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ABSTRACT

Semi-local Hurst estimation is considered by incorporating
a Markov random field model to constrain a wavelet-based
pointwise Hurst estimator. This results in an estimator which is
able to exploit the spatial regularities of a piecewise parametric
varying Hurst parameter. The pointwise estimates are jointly
inferred along with the parametric form of the underlying Hurst
function which characterises how the Hurst parameter varies
deterministically over the spatial support of the data. Unlike
recent Hurst regularistion methods, the proposed approach is
flexible in that arbitrary parametric forms can be considered
and is extensible in as much as the associated gradient descent
algorithm can accommodate a broad class of distributional
assumptions without any significant modifications. The poten-
tial benefits of the approach are illustrated with simulations of
various first-order polynomial forms.

1. INTRODUCTION
The Hurst parameter determines the spectral decay rate of a
process with a power-law spectrum. Since such a simple rela-
tionship is ubiquitous in many signal and image processing ar-
eas and beyond [1,2] Hurst estimation continues to enjoy many,
and disparate, applications including Finance [3], signal/image
denoising [4], clutter suppression [5], segmentation [6], the
analysis of ECG signals [7, 8], internet traffic flow [1], image
texture [9], and turbulence data [10].

The interconnection between wavelets and self-similar pro-
cesses is a powerful, if not, surprising one. The self-similarity
explicitly built in to the wavelet basis functions via the two-
scale, or refinement, relations provides a natural representation
in which to study processes that exhibit power-law behaviour.
However, the localised nature of wavelets also facilitates a
localised estimation of the Hurst parameter.

Although there are works, such as those based on the mul-
tifractal formalism [11,12], that describe how regularity varies
across an image, less attention has been paid to the case where
the main interest is to obtain pointwise estimates of a Hurst
parameter that is allowed to vary as a smooth, deterministic
function. Such a scenario could, for example present itself

J.-B. Regli is funded by a Dstl/UCL Impact studentship
J. D. B. Nelson is partially supported by grants from the Dstl and Innovate

UK/EPSRC

in image processing when the texture of an object of inter-
est varies gradually over its spatial support in some assumed
manner. In turn this would facilitate tasks such as feature
extraction, segmentation, and change detection. Likewise, ex-
isting adaptive deniosing methods, which are currently based
on a piecewise constant Hurst parameter [13], could also be
extended to include more general Hurst functions that vary as
piecewise parametric functions.

Since it is reasonable to assume that an image of interest
may comprise multiple textures, it is appropriate to consider a
piecewise smoothly varying Hurst parameter H = H(r), for
r over some subregion of R2. Furthermore, we let the way in
which this Hurst function varies over space be governed by
some parametric form H = φ(r;θ) with model parameters
θ. We would expect these parameters to be fairly constant
over certain subregions of the image domain where the im-
age texture is homogeneous. We allow the spatial support to
accommodate multiple textures with a suitable partitioning
of disjoint subregions. In each subregion, the θ are assumed
constant (or have very small, smooth variations). However, be-
tween subregion boundaries, it is allowed to change arbitrarily.
As a consequence the Hurst parameter itself will vary smoothly
inside a partition and vary arbitrarily across the respective sub-
regions. We here propose a model and inference scheme that
exploits this piecewise parametric outlook. The framework
utilises a Markov random field prior to constrain, or penalise,
the magnitude of parameter variation over the image.

Spatial regularisation of Hurst estimation has been recently
considered as a means to exploit prior knowledge about the
spatial smoothness of the Hurst parameter [13]. However, the
method was based on the generalised lasso and assumed only
a piecewise constant varying Hurst parameter. In contrast our
model, and corresponding gradient-descent-like algorithm, are
more flexible. The framework can accommodate many differ-
ent kinds of distributional assumptions and arbitrary models
that describe how the Hurst parameter varies deterministically
in space. On the other hand, the generalised lasso Hurst estima-
tor simply penalises the `1-norm of the Hurst parameter spatial
derivatives (of some specified order). Therefore, along with a
fixed Gaussian assumption on the data, the spatial derivatives
of the Hurst parameter are assumed to be Laplacian and it is
difficult to incorporate other distributional assumptions with-
out making wholesale changes to the inference scheme. Other

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/110908999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


assumptions would necessitate a change in inference strategy
(if one existed). Furthermore, unlike the method proposed
here, the lasso inference does not obtain any estimate of the
underlying parametric form of the Hurst ‘function’.

