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ABSTRACT

MODELS FOR MOTION PERCEPTION

David 1. Heeger

Ruzena Bajcsy (advisor)

As observers move through the environment or shift their direction of gaze, the world

moves past them. In addition, there may be objects that are moving differently from the

static background, either rigid-body motions or nonrigid (e.g., turbulent) ones. This dissertation

discusses several models for motion perception. The models rely on first measuring motion

energy, a multiresolution representation of motion infonnation extracted from image sequences.

The image flow model combines the outputs of a set of spatiotempora! motion-energy filters

to estimate image velocity, consonant with current views regarding the neurophysiology and

psychophysics of motion perception. A parallel implementation computes a distributed repre­

sentation of image velocity that encodes both a velocity estimate and the uncertainty in that

estimate. In addition, a numerical measure of image-flow uncertainty is derived.

The egomoticn model poses the detection of moving objects and the recovery of depth

from motion as sensor fusion problems that necessitate combining infollllation from different

sensors in the presence of noise and uncertainty. Image sequences are segmented by finding

image regions corresponding to entire objects that are moving differently from the stationary

background.

The turbulent flow model utilizes a fractal-based model of turbulence, and estimates the

fractal scaling parameter of fractal image sequences from the outputs of motion-energy filters.

Some preliminary results demonstrate the model's potential for discriminating image regions

based on fractal scaling.
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Chapter 1

Introduction

1.1 Models for Motion Perception

The world we live in is constantly in motion - obselVers (either biological organisms or a

computer beings) who depend on visual perception to gain an understanding of the environment

must be able to interpret visual motion. Active obselVers who are moving their head and eyes

in order to better perceive the environment rely particularly on motion analysis. Some of the

important functions of motion perception are: (1) to act as an early warning system; (2) to allow

an obselVer to track the location of moving objects and recover their three-dimensional structure;

(3) to help an observer determine his own movement (egomotion) through the environment; (4)

to help an obselVer divide the visual field into meaningful segments (e.g., moving vs. stationary

or rigid vs. nonrigid); (5) to help an obselVer classify objects (e.g., as inanimate objects or as

biological organisms).

The perception of visual motion does not depend on prior interpretation or recognition of

shape and form. However, it does depend on there being motion information, i.e., changes

in intensity over time throughout the visual field. Without texture, a perfectly smooth moving

surface yields an image sequence in which most local regions do not change over time. But

in a highly textured world (e.g., natural outdoor scenes with trees and grass), there is motion

information throughout the visual field.

The goal of this research is an analysis of visual motion that is at its best performance for
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complex, outdoor, natural scenes. This is in sharp contrast to many computer vision efforts to

date that are restricted to a world populated by smooth objects, a sort of "Play-Doh" world [20]

that is not much more general than the blocks world.

It is generally believed that the analysis of visual motion procedes in two stages. The

first stage is the extraction of two-dimensional motion infonnation (direction of motion, speed,

displacement) from image sequences. The second stage is the interpretation of image motion.

Early computer vision research focused on interpreting image motion as biological motion

[10,68,105]. Computer vision research has since concentrated on interpreting image motion

as the projection of solid objects undergoing rigid-body motion, including the rigid motion of

the stationary environment reiative to an observer's own motion, called egomotion (see [18,135]

for reviews of the literature).

Not everything in the world, however, is rigid. There is a continuum of motions, of which

rigid motion is but one extreme. A list of some of the categories in this continuum (from most

coherent to least coherent) is: rigid motion, jointed motion, biological motion, elastic motion,

laminar flow, flow with vortices, and fully developed turbulence. A general-purpose vision

system must be able to recognize any of these different types of motion, thus allowing the

system to make abstract inferences (e.g., solid or fluid), predictions (e.g., future location), and

comparisons or contrasts (e.g., viscous or free flowing).

This dissertation presents several models for motion perception. I use the word "model" in

several ways in this dissertation: (1) I develop models of processes that operate in the physical

world and describe how they project to images; (2) I develop techniques for recognizing such

processes, and in some cases I propose that these techniques are models for biological vision; (3)

I posit statistical models of the noise, error, and uncertainty in sensor obsevations and estimates.

Background and motivation for the motion models is presented in the remainder of this

chapter. Chapter 2 discusses motion energy, a multiresolution representation of motion infor­

mation extracted from image sequences. Chapter 3 presents a model for the extraction of image

flow. Chapter 4 uses the image flow model to simulate psychophysical data on velocity dis­

crimination and on the coherence of sine-grating plaid patterns. Chapter 5 discusses a model

for combining uncertain and noisy sensor information about the observer's motion and about

image flow in order to detect moving objects and to recover the 3-D spatial layout of the scene.
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Chapter 6 proposes two additional sources of infonnation to help solve the difficult problem of

recovering the motion parameters of rigidly moving objects. Chapter 7 proposes a model for

the recognition of turbulent flow. Chapter 8 summarizes the contributions of this dissertation

and proposes directions for future research.

1.2 Perceptual Organization

The emphasis in computer vision research over the past decade has been the recovery of depth

infonnation lost to projection (for example, see Marr [96] or Barrow and Tenenbaum [20]).

This emphasis can be traced back to Helmholtz who first listed the sources of infonnation

(depth cues) about the perceived distance of objects. The research has been primarily based

on point-wise models of image fonnation borrowed from optics, material science, and physics,

but the local recovery of depth using such point-wise models is inherently underdetennined. So

researchers have constrained the problem by invoking (oftentimes unverifiable) assumptions like

smoothness, continuity, or isotropy. In the real world, unfortunately, such assumptions are often

in error. Thus, several researchers [91,110,149] have recently critisized the goal of recovering

a dense depth map:

On the whole, the perfonnance and generality of depth recovery techniques
has been unimpressive. Those techniques that rely on weak, general assumptions
such as isotropy have proved fragile and error-prone; while such assumptions may
be frequently valid, they also tend to be violated fairly often. Those that rely on
artificial domain restrictions (e.g., smooth Lambertian faces, unifonn albedo, point
source illumination) clearly do not apply in complex natural scenes.[149]

It may tum out that the problems with current recovery techniques are inherent
in the local, quantitative nature of the approaches they use. It is easily demonstrated
(e.g., by looking through a reduction tube) that, in general, very little infonnation
about surface or boundary characteristics can be gleaned from small image neigh­
borhoods that are viewed out of context,[149]

It is also clear that detailed, analytic models of the image fonnation process
are not essential to human perception; humans function quite well with range finder
images (where brightness is proportional to distance rather than a function ofsurface
orientation), electron microscope images (which are approximately the reverse of
nonnal images), and distorted and noisy images of all kinds - not to mention
paintings and drawings.[1lO]

There is, however, a more fundamental issue: Even if a depth map could be
reliably obtained, how would it be used? ... a depth map is still fundamentally an
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image, with distance replacing brightness as the dependent variable. Being just an
array of numbers, it is difficult to think of tasks that a depth map directly supports.
For example, while raw depth values may suffice for elementaI)' obstacle avoidance,
grasping or recognizing objects requires that the depth first be organized into larger
structures corresponding, e.g., to continuous visible surfaces.[149]

If the recovery of a dense depth map is not the primaI)' basis for visual perception, then

what is? Several researchers [22,23,69,87,91,110,149,152] have placed renewed emphasis on

understanding perceptual organization:

People's ability to perceive structure in images exists apart from both the per­
ception of tri-dimensionality and from the recognition of familiar objects. That is,
we organize the data even when we have no idea what it is we are organizing ...
It is almost as if the visual system has some basis for guessing what is important
without knowing why.[149]

Gestalt psychologists [83,148] were the first to stress the intemal organizational processes

in visual perception. They tried to enumerate the "laws" of perceptual organization1, but were

not inclined to ask how the visual system benefits from perceptual organization.

What is the function of perceptual organization? Pentland [110] and Bobick [23] have pro­

posed that the function of perceptual organization is to recognize regularities that are abundant

in our environment. For example, evolution repeats its solutions when choosing optimal char­

acteristics for living organisms resulting in great regularities across species [128]. Similarly,

man-made objects are subject to design constraints which result in regularities, e.g., a chair

must have certain geometric properties for people to sit in it. Complex, inanimate, natural pro­

cesses also exhibit regularity - for example, Mandelbrot [95] has found that clouds, mountain

landscapes, turbulent water, lightning, cottage cheese, music, and the aggregation of galaxies

all share unifonnities that are characterized by a class of mathmatical functions called fractals.

Also, Stevens L124] presents evidence that inanimate fonns are constrained by physical laws to

a limited number of basic patterns, and that natural textures occur in but a few basic fonns.

Some of the regularities in the world around us p;uject to regularities in images. The function

of perceptual organization is to "pick-up" on such regularities.

lThe Gestalt psychologists assumed a homogeneous mechanism was responsible for perceptual grouping. Bul, I
agree with Zucker [152] who argues that the diversity of grouping processes is the key to understanding early vision
- each type of grouping process is mediated by a separate mechanism. Thus, in the proposed paradigm there are
many models operating in parallel, each looking for different regularities in the image sequence.
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In this context, perception's job is to recover lawful regularities that indicate causal orga­

nization in the sensory data. Pentland [110] states, "If we think of the world as an ongoing,

moment-to-moment process, then perception's task is to discover the settings of the parameters

that govern the process. Knowing what the parameters are and how they are set allows us to

anticipate events, to predict the consequences of our actions, and to make abstract comparisons

and contrasts."

Gibson [51,50] was the first to emphasize that there are regularities in images. He stressed

that the space-time pattem falling on the retina contains all the information needed by an

organism to interpret its environment and adjust its behavior - no additional constraints or

assumptions are required. But Gibson was not interested in explaining the mechanisms by

which these regularities are recognized.

1.3 Generic Process Models

How are regularities in images recognized? As Pentland [110] explains, "Understanding how to

recover causal structure from regularities in the sensory data depends on having models of the

physical world, and being able to recognize their instantiations. The need for a model cannot

be sidestepped, for it is the model that relates the sensory data to the state of the real world.

Thus, a theory of visual function that has no model of the world also has no meaning. 2"

Understanding the early stages of perception as the interpretation of sensory data by use of

models has, ofcourse, been a standard vision research paradigm. To date, however, most models

have been of two kinds: high-level, specific models, e.g., of people or houses, and low-level

models of image formation, e.g., for local recovery of depth. The problems with low-level,

local-recovery models are discussed above. The problem with high-level models is that they are

too spedclized, i.e., they are not flexible or general purpose.

Some researchers have begun to search for a third type of model, one with a grain size

intermediate between the point-wise models of image formation and the object-specific models.

2Much vision research is not model based, of course: research on the mechanisms of vision (e.g., parallel
processors, neurons), or on procedures for acoomplishing visual tasks (e.g., regularization and relaxation methods)
need not employ models of the world. But to understand visual function - that is, how one can infer information
about the world - it is necessllIY to have a model of the salient world structure and of how that structure evidences
itself in the image.
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Since our environment is abundant in regularities, it may be possible to accurately describe our

world as a relatively small set of generic processes that occur again and again, with the apparent

complexity of our environment being produced from this limited vocabulary by compounding

these basic forms in myriad combinations.

Next, I present a simple example of such a process model illustrating how it may be used to

make reliable inferences about the world from sensory data. Then, I discuss the familiar model

of rigid-body motion within me same paradigm.

1.3.1 Fly Detectors

Hoffman and Bennett [67] present an example of a simple perceptual mechanism similar to the

following: we want to detect and localize ill 3-space a certain species of flies. The fly detector

has access only to the x- and y-coordinates of objects in its visual field, so it will have to infer

the z-coordinate. It so happens that this species of flies exhibit a very specific behavior; they

always move so that z = mix = m2Y (a line through the origin). If we know we are looking

at a fly it is simple to locate it in 3-space. For example, if we are told that a certain dot in the

image is a fly, we need only record the dot's position and our model of the fly's behavior lets

us infer z.

But, how do we know if we are looking at a fly? The answer is that there is no way to

be certain we are looking at one, but we can be certain when we are not looking at one. For

example, a dot in the image that moves from location (2,3) to location (2,4) is certainly not

a fly because the line through those two points does not pass through the origin. By random

chance, it is unlikely (probability zero) that we will observe a dot moving between two points

that lie along a line through the origin.

We have a model of a class of objects in the world (flies that live along the lines that

pass through the origin in 3-space), and we know how these objects appear in images (moving

from point to point along lines that pass through the origin in the image). The model is

overconstrained; we have three points (the origin and the two observed positions) to define a

line. If these three points are not colinear then we know we are not looking at a fly. If they are

colinear then we may infer that we are looking at one. Hoffman and Bennett argue that without

overconstraint there will be no basis for making such perceptual inferences.
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But, even with overconstraint the inference may be wrong. For example, what if there is a

dot moving along the line z = mix = m2Y that is not a fly? What if there is a dot moving

along the curve z2 = mix = m2Y? In order to make relible inferences, we need one additional

bit of infonnation - that there is an abundance of flies in the world, i.e., that real flies are

much more prevalent than dots that merely appear like flies.

Dots that are not flies may move along any random path in three-space with equal likelihood.

Thus, it is extremely unlikely '(in fact, probablity zero) that such dots will move along paths

that project to straight lines, mix = m2Y, through the origin in the image. On the other hand,

flies always move along such paths. If flies are abundant, then the probability of seeing a fly is

high and the probability of seeing a dot that merely appears like a fly is zero. Thus, when we

observe motion consistent with a fly-interpretation, we may reliably infer that it is a fly.

In summary, Hoffman and Bennett [67] prove the fly detector model allows us to make

reliable inferences because is has the following properties: (1) the projection of a fly's movement

exhibits a lawful regularity that is overconstrained in the image plane - we can measure two

positions of a dot in the image and check to sec if al': [ne between them also passes through

the origin; (2) the fly detector model is overconstrained in the physical world, i.e., given a line

in the image plane there is a unique solution for z3; (3) this species of flies is abundant in the

world - real flies are much more prevalent than dots that merely appear like flies.

In the real world, there is always noise and uncertainty. Our fly detector will miss some real

flies that are observed at positions (x +ox, Y+Oy). In fact, it is unlikely that the fly detector will

ever detect an ideal fly. One solution is to follow a dot's motion, recording its position, over a

period of time. The best-fit line for a real fly will approach mix = m2Y and the residuals of

the fit will be small. As we take more observations, it will be less likely that a dot is following

a fly's path by chance, so the residuals of the fit for a non-fly will be large.

In order to make reliable inferences and estimates, more overconstraint is better. First,

overconstraint allows a detector to test whether or not observations in the presence of noise and

uncertainty are consistent with a particular model (in the above example, are the residuals large

or small?). Second, overconstraint provides reliability by using more data for estimating the

3A planar subspace of the 3-D world projects to the line mIX = m2Y. Within that planar subspace, there are
many possible 3-D motions (e.g., z = m12; = m2Y or z2 = mIX = m2Y), but our model specifies that only one of
them is correcL
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parameters of the model.

1.3.2 Detecting Rigid Motion

Ullman [136] was the first to develop a computational model for the perception of rigid-body

motion. A· collection of isolated features in an image, which are the projections of points in

space. are tracked over a discrete series of views. Ullman shows that given enough views of

enough points the solution for rigid motion is overdetermined.

A rigidly moving object is a 3-D process that results in sensory data with a distinctive

structure: points on the surface of the object move in a way that is unlikely to occur by chance.

Thus, if the motion of the projections of the points are consistent with rigidity. we can infer that

we are observing a rigid 3-D motion. A solid object moving rigidly in 3-space projects into an

image sequence with a specific type of regularity. We use the rigid-motion model to detect that

regularity. and then make two inferences: (1) the regularity is due to rigid motion in 3-space; (2)

the rigid motion is a result of a single. solid object moving through space. Having recognized

an instance of our rigid-motion model. we may then proceed to estimate the parameters of the

model. Le., its 3-D structure and 3-D motion.

For rigid motion in an idealized noiseless world, we know that our inferences will generally

be reliable. because we can normally preclude both the ways in which our inferences can go

wrong. The first type of potential error is that we think we have a rigid motion when in fact we

do not. We can preclude this type of error because the equations ?re overconstrained; i.e.• we

can estimate the motion parameters using part of our data. and then check our answers using the

remaining data. The second type of error is that we think we do not have an instance of rigid

motion when in fact we do. We will never make this error since we will always infer rigidity

when the the data is self-consistent.

I will apply this rigid-motion paradigm to several models of visual perception: the goal is to

be able to recognize image regularities that allow us to infer that we have an instance of a given

model, and then to recover the parameters of that model. These models are generic process

models; each is a model for a class of processes in the world (e.g., rigid motion. turbulent

flow, surface roughness). The models are overconstrained to make it possible to make reliable

inferences and estimates in the presence of noise and uncertainty.
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An crucial aspect of such a model is its robustness, its sensitivity to assumptions (for exam­

ple, assuming that the measurement errors are nonnally distributed) that are open to question.

In general, robustness must be tested empirically with test cases that violate the assumptions in

a variety of ways.

The most important characteristic of generic process models is that they recognize

specific regularities in the image that correspond to regularities in the three-dimensional

world. The models do not make unverifiable assumptions about the world (e.g., the

assumption of rigid motion), but rather they test the validity of such hypotheses.

1.4 Active Vision and Sensor Fusion

Most of the past and present research in machine perception involves analysis of passively

sampled data. Some researchers [8,1l,49,50,51,84] have argued that perception is not passive,

but active. By active sensing, these authors do not mean to say that the sensor transmits energy

(e.g., radar or sonar). Rather, active sensing refers to employing a passive sensor in an active

fashion:

Perceptual activity is exploratory, probing, searching; percepts do not simply
fall onto sensors as rain falls onto the ground. We do not just see; we look. And
in the course of looking, our pupils adjust to the level of illuminaticn, our eyes
bring the world into sharp optical focus, our eyes converge or diverge, we move
our heads or change our position to get a better view of something, and sometimes
we even put on spectacles.[49]

What are the advantages of active sensing over passive sensing? First, Aloimonos et al [8]

demonstrate that an active observer has a theoretic and algorithmic advantage over a passive

one for solving a number of vision problems. Some problems that are ill-posed for a passive

observer are well-posed for an active one, and some problems that are unstable for a passive

observer are stable for an active one.

Second, active vision gives an observer the opportunity to take more data. In the context

of the generic process models discussed above, taking more data leads to more constraint. A

general rule of thumb of the active vision/sensor fusion paradigm is, "when in doubt, take more

data".
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Finally, infonnation from perceptual sources (e.g., estimating image motion and camera

motion) is inherently noisy and uncertain. A sensing system can make substantial gains by

explicitly representing the uncertainty in sensor data and taking actions to reduce it (e.g., by

moving to a different viewing position):

In the real world and using real sensors we must contend with the three basic
sources of uncertainty in sensor data: (1) statistical uncertainty due to random noise
processes in the sensing device; (2) non-statistical uncertainties modeling quan­
tization or mechanical backlash; (3) incompleteness or underdeterminedness due
to limited sensor scope. Interpreting sensory data in these circumstances requires
methods for determining the consistency of data, and methods for combining ob­
servations across sensors, space and time into a single statement about the world ­
the sensor fusion problem [58].

Sensor fusion becomes particularly important for active vision techniques that, for example,

require the integration of information extracted from image data with information about camera

position.

In order to combine noisy information from different sensors, each sensor must provide

us both with obserations and with some measure of the uncertainty in its observations. A

sensor model [36] is a description of a sensor's ability to observe the environment. This is in

general a function of the state of the environment, the state of the sensor itself, and the state

of other sensors or cues in a multi-sensor system. A static sensor model or observation model

describes the dependence of an observation on the state of the environment. In the chapters that

follow, I make use of probabilistic observation models to characterize the uncertainty in motion

observations.

1.S Summary

This chapter argues that the basic function ofpreauentive/peripheral/immediate visual perception

is perceptual organization, the detection of regularities in images that correspond to regularities in

the environment. I propose using generic process models, exemplified by the fly-detector model

and the rigid-body motion detector model, to detect such regularities. A process model allows

us to make reliable inferences if and only if it satisfies three conditions: (1) Lite projection of the

process exhibits a lawful regularity that is overconstrained in the image plane; (2) the model is
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overconstrained in the physical world, i.e., once the image regularity has been detected there is a

unique solution for the model's parameters; (3) the process is abundant in the world. The most

important characteristic of process models is that they do not make unverifiable assumptions

about the world, but rather they test the validity of such hypothesis. Overconstraint allows one

to test whether or not observations (image data) are consistent with a particular model of the

world.

The ultimate goal of this research is to determine which model is most appropriate for a

given region. In the proposed paradigm there are many process models operating in parallel.

For example, this dissertation discusses models for the recognition of turbulent flows, for the

detection of moving objects, and for the recognition of rigid-body motion. How do we decide

which model is "more" appropriate for a region of an image? Actually, two models may both

be appropriate - for example, waves at the beach are turbulent at a small scale, bl1t at a large

scale their motion is approximately rigid translation toward the shoreline. Overconstraint allows

one to test whether or not observations (image data) are consistent with a particular modl~l of

the world.

Combining data from different sensors and using active vision (e.g., using head and eye

movements) provides extra constraints on a number of vision problems. For example, this

dissertation poses the detection of moving objects and the recovery of depth from motion as

sensor fusion problems that necessitate combining information from different sensors in the

presence of noise and uncertainty.

