812 research outputs found

    Self-Similar Anisotropic Texture Analysis: the Hyperbolic Wavelet Transform Contribution

    Full text link
    Textures in images can often be well modeled using self-similar processes while they may at the same time display anisotropy. The present contribution thus aims at studying jointly selfsimilarity and anisotropy by focusing on a specific classical class of Gaussian anisotropic selfsimilar processes. It will first be shown that accurate joint estimates of the anisotropy and selfsimilarity parameters are performed by replacing the standard 2D-discrete wavelet transform by the hyperbolic wavelet transform, which permits the use of different dilation factors along the horizontal and vertical axis. Defining anisotropy requires a reference direction that needs not a priori match the horizontal and vertical axes according to which the images are digitized, this discrepancy defines a rotation angle. Second, we show that this rotation angle can be jointly estimated. Third, a non parametric bootstrap based procedure is described, that provides confidence interval in addition to the estimates themselves and enables to construct an isotropy test procedure, that can be applied to a single texture image. Fourth, the robustness and versatility of the proposed analysis is illustrated by being applied to a large variety of different isotropic and anisotropic self-similar fields. As an illustration, we show that a true anisotropy built-in self-similarity can be disentangled from an isotropic self-similarity to which an anisotropic trend has been superimposed

    Modeling, Estimation, and Pattern Analysis of Random Texture on 3-D Surfaces

    Get PDF
    To recover 3-D structure from a shaded and textural surface image involving textures, neither the Shape-from-shading nor the Shape-from-texture analysis is enough, because both radiance and texture information coexist within the scene surface. A new 3-D texture model is developed by considering the scene image as the superposition of a smooth shaded image and a random texture image. To describe the random part, the orthographical projection is adapted to take care of the non-isotropic distribution function of the intensity due to the slant and tilt of a 3-D textures surface, and the Fractional Differencing Periodic (FDP) model is chosen to describe the random texture, because this model is able to simultaneously represent the coarseness and the pattern of the 3-D texture surface, and enough flexible to synthesize both long-term and short-term correlation structures of random texture. Since the object is described by the model involving several free parameters and the values of these parameters are determined directly from its projected image, it is possible to extract 3-D information and texture pattern directly from the image without any preprocessing. Thus, the cumulative error obtained from each pre-processing can be minimized. For estimating the parameters, a hybrid method which uses both the least square and the maximum likelihood estimates is applied and the estimation of parameters and the synthesis are done in frequency domain. Among the texture pattern features which can be obtained from a single surface image, Fractal scaling parameter plays a major role for classifying and/or segmenting the different texture patterns tilted and slanted due to the 3-dimensional rotation, because of its rotational and scaling invariant properties. Also, since the Fractal scaling factor represents the coarseness of the surface, each texture pattern has its own Fractal scale value, and particularly at the boundary between the different textures, it has relatively higher value to the one within a same texture. Based on these facts, a new classification method and a segmentation scheme for the 3-D rotated texture patterns are develope

    Multi-texture image segmentation

    Get PDF
    Visual perception of images is closely related to the recognition of the different texture areas within an image. Identifying the boundaries of these regions is an important step in image analysis and image understanding. This thesis presents supervised and unsupervised methods which allow an efficient segmentation of the texture regions within multi-texture images. The features used by the methods are based on a measure of the fractal dimension of surfaces in several directions, which allows the transformation of the image into a set of feature images, however no direct measurement of the fractal dimension is made. Using this set of features, supervised and unsupervised, statistical processing schemes are presented which produce low classification error rates. Natural texture images are examined with particular application to the analysis of sonar images of the seabed. A number of processes based on fractal models for texture synthesis are also presented. These are used to produce realistic images of natural textures, again with particular reference to sonar images of the seabed, and which show the importance of phase and directionality in our perception of texture. A further extension is shown to give possible uses for image coding and object identification