In Section 2 we present the requisite background of
wavelet-based Hurst estimation and Li’s piecewise (roof-edge)
parameterised Markov random field model [14]. We fuse
these two concepts in Section 3, propose our parameterised
MRF Hurst estimation framework, and describe the inferential
machinery. In Section 4 we perform estimation on a selection
of simulated imagery where the Hurst parameter is varied
according to several first-order polynomial forms. Each one
manifests unique roof-like edges in the Hurst parameter and
presents different challenges to the estimators. We draw
conclusions in Section 5.

2. BACKGROUND
The Hurst parameter controls the spectral slope of a self-similar
stochastic process which obeys a power-law relationship. Myr-
iad estimation approaches exist [2]. We here follow the popular
wavelet-based framework [1].

2.1. Wavelet-based Hurst estimation
Consider a stochastic field z defined on a subregion of R2 with
weak statistical self-similarity namely Ez(λ·) = λHEz and
Ez(λr)z(λ·) = λ2HEz(r)z(·). Then, it is well known (see
e.g. [15]), that

E
∣∣(Wz)(· ; k, α)

∣∣2 ∝ 22k(H+1) (1)

where W is the wavelet transform operator defined by
(Wz)(r; k, α) :=2−k

〈
z, ψα(2−k · −r)

〉
, with wavelet ψ de-

fined over space r, orientation α, and kth finest scale level.
In practice the expectation in Equation (1) is approximated

by the sample second moment of the wavelet coefficients mag-
nitudes. When the Hurst parameter varies over space it is still
possible to estimate the slope by simply using the squared
magnitude of the wavelet coefficients. This pointwise esti-
mate, Ek,α(·) :=

∣∣(Wz)(· ; k, α)
∣∣2, approximately satisfies

the power-law, namely Ek,α ∝∼ 22k(Hα(r)+1). Estimation of
H is then performed by taking the log of both sides and regress-
ing the log wavelet magnitude on scale. The Hurst parameter
is then easily obtained from the slope of the regression line.

Generally, H can also vary with orientation too. In this
case, one can perform separate regressions in each direction
as appropriate (cf. [5, 16]). Alternatively, if we assume that
the Hurst parameter is isotropic there are two main options.
Firstly, one could perform separate regressions over the dif-
ferent orientations and then sum the result. Secondly, one
could perform one regression over the orientation -averaged
wavelet magnitude. As such, without loss of generality, we can
drop any orientation notation and write the log wavelet mag-
nitudes about the spatial location ri as γk[i] where i ∈ I sim-
ply indexes the spatial locations or ‘sites’ in Markov random
field modelling parlance. This furnishes the set of equations
γ[i] = Aβ[i], with

γ[i] =

 γk− [i]
...

γk+ [i]

 , A =

 1 k−
...

...
1 k+

 , β[i] =

[
β1[i]
β2[i]

]
,

where only the k−th to the k+th finest wavelet scale levels
are used— the coarsest levels will give poor spatial location
and the finest levels will typically have low signal-to-noise
ratio. Solving in the least-squares sense gives the ordinary
least squares (OLS) estimate

β̂[i] := argmin
∥∥γ[i]−Aβ[i]

∥∥
2

= (A>A)−1A>γ[i],

and then the estimate of the Hurst parameter can be recovered
from the second element of the β vector, namely Ĥ(ri) =

(β̂2[i]/2− 1).

2.2. Roof edge model
The roof edge model was introduced by Li [14] as a means
to recover piecewise planar surfaces from noisy observations.
Assuming that the parameters of the underlying true surface
are the same, or similar, over contiguous regions of the spatial
domain, a Markov random field prior can be introduced to aid
inference. This introduces the notion of a Markovian label
field f = {f1, . . . fm} with the property that, conditioned on
its neighbours, the field at a site is conditionally independent
of all other sites. This allows us to write the full conditional of
f as the local conditional: P(fi|f−i) = P(fi|fIi).

As a consequence of the Hammersley-Clifford Theorem,
the joint prior takes the form P(f) ∝ exp(−U(f)). The prior
energy term U(f) therefore determines the manner in which
spatially incoherent label configurations are penalised. Given
observations d, this is counter-balanced to some extent by the
likelihood energy U(d|f). By Bayes rule the posterior P(f |d)
has (posterior) energy U(f |d) = U(d|f) + U(f). Observa-
tions are assumed to follow some parametric surface, corrupted
by noise di := φ(ri;θi) + εi but where the underlying labels
of the parameters θi satisfy the Markov model. For our prob-
lem we exploit this to impose piecewise smooth constraints
on the Hurst function model parameters θi and, as a conse-
quence, on the Hurst parameter itself. In Li’s basic roof edge
model, φ(ri;θi) := θ>i ρi, with θ>i := (θ0[i], θ1[i], θ2[i]),
and ρ>i := (1, xi, yi) but higher-order polynomials can easily
be accommodated.