Motion analysis plays a key role for an active observer who is moving his head and eyes

in order to better perceive his environment. Conversely, active vision and sensor fusion are

key ingredients for motion analysis, particularly since sensor infonnation is subject to noise and

uncertainty. Sensor error can be characterized by sensor models, statistical models of a sensor's

ability to observe the environment. For example, this dissertation discusses a sensor model for

the extraction of image flow.
,.
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Chapter 2

Motion Energy

As Fleet and Jepson [42] suggest, I view the first functional level of visual processing as

"consisting of several concurrent, image-independent processes applied blindly throughout the

image to extract any available infonnation that appears salient and functionally useful, extracting

as much infonnation as possible while requiring no previous or concurrent interpretation." By

contrast, token-matching techniques require a significant amount ofscene interpretation - tokens

must be identified while noise and other irrelevant features are removed. This chapter discusses

motion energy, a multiresolution representation of motion infonnation extracted from image

sequences.

In the next section, I review the Gaussian pyramid, a multiscale decomposition of images.

Section 2.1 reviews the mathematics of image motion in the spatiotemporal-frequency domain.

A family of motion-sensitive Gabor-energy filters are then described in Sections 2.3 and 2.4.

2.1 The Gaussian Pyramid

Low-level image processing often involves computing some property of an image within local

windows. It is usually not known a priori what window size to use, so it is necessary to do

the computations for a variety of window sizes. The gaussian pyramid [28] is an efficient

representation for computing properties of images for a number of different window sizes.

The pyramid is built by repeatedly convolving the image with a small weighting function.

Samples that contribute to each weighted sum are not contiguous pixels, but rather are separated
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by a distance that doubles with each iteration. This generates a sequence of low-pass filtered

images in which the bandlimit of each image is one octave lower than that of its predecessor.

The pyramid is implemented as a series of separable 5 X 5 convolutions. A 5 X 5 Gaussian

is approximated by separable convolution with a kernel whose elements are in the ratio 1:4:6:4:1.

The output from each convolution is subsampled (reduced) by a factor of two. This yields an

image that is one level above (half the size) its predecessor in the pyramid.

Similarly, a Laplacian pyramid is a sequence of bandpass filters computed by expanding

each level ...f tht. Gaussian pyramid to twice its size and subtracting from the level below. The

expansion is computed similarly to the reduction, as a convolution with a low-pass filter.

Performing the same operation at each level of a pyramid is equivalent to performing oper­

ations within different-sized Gaussian windows of the original image. For example, the models

presented in the following chapters use families of motion-energy filters tuned to different

spatiotemporal-frequency bands. This is accomplished by computing a Gaussian pyramid for

each image in the sequence and using the same family of filters at each level of the pyramid.

2.2 Motion in the Frequency Domain

Several authors [37,41,45,46,141,140] have pointed out that some properties of image motion

are most evident in the Fourier domain. This section describes one-dimensional motion in terms

of spatial and temporal frequencies and observes that the power spectrum of a moving one­

dimensional signal occupies a line in the spatiotemporal-frequency domain. Analogously, the

power spectrum of a translating two-dimensional texture occupies a tilted plane in the frequency

domain.

One-Dimensional Motion. The spatial frequency of a moving sine wave is expressed in

cycles per unit of distance (e.g., cycles per pixe!), and its temporal frequency is expressed in

cycles per unit of time (e.g., cycles per frame). Velocity which is distance over time or pixels

per frame, equals the temporal frequency divided by the spatial frequency:

(1)

When a signal is sampled evenly in time frequency components greater than the Nyquist
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frequency (1/2 cycles per frame) become undersampled, or aliased. As a consequence, if a sine

wave pattern is shifted more than half its period from frame to frame it will appear to move in

the opposite direction. For example, a sine wave with a spatial frequency of 1/2 cycles per pixel

can have a maximum velocity of one pixel per frame and a sine wave with spatial frequency

1/4 cycles per pixel can have a maJC"imum velocity of two pixels per frame. In other words, the

raIlge of possible velocities of a moving sine wave is limited by its spatial frequency.

Now consider a one-dimensional signal moving with a given velocity v that has many spatial­

frequency components. Each such component W:r; has a temporal frequency of Wtl = W:r;V, while

each spatial-frequency component 2w:r; has twice the temporal frequency Wt2 = 2w:r;v. In fact,

the temporal frequency of this moving signal as a function of its spatial frequency is a straight

line passing through the origin where the slope of the line is v.

Two-Dimensional Motion. Analogously, two-dimensional patterns (textures) translating

in the image plane occupy a plane in the spatiotemporal-frequency domain:

Wt = UW:r; +vwy (2)

where jj = (u, v) is the velocity of the pattern [141]. For example, the expected value of the

sample power spectrum of a translating random-dot field is a constant within this plane and zero

outside of it.

If the motion of a small region of an image may be approximated by translation in the image

plane, the velocity of the region may be computed in the Fourier domain by finding the plane in

which all the power resides. To extract optical flow we could take small spatiotemporal windows

out of the image sequence and fit a plane to each of their power spectra. In Chapter 3 I present a

technique for estimating velocity by using motion-sensitive spatiotemporal Gabor-energy filters

to efficiently sample these power spectra.

The Aperture Problem in the Frequency Domain. An oriented pattern, such as a two­

dimensional sine grating or an extended step edge, suffers from what has been called the aperture

problem (for example, see Hildreth [64]). For such a pattern there is not enough information

in the image sequence to disambiguate the true direction of motion. At best, we may extract

only one of the two velocity components as there is one extra degree of freedom. In the
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Figure 1: Spatiotemporal Orientation (redrawn from Adelson and Bergen [2]). (a) A vertical
bar translating to the right. (b) The space-time cube for a vertical bar moving to the right.
(c) An x - t slice through the space-time cube. The orientation of the edges in the x - t
slice is the horizontal component of the velocity. Motion is like orientation in space-time and
spatiotemporally oriented filters can be used to detect it.

spatiotemporal-frequency domain the power spectrum of such an ima1!e sequence is restricted

to a line and the many planes that contain the line correspond to the possible velocities. Normal

flow, defined as the component of motion in the direction of the image gradient, is the slope of

that line.

2.3 Motion-Sensitive Filters

Adelson and Bergen [2] have pointed out that image motion is characterized by orientation

in space-time. For example, Figure l(a) depicts a vertical bar moving to the right over time.

Imagine that we film a movie of this stimulus and stack the consecutive frames one after the

next. We end up with a three-dimensional volume (space-time cube) of luminance data like that

shown in Figure l(b). Figure l(c) shows an x - t slice through this space-time cube; the slope

of the edges in the x - t slice equals the horizontal component of the bar's velocity (change

in position over time). The figure also depicts a linear filter that is tuned for the motion of

this moving bar. Thus, motion is like orientation in space-time and spatiotemporally oriented

filters can be used to detect it. Three-dimensional Gabor-energy filters, presented below, are

such oriented spatiotemporal filters.

A one-dimensional sine- (or odd-) phase Gabor filter is simply a sine wave multiplied by a
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(3)

Figure 2: Perspective views of (a) a two-dimensional sine-phase Gabor function and (b) its
power spectrum.

Gaussian window:

1 {_t2
}get) = In::. exp -2 sin(211"wt)

y211"0' 20'

These filters were originally introduced by Gabor [44]. The power spectrum of a sine wave is

a pair of impulses located at w and -w in the frequency domain. The power spectrum of a

Gaussian is itself a Gaussian (i.e., it is a lowpass filter). Since multiplication in the space (or

time) domain is equivalent to convolution in the frequency domain, the power spectrum of a

Gabor filter is the sum of a pair of Gaussians centered at w and -w in the frequency domain,

Le., it is a bandpass filter. Thus, a Gabor function is localized in a Gaussian window in the space

(or time) domain and it is localized in a pair of Gaussian windows in the frequency domain.

Daugman [32,33] has extended Gabor filters to a family of two-dimensional functions, an

example of which is shown along with its power spectrum in Figure 2.

An example of a 3-D (space-time) Gabor filter is

where (wxo ' WYo ,Wto) is the center frequency (the spatial and temporal frequency for which this

filter gives its greatest output) and (O'x, O'y, O't) is the spread of the spatiotemporal Gaussian

window. Three-dimensional Gabor functions look something like a stack of plates with small

plates on the top and bottom of the stack and the hugest plates in the middle of the stack. The

stack can be tilted in any orientation in space-time.

It is a simple matter to tune the filter to different frequencies and orientations while trading

bandwidth for localization. To change the frequency tuning we independently vary W xo ' wYo '
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and Wto. Nanowing the Gaussian window in the space-time domain broadens the bandpass

window in the spatiotemporal-frequency domain and vice versa.

Gabor filters have the additional property that they can be built from separable components,

thereby greatly increasing the efficiency of the computations. A new technique for computing

Gabor filter outputs from separable convolutions is presented in appendix A. Let k be the size

of the convolution kernel, let m be the number of images in a sequence, and let each image

be n pixels in size. By simplifying the complexity! of three-dimensional convolution from

O(k3 n2m) to O(kn2m), separability speeds it up by two orders of magnitude, given a kernel

size of 10 pixels.

The model presented in the following sections employs quadrature pairs of filters, odd-phase

and even-phase filters of identical orientation and bandwidth. The sum of the squared output of

a sine-phase filter, Equation (4), plus the squared output of a cosine-phase filter gives a measure

of Gabor energy that is invariant to the phase of the signal. The frequency response of such

a Gabor-energy filter is the sum of a pair of 3-D Gaussians (a one-dimensional version of this

equation is derived in Appendix B):

G(Wx,Wy,Wt) = (1/4) exp{-41l"2 [O';(wx - wxo )2 +O';(wy - wyo )2 +O';(Wt - WtO)2]} (5)

+ (1/4) exp{ -41l"2 [O';(wx +wxo? +O';(wy+wyo )2 + O'~(Wt +Wto?]}

Equation (5) means that a motion-energy filter with center frequency (wxo ' wYO ,Wto) will give

an output of G(wx,wy,wt} for a moving sine grating with spatial and temporal frequencies

(wx,wy,Wt). The filter will give a large output for a stimulus that has a lot of power near the

filter's center frequency and it will give a smaller output for a stimulus that has little power

near the filter's center frequency.

In principle, the models presented in the following chapters could utilize oriented spa­

tiotemporal bandpass filters other than Gabor filters. For example, Mallat [93] and Adelson

and Simoncelli [4] have proposed orthogonal and complete multiscale representations for two­

dimensional images that could be extended to space-time. Also, it may be important for some

applications to eliminate delay and use filters with a causal temporal response (Gabor filters are

not causal) like those suggested by Adelson and Bergen [2] or Watson and Ahumada [141].

lComplexity is defined as the order of magnitude. 00, of the number of operations required for a computation.
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2.4 A Family of Motion-Energy Filters

The models presented in the following chapters use a family of Gabor-energy filters, all of which

are tuned to the same spatial frequency band but to different spatial orientations and temporal

frequencies, i.e., Wo =Jw;o +w~ is constant for all of the filters in one such family.

Eight of the twelve energy filters used in the present implementation have their peak response

for patterns moving in a given direction - for example, one of them is most s~nsitive to

rightward motion of vertically oriented patterns, while another is most sensitive to leftward

motion. The other four filters have their peak response for stationary patterns, each with a

different spatial orientation. The power spectra of the 12 filters are pairs of 3-D Gaussians (each

pair of Gaussians corresponds to one filter) that are positioned on the surface of a cylinder in

the spatiotemporal-frequency domain (Figure 3): eight of them around the top of the cylinder,

eight of them around the middle, and eight around the bottom.

We can build several such families of filters tuned to different spatiotemporal-frequency

bands. For the current implementation I have opted to compute a Gaussian pyramid [28] for

each image in the sequence and I convolve with a single family of filters at each level of the

pyramid. This is essentially the same as using families of filters with equal bandwidths that are

spaced one octave apart in spatial frequency, but are tuned to the same temporal frequencies.

Filters higher up in the pyramid achieve their peak response for patterns with lower spatial

frequency, but with the same temporal frequency. Thus, the lower-frequency filters have their

greatest outputs for patterns moving at greater velocities.

Psychophysical evidence [27,37,80] suggests that human motion channels exhibit such a

relationship between spatial frequency and velocity. This makes sense from a computational

viewpoint since patterns containing only high spatial frequencies may move at only low veloc­

ities, whereas patterns containing only lower spatial frequencies may move at greater velocities

(see the discussion in Section 2.2 on sampling and temporal aliasing).
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Figure 3: The power spectra of the 12 motion-sensitive Gabor-energy filters are positioned
in pairs on a cylinder in the spatiotemporal-frequency domain. Each symmetrically-positioned
pair of ellipsoids represents the power spectrom of one filter. The plane represents the power
spectrum of a translating texture. A filter will give a large output only for a stimulus that has a
lot of power near the centers of its corresponding eIlipsoids and it will give a relatively small
output only for a stimulus that has no power near the centers of its ellipsoids. Each velocity
corresponds to a different tilt of the plane, and thus to a different distribution of outputs for the
collection of motion-energy mechanisms.
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Chapter 3

Image Flow

Optical flow, a two-dimensional velocity vector for each smaIl region of the visual field, is

one representation of image motion. The perception of visual motion does not depend on prior

interpretation or recognition of shape and fonn. However, it does depend on there being motion

information, i.e., changes in intensity over time throughout the visual field. Without texture, a

perfectly smooth moving surface yields an image sequence in which most local regions do not

change over time. But in a highly textured world (e.g., natural outdoor scenes with trees and

grass), there is motion infonnation throughout the visual field. This chapter addresses the issue

of extracting a velocity vector for each region of the visual field by taking advantage of the

abundance of motion information in a highly textured image sequence.

Most machine vision efforts that uy to extract image flow employ just two frames from

an image sequence; either matching features from one frame to the next [17] or computing

the change in intensity between successive frames along the image gradient direction [70,79].

In a highly textured world neither of these approaches seems appropriate, since there may be

too many features for matching to be successful and the image gradient direction may vary

randomly from point to point. In fact, an error analysis of gradient-based methods [79] confirms

that a major problem with the approach is that large errors are made where the image is highly

textured, precisely where there is the greatest amount of motion information!.

There have recently been several approaches to motion measurement based on spatiotemporal

filters [2,37,40,46,45,137,141,140] that utilize a large number offrames sampled closely together
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in time. These papers describe families of motion-sensitive mechanisms each of which is

selective for motion in different directions. To be able to use such mechanisms in computing

optical flow, one must overcome two obstacles: (1) the aperture problem; (2) the fact that the

filter outputs do not depend solely on the velocity of a stimulus, but rather on its spatial and

temporal frequencies.

In the previous chapter, I reviewed the mathematics of motion in the spatiotemporal­

frequency domain and described how 3-D Gabor filters act as motion-sensitive mechanisms.

In Section 3.1 I fonnulate a model for extracting image velocity from the outputs of these fil­

ters. Section 3.1.3 refonnulates the model as a parallel mechanism that computes a distributed

representation of image velocity. In Section 3.2 I fonnulate a measure of uncertainty in the

velocity estimates. Section 3.3 discusses how the model deals with the aperture problem, com­

paring its perfonnance to that of the human visual system. The next chapter uses the model to

simulate psychophysical data.

3.1 Motion Energy to Extract Image Flow

Spatiotemporal bandpass filters like Gabor-energy filters and those filters discussed in previ­

ous papers [2,40,141] are not velocity-selective mechanisms, but rather are tuned to particular

spatiotemporal frequencies. A single such mechanism cannot distinguish between variations in

the spatial-frequency content of the stimulus, variations in its temporal-frequency content, or

variations in its contrast. But, an unambiguous velocity estimate may be computed from the

ouputs of a collection of such mechanisms.

In what follows I describe a new way of combining the outputs of a collection of motion­

energy mechanisms in order to extract velocity. The role of the filters is to sample the power

spectrum of the moving texture. The problem is to estimate the slope of the plane in the

frequency domain that corresponds to the actual velocity. rirst, I derive equations for Gabor

encigy resulting from motion of random textures or random-dot fields. Based on these equations

I fonnulate a least-squares estimate of velocity.

Consider an analogous two-dimensional problem - estimating the slope of a line that passes

through the origin by viewing it with a finite number of circular windows. Figure 4 shows a
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Figure 4: A problem analogous to that of extracting velocity - estimating the slope of a line
that passes through the origin by viewing it with a finite number of circular windows. The upper
window encloses many points while the lower one encloses significantly fewer. In other words,
the line must pass close to the center of the upper window while staying far from the center of
the lower one.

dotted line and two circular windows. We are given a family of such windows, a finite number

of them centered at known positions. The only infonnation we have is the number ofpoints from

the dotted line that lie within each window (in particular, we do not know the spacing between

the dots). The upper window in the figure encloses many points while the lower one encloses

significantly fewer. Therefore, the line must pass close to the center of the upper window while

staying far from the center of the lower one. Notice that it is impossible to estimate the slope

given only one circular window since the number of dots within a particular window depends

both on the slope of the line and on the dot density.

3.1.1 Extracting Pattern Flow

In order to extract image velocity from the outputs of motion-energy filters we replace, in Figure

4, both the dotted line with a plane and the circular windows with 3-D Gaussian windows. A

circular window simply counts the number of points it encloses. A Gaussian window counts

the points and weights each according to its distance from the center of the window. This is

fonnalized by Parseval's theorem that states that the integral of the squared values over the

space-time domain is proportional to the integral of the squared Fourier components over the
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frequency domain:

where F(wx,wy,Wt) is the Fourier transfonn of f(x, y, t) and P(")x,wy,Wt) is the power spec­

trum. Convolution with a bandpass filter results in a signal that is restricted to a limited range

of frequencies. Therefore, the integral of the square of the convolved signal is proportional to

the integral of the power of the original signal over this range of frequencies.

Parseval's thereom may be used to derive an equation that predicts the output of a Gabor­

energy filter in response to a moving random texture. The expected value of the sample power

spectrum of a translating random-dot field is zero, except within a plane (Equation 2) where it

is a constant k. The frequency response of a Gabor-energy filter is the sum of a pair of 3-D

Gaussians. By Parseval's theorem, Gabor energy in response to a moving-random texture is

twice the integral of t.he product of a 3-D Gaussia.'l and a plane - by substituting Equation (2)

for Wt in Equation (5), multiplying by two, and integrating over the frequency domain we get:

n(u,'v,k;wxo,wyO'Wto) = (k2j2)1:1:exp{-41r2[u,;(wx -wxo ? (7)

+ u;(wy - wYO ? +u;(uwx + vWy - wto)2}dwxdwy

where (wxo,wYo,Wto) is the center frequency of the motion energy filter, (O'x'O'Y,O'd is the

spread of the filter's spatiotemporal Gaussian window, (u, v) is the velocity of the stimulus, and

k is proportional to image contrast. This integral evaluates to

R(u, v, k; wxo ,wYo ,Wto) H4 ( u, v, k) exp[-41r20';0';0';HI (u, v; wxo ,WYo ,Wto)] (8)

H 2(u, v)
H1(u,v;wxo ,wYo ,Wto) = ( )H3 u,v

H2(u,v;wxo ,wYo ,Wto) = (uwxo+vwYo+Wto)2

Equation (8) means that a motion-energy filter with center frequency (wxo ,Wyo ,Wto)' will give

an output of R(u, v, k) for a random-dot texture moving with speed (u, v). If we multiply the
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grey levels at each pixel of the image sequence by a constant c, then the filter's output will

increase by a factor of c2•

For a family of Gabor-energy filters, we get a system of equations (one for each filter) in

the three unknowns (u,v,k). The factor H 4(u,v,k) which appears in each of these equations

does not depend on the center frequency of the filters - it can be eliminated by dividing each

equation by the sum or average of them all. This results in a system of equations depending

only on u and v that predict the outputs of the family of Gabor-energy filters. These predicted

energies are exact for a pattern with a flat power spectrum.

But, what if the power spectrum of the pattern is not flat? In particular, what if the image

contrast is different for different spatial orientations? Rather than dividing each filter output

by the sum of all of the filter outputs, we can group the filters according to their spatial

orientation and nonnalize each spatial orientation separately. Filters that differ only in their

temporal-frequency tunings line up in vertical columns in the spatiotemporal-frequency domain

(see figure 3). One such column is sensitive only to a small range of spatial frequencies and

orientations. By using filters with narrow spatial bandwidths I believe that many natural textures

will have a power spectrum that is flat within this range. The results presented below on images

of real textures indicate that this is the case.

In order to specify a procedure for estimating velocity, I must now introduce some additional

notation. Let mi (i = 1-12) be the twelve measured motion energies where each i corresponds

to the output of a filter with a different center frequency. For each mi, let 'Ri(u, v) be the

corresponding predicted motion energy,

(9)

where HI (u, Vj W Xit WYil wt;) is defined in Equation (8). In addition, let mi be the sum of the

outputs of those filters that have the same preferred spatial orientation as the ith filter, and let

'Ri(u, v) be the corresponding sum of the predicted motion energies,

mi = L mj (10)
jeM,

'R;(u,v) = L'Rj(u,v)
jeMt
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where Mi is the set of motion-energy filters that share the same spatial orientation as the ith

filter.

A kast-squares estimate for (u, v) minimizes the difference between the predicted and mea­

sured motion energies, i.e., it minimizes

12 [ 'R'(u V)] 2
l(u,v)=I: mj-mi :(')

i=1 'R, U,V
(11)

There are standard numerical methods for estimating if = (u, v) to minimize Equation (11), e.g.,

the Gauss-Newton gradient-descent method [53].

Alternatively, the least-squares estimate of if = (u, v) maximizes

(12)

Equation (12) is a response surface; the location of the peak in this surface corresponds to the

velocity extracted by the model. Section 3.1.3 describes how Equation (12) can be used to

compute a distributed representation of image velocity.

3.1.2 The Algorithm

The main steps in the computations performed by the model are: (1) to convolve the image

sequence with 3-D Gabor filters; (2) to compute motion energy as the squared sum of the sine­

and cosine-phase Gabor filter outputs; (3) to estimate velocity by either minimizing Equation

(11) or maximizing Equation (12). In this section I explain the additional steps that need to be

computed and I summarize the entire algorithm.

