state-of-charge is set to
1.5 Volts.

o Whenever the battery’s open-circuit voltage exceeds
2.2 V per cell the gauge resets to full-charge status,
setting the consumed charge, Qr, to zero.

o If a full-charge reset occurred within the last day and
the state-of-charge, S, is between 40% and 75% and
the battery is in equilibrium, the meter leaves “newborn”
mode and records the total capacity of the battery, Q) p,
based on the charge drawn out since reaching full charge.
Simultaneously, the value of I,..; associated with the
“Crres” used in the coulometric rate correction algorithm
is taken as the average of current drawn over any oper-
ating intervals between leaving full charge and leaving
“newborn” mode. An “operating interval” is considered
to be time when current exceeds 1 Ampere.

« To allow for battery ageing, whenever the battery is fully
charged and allowed to rest with negligible current flow
until equilibrium is reached, the full-charge, open-circuit
voltage is used to update the a; coefficient in the formula
that relates open-circuit voltage to state-of-charge, taking
11.8 V as the open-circuit voltage at zero remaining
capacity. [3]

« Battery open-circuit voltage is estimated by one of two
methods with the following priority:

1) If the battery is in equilibrium with negligible

current being drawn, the terminal voltage is the
measured open-circuit voltage;

2) If current is being drawn, the open-circuit voltage
is approximated using the full-charge source resis-
tance, the terminal voltage, and Ohm’s law.

o Whenever the battery reaches equilibrium, and the gauge
is not in “newborn” mode, and the state-of-charge deter-
mined from the equilibrium open-circuit voltage exceeds
25%, the value of consumed charge, Qr, is corrected
to remove the accumulated error, and an incremental
adjustment is made to the presumed coulometric capacity
of the battery, ) 5. (Thus the meter allows for incremental
changes in battery capacity.)

o The state of charge, S, is determined from the open-
circuit voltage if the gauge is in its “newborn” mode,
or if the equilibrium open-circuit voltage is available and
the current value of S is greater than 25%. Otherwise it is
obtained from the pessimistic “A,.;” Coulomb method
from [4], with «(i) approximated as 0.8 + 0.2(¢)/Icf
during discharge, and 0.8 otherwise. (In effect, terminal
voltage is used when in equilibrium and not close to flat,
consumed charge otherwise.)

o The battery is presumed to be in equilibrium when no
current has been drawn for more than four time-constants.

o The battery recovery time constant is adjusted whenever
it can be estimated from measurements made at the start
of a period of equilibrium.

In addition to the algorithm above, it is possible to imple-
ment an automatic identification of the total number of cells.
This would permit automatic selection between say, a “12V”
mode and “24V” mode, so that the same hardware can service
two markets, provided there is sufficient resolution in the ADC
hardware.

To date the effects of ambient temperature have not been
addressed. A number of constants are expected to exhibit
temperature-dependence that may be important in extreme
circumstances. However, performance in mild climates does
not seem to be greatly impacted and many other authors do
not include temperature variation. Accounting for temperature
is considered to be an option best left until the other aspects
of the approach are proven.

C. Hardware

Figure 2 gives an idea of the small size and mechanical
simplicity possible with the design. Only four electrical con-
nections are required (excluding any meter illumination). The
entire circuit can easily be accomodated on a circuit board
whose diameter is less than that of typical meters. Output
from the main board consists of an analog voltage in the range
0-5V with a series resistance of 470012, allowing the direct
connection of a moving-coil meter or an electronic display of
some sort.

The authors’ implementation employs a Microchip 8-bit
microcontroller that sells for around US$1. [17] There is also
a small number of routine components including a CMOS
chopper opamp. The circuit board in figure 2 shows a 6-pin
“in-circuit serial programming” interface, but this would not



Fig. 2. View of prototype meter mounted in an electric scooter with a solid-
state display board, and mounted directly on an analog panel meter. The main
printed circuit board is shown along with a scale in centimetres to exemplify
its size and simplicity.

be fitted on production units. Installation consists of nothing
more than connecting the four wires to power, ground, and
the battery earth strap, then pressing the cold-start button. In
the event that the two sense wires are connected too closely
together or too far apart a signal is given, and the wires need
to be repositioned.

III. MEASURED PERFORMANCE

Figure 3 shows the error in the reading of current on proto-
type hardware compared with a high-quality bench meter. Con-
stant calibration error arises from error in the inbuilt current
calibration pulse. This does not affect operation significantly
since the current calibration cancels out in the calculation of
SoC. Noise at the low end arises from opamp input offsets,
thermocouple voltages, etc. Full scale deflection is set by the
controller software and the compensation currents injected into
the integrator by the controller, and corresponded to about 1V
input in this case. The microcontroller-integrator system reads
with 10% accuracy or better across more than 4 orders of
magnitude without the use of any special components, solders,
or assembly precautions.

Figure 4 shows data gathered using prototype hardware on a
new, commercial, lead-acid battery. Figure 5 shows the result
of running various algorithms on the example data. It is clear
that the use of battery terminal voltage alone is not satisfactory.
The methods that use current data yield more convincing
results. As suggested in the literature, we have observed that
pure Coulomb methods have a tendency to be pessimistic,
pure voltage methods a tendency to be erratic. In the example
presented here, the periodically-corrected Coulomb algorithm
performs best, as expected. It is an amalgam of methods
available in the literature and that can be accomodated by
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Fig. 4. Typical voltage and current data measured using the prototype meter
and used to verify the algorithm code.

our hardware subject to the requirement for autonomous
implementation.

It is tempting to ask what might be the “correct answer” for
the state-of-charge in any example data set. This is not readily
determined, especially without hindsight. [2] Considering the
results of figure 5, all methods yield less than zero capacity
around 150 minutes, yet power is still being delivered by
the battery, so the “correct answer” must lie above zero
at that point. Unfortunately, the error is only obvious once
the returned state-of-charge falls below zero with power still
flowing, and even then it is not obvious at what point in time
an algorithm departed from the “correct answer”. Not one of
the algorithms suggested in the literature is foolproof, and it
is possible to devise a load regimen that leads to an optimistic
result and another that leads to a pessimistic one.
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Fig. 5. State-of-charge readout for various methods applied to the data of

figure 4. The plain black line is the proposed method, the plain dashed line
is the Coulomb method, the solid line with dots is the voltage method with
correction for load current, and the dashed trace with dots is the terminal-
voltage method applied by gauges that do not sense current. It is instructive
to consider the difference in values that would be returned by the various
methods at 15, 100 and 115 minutes of elapsed time. Note the y-axis scale.
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V. CONCLUSIONS

We have presented a new circuit and algorithm design
for a battery state-of-charge gauge. If ease of field use is
a determining factor this design could open the way to the
widespread use of meters with accuracy comparable to those
in fossil-fuel vehicles. We have proven the approach in bench
tests. We present a prototype that is being used to replace
the gauges in some vehicles. Only more extensive use will
establish the practicality of the approach. We encourage the
use of the technique presented here in the interests of rigorous
testing.
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