Given data d and the distributional assumptions of ε (i.e.
the likelihood), and our prior model of the underlying config-
uration label field (the prior), the goal then is to estimate the
maximum a posteriori, namely f∗ = argminf U(f |d).

3. PARAMETERISED MRF HURST ESTIMATION
We assume that the Hurst parameter varies as a piecewise para-
metric function. The parameters which describe how H varies
are therefore assumed to change little within a given subre-
gion. However, the parameters may change at the boundaries
between subregions. We therefore introduce a Markov random
(label) field to assign sites and model parameters to labels.



3.1. Markov random field model
The ordinary least squares estimate β̂[i] = (A>A)−1A>γ[i]
gives rise to a ‘noisy’ version of the true value of β, namely
β̂[i] = β[i] + ε[i]. For notational convenience, and without
generality, denote the observed spectral log-slope (i.e. β̂2[i])
as β̂[i]. Assume that the true spectral slope follows some
parametric model: β[i] = φ(ri;θi), where ri = (xi, yi) deter-
mines pixel location and where θi denotes the parameters of β.
Then, assuming that the noise is iid Gaussian1 εi

iid∼ N (0, σ2)
we have the likelihood energy

U(β̂|f) = λ
∑
i∈I

(
β̂[i]− φ(ri;θi)

)2
(2)

Exploiting the Markov structure of the label field, we use a
prior energy function of the same form as Li [14, 17]:

U(f) =
∑
i∈I

∑
i′∈Ii

g
(∥∥W(θi − θi′)

∥∥
2

)
, (3)

where Ii is the neighbourhood of site i and the diagonal weight
matrix W provides the option to penalise the lack of smooth-
ness of each parameter to different degrees. Again, following
Li [14], we choose g(z) = ln(1 + z2). The choice of φ
determines the complexity with with the underlying Hurst
parameter is assumed to vary. In contrast to the work of Nafor-
nita et al [13], who considered a piecewise constant Hurst,
we here consider a Hurst parameter which varies as a piece-
wise order-1 polynomial. However, it should be noted that
higher-order terms can easily be accommodated by recalling
that φ(ri;θi) = θ>i ρi and noting that the vectors ρi and θi
can be extended accordingly. For example higher order prod-
ucts (xp0yp1)p0,p1 can be concatenated on to the vector ρi for
suitable ranges of p0 and p1.

3.2. Inference
Given the least-squares estimate of the Hurst parameter and the
Markov random field roof-edge piecewise parametric model,
we find the maximum a posteriori solution to the problem,
namely

U(f |β̂) := U(β̂|f) + U(f).

This is an unconstrained optimization problem and can be
solved using a gradient-descent-like algorithm. The deriva-
tives with respect to the model parameters can be expressed
analytically as

1

2

∂U(f |β̂)

∂θi
= λ

(
β̂[i]− φ(ri;θi)

)
ρi

+
∑
i′∈Ii

g′
(∥∥W(θi − θi′)

∥∥
2

)
W(θi − θi′). (4)

In our implementation we use the unconstrained version of the
BFGS algorithm proposed by Yuan [18] instead of a simple

1Strictly speaking there exists a small bias term due to non-linearities
introduced by the log function [1] but we neglect them here and leave such
considerations as further work

gradient descent. It is a variation of second order newton’s
method where the Hessian matrix is estimated rather than
computed at every steps. The optimization procedure is de-
tailed in Algorithm 1. Therein, for a given step `, we define
θ(`) :=

(
θ
(`)
i

)m
i=1
∈ R3×M , ρ(`) :=

(
ρ
(`)
i

)m
i=1
∈ R3×M ,

B(`) :=
(
B(`)[i]

)m
i=1
∈ R3×3×M and where the products be-

tween the elements are defined pixel-wise, namely: θ>(`)ρ
(`) =(

θ(`)>[i]ρ
(`)
i

)m
i=1

.
The meta-parameter λ in Equation (2) is used to control

the importance of the likelihood over the prior. The weights in
the diagonal matrix allows variable emphasis to be placed on
each of the model parameters θi.