Firstly Parseval's theorem, Equation (6), relates an integral over the space-time domain to an

integral over the frequency domain - since the filters are localized in both domains convolving

with a Gaussian is one way to approximate this integral. We can think of the model as computing

the -average image velocity within this Gaussian window.

Of course, Gaussian convolution will tend to smooth over motion boundaries and other

regions where the velocity changes rapidly from point to point. Some possible solutions to this

problem are: (1) to use images of higher resolution; (2) to use a different method for combining

information other than Gaussian convolution, e.g., relaxation labeling methods (for references,
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see Hummel and Zucker [73]) or finite-element regularization methods (for references. see

Terzopoulos [127] or Poggio et al [112]).

There are two situations for which this smoothing problem is particularly bad. First, in

regions moving with high speed we must use filters that are higher in the pyramid, i.e., of lower

spatial resolution. Second, where there is a region of low image contrast adjacent to one of high

contrast the filter outputs for the high contrast region (since they are greater on average) will

bias the velocity estimates for the low contrast region. The former situation may be controlled

by incorporating eye/camera movements - an initial low-resolution estimate may be usea iO

drive tracking eye movements thereby decreasing the image velocity and allowing for estimates

of higher spatial resolution. The latter situation may be solved by "adaptation" (automatic gain

control) - for example, we may "equalize" image contrast by computing the zero-crossings

[97] of each image and then applying the model to the resulting zero-crossing image sequence.

Finally, a problem with Gabor filters is that all but the sine-phase filters have some de

response. If an image is very bright (large mean luminance) and of low contrast the output

of the filter may be dominated by response to the dc rather than to the image contrast signal.

Clearly this is undesirable. This difficulty can be alleviated by first subtracting the local mean

luminance, e.g., by convolving with a center-surround filter that has a very sharp positive center

and a broad negative surround. The dc-problem may also be alleviated by using only sine­

phase filters - if the stimulus has uncorrelated random phase, then a phase-independent motion

energy can be computed from sine-phase filters alone by averaging their squared outputs within

appropriately-sized windows.

In summary, an algorithm for extracting image flO\II rroceeds as follows:

1. Compute a Gaussian pyramid for each image in the image sequence.

2. Convolve each of the resulting images with a center-surround filter to remove the de and

lowest spatial frequencies.

3. Compute the sine- and cosine-phase Gabor-filter outputs using the separable convolutions

described in Appendix A.

4. Compute motion energy as the squared sum of the sine- and cosine-phase Gabor filter
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outputs.

5. Convolve the resulting motion energies with a Gaussian to approximate the integral in

Parseval's theorem.

6. Find the "best" choice of u and v given by Equations (11) or (12), e.g., by employing

the Gauss-Newton gradient-descent method or the parallel technique presented in Section

3.1.3.

7. Compute the uncertainty in the velocity estimate as discussed in Section 3.2.

3.1.3 Parallel Distributed Processing

Electrophysiological studies of the middle temporal (MT) area in macaque and owl monkeys

reveal cells that are velocity tuned. Thus, it is generally believed that one of the functions of

Mr cells is to encode local image velocity. This section describes how Equation (12) can be

used to compute a distributed representation of image velocity.

The distributed representation of image velocity is made up of velocity-tuned units analogous

to the velocity-tuned cells of area MT. The outputs of each of the velocity-tuned units are

computed in parallel by combining the motion-energy measurements (recall that the motion­

energy filters are not themselves velocity-tuned since they confound spatial-frequency, temporal­

frequency, and image contrast).

The last step in the algorithm in Section 3.1.2 is to find the maximum of a two-parameter

function, f( u, v) in Equation (12). One way to locate this maximum is to evaluate the function

in parallel at a number of points (say, on a fixed square grid), and pick the largest result. The

maximum can be located to any precision by using a finer or coarser grid. The grid need only be

of limited extent since bandpass filtering limits the range of possible velocities (as discussed in

Section 2.2). In the context of the model each point on the grid corresponds to a velocity. Thus,

evaluating the function for a particular point on the grid gives an output that is velocity-tuned.

For a fixed velocity the predicted motion energies ni(u, v) defined by Equation (9) are fixed

constants, denote them by Win where each i corresponds to a different motion-energy filter and
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each n corresponds to a different velocity. We may rewrite Equation (12) for a fixed 0 as

{ 12 1 [ w. ] 2}In = exp - E"2 mj - mj ~n
i=1 C Wm

(13)

where C is proportional to the average of the mj's, In is the response of a single velocity-tuned

unit, and Wjn and Win are constant weights corresponding to the ith filter and the nth velocity.

A mechanism that computes a velocity-tuned output from the motion-energy measurements

performs the following operations:

1. A linear stage, a weighted summation given by (mi - mj~) .

2. A nonlinear stage, squaring.

3. A second linear stage, the summation over i.

4. A second nonlinear stage, multiplication by c\- and exponentiation.

The model's computations are simply a series of linear steps (convolutions, weighted sums)

alternating with point nonlinearities (squaring, exponentiation). The model is therefore encom­

passed by the general framework for parallel distributed processing put forth by Rummelhart

and McClelland [119].

An example of the resulting distributed representation is shown in Figure 5 that displays a

map of velocity space with each point corresponding to a particular velocity. The brightness

at each point is the velocity-tuned output for that particular velocity. The maximum in the

distribution of outputs corresponds to the velocity estimate.

3.1.4 Some Results

All of the results presented in this chapter were produced with a single choice for each of the

model's parameters - the spatial frequency tuning of each Gabor filter is Jw'1xo +w~ = 1/4

cycles per pixel; the temporai frequency tunings are either Wto = 0 cycles per frame (stationary

filters), or Wto = ±1/4 cycles per frame (right/left, up/down, etc.); the standard deviation of all

of the spatial Gaussians is ax = ay = 4 (the spatial kernel size of the filters is 23 pixels) and

that of the temporal Gaussians is at = 1 (the temporal kernel size is 7 frames). Except for the
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Figure 5: Distributed representation of image velocity for a random-dot field moving leftward
and downward one pixel per frame. Each point in the image corresponds to a different velocity
- for example, if = (0,0) is at the center of the image, 8 = (2,2) is at the top-right comer.
The maximum in the distribution of outputs corresponds to the velocity estimate.

Yosemite fly-through sequence discussed below, all of the results are computed using only the

lowest level of the pyramid.

Each vector in the flow fields depicted below represents a motion in a direction given by

the vector's angle at a speed given by the vector's length. Errors in the velocity estimates are

expressed in tenns of the percentage error in each component of the actual velocity vectors.

Translating Image Sequences. Translating image sequences were generated from a tex­

tured image by: (1) blowing the image up to four-times its original size; (2) shifting the resulting

image by an integral number ofpixels i horizontally and j vertically for each consecutive frame;

(3) reducing each image in the resulting sequence back to the original resolution. The final result

is an image sequence with velocity (i/ 4, j /4) pixels per frame.

The model gives accurate velocity estimates (within 10% of the actual velocities) for trans­

lating image sequences of a wide variety of textured patterns including random-dot patterns

(with dot densities ranging from 5 to 50%), images of fractal textures}, some sine-grating plaid

patterns (discussed in Section 3.3), and natural textures (discussed below).

1Brownian fractal functions (see Chapter 7 for definitions and references) are characterized by similarity across
scales, and have an expected power spectrum that falls off as pew) "" w- fJ for some constant p. Fractals may be
used to generate natural-looking textures.
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Noise Sensitivity. Translating image sequences of random-dot textures and Gaussian white­

noise random textures were used to study the error in the velocity estimates. For image sequences

with speeds ranging from 0.0 to 1.75 pixels per frame, the absolute value of the error in the

velocity estimates is proportional to the actual speed (see figure 11). The mean percentage error

is -2.9% and the standard deviation of 3.6%.

Noise sensitivity was studied by adding spatiotemporal Gaussian white-noise to translating

random-dot sequences. Define the signal-to-noise ratio (8/N) to be the brightness of the image

dots divided by the standard deviation of the noise. If 8/N = 10, then the mean percentage

error in the estimates is -4.3% and the standard deviation is 4.1%. This demonstrates that when

the standard deviation of the sensor noise is as much as 10% of the sensor's dynamic range

most velocity estimates are still within 10% of the actual values.

Images of Natural Textures. Image sequences were generated from each of the 14 natural

textures shown in Figure 6(a). A sample flow field, shown in 6(b), was extracted from an

image sequence of the straw texture in the upper-left comer of 6(a). The model correctly

estimates the velocity (to within 10%) for every one of these textures. This is particularly

impressive for the straw texture in the upper-left comer, the brick texture in lower-right comer,

and the texture second from the lower-right comer of 6(a) because they have such strong spatial

orientations. The model is capable of recovering accurate velocity estimates for these textures

since it normalizes each spatial orientation separately in Equations (11) and (12). Conversely

if we were to normalize the filter outputs isotropically (Le., by dividing each motion energy by

the sum of them all), then the estimates for these three textures would be erroneous.

A Rotating Spiral. Figu~ 7(a) shows one frame of a rotating spiral image sequence. TIle

spiral, defined in polar coordinates by r = 8, was rotated counter-clockwise one full revolution

over seven frames. Figure 7(b) shows the extracted flow field. The flow vectors point inward

corresponding to what human observers see.

A Rotating Sphere. Figure 8(a) shows one frame of a random-dot image sequence of a

sphere rotating in front of a stationary background. Figure 8(b) shows the actual flow field
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a b

Figure 6: (a) Fourteen natural textures (the two texture squares in the upper-left are the same, and
so are the two in the upper-right). Each texture square was used to generate motion sequences
translating 1/2 pixels per frame in each ofeight directions. The velocities extracted by the model
are accurate to within 10%. (b) Example flow field extracted from a motion sequence generated
from the straw texture in the upper-left comer of (a). The actual motion was (-0.5,0.0). The
mean of the extracted velocities is (-0.473, -0.04) and the standard deviation for both the
horizontal and vertical components is 0.01.
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Figure 7: (a) A frame from a motion sequence of a counter-clockwise rotating spiral. The
perceived direction of motion is toward the center of the image and the actual displacement
in that direction is 211"/7 pixels per frame. (b) The extracted flow field. For 72% of the flow
vectors the estimated speed is within 10% of the actual displacement. For 94% of the flow
vectors the estimated speed is within 20% of the actual displacement.

for this image sequence, 8(c) shows the flow field extracted by the model, and 8(d) shows the

difference between them. The impact of the Gaussian smoothing is clearly evident as there are

errors along the motion boundary.

A Realistic Example. Figure 9(a) shows one frame of a computer-generated image se­

quence flying through Yosemite valley. Each frame was generated by mapping an aerial pho­

tograph onto a digital-terrain map (altitude map). The observer is moving toward the horizon.

The clouds in the background were generated with fractals (see Chapter 7) and move to the

right while changing their shape over time.

Since the image velocities in the Yosemite fly-through image sequence are as high as 5 pixels

per frame, we must use three levels from the pyramid. In future research, I hope to develop a

rule for automatically combining estimates from the different levels. For now, I simply pick the

level that is most appropriate for a given image region - the level zero estimate is chosen if

the actual velocity is between 0 and 1.25 pixels per frame, the level one estimate is chosen if it

is between 1.25 and 2.5 pixels per frame, and the level two estimate is chosen if it is between
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Figure 8: A rotating random-dot sphere. (a) A frame from the motion sequence. (b) The actual
flow field. (c) Flow field extracted by the model. (d) Difference between (b) and (c).
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2.5 and 5.0 pixels per frame.

In the yosemite fly-through image sequence, there are regions of low contrast adjacent to

high contrast regions (e.g., the face of El Capitan and the cloud region are of low contrast).

This exacerbates the smoothing problem as discussed in Section 3.1.2. For this image sequence,

contrast was first "equalized" by computing the zero-crossings [97] of each image. The model

was then applied to the resulting zero-crossing image sequence. Using the zero-crossing image

sequence improves the accuracy of the velocity estimates only within the low contrast regions.

If we window the low contrast regions to remove them from the context of the surrounding high

contrast regions, then there is little difference between the accuracy of the velocity estimates

using either the zero-crossing image sequence or the original grey-level image sequence. Zero­

crossings were used simply for convenience. I expect that other mechanisms for automatic gain

control (contrast adaptation) will prove more fruitful.

Figure 9(b) shows the actual flow field for this image sequence, 9(c) shows the flow field

extracted by the model, and 9(d) shows the difference between them. The impact of Gaussian

smoothing is evirlent along the boundary at the horizon. Small errors are also evident on the

face of El Capitan (in the lower-left) since it is moving with high speed (see the discussion in

Section 3.1.2), and in the cloud region since the clouds change shape over time while moving

rightward.

3.2 Image-Flow Uncertainty

Infonnation from perceptual sources is inherently noisy and uncertain. A sensing system can

make substantial gains by explicitly representing the uncertainty in sensor data a..'ld taking actions

to reduce it. In particular estimates of image motion are exhibit variability due to the stochastic

nature of image textures. Decisions and computations that rely on motion estimates will be

more robust if we keep track of uncertainty.

This section uses tools from probability and statistical estimation theory to fonnulate a

measure of uncertainty for image flow by characterizing the variability in the model's velocity

estimates for translating image sequences of Gaussian white-noise random textures. Since image

textures are stochastic the predicted motion energies given by Equation (8) are correct only on
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Figure 9: (a) One frame of an image sequence flying through Yosemite valley. (b) The actual
flow field. (c) Flow field extracted by the model. (d) Difference between (b) and (c).
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average. For a particular region of a translating image sequence the measured motion energies

deviate from the expected value.

Below I posit an additive Gausian model for the variability in the motion energy measure­

ments. Ifa normal distribution is a valid approximation for this variability, then the least squares

estimate of image velocity is optimal in the sense that it is equal to the maximum-likelihood

estimate (MLE). Normality can be tested empirically by translating a camera a fixed distance

in front of a variety of planar textured surfaces. If the camera motion is known, then the actual

image translation is easily computed, and we can compare the predicted motion energies given

by Equation (8) to those measured from the image sequence.

However, if nonnal distributions were not valid approximations for the measurement vari­

ability, then least-squares estimation would not be optimal. In addition. the uncertainty measure

fonnulated below would not be accurate. In spite of this. some insight can be gained by proceed­

ing under the nonnality assumption. In future research. I hope to extend the analysis presented

below to allow for more general assumptions about the fonn of the distributions.

First, I review some aspects of statistical parameter estimation in the presence of additive

noise. I use the notation 0 to denote estimates of the parameter ().

Consider the case in which we take independent measurements. m= (mI, ... ,mI2). that

are nonlinearly related to an unknown parameter. 0 = (u, v). in the presence of zero-mean

additive Gaussian noise. n= (nI, ... , nI2).

m R(O) + n
nj rv N(O,u;)

(14)

for some nonlinear vector-function. R(O) = ['RI(O), ... , 'RI2(O)]. Equation (14) may be rewrit­

ten as

(15)

The varaibility in the measurements may be represented by the Fisher infonnation matrix (see

DeGroot [34] for the definition in the scalar case). For a jointly nonnal density the infonnation

matrix, denoted by A;;"I is the inverse of the variance-covariance matrix. Am' and the conditional
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probability density is given by

(16)

The posterior density, !(Olm), is the probability that a certain value of Ois equal to the true

value, given the measurements m. In the absence of prior infonnation on the parameter 8, the

posterior density and the conditional density are one and the same. The maximum-likelihood

estimate (MLE), 0= (ft, v), is that which maximizes the conditional density, thus maximizing

the probability that the estimate is equal to the true value. For additive Gaussian noise the MLE

is the same as the least-squares estimate.

The uncertainty in the estimate may be represented as an infonnation matrix, A;I(O), com­

puted from A;;;I and from 0 (see Melsa and Cohn [100] for derivation):

(17)

where J(O) is the Jacobian matrix of R(O) and JT(O) is the transpose of J(O). The information

matrix, A;I(O), is a random variable that depends on the estimate O.

The eigenvectors and eigenvalues of the infonnation matrix, A; I (0), are the directions and

values in parameter space (e.g.• in image-velocity space) of minimum and maximum infonnation.

The mean-squared-error, given by the trace of the variance-covariance matrix, is an estimate of

the actual squared-error of the estimate, that is, Tr[Ae(O)] is an estimate of 1/(u - ft, v - v)1/ 2•

If there is only partial information about 0 then the minimum-infonnation eigenvalue is

zero. For example, in the presence of the aperture problem (as discussed in Section 3.3) there

is only partial information about image motion. We represent uncertainty with the information

matrix, A;I (0), instead of using the variance-covariance matrix, Ae(0), because the latter may

be undefined when there is only partial infonnation.

Equation (17) may be used to compute the uncertainty of an image flow estimate. But we

must have a statistical model, called a sensor model, of the measurement variability (denoted

above by A;;;I). The predicted motion energies given by Equation (8) are correct only on

average; the difference between the measured and predicted motion energies is given by

(18)
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where Ri(U, v) is defined in Equation (9), J(i is an unknown constant that depends on image

contrast, and ni is additive process variability.

The procedure presented in Section 3.1 for estimating image velocity picks the estimate,

(ft, v), to minimize

12 • 2
/(U, v) = E [mi - J(iRi(U, v)] (19)

i=1

Ki
mi= Ri(U, v)

where Ri(U, v) is defined in Equation (9), and !(i is used as an estimate of J(i with mi and

Ri(U, v) as defined in Equation (10).

As discussed at the beginning of this section, we posit a Gaussian model for the variability

in the motion energy measurements

(20)

where ut is the variance of the additive Gaussian variability.

Figure 10 is an empirical test of the Gausianity assumption. The plot shows a histogram

of [mi - Ki1<"i(U,V)] for one motion-energy filter over four hundred trials. The data in this

histogram pass both the Chi-squared and the Kolmogorov-Smimov tests for Gaussianity. How­

ever, other examples fail these tests for Gaussianity. Further experimentation with real image

sequences is called for.

The variance of [mi - KiRi(U, v)] is given by

U[(U,v) = var(mi_min~~u,v~) (21)n, u,v

= (ni(U,v) _1)2 (.)
()

var m,
ni u,v

+ (n~t,v~)2 [var(m2}+var(m3)]n, u,v

(
Ri(U,V) ) (Ri(U,V») [ ]+2 .( ) -1 .() cov(mi,m2) + cov(mi,m3)n, u,v R, u,v

(
Ri(U, V») 2[( ]+2 .( ) cov m2,m3)R, u,v
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Figure 10: Four hundred Gaussian white-noise random textures were generated, and each was
used to generate a translating image sequence with the same velocity (one pixel per frame
upward and rightward). The plot shows a histogram of [mi - k{Ri(U, v)J for th~ motion-energy
filter that is most sensitive for rightward motion. The data in this histogram pass both the
Chi-squared and the Kolmogorov-Smimov tests for Gaussianity. The distribution is zero-mean
and its variance is 0.12.

where mi is the output of the ith filter, ml and m2 are the outputs of the two filters that share the

same orientation the ith filter, 'Ri(u, v), 'R1(u, v) and 'R.2 ( u, v) are the corresponding predicted

motion energies given by Equation (9), and var(mi) = cov(mi' mi}. In Appendices Band C

I derive an equation for the covariances of the motion energy measurements, cov(mi, mi), for

image sequences of translating Gaussian white-noise random textures.

Table 1 in Appendix C shows empirical tests of the accuracy of the sensor model given

by Equation (21). The average percent error in the variance estimates is 17.7%. So there is

reasonably good agreement in the table between the actual and simulated measurement variability

for translating Gaussian white-noise textures. However since (Ti(u, 'lJ) depends on the actual

value of (u, v) we must make one further approximation - we approximate the measurement

variability using the image velocity estimate, (Ti( '11, v) ~ (Ti(u, v).

The conditional probability density of the motion-energy measurements given the actual
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(22)

(24)

image velocity is therefore approximated by

{
I 12 A 2}

f(71i/u,v) ~ (21r)-6IAmr1/2exp 2 ~C A) E [m i - J(i'lli(U, v)]
0', U,V i=l

where, assuming independence of the motion energy measurements, Am is approximated by

( ,,1(:, ii) 0 0

2(. A) 0
Am R: •

0'2 u,v
(23)

l 0 0 2 C A)0'12 U, V

In this case the information matrix, A;/, is a diagonal matrix with entries equal to l/o}( ft., v),

and the Jacobian matrix2 is given by

(

j(l 8n~uu.ti) k 18n~vu.ti) )

J( ft., v) = : :

k 12 cP.l§£U.ti l 1(12 8nlJ~U,V)

where 8n~~,v) and 8n~(:,v) are obtained by differentiating Equation (9).

Equations (17), (21), and (24) may be used to estimate image-flow uncertainty as follows:

1. Computing the image velocity estimate, (ft., v). as discussed in Section 3.1.

2. Computing the measurement variability estimates, Oi('11, v), using Equation (21).

3. Computing the infonnation matrix, A;lCiL, v), using Equations (17) and (24).

A test of the accuracy of the uncertainty measure is to compare the mean-squared-error,

Tr[Au(ft., v)], with the actual squared-error of velocity estimates, lI(u - ft., v - v)1I 2• Figure 11

shows that the uncertainty measure reflects the actual error for translating Gaussian white-noise

random textures.

However, the uncertainty measure significantly underestimates the actual errors for the

Yosemite fly-through image sequence (Figure 9) because these errors are mainly due to the

blurring problem discussed in Section 3.1.2, not due to the motion-energy measurement vari­

ability. It may be possible to extend the sensor model to account for other sources of error like

camera noise and local variations in image velocity.