    Models for Motion Perception

    Get PDF
    As observers move through the environment or shift their direction of gaze, the world moves past them. In addition, there may be objects that are moving differently from the static background, either rigid-body motions or nonrigid (e.g., turbulent) ones. This dissertation discusses several models for motion perception. The models rely on first measuring motion energy, a multi-resolution representation of motion information extracted from image sequences. The image flow model combines the outputs of a set of spatiotemporal motion-energy filters to estimate image velocity, consonant with current views regarding the neurophysiology and psychophysics of motion perception. A parallel implementation computes a distributed representation of image velocity that encodes both a velocity estimate and the uncertainty in that estimate. In addition, a numerical measure of image-flow uncertainty is derived. The egomotion model poses the detection of moving objects and the recovery of depth from motion as sensor fusion problems that necessitate combining information from different sensors in the presence of noise and uncertainty. Image sequences are segmented by finding image regions corresponding to entire objects that are moving differently from the stationary background. The turbulent flow model utilizes a fractal-based model of turbulence, and estimates the fractal scaling parameter of fractal image sequences from the outputs of motion-energy filters. Some preliminary results demonstrate the model\u27s potential for discriminating image regions based on fractal scaling

    Virtual Super Resolution of Scale Invariant Textured Images Using Multifractal Stochastic Processes

    Get PDF
    International audienceWe present a new method of magnification for textured images featuring scale invariance properties. This work is originally motivated by an application to astronomical images. One goal is to propose a method to quantitatively predict statistical and visual properties of images taken by a forthcoming higher resolution telescope from older images at lower resolution. This is done by performing a virtual super resolution using a family of scale invariant stochastic processes, namely compound Poisson cascades, and fractional integration. The procedure preserves the visual aspect as well as the statistical properties of the initial image. An augmentation of information is performed by locally adding random small scale details below the initial pixel size. This extrapolation procedure yields a potentially infinite number of magnified versions of an image. It allows for large magnification factors (virtually infinite) and is physically conservative: zooming out to the initial resolution yields the initial image back. The (virtually) super resolved images can be used to predict the quality of future observations as well as to develop and test compression or denoising techniques

    Piecewise parameterised Markov random fields for semi-local Hurst estimation

    Get PDF
    Semi-local Hurst estimation is considered by incorporating a Markov random field model to constrain a wavelet-based pointwise Hurst estimator. This results in an estimator which is able to exploit the spatial regularities of a piecewise parametric varying Hurst parameter. The pointwise estimates are jointly inferred along with the parametric form of the underlying Hurst function which characterises how the Hurst parameter varies deterministically over the spatial support of the data. Unlike recent Hurst regularistion methods, the proposed approach is flexible in that arbitrary parametric forms can be considered and is extensible in as much as the associated gradient descent algorithm can accommodate a broad class of distributional assumptions without any significant modifications. The potential benefits of the approach are illustrated with simulations of various first-order polynomial forms

    Digital Signal Processing

    Get PDF
    Contains table of contents for Part III, table of contents for Section 1, an introduction and reports on seventeen research projects.National Science Foundation FellowshipNational Science Foundation (Grant ECS 84-07285)National Science Foundation (Grant MIP 87-14969)U.S. Navy - Office of Naval Research (Contract N00014-81-K-0742)Scholarship from the Federative Republic of BrazilU.S. Air Force - Electronic Systems Division (Contract F19628-85-K-0028)AT&T Bell Laboratories Doctoral Support ProgramCanada, Bell Northern Research ScholarshipCanada, Fonds pour la Formation de Chercheurs et I'Aide a la Recherche Postgraduate FellowshipSanders Associates, Inc.OKI Semiconductor, Inc.Tel Aviv University, Department of Electronic SystemsU.S. Navy - Office of Naval Research (Contract N00014-85-K-0272)Natural Sciences and Engineering Research Council of Canada, Science and Engineering Scholarshi
    corecore