Meta-parameters:
λ, w
Initialization:
` = 0 and B(0)[i] = I3 ∀i ∈ J1,mK
while convergence do

- Descent direction:
p(`) = −B−1(`)∇U(f |β̂(`))

- Optimal step in the direction p(`):
µ(`) = argminµ∈R

[
U(f |(θ(`) + µp(`))>ρ)

]
θ(`+1) = θ(`) + µ(`)p(`)

β̂(`+1) = θ(`)>ρ
- Hessian matrix estimate:
η(`) = ∇U(f |β̂

(`+1)
)−∇U(f |β̂

(`)
)

B(`+1)=B(`)+
η(`)η(`)>

µ(`)η(`)>p(`)
−
B(`)p

(`)p(`)>B(`)

p(`)>B(`)p(`)

l = l + 1
end

Algorithm 1: Minimization of the posterior energy

4. EXPERIMENTS
Experiments were carried out to test the utility of the proposed
method for scenarios where the Hurst parameter varied as a
first-order polynomial surface. In particular, the behaviour of
the estimator was investigated when H varied as a selection of
different roof-edge-like functions. These might model the way
in which a texture becomes gradually smoother or rougher in
space. The second column of Figure 1 illustrates the different
roof-edge shapes. For simplicity, we let H vary as a function
of it’s `∞-norm distance from the centre of the image, namely
H(r) = h(‖r‖). The function h is a projection of the Hurst
values onto the `∞-ball; we shall refer to it as the Hurst signa-
ture. The signatures of the four different roof-types are plotted
in the first column of Figure 1.

4.1. Simulation
The data was synthesised by adapting the incremental Fourier
synthesis approach of Kaplan and Kuo [19], as implemented
in the Fraclab toolbox [20]. We partition the spatial domain
into disjoint `∞ tori: I[j] := {i ∈ I : ‖ri‖∞ ∈ [j∆r, (j +
1)∆r)}. Then, fractional Brownian surfaces are simulated
which have a Hurst parameter of h(j∆r) on the region I[j] and



Table 1. Mean absolute error (and standard deviation) of the
OLS and MRF Hurst estimators

Type OLS MRF
1 0.2145 (0.1502) 0.1335 (0.0955)
2 0.1906 (0.1355) 0.1330 (0.0983)
3 0.1874 (0.1376) 0.1286 (0.1038)
4 0.1495 (0.1174) 0.1117 (0.0928)

which take zero values elsewhere (and which all have the same
global white noise driving process). Finally, the surfaces are
simply summed over all j. The result is a fractional Brownian
surface with a piecewise, order-one polynomial, varying Hurst
parameter.
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Fig. 1. Indicative Hurst estimates of four fractional Brownian
surfaces. 1st column: true Hurst projected onto `∞ ball; 2nd:
spatial map of true Hurst; 3rd: OLS; 4th: MRF.

4.2. Hurst estimation
Hurst estimation was performed on the four image types ‘Hip’,
‘Pavillion’, ‘Gambrel’, and ‘Bonnet’ illustrated in Fig 1. Or-
dinary least-squares estimates were used as a baseline for our
proposed MRF-based approach although we note that a direct
comparison is not necessarily fair as we were free to select an
optimal value of λ in our approach to balance the effects of the
prior and likelihood functions. Nevertheless, the comparison
does offer some intuition as to some of the advantages that
one might buy from the addition of an extra parameter. For
example, the third and fourth columns of Figure 1 depict the
Hurst parameter estimates from the OLS and MRF methods,
respectively. The spatial regularisation, or smoothing, effect
of the MRF method can be clearly seen for all edge types.

Experiments were performed over 100 instances of each
of the edge types. The value of λ was chosen by testing over a
smaller subset of data as 0.001 in all cases. The mean absolute
errors are listed in Table 1 and the error histograms are plotted
in Figure 3. The advantage of exploiting the spatial smoothness

Fig. 2. Mean Hurst estimates of the four fractional Brownian
surfaces projected onto the `∞ ball. Top left: Hip; top right:
Pavillion; bottom left: Gambrel; bottom right: Bonnet. The
shaded error bars indicate the upper- and lower-quantiles over
all experiments and pixel estimates.

of the Hurst parameter is evident. However, this advantage is
not as marked in the ‘Bonnet’. The reason for this can be seen
by inspecting the error as a function of the Hurst signature—
i.e. the distance it away from the centre as measured by the `∞-
norm. We see, in Fig. 2, that the MRF method’s tendency to
smooth the edge features somewhat is more pronounced when
the edge is sharp or concave. Nevertheless, MRF still holds
an advantage here because the OLS method overshoots the
edge point. For convex ridge shapes, the advantage becomes
significant.

5. CONCLUSION
A piecewise parameterised Markov random field was intro-
duced to jointly estimate a spatially regularised pointwise
Hurst parameter and the model parameters which govern how
it varies over the spatial support. The model is flexible in that
the model can easily accommodate other likelihood or prior
assumptions without any significant changes in the gradient-
descent-like inferential machinery. Experiments confirm that
the introduction of the Markov random field prior successfully
furnishes spatially regularised Hurst estimates with more ac-
curacy than ordinary least squares although this advantage is
tempered somewhat when the Hurst function displays concave
ridge shapes.
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