2To be thorough. we could treat the Ki'S as variables and include derivatives 8IK;:lu,v1] = 'R.i(ti,ti) in the.
Iacobian matrix. But we are not interested in estimating Ki. so there is no reason to estimate the uncertainty in Ki.
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Figure 11: Two hundred translating Gaussian white-noise random textures were generated with
each of four different velocities ranging from 0.0 pixels per frame to v'2 pixels per frame. (a)
The average absolute error in the velocity estimates as a function of speed. The least-squares
best-fit line is drawn through the data points with slope 0.029 and y-inlercept 0.0024. (b) The
average square-root of the trace of the estimated variance-covariance matrix as a function of
speed plotted on the same scale as in (a). The least-squares best-fit line is drawn through the
data points with slope 0.030 and y-intercept 0.0010.

3.3 Dealing with the Aperture Problem

In this section, I use a class of moving stimuli known as sine-grating plaids in order to te:;t the

model's capability for solving the aperture problem and I compare the model's perfonnance to

that of the human visual system. I also propose using the uncertainty measure presented in the

previous section to recognize when there is an ambiguous velocity estimate resulting from the

motion of a strongly oriented pattern.

3.3.1 Sine-Grating Plaids

A sine-grating plaid is the sum of two movinf gratings and may be seen as a single coherent

plaid motion. The gratings are not combined as the vector sum or vector average of the two

component nonnal-flow velocities, but rather as the intersection of the perpendiculars to the

two velocity vectors. Figure 12(a) depicts a single grating moving behind an aperture - the

arrows represent flow vectors and the diagonal line represents the locus of velocities compatible

with the grating's motion. There are an infinite number of such compatible motions any of
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b c

Figure 12: (redrawn from Adelson and Movshon [3]) The perceived motion of two moving
gratings is the intersection of the perpendiculars to the two velocity vectors. (a) A single
moving grating - the diagonal line indicates the locus of velocities compatible with the motion
of the grating. (b) and (c) Plaids composed of two moving gratings. The lines give the possible
motions of each grating alone. Their intersection is the only shared motion, and corresponds to
what is seen.

which will result in exactly the same stimulus. Figure 12(b) shows a plaid composed of two

orthogonal gratings moving at the same speed - the intersection of the perpendiculars to the two

nonnal-flow velocities (the intersection of the two constraint lines) is the only shared motion,

and corresponds to what is seen. Figure 12(c) shows a plaid composed of two oblique gratings,

one moving slowly and the other more rapidly - one grating moves rightward and the other

moves downward and rightward, but the pattern moves upward and rightward.

The model recovers the correct pattern-flow velocity for a number of such plaids. Examples

of flow fields extracted by the model for plaids made up of gratings with equal contrasts and

spatial frequencies are shown in Figure 13. The combined motion extracted by the model in

both 13(a) and 13(b) is accurate to within 5%.

The model does not always recover the correct pattern-flow velocity for sine-grating plaids.

For examp!~, the model's estimates are in error (correct direction of motion but wrong speed)

when the spatial frequencies of the gratings are not equal to the spatial-frequency tuning of the
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Figure 13: (a) Flow field extracted by the model for a plaid pattern made up of a sine grating
moving leftward one pixel per frame plus a sine grating moving downward one pixel per frame.
The combined motion extracted by the model is one pixel leftward and one pixel downward each
frame. (b) Flow field for a plaid pattern made up of a sine grating moving leftward one pixel
per frame plus a sine grating moving downward and leftward a quarter pixel each frame. The
counter-intuitive combined motion is leftward one pixel per frame and upward a half pixel per
frame as shown in the flow field extracted by the model. The spatial frequency of the gratings
for both (a) and (b) was 0.25 cycles pixel-1•

filters.

3.3.2 Sine-Grating Plaids and the Aperture Problem

Adelson and Movshon [3] studied the phenomenon of coherence by varying the angle between

the two gratings, their relative contrasts, and their relative spatial frequencies. They found that

for a range of relative angles, contrasts, and spatial frequencies the two gratings are seen as

a single coherent plaid motion, and that beyond this range the two gratings look like separate

motions moving past one another. The phenomenon ofcoherence tests the human visual system's

ability to solve the aperture problem; given the ambiguous motion of a single moving grating,

how much additional information is needed from the second grating to give an unambigous

coherent percept?

The model is capable of extracting the correct pattern-flow velocity for plaids that have large
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differences in contrast, e.g., for plaids made up of orthogonal gratings the velocity estimates

are accurate to within 10% for contrast ratios of greater than 32 : 1. This is comparable with

human perfonnance [1]. As the contrast difference between the two component gratings gets

larger than this the model begins to tilt the extracted velocity vector toward the higher contrast

grating. Although the perceived velocity of plaids has not yet been measured precisely Adelson

[1] notes that observers also see the direction of motion tilt toward the higher contrast grating

when the relative contrast difference is large.

To withstand large contrast ratios it is crucial that the spatial bandwidths of the model's

filters be less than their temporal bandwidths - in the frequency domain, this means that the

filters are oblong hotdog-shaped Oonger in t than in x and y) instead of spherical in shape. As

an illustrative example, consider a plaid made up of rightward- and upward-moving gratings.

The idea of nonnalizing the filter outputs separately for each spatial orientation is that the

upward- and downward-sensitive filters should give the same responses relative to one another

regardless of the contrast ratio between the two gratings. If the filters were spherical in shape,

then the response of the downward-sensitive filter would be dominated by the rightward-moving

grating (the impulse from the rightward-moving grating is closest to the center-frequency of the

downward-sensitive filter). This would be bad because we want the relative responses of the

upward- and downward-sensitive filters to be unaffected by varying the contrast of the rightward­

moving grating. But, since the filters are oblong in shape the response of the downward-sensitive

filter is dominated by the grating moving upward for a wide range of relative contrasts.

3.3.3 Recognizing Ambiguity

An isotropic texture (e.g., a random-dot field) does not suffer from the aperture problem since

there is enough infonnation within a local window to disambiguate the true direction of motion.

A strongly oriented pattern (e.g., a sine grating) offers oniy partial infonnation about image

velocity. Between these two extremes there is a continuum of stimuli offering infonnation

about image velocity that is more and more ambiguous. The level of ambiguity should be

reflected by the level of uncertainty in the velocity estimate.

The distributed representation of image velocity introduced in Section 3.1.3 fonns a surface

in velocity space; the height of the surface at a particular velocity is the likelihood that it is
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the true velocity. Some examples will illustrate that ambiguity due to the aperture problem is

reflected by the shape of this response surface.

Figure 14 shows the distributed representation of image velocity for some sine-grating plaids.

As the relative contrast of one the component gratings is varied the peak in the surface gets

broader in one direction. This is evident by comparing Figures 14(a), (b), (c), and (d). In

(a), the two component gratings are of equal contrast and the peak is symmetrical. When the

contrast ratio is increased as in (b) and (c), the location of the peak does not change, but its

shape elongates in one direction. Eventually as shown in (d), the peak tums into a ridge.

Figure 15 shows the distributed represenations for image sequences generated from the

straw-texture image. There is enough infonnation in these image sequences for the model to

disambiguate the true direction of motion as there are clearly defined peaks in the distributions.

The shape of each peak matches the orientation of the texture thereby reflecting the image-flow

uncertainty.

When there is an unambiguous peak we can extract the correct pattern-flow velocity, but

how do we know if there is a ridge or a peak? Intuitively, it is a peak if it falls off sharply in

all directions and it is a ridge if it stays constant in one direction. We know from differential

geometry (for example, see doCarmo [35]) that a surface can be characterized locally by its

maximum and minimum curvatures. If the minimum curvature of a surface is small or zero

at a point while the maximum curvature is large then the surface looks like a ridge. If both

curvatures are large then it looks like a peak.

In [62] I suggest using the minimum curvature of the surface at the peak divided by the

height of the peak as a measure of ambiguity due to the aperture problem. We may pick a value

to act as a threshold; if the curvature measure is above this value we pick the pattern flow given

by the location of the peak, and if it falls below this value we may pick the nonnal flow vector

or we may choose any other velocity along the ridge (a familiar example of when people see

motion other than in the normal-flow direction is the barberpole illusion).

Instead, I propose that we use the information matrix introduced in Section 3.2 to recognize

ambiguity. Define the ambiguity mesure as the quotient of the minimum-eigenvalue of the

information matrix divided by its maximum eigenvalue. Figure 17(b) in Chapter 4 shows a

plot of the ambiguity measure as the relative contrast of a plaid's component gratings is varied.
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Figure 14: Distributed representation of image velocity for sine-grating plaids made up of
orthogonal gratings. The gratings moved 1 pixel frame- l leftward and downward and their
spatial frequency was 0.25 cycles pixel-l. (a) The two component gratings had the same
contrast. The location of the maximum in the distribution corresponds to the velocity extracted
by the model. (b) One grating had twice the contrast of the other grating. (c) One grating
had four-times the contrast of the other grating. (d) One grating had zero contrast; the aperture
problem is evident as there is a ridge of maxima. Each velocity-tuned unit along this ridge has
the same output (to within 1 part in 100,0(0).
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Figure 15: Translating image sequences were generated from the straw texture shown in the
middle. Each pane shows the distributed representation of velocity computed from sequences
moving 1/2 pixels frame- 1 in each of eight directions. The locations of the peaks in these
distributions correspond to the velocities extracted by the model. The shape of each peak
matches the orientation of the texture thereby reflecting the image-flow uncertainty.
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Figure 16: The brightness at each pixel is proportional to the ambiguity measure for the rotating
spiral image sequence (Figure 7). The ambiguity measure reflects the ambiguity in the image
sequence.

The ambiguity measure decreases monotonically with the contrast of the test grating for a wide

range of relative contrasts.

Figure 16 shows the values of the ambiguity measure for each pixel of the rotating spiral

image sequence (Figure 7). As we move away from the center of the image there is less and

less curvature in the contour of the spiral. The ambiguity measure reflects this variation in the

level of velocity ambiguity.

The results in Figures 17(b) and 16 indicate that the ambiguity measure may lead to a reliable

test for ambiguity due to the aperture problem.

3.4 Summary

This chapter presents a model for computing local image velocity consonant with current views

regarding the neurophysiology and psychophysics of motion perception. The power spectrum

of a moving texture occupies a tilted plane in the spatiotemporal-frequency domain. The model

uses 3-D (space-time) Gabor filters to sample this power spectrum and by combining the outputs

of several such filters the model estimates the slope of the plane (Le., the velocity of the moving
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texture). The model gives accurate estimates of two-dimensional velocity for a wide variety of

test cases including realistic images, sequences generated from images of natural textures, and

some sine-grating plaid patterns.

The error in the velocity estimates for translating image sequences is from two sources.

First, since image textures are stochastic, Equation (8) is correct only on average. Second,

the maximum-likelihood estimate is equal to the least-squares estimate only for the case of

additive Gaussian process variability. Thus least-squares estimation is optimal only if the nonnal

approximation in Equation (22) is valid.

The primary source of error for realistic image sequences is that the model assumes im­

age translation, ignoring motion boundaries, accelerations, deformations (rotation, divergence,

shear), and motion transparency. Rather, the model computes the average image velocity within

a Gaussian-shaped window.

A parallel implementation of the model results in a distributed representation of image ve­

locity. The computations leading to this distributed representation are simply a series of linear

steps (convolutions, weighted sums) alternating with point nonlinearities (squaring, exponenti­

ation). The model is therefore encompassed by the general framework for parallel distributed

processing put forth by Rummelhart and McClelland [119].

An image-flow sensor model is developed and it is demonstrated that the sensor model

reflects the actual error in the velocity estimates for translating image sequences of Gaussian

white-noise random textures. However, the sensor model significantly underestimates the actual

errors for realistic image sequences because these errors are not simply due to the error in

the motion-energy measurements. Rather, they are mainly due to blurring across deformations,

accelerations, and motion boundaries.

Ambiguity due to the aperture problem is a special case of image flow uncertainty. It is

proposed that the sensor model be used to test for ambiguity due to the aperture problem.

The model appears to solve the aperture problem as well as the human visual system since it

extracts the correct velocity for patterns having large differences in contrast at different spatial

orientations (> 32 : 1 contrast ratio for some patterns).

This chapter demonstrates the promise of computing optical flow using spatiotemporal fil­

ters. There are any number of related techniques using different filters, or using different rules

49



for combining the filter outputs. I suggest using psychophysical and electrophysiological exper­

imentation to distinguish between them.
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Chapter 4

Simulating Psychophysics

In this chapter, I use the image-flow model presented in the previous chapter to simulate psy­

chophysical data. In [62] I compare the the computations performed by the model to the stages

of the visual motion pathway of the primate brain, and I suggest how the model might be used

to simulate electrophysiological data.

For the most part, simulating physiological and psychophysical data merely demonstrates

that the model is consistent with some of the experimental results on biological motion percep­

tion. The emphasis in future research will be to compare the predictions made by this model to

those made by alternative image-flow models and to test those predictions with further exper­

iments. Thus, the model may prove to be an interesting framework for future research in the

psychophysics and neurophysiology of motion perception as well as in computer vision.

Section 4.1 uses the error analysis of image-flow presented in Section 3.2 and Appendix C

to simulate the psychophysical data on velocity discrimination, and to compute limits on the

accurncy of velocity estimation for the human visual system. Section 4.2 uses the ambiguity

measure p~sented in Section 3.2 to simulate psychophysical data on the coherence of sine­

grating plaids.

4.1 Velocity Discrimination

Discrimination is the ability to decide, in the presence of uncertainty, whether or not two things

are the same. In the case of velocity discrimination, the observer must decide whether the
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stimulus is moving with one velocity or with another vel)' similar velocity.

McKee et al [98,99] have measured human ability to discriminate the velocities of moving

patterns. They find that judgements of relative velocity depend on velocity alone and only

incidentally on other cues (like contrast and temporal frequency). Practiced obsevers can dis­

criminate a 5% difference in speed for a wide range ofvelocities and a variety ofmoving stimuli.

In other words velocity discrimination follows Weber's Law; the just noticeable difference ~8

between speed 8 and speed 8 +~8 is proportional to 8, Le., As/ 8 = 0.05 or (8 +~8)/8 = 1.05.

There are two experimental methods one might use to measure the Weber fraction for

velocity discrimination. In a two-alternative forced choice experiment the observer is shown

two displays, one with speed 8 = 81 and the other with speed 82 = s +~8, and he must choose

which one moved faster. Threshold discrimination is the ~8 for which the observer picks the

right display 75% of the time.

Mckee et al [98,99] used the method of single stimuli. On each trial the observer is shown

one of five velocities chosen from a narrow range and was forced to judge whether the single

sample was faster or slower than the mean of the range. No specific standard was ever presented;

instead the observer judged the velocity shown on each trial against an implicit mean established

by the sequence of trials. The stimulus contrast or spatial frequency was varied randomly from

trial to trial. Because no standard was presented, the observer was forced to abstract the velocity

standard, and his judgement was not influenced by the particular contrast or spatial frequency

chosen for a standard stimulus. Threshold discrimination is the ~8 for which the observer

correctly responds "fastelo" or "slower" 75% of the time.

These two experimental techniques are equivalent and may be modeled in a similar manner.

In what follows, I consider the two-alternative forced-choice paradigm with moving random

texture stimuli.

Figure 11 shows that for moving random textures both the actual velocity errors and the

image-flow uncertainty estimates are proportional speed, i.e.,

q = iF =cs (25)

where c ~ 0.03.

For two patterns moving with speeds 81 = 8 and 82 = s +~8, we assume that the error in
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the estimates of each of the speeds is nonnally distributed,

SI "" N(Sll oD
82 "" N(S2 l O'i)

i.e.,

(S2-SI) "" N(S2-S1,O'i+0'~)

"" N[~S,C2(282 +28~8 +~s2)]

(26)

(27)

where 8i are the actual values, Si are the estimates, and 0'[ are the variances.

At threshold discrimination the observer correctly chooses the faster stimuli 75% of the time,

i.e.,

Pr{(S2 - sd > O} = 0.75

For a nonna! distribution, z"" N(j.l ,0'2), the probability that z > 0 is given by

Pr{z> O} = _1_ [00 exp[- (z - j.l)2]dx
.;2;0' Jo 20'2

= (1/2) [erf (~:) + 1]

where erf(x) is the standard error function,

erf(x) = (2/../i) l x

exp(-e)d~

Combining Equations (25), (27), (28), and (29) gives

erf(p) = 0.5

where

(28)

(29)

(30)

(31)

J2~s
p = 2cv'2s2 +28~S +~82 (32)

The value of p that satisfies erf(p) = 0.5 may be found in a table of the erf function, p =

0.4769361.

Note that Equation (32) obeys Weber's Law since it is unchanged if we multiply both S

and ~8 by the same constant. Using c = 0.03 and s = 1.0, we get ~S/8 = 0.029. This is

comparable with the Weber fraction of ~8/S =.05 for human observers.
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Equation (32) may also be used to quantify limits on the accuracy of velocity estimation

for the human visual system. Using ~s = .05 and s = 1.0, and solving for c we get c = .051.

This means that the standard deviation of the error in velocity estimation is 5.1% for human

observers.

There are no cells in the human visual system that give a response proportional to speed.

Similarly, none of the model's mechanisms give an output that is proportional to speed. Even

so, error in the velocity estimates is proportional to speed for both the model and the human

visual system. The model may thus provide some insight as to how the human visual system

obeys Weber's Law for velocity discrmination.

4.2 Sine-grating Plaids

Figure 17(a) plots the psychometric function for coherence (probability of coherence) as the

contrast of one of the component gratings is reduced. Figure 17(b) shows a plot of the ambiguity

measure introduced in Section 3.3.3 as the relative contrast of the two component gratings is

varied. In each case we may pick a threshold value (e.g., 50% probability, 0.001 ambiguity).

Then we may vary the angle between the two component gratings or we may vary their relative

spatial frequencies, and for each test case we measure the contrast that is needed to attain those

threshold values.

In this way Adelson and Movshon [3] measured the threshold elevation of coherence for

plaids made up of gratings with different spatial frequencies, plotted in Figure 18(a). As the

frequencies of the two gratings were made different the tendency to cohere was reduced and the

contrast needed for coherence was increased.

Figure 18(b) was generated by choosing a threshold value for the ambiguity measure; the plot

shows the contrast elevation needed at each relative spatial frequency for the ambiguity measure

. to attain that value. Comparison of 18(a) and 18(b) indicates that the model's mechanisms are

tuned to a somewhat narrower band of spatial frequencies than are the mechlmisms of the human

visual system. Figure 18(c) shows what happens if we increase the bandwidths of the model's

filters by a factor of two. The plots in Figures 18(b) and 18(c) were generated using only one

family (one spatial-frequency band) of filters ignoring interactions between spatial frequencies
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Figure 17: The influence of contrast on the coherence of sine-grating plaids. (a) (replotted from
Adelson and Movshon [3]) One grating had a fixed contrast of 0.3 while the other was of variable
contrast. The two gratings moved at an angle of 1350

, both had a spatial frequency of 1.6 cycles
deg-I, and both moved at 3 deg S-I. The plot shows the probablity that the obselVer judged the
two gratings to be coherent. The dotted lines indicate the test-grating contrast needed to attain
threshold (50% probability) coherence. Subject, EHA. (b) One grating had a fixed contrast of
0.3 while the other was of variable contrast. The two gratings moved at an angle of 120°, both
had a spatial frequency of 0.25 cycles pixel -1, and their speeds were chosen so that the coherent
plaid moved at a speed of 2/3 pixels frame-I. The plot shows the ambiguity measure as the
contrast of the teSt grating was varied. The dotted lines indicate the test-grating contrast needt..d
to attain threshold (0.001) ambiguity.
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that almost certainly affect the psychophysical data.

Figure 19(a) shows the effect on coherence of varying the angular separation between the

two gratings. As the angle was increased from 90° the tendency to cohere was reduced and the

contrast needed for coherence was increased. The simulated data, plotted in Figure 19(b), is

similar to that plotted in 19(a) up to an angle of 120°.

The plots in Figures 18 and 19 are promising. There are several parameters of the model

that may be adjusted with the hope of matching the psychophysical data exactly: (1) The spatial

bandwidths of the motion-energy filters - broader spatial bandwidth makes the plot in Figure

18(b) broader as shown in Figure 18(c); (2) The ratio of the temporal bandwidths to the spatial

bandwidths - decreasing this ratio makes the plot in Figure 19(b) steeper; (3) The nature of the

nonlinearities - for example, squaring accentuates the contrast difference more than absolute

value and should tend to make the plot in Figure -I8(b) narrower and the plot in Figure 19(b)

steeper.

Different subjects were used to collect the data in Figures 18(a) and 19(a). Thus, the data

in these two plots are inconsistent with one another requiring that different thresholds be used

to generate Figures 18(b) and 19(b).

The eventual goal is to simulate all of the data for one subject with one choice parame­

ters. We could measure the spatial and temporal bandwidths of the motion-e~ergy channels

psychophysically, leaving only the nonlinearities as free parameters.
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Figure 18: The influence of spatial frequency on the coherence of sine-grating plaids. (a)
(replotted from Adelson and Movshon [3]) One grating had a fixed contrast of 0.3 while the
other was of variable contrast. The two gratings moved at an angle of 135°, and both moved
at 3 deg S-I. The test grating was of variable contrast and variable spatial frequency. The
plot shows the threshold contrast for coherence for a range of test spatial frequencies when the
first grating was fixed at 2.2 cycles deg-1• Subject, PA. (b) One grating had a fixed contrast
of 0.3 and a fixed spatial frequency of 0.25 cycles pixel-1 while the other was of variable
contrast nnd spatial frequency. The two gratings moved at an angle of 90°, and their speeds
were chosen so that the coherent plaid moved at a speed of 2/3 pixels frame-I. The spread
of the filter's Gaussian windows were (O'x, O'y, O't) = (4.0,4.0,1.0). A fixed value was chosen
as the threshold value for the ambiguity measure (this value was chosen in order to match the
psychophysical data in (a) for the case when the fixed grating and test grating were of equal
spatial frequency). For each test grating, the plot shows the contrast needed at that spatial
frequency for the ambiguity measure to attain that value. (c) Same as (b) with the spread of the
filter's Gaussian windows (O'x,O'y,O't) = (2.0,2.0,0.5).
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Figure 19: The influence of angle on the coherence of sine-grating plaids (a) One grating had
a fixed contrast of 0.3 while the other was of variable contrast. The spatial frequency of one
grating was fixed at 2.4 cycles deg- I and that of the second grating was fixed at 1.2 cycles
deg-I. As the angle between the two gratings varied, their speeds were chosen so that the
coherent plaid moved at a fixed speed of 7.5 deg S-I. The plot shows the threshold contrast
for coherence for a range of angles. Subject, EHA (b) One grating had a fixed contrast of 0.3
and both had a fixed spatial frcq.:ency of 0.25 cycles pixel-I. The speed of the gratings was
chosen so that the coherent plaid moved at a fixed speed of 2/3 pixels frame-I. A fixed value
was chosen as the threshold value for the ambiguity measure (this value was chosen in order to
match the psychophysical data in (a) for 96°). For each angle, the plot shows the test-grating
contrast needed for the ambiguity measure to attain that value. The dotted line indicates that no
data was obtainable beyond 120°.
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Chapter 5

Egomotion and the Stabilized World

This chapter describes research that was done in collaboration with Greg Hager.

Some of the goals of image motion interpretion are: (1) to estimate the observer's motion

(egomotion); (2) to detect image regions that correspond to moving objects; (3) to recover the

scene structure for the stationary background; (4) to estimate the 3-D motion of rigidly moving

objects; (5) to recover the shape of rigidly moving objects; (6) to characterize the motion

of nonrigidly moving objects. This chapter deals primarily with the second and third goals,

detecting moving objects and recovering static scene structure. We also suggest a framework

for using the resulting segmented flow field to update estimates of the egomotion parameters.

We approach these problems by assuming that we already have some information about the

egomotion parameters. A number of authors have proposed methods for recovering the camera

motion using visual information (see [18,135] for reviews of the literature). This has proven to be

a difficult problem to solve in general, although the techniques show promise for recovering the

direction of translation if the rotational component is already known. Information about camera

motion may also be obtained from inertial sources, e.g., rate gyroscopes and accelerometers.

The rotational component of motion is easily measured using a gyroscope, b!.lt the translational

component is more difficult to estimate since it requires the integration of accelerations. There is

a third source of information about the camera motion parameters for many robotics applications,

as the motion of a camera mounted on a robot ann may be measured by differencing robot

positions over time. We propose that reliable estimates of the camera motion will best be
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obtained by combining infonnation from visual and inertial/positional sensors.

Recovering scene structure from motion is greatly simplified if we have prior infonnation

about the camera motion. Bolles, Baker, and Marimont [24] present an effective technique for

recovering scene structure when the observer is known to be moving through a static scene.

They use a sequence of images sampled closely together in time and analyze slices through the

space-time volume of luminance data. For straight-line camera motions, for example, moving

feature points trace out lines in these slices, the slope of the lines being proportional to depth.

The slices directly encode not only the three-dimensional positions of objects, but also such

spatiotemporal events as the occlusion one object by another.

Heeger [61] also presents a technique for recovering depth using prior knowledge of the

egomotion parameters. As discussed in Chapter 3, a distributed representation of image velocity

can be computed by combining the outputs of a set of spatiotemporal motion-energy filters.

For a fixed 3-D rigid-body motion depth values parameterize a line through image-velocity

space (as discussed below in Section 5.1.1). Depth estimates are obtained by finding the peak

in the distributed representation along this line. In this way, depth and image velocity are

simultaneously extracted.

However, both of these techniques assume t.hat the camera is moving through a station­

ary environment. In general we must first segment the images before we can estimate depth

from egomotion. Segmentation of flow fields has previously been addressed by several authors

[5,59,76,103,129,142,151,150]. A natural way to segment images based on motion infonnation

is to find image regions corresponding to entire objects that are moving differently from the

stationary background.

Thompson and Pong [130] discuss the problem of detecting moving objects. If the observer

is not moving and tlle illumination is constant, then motion detection is quite simple since there

will be motion in the image if and only if an object is moving. However if the observer is also

moving, then motion detection using visual infonnation alone is quite difficult [130].

Motion detection, in general, requires that additional infonnation about camera motion and/or

scene slruclure be available. Prior infonnation about the camera motion constrains the optical

flow fields that can be generated by moving through an otherwise static environment. Prior

infonnation about scene structure places additional constraints. Violation of these constraints
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are thus necessarily due to moving objects. The mechanism for segmentation described in this

chapter may be classified as a point-based technique, that compares individual optical flow

vectors against some standard to detennine incompatibilities with the motion of the observer

relative to the environment!.

We can recover scene structure and we can often detect moving objects given prior in­

fonnation about the camera motion and about the image motion. However, infonnation from

perceptual sources (e.g., observations of image motion and camera motion) is inherently noisy

and uncertain. Decisions and computations that rely on motion estimates will be more robust if

we explicitly represent the uncertainty.

This chapter poses the detection of moving objects and the recovery of depth from motion

as sensor fusion problems that necessitate combining information from different sensors in the

presence of noise and uncertainty.

Section 5.1.1 reviews the geometry of rigid motion and then discusses how to distinguish

between moving and stationary surfaces in a noiseless environment. Section 5.2 characterizes

the uncertainty in the observations from the image flow and egomotion sensors. Section 5.3

presents the technique for integrating the information from these two sources to detect moving

objects and recover scene structure, and suggests a framework for using the resulting segmented

flow field to update estimates of the egomotion parameters. Finally, we show some example

results.

5.1 Egomotion

This section reviews the geometry of rigid motion and then discusses how to distinguish between

moving and stationary surfaces in a noiseless environment.

lThompson and Pong [130] describe two other classes of methods for detecting moving objects. Edge-based
techniques correspond to traditional edge detection looking for discontinuities in the flow field. and region-based
methods examine a region of the flow field testing for whether or not the flow vectors are compatible with a rigid-body
motion interpretation.
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5.1.1 Geometry of Rigid Motion

First we revie~'.' the equations relating rigid-body motion in 3-space to image motion under

perspective projection. Then we show that for a fixed 3-D rigid-body motion, depth values at

each image location parameterize a line through image-velocity space.

The equations relating rigid motion to image motion have been derived in several forms by a

number authors (see [18,135] for reviews of the literature); the derivation presented below most

closely follows that of Longuet-Higgins and Prazdny [88], Bruss and Horn [26], and Waxman

and Ullman [145].

Each point on a patch of a rigid surface has an associated position vector relative to the

viewer-centered coordinate frame depicted in Figure 20,

- TR = [X,Y,Z(X,Y)] (33)

Every point of a rigidly moving object shares the same six motion parameters relative to that

coordinate frame,

n = (nx,ny,nz)T

f = (Tx,Ty,Tzf

where n is the rotational component (angular velocity) and f is the translational component

(linear velocity) of the motion.

Equivalently, we may treat the object as stationary and let jj = (Tx,Ty,Tz,nx,ny,nz?

indicate the joint (linear and rotational) motion of the camera. Due to the motion of the camera,

the relative motion of a point on a stationary surface is

(34)

which is related to the motion parameters by

(35)

Now we derive an equation for image velocity jj = (u, vf as a function of the rigid-body

motion parameters. Under perspective projection a point, (X,Y,Z)T, in space projects to the
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Figure 20: Viewer-centered coordinate frame, perspective projection, and rigid-body motion
parameters.

image point, (x, y)T,

x = jXjZ

y = jYjZ

(36)

where j is the focal length. Taking derivatives with respect to time and sllbstituting from

Equation (35) to eliminate occurences of X and Y gives:

() = [ u] = [ ~] = [ j (If - W) ] = A(Z)V
v i1L j (Y!L _ 1lYo.)

dt Z fZ

where

A(Z) = ~[ ~ ; =:]
From Equation (35) we know that

[

-!2yZ + f2z Z(yjJ) - T:r; ] [-f2YZ + f2z Y - T:r; ]
V = -!2z Z(xjJ) + f2:r;Z - Ty = -!2z X + f2:r;Z - Ty =BD

-f2:r;Z(yjJ) +f2yZ(xjJ) - Tz -!2:r;Y + f2yX - Tz
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where

0 -Z Y 1 0

~]B= [ Z 0 -X 0 1 (40)

-y X 0 0 0

Substituting Equation (39) into Equation (37) gives

[
U] [(XTZ - fT:r;)/Z + (xy/ f)D.:r; - (J +x2/ J)D.y + yf2z ] _= = A(Z)BD
v (yTz - fTy)/Z + (J +y2 / J)D.:r; - (xy/ J)fl y + xf2z

(41)

For fixed fi, T, x, and y Equation (41) is the parametric fonn of the equation of a line ­

changing Z corresponds to sliding along this line. This can be seen most easily by rewritting it

as

where

p = liZ

al = xTz - fT:r;

a2 = yTz - fTy

bI = (xyl J)fl:r; - (J +x2I f)fl y + yD.z

b2 = (J + y2I J)D.:r; - (xyl J)D.y + xD.z

(42)

Thus, p parameterizes a line through image-velocity space, and each point along that line

corresponds to a different depth. In the sequel, let C(p) = A(l/p)B. For fixed p, C(p)

represents the linear transfonnation from motion in three dimensions to image flow.

Actually, p parameterizes a line segment in image velocity space since surface points that are

being viewed by the camera are always in front of the camera, i.e., Z E (j, 00) and p E (0, IIJ).

For fixed (x, y), f varies the length of the line segment, f varies the slope of line segment, lmd

fi slides the segment around in image velocity space. Mulitplying each component of f by the

same constan'. does not change the segment at all.
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5.1.2 Egomotion in a Noiseless Environment

Prior infonnation about the camera motion constrains the optical flow fields that can be generated

by moving through an otherwise static environment. The image velocity at an image point is

constrained to be along a line segment in image velocity space given by Equation (42) with

p E (0,1/1). In addition, prior information or. depth (from time past and from other sources

such as stereo) places additional constraints by specifying a smaller interval for the domain of

p.

Image velocity for a given image location corresponds to a point in image-velocity space.

If the point lies somewhere along the line segment, then the camera motion information and the

image motion information are consistent with one another. This meanli that the image motion

may be accounted for by the camera motion alone, i.e., that the image region may correspond

to a surface patch that is stationary in the environment. In this case, we may obtain an estimate

of the relative depth to that surface patch using Equation (42). On the other hand, if the point

does not lie along the line segment, then the image motion must be due to a moving object.

Detecting moving objects is analogous to the fly-detector model presented in Chapter l.

Information ubout the relative depth of a surface point is overconstrained by observations from

the two sensors. By random chance, it is unlikely (probability zero) that the two observations

will be consistent for a given image region. In spite of this, we should oftentimes expect the

two observations to be consistent because stationary surfaces are extremely prevalent in our

environment. Thus, when the two sensor observations are consistent we may reliably infer that

the image region corresponds to a stationary surface patch.

We will never mistakenly infer that a stationary surface is moving. There are, however,

situations in which we might mistakenly infer that a moving surface is stationary. If the camera

is translating to the right, for example, a distant surface patch moving to the left will have the

same image motion as a nearby stationary surface patch. Prior information on Z (from time past

and from other sensors like stereo) will help by adding more constraint, specifying a smaller

interval for the constraint line segment.

The test for detecting moving objects does not depend on knowing the exact camera transla­

tion. If we multiply each component of f by the same constant, then the constraint line segment
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is unchanged. Thus, we can still detect inconsistencies and recover a relative depth map given

only the direction of the camera's translation.

5.2 Sensor Models

In the real world and using real sensors we must contend uncertainty in sr.nsor data. In order

to combine noisy information from different sources, each sensor must provide us both with

observations and with some measure of the uncertainty in those observations. A sensor model

[36] is a description of a sensor's ability to observe the environment. This is in general a

function of the state of the environment, the state of the sensor itself, and the state of other

sensors or cues in a multi-sensor system. A static sensor model or observation model describes

the dependence of an observation on the state of the environment. In this section we adopt

probabilistic sensor models to characterize the uncertainty in the egomotion and image flow

observations.

5.2.1 Sensor Modeling

We will consider a measurement device subject to additive noise as a mathematical system of

the following general form:

0= H(D,p) +n (43)

where H is a k-dimensional function of the true state of the environment, (D, p). Our obser­

vation, 0, is a function of (D, p) and is contaminated by additive noise n. If the probability

distribution of n is n 'V f(')' then the likelihood function based on the observed data is of the

form f(B/H(D,p)).

We assume that the observations of camera motion and of image velocity are contaminated

by zero-mean additive Gaussian noise. This is an approximation that must be verified for

particular sensors. However, if normal distributions were not valid approximations for the

observation errors, then the procedures presented below would not be reliable. In spite of this,

some insight can be gained by proceeding under the normality assumption. In future research,

I hope to extend the analysis presented below to allow for more general assumptions about the

error distributions.
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Let 0 be a random variable with associated probability density taking the general fonn a

Gaussian. If 0 is the mean of that distribution and Ao is its variance-covariance matrix, we

write 8", N(O,Ao), and we write the associated probability density as:

(44)

As discussed in Section 3.2, the noise in the observation, 8, may also be represented either

by the variance-covariance matrix, Ao, or by the Fisher infonnation matrix, AUl . We choose

to represent uncertainty with the infonnation matrix instead of using the variance-covariance

matrix because the latter may be undefined when there is only partial infonnation.

5.2.2 The Image Flow Sensor

Chapter 3 presents a model for the extraction of image flow In addition to estimating image

velocity, the model provides a measure of the uncertainty in the estimates. It is demonstrated

that this uncertainty measure reflects the actual error in the velocity estimates, for translating

image sequences of Gaussian white-noise random textures.

The model approximates image-flow uncertainty as jointly nonnal, and computes the variance­

covariance matrix. Equation (42) expresses image velocity, 0= (u, vf as a function of the six

motion parameters, 0 = C(p)D, where C(p) is the linear transfonn defined in Section 5.1.1.

Since the conditional probability density of 0 is nonnal we write the observation of image

velocity provided by the image flow sensor as:

8 = C(p)D +no no'" N(O,Ao)

5.2.3 The Egomotion Sensor

(45)

We take the error in the estimates of the egomotion parameters to be modeled by spatially and

temporally independent, zero-mean, Gaussian processes.

iJ = D+nD nD '" N(O,AD) (46)

If the rate infonnation is obtained, for instance, by differencing robot positions over time and

if the robot postioning errors are constant variance Gaussian processes, then AD is obtained

67



from the positioning accuracy of the robot. We assume that the robot positioning errors are

independent so that AD is be invertible.

5.3 Combining the Sensor Information

In this section, we focus on devising a statistical test for deciding whether or not the data from

the two sensors are consistent with one another. For the present, we make no prior statistical

assumptions about the parameters we are estimating, and use maximum likelihood techniques

to combine infonnation. Also, we suggest a framework for using the resulting segmented flow

field to update estimates of the egomotion parameters. In future research, we hope to implement

an incremental scheme for updating estimates of the motion parameters by combining prior

infonnation with new sensor observations.

Figure 21 illustrates how to detect moving o~jects in the presence of noise and uncertainty.

If the two distributions provided by each of the sensors are consistent, then we may combine

them to get an estimate of depth and improved estimate of image velocity.

5.3.1 Combining Information

We have two sensors, one providing noisy observations of D and the other noisy observations

of if. If the observations are independent, then their joint likelihood is simply the product of the

individual likelihood functions. In this case, the maximum likelihood estimate (MLE), D, is the

value which maximizes the joint likelihood function. Equivalently, D minimizes the negated

log-likelihood function:

leD) =log[f(D,p)] = [~(.D - jjfAr/ (D - D) + ~(O - C(p)Df A;l (0 - C(P)D)]

(47)

For fixed p this minimum may be found either by differentiation or by standard algebraic

techniques [125], and is given by

(48)

provided the first quantity is invertible. In our case, Ar}is taken to be full rank so the inverse

operation is weB defined.
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Figure 21: Detecting moving objects in the presence of uncertainty. The ellipse along the
straight line in image velocity space represents the distribution of the observation provided by
the egomotion sensor. The circle represents the distribution of the observation provided by the
image flow sensor. If the two distributions are consistent, then we may combine them to get an
estimate of depth and improved estimate of image velocity. If they are not consistent, then the
image motion must be due to a moving object.
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Substituting Equation (48) for jj in Equation (47) and simplifying gives:

M(Pi b,e,AI/,Aol
) = (1/2) [bT All iJ +eT AOI 0- D(pl (Allb +C(pl Aole)]

(49)

The final MLE, p, is obtained by numerically minimizing Equation (49) over P E (0,1/ j).

Note that this operation is conservative in the sense that it chooses the depth which is most

compatible with the two observations.

Several authors huve proposed incremental schemes for estimating the three-dimensional

motion paranteters [25,38,56,122,134]. Given a prior distribution on the motion parameters, an

updating scheme (e.g., an Extended Kalman filter) can be used to combine infonnation across

the flow field and over time [47]. An expression similar to Equation (48) tells us (for an image

region corresponding to stationary surface) how to update estimates of the egomotion parameters

in the presence of new image motion data.

Of course, the three-dimensional motion is underdetennined from a single flow observation.

Geometrically, the combination rule given by Equation (48) can be viewed as reducing uncer­

tainty in jj in a two-dimensional subspace. Even using the infonnation in the entire flow field

may underdetennine the motion paranteters. Several authors (for example, see [14,126]) discuss

the inherent ambiguity in recovering motion paranteters from optical flow.

5.3.2 Consistency of Information

Maximum likelihood is one way of combining infonnation from two sensors. But what if one

of the sensors is giving spurious data (perhaps it is broken) or is observing a process different

from its counterpart. In such a case, we do not want to combine the infonnation into a single

estimate. We want to combine infomlation fror:.~ different sensors only if they concur with one

another.

The quantity denoted by M(Pi b, 0, All ,AOI ) in Equation (49) is referred to as a Maha­

lanobis distance, and is commonly used as a threshold rule for detennining consistency between

observations. The larger the disparity between two observations, the larger the resulting Ma­

halanobis distance. If the minimum Mahalanobis distance between the two observations is less

than a given threshold then the two observations are taken to be consistent with one another and
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we may combine the infonnation from the two sensors to calculate a single best estimate for 0.
A crucial question is the choice of thresholding criteria. For the result in Section 5.3.3,

a threshold was chosen interactively. In future research we hope to fonnulate a method for

choosing the threshold automatically.

Mahalanobis distance, however, is essentially heuristic - in general it has no decision­

theoretic basis. For example, if the noise distributions are non-symmetric, it will lead to biased

results. In future research we will investigate alternative statistical hypothesis tests.

5.3.3 Example Results

Figure 22 shows the segmentation for the Yosemite fly-through sequence (Figure 9 in Chapter

3) achieved by thresholding Mahalanobis distance, Equation (49). The segmentation correctly

classifies 91.0% of the sky points and 96.9% of the ground points. All of the classification

errors are either at the horizon or near the edges of the image (due to the edge effects of the

convolutions used to extract image flow).

A depth map was simultaneously recovered from the image sequence, and was converted

to an altitude map by using the known camera position and orientation to transfonn the depth

values to a viewer-independent coordinate frame. A histogram of the percent error between the

actual and recovered altitude maps is shown in Figure 23(a). The average percent error is 3.6%

and the standard deviation is 8.7%.

Figures 23(b) and 23(c) demonstrate that the recovered depth data is accurate enough to

locate qualitative features of the landscape, e.g., the valley. For many perceptual tasks (for

example, navigation), qualitative information (e.g., near versus far, high versus low, where is

the valley, where is the moving object) is often sufficient. If necessary, more accurate depth

infonnation may be obtained utilizing image data over longer periods of time as demonstrated

by Bolles, Baker, and M:lr'.mont [24].

5.4 Summary

Previous research [24,61,130] has demonstrated that we can recover scene structure and we

can often detect moving objects given prior infonnation about the camera motion and about
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Figure 22: Segmentation into stationary and moving regions. Pixels near the edge of the image
can not be classified due to the edge effects of tile convolutions used to extract image flow. The
segmentation correctly classifies 91.0% of the sky points and 96.9% of the ground points.
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Figure 23: (a) Histogram of percent error between actual and recovered altitude maps. (b) The
actual altitude map was thresholded at 1400 meters above sea level showing the valley in white.
(c) Recovered valley. No altitude values may be computed near the edge of the image due to
the edge effects of the convolutions used to extract image flow.
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the image motion. However, infonnation from perceptual sources (e.g., observations of image

motion and camera motion) is inherently noisy and uncertain. This chapter poses the detection of

moving objects and the recovery of depth from motion as sensor fusion problems that necessitate

combining infonnation from different sensors in the presence of noise and uncertainty.

Prior infonnation about the camera motion constrains the optical flow fields that can be

generated by moving through an otherwise static environment. Given the motion parameters,

the image velocity at an image point is constrained to be along a line segment in image velocity

space. In addition, prior infonnation on depth (from time past and from other sources such as

stereo) places additional constraints by specifying a smaller interval for the line segment. Image

velocity for a given image location corresponds to a point in image-velocity space. We utilize

Mahalanobis distance as a threshold rule for detennining consistency between these two sensor

observations.

If the two observations are consistent, then the image motion may be accounted for by the

camera lilotion alone, I.e., t..ie irr.age region may correspond to a surface patch that is stationary

in the environment. In this case, we may obtain an estimate of the relative depth to that surface.

On the other hand, if the observations are not consistent, then the image motion must be due to

a moving object.

If the observations are consistent, then an expression similar to Equation (48) tells us how

to update estimates of the egomotion paraters in the presence of the new image motion data.

This suggests an incremental scheme for recovering the motion parameters, perhaps utilizing

the extended Kalman filter [47].

The procedure outlined in this chapter for the analysis of egomotion and stationary surfaces

may be generalized to arbitrary motions of rigid objects. Given prior infonnation about the

rigid-body motion parameters for some small patch of the surface of a moving object, we may

utilize image flow infonnation to extract entire regions that arc consistent with those motion

parameters, recover depth, and update the estimates of the 3-D motion.
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Chapter 6

Rigid Body Motion

The previous chapter discussed how to segment images and recover depth from motion infonna­

tion given prior knowledge of the three-dimensional rigid-body motion parameters. For the case

of egomotion and the stationary background estimates of these motion parameters may come,

in part, from inertial/postional sensors. We must, however, rely only on visual infonnation to

recover the motion parameters of moving objects.

Early perceptual studies suggested that the rigidity of objects may play a key role in the

perception of motion [52,55,60,78,139]. A number of authors have proposed methods for

recovering the three-dimensional rigid-body motion parameters, either from feature motions

[16,25,30,38,66,75,86,113,117,118,122,123,131,132,134,136,147], from instantaneous flow fields

[5,14,19,26,56,65,81,82,88,102,126,145,146,151], or directly from the time-varying image inten­

sity [71,72,104]. A number of these papers are summarized and reviewed in [18,135]

However, no-one has yet produced a reliable method of recovering the motion parameters.

In part, this is because the equations relating three-dimensional motion to image motion are

nonlinear and the parameter space is six-dimensional.

In addition, relying only on the infonnation from instantaneous flow fields (or displacement

fields) confounds the problem. It is difficult to distinguish instantaneously between translation in

X and rotation about Y (similarly translation in Y and rotation about X). The standard approach

for separating Tx from fly is to utilize the second spatial derivatives (or second differences across

space) of the flow (or displacement) field. Derivative infonnation is usually calculated directly
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from velocity fields, for example, by fitting second-order flow fields to normal-flow estimates

[146]. Such second derivatives are numerically unstable in the presence of noise.

Barron et al [19] perform an error analysis of a class of algorithms for estimating the motion

parameters. They find that algorithms using individual velocity vectors require accuracy to

within 1%. Equivalently. they find that algorithms using local image velocity information (first

and second derivatives of velocity within a small neighborhood) require accuracy to within

10%. Current techniques for estimating image velocity cannot produce the required accuracy.

As discussed in Section 4.1, even the human visual system does not seem to achieve the required

accuracy.

The active vision/sensor fusion paradigm suggests that if a problem seems difficult to solve,

then take more data. For example, some authors have suggested using prior information about

depth (e.g., from stereo) to heip recover the motion parameters

[13,77,101.103,117,120.122,143,144] This Chapter proposes two additional sources of infor­

mation: (1) measuring the spatio-temporal derivative information directly from the time-varying

intensity data; (2) recording eye/camera position and eye/camera motion over time while tracking

a surface point on a rigidly moving object.

6.1 Deformation Filters

Several authors suggest using deformation fields [81,82,88,142,145,150], the spatial derivatives

of image velocity, in order to recover the motion parameters. In practice, these deformation fields

have been computed by first estimating image velocity and then either: (1) taking differences

between flow vectors; or (2) fitting second order flow fields to the flow vectors.

Some researchers suggest that we might rather estimate the deformations directly from the

time-varying imagery [19,81,88]. In fact, there is psychophysical evidence that the human visual

system has separate mechanisms for recovering image curl and divergence [114,115.116].

Chapter 3 discusses a technique for combining the outputs of a set of energy filters, each

sensitive to image translations in a different direction, in order to estimate the image velocity

for a local image region. Analogously, it may be possible to build linear filters sensitive to

clockwise and counterclockwise rotations, and combine their outputs to estimate image curl.
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We might similarly build mechanisms tuned for image divergence and image shear.

6.2 Tracking

Eye/camera movements have only two rotational degrees of freedom, pan and tilt, about axes

that pass through the center of projection. Each camera orientation is associated with a different

rotated coordinate frame. Rotation matrices specify the transform from one coordinate frame

to another. In Appendix E I derive formulas for transforming position, velocity and angular

velocity from one frame to another. I explain how to to fixate on a surface point, how to use

image velocity information to track moving surface points over time, and how to warp an image

to simulate the effect of an eye/camera movement.

Bandopadhay and Aloimonos [8,15J suggest that tracking the motion of a surface point

simplifies the problem of recovering the motion parameters. This section .tpfoposes that both

eye/camera position and eye/camera motion can be used as additional constraints to help recover

the motion parameters.

First, records of eye/camera position while tracking a surface point allow us to transform

the image motion observations (velocities and deformations) collected over time into a single

coordinate frame where they may be combined.

Second, the angular velocity of a tracking eye movement over time is related to the fixed

motion parameters of the rigidly moving object. For simplicity, I have so far considered only

the two-dimensional case of rigid motion in a plane. We choose a coordinate system oriented

with the camera's starting position as depicted in Figure (24). In this coordinate frame the

motion of a point on the object's surface is given by

Vx(t) = nyZ(t) +Tx

V;(t) = -nyX(t) +Tz

(50)

where (Tx , Ty ) is the translational component of the motion, ny is the rotational component,

[V;(t), V;(t)] is the velocity of the point at each time, and R(t) = [X(t), Z(t)] is its position.

Equation (50) is a differential equation that relates position over time to velocity (the deriva­

tive of position with respect to time). It may be solved using Laplace transforms; the Laplace

77



z

R(O)

R(t)

x

Figure 24: Tracking the motion of of a point on the surface of a rigidly moving object.
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transfonn of Equation (50) is

sX(s) - Xo = f!yZ(s) + Tx/s

sZ(s) - Zo = -HyX(s) +'.1'x/s

(51)

where Xo and Zo are the intial conditions, the position of the point at t = O. Solving this linear

system of equations gives

Z(s)

X(s)

(52)

Taking inverse Laplace transfonns and simplifying gives

X(t) = ~x sin(f!yt) + ~z [1 - cos(Dyt)] +X ocos(f!yt) + Zo sin(f!yt) (53)
y y

Z(t) ~z sin(Dyt) - ~x [1 - cos(Dyt)J +Zocos(f!yt) - X osin(Dyt)
y y

As depicted in Figure (24) the camera position at each time, O(t). is given by

O(t) = tan-1 [X(t)]
Z(t)

(54)

Using Equations (50) and (54) the angular velocity of the camera at each time, f!e(t), is given

by
D (t) = dO(t) = z2(t)f!y + X 2(t)f!y + Z(t)Tx - X(t)Tz

e dt X2(t) +Z2(t)
(55)

Taking Xo =0 (i.e., the camera is fixating on the point at t = 0) and substituting for X(t) and

Z(t) from Equation (53) gives

(56)
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Equation (56) relates the angular velocity of the tracking camera movement to the motion

parameters of a point on the surface of a rigidly moving object. Since Equation (56) is nonlinear,

it is not apparent whether it is solvable in general, and if so whether the solution is unique.

Some interesting special cases of this equation are listed below:

1. For t = 0,

(57)

2. For Tx =Tz = 0,

(58)

3. For ny = 0,

(59)

4. For Tz =ny =0,

(60)

5. ForTx =ny = 0,

(61)

As discussed above, it is difficult to distinguish instantaneously between Tx and ny • The

eye/camera motion information should help solve this problem. Equation (58), for example,

tells us that if both Tx and Tz are zero, then the camera motion is equal to ny •

6.3 Summary

The previous chapter proposes a procedure for using image motion information to segment

images, recover depth, and update estimates of the motion parameters. This chapter proposes

two additional sources of information for solving these problems; deformation fields extracted

directly from the time-varying imagery, and records of both eyelcamera motion and eye/camera

position while tracking a surface point on a rigid object.

It seems to me that a reliable method for recovering the motion parameters should obey the

following three general principles: (1) the motion parameters should be computed using a small

80



image region that corresponds to a single moving surface; (2) the method should utilize as much

data as possible in order to have sufficient overconstraint for reliable estimates; (3) the method

should provide an explicit test for rigidity by checking for consistency amoungst the data. In

order to simultaneously satisfy the first two principles the method should collect data over time

while tracking the motion of a small patch of surface. This suggests an incremental scheme

(perhaps using the extended Kalman filter [47]) that tracks the motion of a small surface patch,

utilizing the incoming image motion and eye/camera movement data to update estimates of the

motion parameters.
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Chapter 7

Turbulent Flow

This chapter describes research that was done in collaboration with Alex Pentland.

Thrbulent motion is quite prevalent in the natural outdoors world. Some examples are

clouds, waterfalls, waves, boiling water, the leaves of trees or bushes rustling in the wind, grass

or wheat fields blowing in the wind, flags fluttering in the wind, fire, and smoke. Despite the

conventional attitude that such motion is purely random, people are able to gather considerable

information from it - e.g., average velocity, viscosity, or quantity of flow - just by visual

observation.

Imagine, for instance, that you are standing on a bridge on a quiet, windless day. Upstream,

the water looks like a flat motionless surface. But downstream, there are turbulent wakes

behind the bridge supports. The surface of the water is rough in the turbulent region, i.e., the

orientation of the water's surface normal varies wildly over space and time. A human observer

does not see any motion upstream of the bridge because the surface is perfectly smooth. But

he interprets the turbulent region downstream of the bridge as motion and he sees, immediately

and unconsciously, the direction and speed in which the flow moves. Similarly, a waterfall or

white-water rapids is interpreted as motion and the observer has a sense for the parameters of

the flow.

As another type of example, consider a tree blowing in the wind. Even though individual

leaves and branches are moving differently from one another, the overall motion of the tree seems

natural and self-consistent. A human observer can distinguish the tree from the background and
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from other objects that surround it: somehow the coherence of the motion of the leaves helps

the observer to separate the tree from its background.

How are these perceptual inferences possible? To fully understand these phenomena we first

need to model turbulent motion and the processes that ca-..:se it. Section 7.1 discusses the fractal

nature of turbulent flow. Section 7.2 discusses how this ffactal space-time behavior might allow

us to recognize instances of turbulent flows, and to differentiate them from other phenomena.

Section 7.2.2 develops a physiologically-plausible technique, using the outputs of motion-energy

filters, for estimating the fractal dimension for each region of an image sequence. However,

experimentation indicates that this algorithm is not reliable for obtaining local estimates of the

fractal scaling parameter. In spite of this, we are able to show some preliminary results in

Section 7.2.4 discriminating image regions based on fractal scaling.

7.1 A Model of Turbulence

The predominant fact that detennines the physical properties of turbulent flow is its lack of

colIerence. The relationship between coherence of motion and the physical properties of moving

fluid is well understood, and is summarized by the empirical relationship known as the Reynolds

number:

(62)

where V is velocity, S is obstacle size, D is density, and v is viscosity. Several examples

should clarify the relationship. Turbulence is proportional to velocity - a flag flutters more

in a stronger wind. It is proportional to obstacle size - a freighter makes more wake than

a windsurfer. Turbulence is proportional to density since greater density means that there are

more particles which can, and will, interact with one another. Viscosity is inversely proportional

to ~ - it is easier to make air or water turbulent than it is to make oil or molasses turbulent.

One approach to understanding turbulence is to ask how it arises. For very low speeds (low

Reynolds number), the flow around an object is regular and time-independent (laminar flow).

As ~ is increased, the motion gains swirls but remains time-independent. As ~ is increased still

further, the swirls may break away and start moving downstream. This induces a time-dependent

lOsbome Reynolds (19th century). a good introduction to fluid mechanics is given in Aris [9].
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Figure 25: Drawing of turbulent flow by Leonardo da Vinci. Notice the similarity across scales
(swirls within swirls within swirls) which is characteristic of fractals.

flow pattern since the velocity measured at a point downstream is periodic. A further increase

in ~ results in partially periodic and partially irregular velocity as the swirls begin to induce

irregular internal swirls. Finally, a very complex velocity field is induced, and the flow becomes

completely chaotic. This is called fully developed turbulence (Figure 25). There is, however,

an underlying regularity in this motion that can be analyzed. In Figure 25, for instance, we see

a series of swirls, and within those swirls are smaller swirls, etc.

Perhaps the most useful current models for the structure of tmbulent flow are based on

Mandelbrot's [95] notions of fractal functions. Recent work iii. physics pioneered by Mitchell

Feigenbaum [39,54] has demonstrated that many deterministic nonlinear systems can result in

chaotic behvior which is statistically invariant over a wide range of scales. This work came

as a revelation to modern physics. For centuries, probabilistic descriptions of systems were

regarded as no more than conveniences to be invoked when the deterministic equations were

difficult or impossible to solve for one reason or another. The demonstration that a deterministic

system may result in chaotic behavior, however, showed that a probabilistic model of such a

system could, in some cases, be more valid than a deterministic one. Solving the Navier-Stokes

equations for fluid flow provide a perfect example. Thrbulent flow is so complicated and chaotic
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that attempting to solve the Navier-Stokes equations analytically no longer makes sense; it is

more valid to model the flow as a statistical system. The model of turbulent flow discussed in

this chapter. therefore. describes the statistical geometry (the fractal characteristics) of turbulent

flow rather than studying turbulence analytically in the manner of the Navier-Stokes equations.

7.1.1 The Mathematics of Fractal Brownian Functions

The path of a particle exhibiting Brownian motion is the canonical example of most naturally

occuring fractals; the discussion that follows. therefore. will be devoted exclusively to fractal

Brownian functions. which are a mathematical generalization of Brownian motion.

Definition: A random function I(x) is a fractal Brownian function if for all x and Ax:

pr(I(X+AX)-I(X) ) =F()
IIAxIIH < y y

(63)

where F(y) is a cumulative distribution function, and the variable H is the fractal scaling

parameter. If H = 1/2 and F(y) comes from a zero-mean Gaussian with unit variance. then

I(x) is the classical Brownian function.

Note that x can be interpreted as a vector quantity, thus providing an extension to two or

more topological dimensions. If the topological dimension is T, the fractal dimension D of

I(x) is:

D = T +(1- H) (64)

The power spectrum, P(w). of I(x) is (see Mandlebrot [95] for discussion of the proof of this

proportionality):

pew) = cw-2H- 1 (65)

for some constant c. A Brownian fractal function as defined by Equation (63), can be generated

in the Fourier domain to give a power spectrum as in Equation (65) [138].

Definition: A fractal Brownian surface is a continuous function that obeys the statistical

description given by Equation (63) for Omin < l:1i < omax, where i is a two-dimensional

vector.
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Although true mathematical fractals obey Equation (63) for all tlx, real surfaces have a

constant fractal scaling parameter over only a range of scales; Omin and omax specify the

bounds on this range. Although true mathematical fractals are everywhere nondifferentiable, the

surface nonnal of a fractal Brownian surface is defined with respect to Omin.

7.1.2 The Fractal Characteristics of Turbulence

A large number of papers, both theoretical and experimental, have been written during the

past few years relating fractals to tlJib.:lent or chaotic systems; for instance, see Mandlebrot

[95], Lovejoy and Schertzer [90], or rec.ent issues of Pllysical Review Letters. As a result,

considerable experimental evidence now supports fractal models of turbulence. For example,

Lovejoy (see Lovejoy [90] for references) has verified the fractal scaling of cloud and rain areas

and perimeters for scales ranging from .16 to 1000 km.

Turbulence exhibits fractal characteristics in several ways. First, the shape of turbulent

regions is fractal. Consider turbulence which is restricted to a portion of an otherwise laminar

fluid, e.g., a boat's wake. Ifwe examine the boundary of such a turbulent area (for instance, the

oil spill shown in Figure 26), we will discover a hierarchy of vortex-like indentations occuring

at all scales. Just like in the coastline example, shape is repeated over a large range of scales.

The presence of detail at all scales causes the shape to be fractal in nature. For fluids such as

water the magnitude of the indentations increases with Reynolds number.

A second way in which turbulence is fractal concerns its intermittency. Thrbulence even­

tually ends in dissipation: due to the fluid's viscosity, the energy of visible motion transfonns

into heat. Some regions in space are marked by very high dissipation, while other regions seem

by contrast nearly free of dissipation. For example, we all know that wind comes in gusts, and

within those gusts are smaller scale gusts. This is well illustrated by the "turbulence" one feels

during an airplane trip. Every so often, a large airplane is shaken about, which shows that certain

regions of the atmosphere are strongly dissipative. A smaller airplane acts as a more sensitive

probe: it "feels" turbulent gusts that leave the large airplane undisturbed, and it experiences

each shock received by the large airplane as a burst of weaker shocks. Theoretical models and

computer models which exhibit the fractal nature of the intennittency of turbulence have been

developed by a number of authors including Frisch et aI [43], Chorin [29], and Lovejoy and
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Figure 26: (from [Van Dyke, 1982]) Turbulent wake showing geometric similarity at different
scales.

Schertzer [90].

Perhaps the most convincing argument for fractal models of turbulence is that fractal models

can be used to generate images and image sequences that look like turbulent flow. For example,

Mandlebrot and Voss have developed models of cloud formations using Brownian fractals.

7.1.3 Generative Models of Thrbulence

A turbulent medium can be represented by a fractal function of three variables, Le., x = (x, y, z)

and I(x) represents either the energy (velocity) or density at every point in space2• For example,

the surface of a cloud is an iso-value surface within the fractal volume, ·those points in space

which that equal energy.

A realistic looking display of a fractal cloud can be generated by letting the local light

scattering vary as lex, y, z) [138], i.e., the light scatters fractally with the same fractal scaling

parameter as that of the surface itself. The example cloud shown in Figure 27 was rendered

2Note that modeling energy and density are equivalent since dynamic systems tend to concentrate particles in
regions of low velocity, i.e., minimize energy.
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Figure 27: Computer generated image of clouds.

assuming that the light was being transmitted through the fractal volume rather than reflecting

from its surface (e.g., looking up at the sky during mid-day).

A fractal function with x = (x, y, z, t) models a cloud which is changing its shape over

time. If we add a bias flow field to the zero-mean fractal, then the cloud will move as it changes

in shape,

D(x) =I(x) +Vex) (66)

where D(x) is the cloud's density as a function of space and time, I(x) is a four dimensional

zero-mean fractal, and Vex) is potential flow.

Other turbulent systems can be modeled in similar ways. For example, white water rapids

are just like clouds with another tenn in the fractal energy function due to gravity which sticks

most of the fractal volume to the ground. Fire can be modeled by adding another tel111 which

adds energy due to heat causing the smaller particles to rise.

Note that in modeling turbulent flow in this manner we are assuming that the fractal is

isotropic in space-time, i.e., any submanifold or slice through the function in space-time will

have the same fractal scaling parameter. This assumption is classically known as Taylor's

assumption of frozen turbulence that has been empirically verified for atmospheric turbulence

by Brown and Robinson [31] for distances up to 1000 km. The consequence of this assumption
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is that for each instant in time, each component of the surface nonnal obeys the statistical

description of Equation, (63). Moreover, if we look at one position in space for a series of

time intervals, the surface nonnal obeys the same statistical description. The orientation of

the surface normal at a point Xl in space is changing over time according to Equation (63).

Similarly, the orientation at a different point X2 varies according to Equation (63). Statistically,

Xl and X2 are changing the same way, but the two points are out of "phase." For example, the

surface normal at one point may be leaning in one direction while it is leaning in the opposite

direction at the other. A snapshot of the entire signal has the same statistical behavior as that

of a single point over a period of time.

Although this is an extremely simple model of turbulent systems, it is both first-order correct

in tenns of the underlying physics, and produces correct-looking images of turbulent phenomena.

For purposes of perception, therefore, this model may be sufficient. If we were trying to model

the detailed dynamics of this system, however, a more complicated fraclal-based model (e.g.,

Mandlebrot and Lovejoy [89]) would be more useful.

7.2 Recognizing Thrbulence

In the first part of this section we discuss how this fractal space-time behavior might allow us to

recognize instances of turbulent flows, and to differentiate them from other phenomena. Second,

we present a technique for measuring the fractal scaling parameter of an image sequence using

the outputs of motion-energy filters. Finally, we show some preliminary results.

7.2.1 Recognizing Instances of Turbulent Flow

How do we know if we are really looking at a turbulent system? As an analogy, let us again

consider the case of rigid motion. A solid object moves rigidly in 3-space, and such motion

projects into an image sequence with a specific type of regularity. We use the rigid-motion

model to detect that regularity, and then make two inferences: (1) the regularity is due to rigid

motion in 3-space; (2) the rigid motion is a result of a sing!e, solid object moving through space.

A similar chain of relationships holds for turbulent flow. If a motion is turbulent in 3-space,

then according to our model of turbulent flow it will obey a scaling law as in Equation (63).
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Pentland and Kube [85,109] have shown that under a variety of imaging situations fractal surfaces

project to fractal images. We have used this result to generate realistic-looking (synthetic)

sequences of moving clouds and tree leaves. The ability to generate realistic cloud sequences is

partial confirmation of the validity of the model. The problem remaining, then, is to invert the

process. That is, we want to detect instances of fractal scaling in an image sequence, that will

then allow us to make ll}e following inferences: (1) that this regularity results from a motion in

3-space described by the fractal model; (2) that this fractal 3-space motion is, in fact, a turbulent

flow.

For both rigid and turbulent motion, we know that our inferences will generally be reliable,

because we can normally preclude both the ways in which our inferences can go wrong.

In the case of a moving solid body, the first type of potential error is that we think we have

a rigid motion when in fact we do not. We can preclude this type of error because the equations

are overconstrained; i.e., we can estimate the motion parameters using part of our data, and then

check our answers using the remaining data. The second type of error is that we think we do

not have an instance of rigid motion when in fact we do. We will never make this error since

we will always infer rigidity when the the data is self-consistent.

In the case of turbulent flow, similarly, the first type of potential error is that we think we

have an instance of turbulent flow when in fact we do not. As in the rigid motion case we

can preclude this type of error because the equations are overconstrained: the estimated fractal

scaling parameter H must have the same value (to within the uncertainty of image noise) for a

range of scales in both space and time. Thus we can estimate the motion parameters using part

of our data, and then check our answers using the remaining data. The second type of error is

that we think we do not have an instance of turbulent flow when in fact we do. We will never

make this error since we will always infer turbulence when the the data is self-consistent.

In future research, we hope to develop a reliable statistical test for recoginizing fractal

processes based on consistency of fractal behavior across a range of scales.

7.2.2 Measurement of Fractal Scaling Parameter

The fractal scaling parameter H can be measured either directly from the second-order statistics

(dipole statistics) of I(x) by use of Equation (63), orfrom I( x)'s Fourier power spectrum P(w)
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by use of Equation (65). From Equation (65) we get

log[P(w)] = -(2H + l)log(w) + log(c) (67)

Pentland [109] computed the fast Fourier transfonn (FFT) for each 8x8 window of an image

and used a linear regression on log-power versus log-frequency to detennine the fractal scaling

parameter H.

We have developed an efficient method of measuring the fractal scaling parameter using
~ . ,

physiologically-plausible linear filters. As discussed in Chapters 2 and 3, an energy filter is the

sum of the squared outputs of a quadrature pair (odd- and even-phase) of linear bandpass filters.

Parseval's theorem states that the integral of the squared values over the space-time domain

is proportional to the integral of the squared Fourier components over the frequency domain.

Convolution with a bandpass filter results in a signal that is restricted to a limited range of

frequencies. Therefore, the integral of the square of the convolved signal is proportional to the

integral of the power of the original signal over this range of frequencies. The average output

of an energy filter is thus proportional to the amount of power (energy) in the Fourier spectrum

of the signal that lies within the filter's sensitive range.

In previous research [63], we proposed that the logarithim of the ratio of the outputs of two

energy filters is linearly related to the fractal scaling parameter. Mallat [93] has since proven

that this is the case. Let n(wo) be the average output of an energy filter tuned to frequency wo,

and let n(2wo) be the average output of a filter with twice the bandwidth tuned to twice the

frequency. Mallat [93] shows that

n(2wo) = 2-2H (68)
n(wo)

This fonnula may be generalized by considering pairs of filters that are not necessarily an

octave apart.

or

n(dwo) = d-2H

n(wo)
(69)

log[n(2wo)] -log['R(wo)] = -2H (70)
log(d)

An algorithm for estimating the fractal scaling parameter for each region of an image se­

quence is as follows:
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1. Convolve the image sequence with three-dimensional sine- and cosine-phase Gabor filters

with their peak response at woo

2. Convolve with sine- and cosine- phase Gabor filters with their peak response at dwo.

3. Compute the Gabor energy for each of steps (1) and (2) by summing the squares of the

responses of the sine- and cosine-phase filters.

4. Average the results of step (3) by convolving with a Gaussian.

5. Estimate H using Equation (70).

6. Do steps (1) through (5) for a variety of orientations and wo's.

However, experimentation with static images indicates that this algorithm is not reliable for

obtaining local estimates of the fractal scaling parameter. In order to get accurate estimates of

H we must average over large image regions in Step (4). On real textu:-ed images, the algorithm

produces markedly inferior results compared to Pentland's original regression technique.

In future research, it will be interesting to investigate why these two similar techniques give

such different results, and to develop a robust and efficient mechanism for estimating fractal

scaling parameter.

7.2.3 Thrbulent Flow and Bias Flow

Many natural turbulent processes have a mean bias flow, e.g., clouds move while they change in

shape, and the turbulent wake of a boat appears to follow the boat. Mathematically, we address

this as in Equation (66), by adding a bias flow velocity to the stationary spatiotemporal fractal

image sequence.

Consider a fractal image that merely translates in the image plane from frame to frame, and

a space-time fractal image sequence in the presence of a bias flow field that changes its spatial

form (bubbles) while it translates. Both of these image sequences are fractal in space and in

time. For each instant in time, each obeys the fractal scaling law across space, and if we look

at one spatial location for a series of time intervals each obeys the fractal scaling law over time.

For example, the rigidly-moving landscape region and the turbulent cloud region in the yosemite
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fly-through sequence (Figure 9) are both fractal in space and in time. The technique described

so far in this chapter will be unable to distinguish between such regions.

The difference between these two motions is that if you take away the bias flow, one will

be fractal in space but unifonn in time while the other will still be fractal in space and in time.

Chapter 3 presents a model for the extraction of local image velocity. The extracted flow field

may be used to compensate for the bias flow. This procedure was used for the preliminary

results discussed below.

Alternatively, the extracted image flow may be used to drive eye/camera movements as

discussed in Appendix E. This is an active solution to compensating for bias flow over a local

imdge region.

7.2.4 Results

As yet, we have been unable to obtain real image sequences of turbulent motion. The results

below are for a static real image and for a computer-generated image sequence.

Motor-Boat Wake Figure 28(a) is a picture of a turbulent wake behind a motor boat. We

estimated the fractal scaling parameter of this image at each pixel for four different orientations

over two octaves of spatial frequency. If the estimates for a given region of the image are not

consistent, then we know that the region is not fractal, Le., not due to a turbulent process. The

result for a certain choice of thresholds is shown in Figure 28(b). Thresholding was used in

this example merely to demonstrate that fractal scaling parameter distinguishes between the two

regions - other segmentation procedures may be used instead. The turbulent regions near the

edge of the picture are missed due to the edge effects of the convolution.

Yosemite Fly-Through For the Yosemite fly-through image sequence (Figure 9 in Chapter

3), we may compensate for the average image motion by shifting each local region of each image

in the sequence opposite to the extracted flow. This results in a new image sequence in which

the landscape region is motionless. The clouds, on the other hand, were generated as stationary,

spatiotemporal fractals (they change their shape over time) in the presence of a bias flow field

that moves them rightward. Compensating for the extracted bias flow yields stationary clouds
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a

b

Figure 28: (a) Thrbulent wake behind a motor boat. Fractal dimension was estimated for four
orientations over two octaves of spatial frequency. (b) Region for which the estimates were
consistent with one another within a given threshold.
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Figure 29: Segmentation of the Yosemite fly-through image sequence based on fractal scaling
parameter using a threshold. (top-left) Segmentation using filters oriented along the t-axis.
(top-right) oriented along the x-axis. (bottom-right) oriented along the y-axis. (bottom-left)
Histogram of fractal scaling parameter used to pick the threshold.

that still change their shape over time. Figure 29 shows the segmentation based on fractal

scaling parameter using a threshold. Again, thresholding was used in this example merely to

demonstrate that the fractal measure distinguishes between the two regions.

7.3 Summary

This chapter discusses a fractal model for turbulent flow. The recognition of turbulent flow is

analogous to the recogition of rigid motion; it indicates whether or not a particular model of

motion is applicable to a given region of an image sequence. If we observe that the fractal

scaling parameter within a given region changes over space, time, or scale, then we are certain

that the region is not an image of a single turbulent flow. On the other hand, if the observations

are constant over space, time, and scale, then we may infer that we are observing a single

turbulent flow.
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A technique is presented for estimating the fractal scaling parameter of fractal image se­

quences using linear filters. However, experimentation indicates that this algorithm is not

reliable for obtaining local estimal~s of the fractal scaling parameter. In future research, we

hope to develop a reliable algorithm for estimating fractal scaling parameter and a reliable

statistical test for recoginizing fractal processes.
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Chapter 8

Conclusion

As observers move through the environment or shift their direction of gaze, the world moves

past them. In addition, there may be objects that are moving differently from the static back­

ground, either rigid-body motions or nonrigid (e.g., turbulent) ones. This dissertation discusses

several models for motion perception that: (1) extract image flow; (2) detect moving objects

and recognize the relative motion of the stationary environment due to an observer's own move­

ment; (3) recognize rigid-body motion of moving objects; (4) recognize turbulent flow. The

computations for all of these models are based on measuring motion energy, a multiresolution

representation of motion information extracted from image sequences.

This dissertation asserts that the basic function of preattentive/peripheral/immediate visual

perception is perceptual organization, the detection of regularities in images that correspond

to regularities in the environment. The models discussed in this proposal allow us to test

the hypothesis that regions of an image sequence are the result of certain processes in the

three-dimensional physical world (e.g., rigid motion or turbulent motion), and then recover the

parameters (e.g., 3-D shape and 3-D motion) of those processes. The ultimate goal of this

research is to detenninc which model is most appropriate for a given region.

Combining data from different sensors and using active vision (e.g., head and eye move­

ments) together provide extra constraints on a number of vision problems. Motion analysis plays

a key role for active observers who are moving their head and eyes in order to better perceive

the environment. Conversely, active vision and sensor fusion are key ingredients for motion
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analysis, particularly since sensor information is subject to noise and uncertainty.

8.1 Image Flow

This dissertation presents a model for computing local image velocity consonant with current

views regarding the neurophysiology and psychophysics of motion perception. The power

spectrum of a moving texture occupies a tilted plane in the spatiotemporal-frequency domain.

The model uses 3-D (space-time) Gabor filters to sample this power spectrum and by combining

the outputs of several such filters the model estimates the slope of the plane (Le., the velocity

of the moving texture). The model gives accurate estimates of two-dimensional velocity for a

wide variety of test cases including realistic images, sequences generated from images of natural

textures, and some sine-grating plaid patterns.

The error in the velocity estimates for translating image sequences is from two sources.

First, image textures are stochastic - thus Equation (8) is correct only on average. I posit an

additive Gaussian model for the variability in the motion energy measurements. Second, the

maximum-likelihood estimat~ is equal ~c the least-squares estimate only for the case of additive

Gaussian process variability - thus the optimality of using least-squares depends on the validity

of the Gaussian approximation in Equations (22) and (21)

The primary source of error for realistic image sequences is that the model assumes im­

age translation, ignoring motion boundaries, accelerations, deformations (rotation, divergence,

shear), and motion transparency. Rather, the model computes the average image velocity within

a Gaussian-shaped window.

A parallel implementation of the model results in a distributed representation of image ve­

locity. The computations leading to this distributed representation are simply a series of linear

steps (convolutions, weighted sums) alternating with point nonlinearities (squaring, exponenti­

ation). The model is therefore encompassed by the general framework for parallel distributed

processing put forth by Rummelhart and McClelland [119].

Sensor error can be characterized by a sensor model that is a statistical model of a sensor's

ability to observe the environment. A sensor model is formulated for the extraction of image

flow, and it is demonstrated that the sensor model accurately reflects the actual error in the
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velocity estimates for translating image sequences of Gaussian white-noise textures. However,

the sensor model significantly underestimates the actual errors for realistic image sequences

because these errors are mainly due to deformations, accelerations, and motion boundaries in

the flow. They are not simply due to the motion-energy measurement noise.

Ambiguity due to the aperture problem is a special case of image flow uncertainty. Prelim­

inary results indica~c that ambiguity due to the aperture problem might be recognized usi~g the

sensor model.

The model appears to solve the aperture problem as well as the human visual system since it

extracts the correct velocity for patterns having large differences in contrast at different spatial

orientations (> 32 : 1 contrast ratio for some patterns). The model's capability for velocity

discrimination (Weber fraction of 0.029) is also comparable to that of the human visual system.

This dissertation thus demonstrates the promise of computing optical flow using motion

energy filters. There are any number of related techniques (e.g., [74,141] using different filters,

or using different !U!~s for combining the filter outputs). I suggest using psychophysical and

e!cctrophysiological experimentation to distinguish between them.

The model may be used to simulate psychophysical data on velocity discrimination and on

the coherence of sine-grating plaids. In [62] I compare the computations performed by the

model to the stages of the visual motion pathway of the primate brain, and I suggest how the

model might be used to simulate electrophysioiogical data.

For the most part, simulating physiological and psychophysical data merely demonstrates

that the model is consistent with some of the experimental results on biological motion percep­

tion. The emphasis in future research will be to compare the predictions made by this model to

those made by alternative image-flow models and to test those predictions with further exper­

iments. Thus, the model may prove to be an interesting framework for future research in the

psychophysics and neurophysiology of motion perception as well as in computer vision.

8.2 Egomotion and Rigid-Body Motion

Previous research [24,61,130] has demonstrated that we can recover scene structure and we can

often detect moving objects given information about both the camera motion and the image
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motion. However, infonnation from perceptual sources (e.g., observations of image motion

and camera motion) is inherently noisy and uncertain. This dissertation poses the detection of

moving objects and the recovery of depth from motion as sensor fusion problems that necessitate

combining infonnation from different sensors in the presence of noise and uncertainty.

Prior infonnation about the camera motion constrains the optical flow fields that can be

generated by moving through an otherwise static environment. Given the motion parameters,

the image velocity at an image point is constrained to be along a line segment in image velocity

space. In addition, prior infonnation on depth (from time past and from other sources such as

stereo) places additional constraints by specifying a smaller interval for the line segment. Image

velocity fer a given image location corresponds to a point in image-velocity space. We utilize

Mahalanobis distance as a threshold rule for detennining consistency between these two sensor

observations.

If the two observations are consistent, then the image motion may be accounted for by the

camera motion alone, i.e., the image region may correspond to a surface patch that is stationary

in the environment. In this case, we may obtain an estimate of the relative depth to that surface.

On the other hand, if the observations are not consistent, then the image motion must be due to

a moving object.

For observations that are consistent, we have derived an equation that tells us how to update

estimates of the egomotion paraters in the presence of the new image motion data. This suggests

an incremental scheme for recovering the motion parameters, perhaps utilizing the extended

Kalman filter [47].

The procedure outlined in this dissertation for the analysis of egomotion and stationary

surfaces may be generalized to arbitrary motions of rigid objects. Given prior infonnation about

the the rigid-body motion parameters for some small patch of the surface of a moving object,

we may utilize image flow inlonnation to extract entire regions that are consistent with those

motion parameters, recover depth, and update estimates of the motion parameters.

This dissertation proposes two additional sources of infonnation for recognizing rigid-body

motion; defonnation fields extracted directly from the time-varying imagery, and records of both

eye/camera motion and eye/camera position while tracking a surface point on a rigid object.

This dissertation proposes that a reliable method for recovering the motion parameters should
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obey the following three general principles: (1) the motion parameters should be computed using

a small image region that corresponds to a single moving surface; (2) the recovery method should

utilize as much data as possible in order to have sufficient overconstraint for reliable estimates;

(3) the method should provide an explicit test for rigidity by checking for consistency amoungst

the data. In order to simultaneously satisfy the first two principles, the method must collect data

over time while tracking the motion of a small patch of surface. This suggests an incremental

scheme (perhaps using the extended Kalman filter [47]) that tracks the motion of a small surface

patch, utilizing the incoming image motion and eye/camera movement data to update estimates

of the motion parameters.

8.3 Thrbulent Flow

This dissertation discusses a fractal model for turbulent flow. The recognition of turbulent flow

is analogous to the recogition of rigid motion; it indicates whether or not a particular model

of motion is applicable to a given region of an image sequence. If we observe that the fractal

scaling parameter within a given region changes over space, time, or scale, then we are certain

that the region is not an image of a single turbulent flow. On the other hand, if the observations

are constant over space, time, and scale, then we may infer that we are observing a single

turbulent flow.

A technique is presented for estimating Ll'te fractal scaling parameter of fractal image se­

quences using linear filters. Unfortunately, experimentation indicates that this algorithm is not

reliable for obtaining local estimates of the fractal scaling parameter. In future research, I hope

to develop a reliable algorithm for estimating fractal scaling parameter and a reliable statistical

test for recoginizing fractal processes.

8.4 Contributions

This dissertation presents a model of image flow that accurately and robustly estimates image

velocity for translating textured image sequences. The model appears to extract image velocity

with accuracy comparable to that of the human vision system. It is robust with respect to image
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noise and with respect to the aperture problem. For translating textured image sequences, I do

not believe that you can do much better.

The image flow model also demonstrates the usefulness of the motion energy multiresolution

representation of image sequences.

Furthennore, the image flow model is an exciting framework for motivating future research

in the psychophysics and neurophysiology of biological motion perception.

The image flow research presented in this dissertation also provides a good example of

sensor modeling. A general goal of sensor design is to make it possible to model the sensor

analytically, rather than just empirically. The image flow model is based on signal processing

mathematics (probability, stochastic processes. and linear systems) [106]. Thus, it was possible

to fonnulate a sensor model for the error in the velocity estimates.

The model for detecting moving objects and recovering static scene structure provides an

example of a formulation of a sensor fusion problem based on the general framework for active

vision/sensor fusion put forth by Bajcsy et al [6,7,36.84].

The research presented in this dissertation emphasizes perceptual organization. For many

perceptual tasks (e.g., navigation) we do not need exact quantitative infonnation like precise

localization of boundaries and precise depth estimates. Rather we rely on qualitative information

like moving versus stationary and near versus far.

This dissertation presents two examples of recovering qualitative infonnation from a realistic

image sequence: (1) separating the clouds from the landscape in the Yosemite fly-through image

sequence (Figures 22 and 29); (2) locating the valley in the Yosemite sequence (Figure 23).

8.5 Future Research

The experience I have had working with motion energy motivates a variety of research into

low-level vision and image representation. Multiresolution energy representations should prove

to be useful for solving many low-level vision problems including motion analysis, texture

discrimination, orientation selection, and boundary detection [1.21,48.94,133]. An importap.~

issue for energy representations is the choice of filters. Adelson and SimonceIIi [4] and Mallat

[93], for example, suggest using quadrature-mirror filters that fonn an orthogonal and complete
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basis for image representation.

In section 3.1.2 I allude to two issues that are fundamental for image representation with

energy measures: (1) measuring average local energy without spatial blurring; (2) automatic gain

control (adaptation). Several researche.rs [1,92,133] are looking into addressing these issues

using cascades of energy filters. First, we convolve the image with sine- and cosine-phase

filters, square and add to get energy, and quantize for efficiency and for automatic gain control.

Then, we repeat the entire process on the resulting image decomposition. We end up with a

multiresolution decomposition of each level of a multiresolution encoding of the original image.

The limitation of the image flow model presented in this dissertation is that it assumes

image translation, ignoring motion boundaries, accelerations, defonnations (rotation, divergence,

shear), and motion transparency. Rather, the model computes the average image velocity within

a Gaussian-shaped window.

Motion transparency is an important future direction for image flow research. Motion trans­

parency is abundant in the real world, for example, specularities and shadows move differently

from the surfaces upon which they rest. In principle, the distributed representation of image

flow discussed in Chapter 3 can encode multiple velocity estimates corresponding to differ­

ent motions in the same spatial location. The frequency-domain analysis used to develop the

model is also extendable to transparent motions, e.g., the power spectrum of two translating

image sequences superimposed on top of one another occupies two planes in the spatiotemporal

frequency domain.

Further extensions to the image flow model would help it deal with motion boundaries,

defonnations, and accelerations. One way of detecting motion boundaries might be to use a

cascade of energy filters [1] as described above. One way of estimating defonnation fields

might be to use defonnation filters (e.g., energy filters that are sensitive to clockwise and coun­

terclockwise image rotations), as discussed in Chapter 6. Zucker et al [107,153] propose using

relaxation labeling to deal simultaneously with defonnations, accelerations, motion boundaries,

and transparency.

Another important unsolved issue is how to combine image motion infonnation extracted

from the different levels in a multiresolution motion analysis. This problem is complicated by

temporal aliasing in temporaIiy sampleli image sequences. A simple coarse to fine strategy is
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not sufficient since the fine resolution (high spatial frequency) motion estimates may be subject

to temporal aliasing. One possible solution is to avoid temporal aliasing by analog low-pass

temporal filtering in the CCD array before sampling.

Energy models of low-level vision, image representation, texture discrimination, and image

motion analysis are motivated in large part by recent progress in psychophysics and electrophys­

iology. An exciting prospect for future research is the interaction of computational (theoretical)

research and experimental (psychophysical and ele~,trophysiological) research to better under­

stand both biological and machine vision. The goal is to compare the predictions made by

various alternative models in order to motivate further psychophysical and electrophysiological

experiments.

Future research on detecting moving objects should emphasize robustness. In particular,

how robust is the detection of moving objects in the face of poor sensor models (inaccuracies

in the variance-covariance matrices, violotions of the Gaussianity assumption)? As discussed

above, we have a reasonably good understanding of the limitations of the image flow model.

We need to understand how these limitations affect the qualitative judgement of moving versus

stationary.

Another direction for future research on motion interpretation is to study the incremental

scheme for rigid-body motion perception proposed in Chapter 6; tracking the motion of a small

surface patch, utilizing the incoming image motion and eye/camera movement data to update

estimates of the motion parameters.

In order to investigate the robustness of motion interpretation schemes using real image data

it will be necessary to extract image motion infonnation rapidly. Singh [121] has begun an

implementation of my image flow model on a PIPE machine - he believes that the flow field

for a 512 X 512 X 7 image sequence can be computed in about two seconds.

Fractal models of physical systems are now being used in a variety of scientific disciplines

including physics, chemistry, astronomy, and meteorology. Reliable algorithms both for esti­

mating fractal scaling parameter and for recognizing instances of fractal processes are therefore

of broad interest.

A final direction for future research is to develop overconstrained models for other types
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of motion (e.g., elastic motion), as well as for other types of visual information (e.g., overcon­

strained shape models [111,12] and overconstrained texture models [63,109]).
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Appendix A

Gabor Filters From Separable

Components

To convolve a two-dimensional image by a horizontally oriented sine-phase Gabor filter, we

may convolve each image row by a one-dimensional sine-phase Gabor filter, then convolve

each column of the resulting image by a one-dimensional Gaussian. This appendix outlines a

new technique for building three-dimensional Gaber filters of any orientation and with elliptical

Gaussian windows of any aspect ratio from linear combinations of separable filters by making

use of the following trigonometric identities:

sin(Wto +twxo x +wYO y) = sin(wto t) cos(wxo x) cos(wyO y) (71)

sin(wto t) sin(wxox) sin(wyo y)

+ cos(Wtot) sin(wxox) cos(wvoy)

+ cos(Wto t) cos(wxo x) sin(Wvo y)

cos(Wto +wxox +wvoy) = cos(Wto t) cos(wxo x) cos(wYO y) (72)

cos(Wto t) sin(wxo x) sin(wYO y)

sin(wto t) sin(wxo x) cos(wYO y)

sin(wto t) cos(wxo x) sin(wYoy)
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Let Gs(t,O't,Wto) be a one-dimensional sine-phase Gabor function as given by Equation

(3). and let Gc(t,O't,Wto) be the corresponding cosine-phase filter. Using Equation (71). the

output of an arbitrarily-oriented three-dimensional (space-time) sine-phase Gabor filter may be

computed by doing the following separable convolutions:

1. Convolve the image sequence in time by Gs(t, O't, Wto). next each image row by

Gc(x,O'x,wxo )' and then each column by Gc(y,O'y,wyo ).

2. Convolve the image sequence in time by Gs(t,O't,Wto). next each image row by

Gs(x,O'x,wxo )' and then each column by Gs(y,O'y,wyo ).

3. Convolve the image sequence in time by Gc(t, O't, Wto)' next each image row by

Gs(x,O'x,wxo )' and then each column by Gc(y,O'y,wyo ).

4. Convolve the image sequence in time by Gc(t,O't,Wto)' next each image row by

Gc(x,O'x,wxo )' and then each column by Gs(y,O'y,wyo ).

5. Subtract the result of Step (2) from the sum of the results of Steps (1), (3). and (4). Note

that if O'x. O'y, and O't are not equal, the Gaussian window will be elliptical, but the axes

of the ellipsoid will always be parallel to the x. y. and taxes.
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Appendix B

Gabor Energy

In this appendix I derive an equation for the Gabor energy of a one-dimensional sine wave

and for the Gabor energy of a one-dimensional Gaussian white-noise process. I also derive an

equation for the covariance of the outputs of two Gabor-energy filters, each convolved with a

Gaussian white noise signal.

B.I Gabor Energy for a Sine Wave

The Fourier transfonns of a Gaussian function, a sine wave, and a cosine wave are:

:F {~a exp ( - 2X;2) } =exp( _27l"2 a2w2)

:F{sin(27l"wox)} = i/2[8(w +wo) - 8(w - wo)]

:F{cos(27l"wox)} = 1/2[8(w +wo) +8(w - wo)]

(73)

(74)

(75)

One-dimensional Gabor functions are:

G,g(wo, a) = ~a exp ( - 2:2 ) sin(21l"wox) (76)

Gc(Wo, a) = ~a exp ( - 2:2 ) cos(27l"wox) (77)

The Fourier transfonn of a Gabor function is the convolution of Equation (73) with either

Equation (74) or (75),

:F{Gs(wo, a)} = i/2 {exp[-21l"2a2(w +wO)2] - exp[-21l"2a 2(w - WO)2]} (78)
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The Shift theorem states:

:F{J(x - an = exp[·-211"iwa]F{J(xn (80)

Using Equations (80) and (74) gives the Fourier transform of a sine wave at any phase:

F{sin(211"wx t ¢n = F {Sin [211"W (x - 2~~)]}

= (i/2)exp(i¢>w/w)[o(w t w) - o(w - w)]

(81)

Note that if ¢ = 0 then Equation (81) equals Equation (74) and if ¢ = 11"/2 then Equation (81)

equals Equation (75).

The squared-output of a sine-phase Gabor filter convolved with a sine-wave of arbitrary

phase is equal to (by Parseval's theorem) the squared-power of the product of their Fourier

transforms:

1: IGs(wo,a) *sin(211"wx t ¢)12dx = 1: IF{Gs(";o,a)}F{sin(211"wx t ¢)}I2 dw (82)

= 1(1/4)[j(w) - g(w)]exp(i¢>w/w)[o(w tw) - o(w - w)W

= 1(1/4)[j(w) - g(w)][cos(¢>w/w) t isin(¢>w/w)][o(w t w) - o(w - w)W

= (1/16)[j(w) - g((v)F[cos2(¢>w/w) +sin2(¢>w/w)][o(w t w) - o(w - w)F

= (1/16)[j(w) - g(w)]2[O(w +w) t o(w - w) - 2o(w t w)o(w - w)]

= (1/16)[j(w) - g(w)]2 t (1/16)[f(-w) - g(_w)]2

= (1/8)[f(w) - g(w)]2

Le., 1: IF{Gs(wo,a)}F{sin(211"wx t ¢)}/2 dw = (1/8)[f(w) - g(w)F (83)

where

few) = exp[-211"2a2(w - wO)2]

g(w) = exp[-211"2a2(w twO)2]
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Similarly, the squared-output of a cosine-phase Gabor filter convolved with a sine-wave of

arbitrary phase is given by

i: IGc(wo, 0") *sin(21l"wx +¢W dx = i: IF{Gc(wo,0")}F{sin(21l"wx +¢)}/2 dw (85)

= l(i/4)[f(w) +g(w)] exp(i¢W/w)[o(w +w) - o(w - w)]l2

= 1(1/4)[j(w) +g(w)][icos(¢W/w) - sin(¢W/w)][o(w +w) - o(w - w)]l2

= (1/16)[f(w) +g(W)]2[COS2(¢W/w) +sin2(¢W/w)][o(w +w) - o(w - wW

= (1/16)[f(w) +g(w)]2[O(w +w) +o(w - w) - 2o(w +w)o(w - w)]

= (1/16)[j(w) +g(w)j2 +(1/16)[f( -w) +g(_w)]2

= (1/8)[j(w) + g(wW

i.c., L: IF{Gc(wo,0")}F{sin(21l"wx +¢)}/2 dw = (1/8)[j(w) +g(wW (86)

Combining Equations (83) and (86), gives the phase-independent gabor energy:

(1/8)[f(w) - g(w)]2 +(1/8)[I(w) +g(wW = (1/4)[j2(w) +g2(w)] (87)

= (1/4)exp[-41r20"2(w - wO)2]

+(1/4) exp[-41l"20"2(w +wo)2]

B.2 Gabor Energy for White Noise

Let x(t) be a zero-mean Gaussian white-noise random process with average intensity k. The

Fourier transform of x(t) is

X(w) = A(w) + iB(w) (88)

Since the Fourier transfonn is a linear operation both A(w) and B(w) are zero-mean Gaussian

white-noise random processes.

The squared-output of a sine-phase Gabor filter convolved with x(t) is given by

i: IGs(wo,O") * x(t)12dx = i: IF{Gs(wo, O")}F{x(t)} 1
2 dw (89)

= i: l(i/2)A(w)g(w) - (i/2)A(w)f(w) - (1/2)B(w)g(w) +(1/2)B(w)f(w)1 2dw

= (1/4) i:[j(w) - g(w)]2[A2(w) + B2(w)]dw
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where f(w) and g(w) are defined above in Equation (84).

Similarly, the squared-output of a cosine-phase Gabor filter convolved with x(t) is given by

1: IGC(wo,er) * x(t)12dx =1: IF{Gc(wo ,er)}F{x(t)}12
dw (90)

= 1: 1(1/2)A(w)g(w) + (1/2)A(w)f(w) +(i/2)B(w)g(w) +(i/2)B(w)f(w)/2 dJ.JJ

= (1/4)1:[f(w) +g(wW[A2(w) +B 2(w)]dw

The sum of the squared outputs of sine- and cosine-phases is

(91)

The expected value of n(w) in Equation (91) is

E {(1/2)1:(J2(w) +l(w)][A2(w) +B 2(w)]dw} (92)

= (1/2)1:(J2(w) +g2(w)]E{ [A2(w) +B 2(w)]} dw

= (k2/2)1:(J2(w) + g2(w)]dw

= k2..j2;er

where k2 is the average intensity of the white noise and er is the Gaussian window size of the

Gabor filter.

The covariance of two Gabor energy filter outputs is

where

n1(v) = (1/2)1:(Jf (v) +gi(v)][A2(v) +B 2(v)Jdv

n2(v) = (1/2)1:(Ji(v) +g~(v)][A2(v) +B 2(v)Jdv

ft(v) = exp[-21r2er2(v - W1?]

g1(V) = exp[_21r2er2(v +W1?]

J2(v) = exp[-21r2 er2(v - W2)2]

g2(V) = exp[-21r2er2(v +W2)2]
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where (J is the Gaussian window size of the Gabor filters and WI and W2 are their center

frequencks.

Simplifying gives

COy [Rt (v), R 2(1I)] = (1/4)1:1:[fi(v) +gi(v)J [fi(11 ) +g~(v)]if?(v, v)dvdv (94)

if?(v, v) = E{[A2(v) +B 2(v)][A2(v) +B 2(v)J}

-E{[A2(v) +B 2(v)J} E{[A2(v) +B2(v)]}

From [106, page 307] we know that

if?(v, v) = k2 [6(v +v) +6(v - v)] (95)

i.e.•

cov [RI ( v), R 2 ( v)] = (k 2/4)1:[fi(v) +g;(v)][fi( -v) +g~( -v)Jdv (96)

+(k2 /4} L:[fi(v) +g;(v)J[fi(v) +g~(v)Jdv

= (k2 /2) L:[ff(v) +g;(v)][fi(v) +g~(v)Jdv
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Appendix C

Motion-Energy Sensor Model

This appendix fonnu!tes a sensor medel to characterize the variability in the motion energy

measurements for a translating random texture. As discussed in Section 3.2, I posit an additive

Gausian model for the variability in the motion energy measurements.

The image flow model estimates velocity utilizing the motion energy measurements by

minimizing

where

l(u, v) (97)

(98)

where mi is the output of the ith filter, ml and m2 are the outputs of the two filters that share

the same orientation the ith filter. and Ri(U, v). Rl (U, v) and R2(u, v) are the corresponding

predicted motion energies given by Equation (9).

The variance of [mi - f(iRi(U,V)] is given by

O'[(U,v) = var (mi - mi!!-~((U'v))) (99)
R. u,v

(
Ri(U,V) 1)2 ( )= - varmi
Ri(U,V)
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(101)

+ (n~t,v~)2 [var(m2)+ Var(m3)]n l u,v

+2 (n~t,v~ -1) (R~~U'Vj) [cov(mj,m2)+ cov(mj,m3)]
R l u,v R. U,V

(Rj(U,V))2[ ( )]
+2 .( ) COy m2, m3

R. u,v I

where cov(mj,mj) is the covariance of two the motion energy measurements and var(mj) =
cov(mj, mj).

Equation (96) in Appendix ,13 expresse~ the covariance of the outputs of two one-dimensional

Gabor-energy filters, each convolved with a one-dimensional Gaussian white-noise signal. Anal­

ogously, for a translating two-dimensional Gaussian white-noise random field we get

COV(m,1,m,2) = (k2j4) l.:1.:Ui(wx,wy,u,v) +gl(wx,wy,u,v)] (100)

Ui(wx,wy,u, v) +g~(wx,Wy, u, v)]dwxdwy

h(wx,wy, u, v) = (1/4) exp{ -21r2 [O';(wx - wX1 )2 +O';(wy - wy1 )2

+0';(UWx + vWy - Wtl )2]}

gl(Wx,Wy, U, v) = (1/4)exp{ -21r2 [O';(wx + wX1 )2 +O';(wy+wy1 )2

+0';(UWx+ vWy +Wtl )2])

h(wx,wy,u,v) = (1/4) exp{-21r2 [O';(wx -wX2 )2 +O';(wy -wy2 )2

+O';(uwx + vWy - Wt2 )2])

g2(Wx,Wy, U, v) = (1/4) exp{ _21r2 [O';(wx +WX2 ? +O';(wy+wy2 )2

+0';(uwx + vWy +Wt2 )2]}

where k is proportional to image contrast, (wxj ,Wyj ,Wtj) is the center frequency of each of the

filters, (O'x, O'y, O't) is the spread of the filters' spatiotemporal Gaussian windows, and (u,v) is

the velocity of the translating pattern.

The integral of Equation (l00) is easily evaluated. Together, equations (99) and (l00) art a

sensor model for the motion energy measurements. To estimate 0'1(u, v) we use (it, v) provided

by the image flow model as estimates of (u, v) and we use the average f(i as an estimate for k,

12
k ~ (1/12) 2:k j

i=l
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e= (0.25,0.25) e= (0.5,0.5) e= (1.0,1.0)
rt 1.03 1.25 1.15
It 1.05 1.36 1.43
stl 1.03 1.25 1.15
up 1.09 1.05 1.21
dn 1.10 1.18 1.58
st2 1.10 1.04 1.21
ur 1.03 0.95 1.17
dl 1.05 1.07 -
st3 1.03 0.95 1.31
ul 1.00 1.11 1.06
dr 1.01 1.01 1.02
st4 1.13 0.99 0.98

Table 1: Motion-energy measurement data were obtained from Gaussian white-noise random
texture motion sequences moving upward and rightward with three different speeds. The actual
variances of [mi - k i1li(U, v)] were computed from the data. The sensor model was used to
simulate these variances. The table gives the ratio of the actual to the simulated values for
each of the twelve motion energies. A ratio less than onc indicates that the simulated valucs
overestimate the variance. There is no table entry for the filter most sensitive to down-left
motion at velocity (1.0,1.0) since the output of that filter is essentially zero for that velocity.
The average percent error in the variance estimates is 17.7%.

Table 1 shows empirical tests of the accuracy of the sensor model. Motion-energy mea­

surement data were obtained from Gaussian white-noise random-texture motion sequences at

three different velocities. The actual variances were computed from the data. Equation (100)

was used to simulate var(mi) and cov(mi, m j ). Equation (99) was then used to estimate

o}(U, v) = var[mi - [(i1li(U, v)]. The table gives the ratio of the actual to the estimated values

for each of the twelve motion energies. The average percent error in the variance estimates is

17.7%. So there is reasonably good agreement in the table bctween the actual and simulated

mcasurement variability for translating Gaussian white-noisc texturcs.
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Appendix D

Mahalanobis Distance

The Appendix reviews maximum-likelihood estimation and derives Mahalanobis distance for a

one-dimensional parameter space.

Consider an example in which we have two sensors, each providing noisy observations

of some parameter 0. If the noise in each sensor is additive zero-mean Gaussian, then each

observation Oi (i = 1 - 2), is given by

We may therefore write the probablity density for the estimate from the first sensor as

{ - 2}- 1 - 01 - °ft(0110) =..j2; exp ( 2 2 )
271"0'1 0'1

and that of the estimate from the second sensor as

(102)

(103)

(104)

The maximum likelihood estimate (MLE), 0, is the one that simultaneously maximizes both

of these probability densities, Le., it maximizes

Equivalently, it maximizes the log-likelihood function:

1(0) = log[j(O)] = _ [(01 -2°)2 + (02 -2°)2]
20'1 20'2
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This maximum is found by taking the derivative and setting it equal to zero

(107)

(108)
- 2 - 2fJ _ (h0'2 +(hO'l

- 0'2 + 0'2
1 2

For a two-dimensional parameter, jj = (u, v)T, each sensor provides estimates OJ = (Uj, vjf

giving

and the additive Gaussian noise is characterized by variance-covariance matrices of the form

(109)

The MLE obtained by combining the two esti~ates is

(110)

Maximum likelihood is one way of combining infonnation from two sensors. But, we

want to combine infonnation from different sensors only if they concur with one another.

Mahalanobis distance is a test for consistency betweea sensor observations. Let

(111)

where 11(01 /0) and 12(02 /0) are normal densities as above. Hager and Durrant-Whyte [57]

argue that the two observations fonn a consensus only if the superposition of the two sensor
2 . -

observations is unimodal, i.e., only if there exists a 0 such that 8 f'a~~lIO) 10 $ 0 for each i.

(112)

Le.,
(0· - 0)2

I <1
O'~ -

I

(113)

Since the left hand side of this Equation is always positive we must find a 0 that satisfies

(114)
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The value of 8 that makes the left hand side of this equation a minimum is the maximum

likelihood estimate given in Equation (l08) above. Substituting Equation (108) for 8 in Equation

(114) gives the Mahalanobis distance,

(115)

Mahalanobis distance is the distance between the two observations from relative to (weighted

by) the noise in each of the observations. If the Mahalanobis distance is less than some fixed

threshold (say, I), then we will say that the two sensors form a con<;ensm:, and we may combine

the information from the two sensors to calculate a single best estimate for 8.

For a two-dimensional parameter, jj = (u, v)T, each sensor provides observations 0;
( Ui, Vif and the additive Gaussian noise is characterized by variance-covariance matrices given

by Equation (109). The Mahalanobis distance is
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Appendix E

Eye Movements

Eye/camera movements have only rotational two degrees of freedom, pan and tilt, about axes

that pass through the center of projection. Each camera orientation is associated with a different

rotated coordinate frame. Rotation matrices specify the transform from one coordinate frame

to another. In this Appendix, I derive formulas for transforming position, velocity and angular

velocity from one frame to another. I explain how to to fixate on a surface point, how to use

image velocity information to track moving surface points over time, and how to warp an image

to simulate the effect of an eye/camera movement.

E.! Camera Orientation and Fixation

The orientation of a camera may be expressed as a coordinate transformation with respect to a

base coordinate frame in either of two ways. First, the orientation may be specified as a rotation

oabout an axis Ii = (kx,ky,kz), giving the rotation matrix [108]:

A =

=

Rat(k, O)

(

kxkxvers(O) + casCO)

'o;;;kyvers(O) +kz sin(O)

kxkzverse0) - ky sine0)

kykxvers(O) - kz sin(O)

kykyvers(O) +casCO)

kykzvers(O) + kx sin(O)

(117)

kzkxvers(O) +ky sin(O) )

kzkyverse0) - kx sine0)

kzkzverse0) + cas(0)

in which IIkll = 1 and vers(O) = [1 - casCO)]. Since camera orientation has only two rotational

degrees of freedom kz = O.
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The second way to specify camera orientation is as a rotation <Py about y-axis followed by

rotation <Px about x-axis, giving the rotation matrix:

(118)

o
cos(<Px)

sin(<Px)

Roty(<Py )Rotx(<Px)

(

cos(<py) 0 Sin(<py)) ( 1

= 0 1 0 0

- sin(<Py) 0 cos(<Py) 0

(

cos(<Py)

= sin(<px)sin(<py)

- cos(<Px) sin(<Py)

A =

In order to fixate upon image position (x, y) we may rotate the camera, shifting (x, y) to

(0,0). Let us express the angles <Px and <py in terms of image location (x, V), and focal length

f. From the geometry of perspective projection it is clear that:

<Px = tan-1(x/J)

<Py = tan- 1(y/I)

(119)

where I is the focal length. It is important to note that we do not need depth information in

order to fixate on a surface point.

We may also express the axis (kx , ky) and the angle 0 in terms of image location (x, y),

and focal length I,

cos(0) I (120}=
";x2 + y2 +j2

sin(0)
";x2 + y2

=
";x2 + y2 +j2

kx
-y

= ";x2 + y2

k
x

y = ";x2 + y2
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E.2 Transforming Between Camera Orientations

To transfonn the position of an image point in the new coordinate system into base coordinates

(unrotated coordinate frame), we simply multiply on the left by the rotation matrix:

(121)

where (x,y)T is the position in base coordinates and (x',y'f is the position in the rotated

coordinate frame.

Since a rotation matrix, A, is orthononnal, its inverse is equal to its transpose

(122)

Thus, to transfonn a point in base coordinates into the rotated coordinate frame, we simply

multiply on the left by AT.

Paul [l08] derives equations for transfonning differential relations (e.g., differential rotations

and translations) from one coordinate frame to another. Let the differential rotation in base

coordinates be n= (Ox, Oy, Oz), and the differential translation in base coordinates be f =

(Tx , Ty , Tz ), and let us represent the elements of the rotation matrix as

(123)

The differential rotations and translations in the rotated coordinate frame are computed by

( t: n x n y n z 0 0 0 Tx

tA Ox Oy Oz 0 0 0 TyY

t A ax ay az 0 0 0 Tzz
(124)=

OA 0 0 0 n x ny n z Oxx

OA 0 0 0 Ox Oy Oz nyy

OA 0 0 0 ax ay az nzz

Since A-1 = AT, transfonning differential relationships from the rotated frame back to base

coordinates is achieved by using AT in the above equations.
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E.3 Camera Movements and Tracking

A camera movement can be specified in either of two ways: (1) as a rotation with angular

velocity no about an arbitrary axis k = (kx,ky,O); (2) as a rotation about the x-axis with

angular velocity nx coupled with a rotation about the y-axis with angular velocity ny • In the

fonner case, the new camera orientation at time t is given by Rot(k, not) in Equation (117).

In the latter case, the new camera orientation at time t is given by Roty(Oyt)Rotx(nxt) in

Equation (118).

In either case we have a rotation matrix at time each t to transfonn an image into each

new coordinate frame. Applying each of these coordinate transfonns results in a warping of the

image over time simulating the effect of a camera movement. It is important to note that we do

not need depth infonnation in order to simulate camera movements.

Consider that we are fixating on a moving surface point at a particular time t, and that we

know the image velocity at the fixation point for that time, [u(t), vet)]. A camera movement to

track the moving surface point is given by

Ox = u(t)/f

Oy = v(t)/f

(125)

where f is focal length. As the surface point moves, we must continually remeasure the image

velocity at the point of fixation and update the angular velocities.
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