148 research outputs found

    Fast Frechet Distance Between Curves With Long Edges

    Full text link
    Computing the Fr\'echet distance between two polygonal curves takes roughly quadratic time. In this paper, we show that for a special class of curves the Fr\'echet distance computations become easier. Let PP and QQ be two polygonal curves in Rd\mathbb{R}^d with nn and mm vertices, respectively. We prove four results for the case when all edges of both curves are long compared to the Fr\'echet distance between them: (1) a linear-time algorithm for deciding the Fr\'echet distance between two curves, (2) an algorithm that computes the Fr\'echet distance in O((n+m)log(n+m))O((n+m)\log (n+m)) time, (3) a linear-time d\sqrt{d}-approximation algorithm, and (4) a data structure that supports O(mlog2n)O(m\log^2 n)-time decision queries, where mm is the number of vertices of the query curve and nn the number of vertices of the preprocessed curve

    Progressive Simplification of Polygonal Curves

    Get PDF
    Simplifying polygonal curves at different levels of detail is an important problem with many applications. Existing geometric optimization algorithms are only capable of minimizing the complexity of a simplified curve for a single level of detail. We present an O(n3m)O(n^3m)-time algorithm that takes a polygonal curve of n vertices and produces a set of consistent simplifications for m scales while minimizing the cumulative simplification complexity. This algorithm is compatible with distance measures such as the Hausdorff, the Fr\'echet and area-based distances, and enables simplification for continuous scaling in O(n5)O(n^5) time. To speed up this algorithm in practice, we present new techniques for constructing and representing so-called shortcut graphs. Experimental evaluation of these techniques on trajectory data reveals a significant improvement of using shortcut graphs for progressive and non-progressive curve simplification, both in terms of running time and memory usage.Comment: 20 pages, 20 figure

    Algorithms for Imprecise Trajectories

    Get PDF

    Approximating the Packedness of Polygonal Curves

    Get PDF
    In 2012 Driemel et al. \cite{DBLP:journals/dcg/DriemelHW12} introduced the concept of cc-packed curves as a realistic input model. In the case when cc is a constant they gave a near linear time (1+ε)(1+\varepsilon)-approximation algorithm for computing the Fr\'echet distance between two cc-packed polygonal curves. Since then a number of papers have used the model. In this paper we consider the problem of computing the smallest cc for which a given polygonal curve in Rd\mathbb{R}^d is cc-packed. We present two approximation algorithms. The first algorithm is a 22-approximation algorithm and runs in O(dn2logn)O(dn^2 \log n) time. In the case d=2d=2 we develop a faster algorithm that returns a (6+ε)(6+\varepsilon)-approximation and runs in O((n/ε3)4/3polylog(n/ε)))O((n/\varepsilon^3)^{4/3} polylog (n/\varepsilon))) time. We also implemented the first algorithm and computed the approximate packedness-value for 16 sets of real-world trajectories. The experiments indicate that the notion of cc-packedness is a useful realistic input model for many curves and trajectories.Comment: A preliminary version to appear in ISAAC 202

    Fine-Grained Complexity Analysis of Two Classic TSP Variants

    Get PDF
    We analyze two classic variants of the Traveling Salesman Problem using the toolkit of fine-grained complexity. Our first set of results is motivated by the Bitonic TSP problem: given a set of nn points in the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamic-programming exercise to solve this problem in O(n2)O(n^2) time. While the near-quadratic dependency of similar dynamic programs for Longest Common Subsequence and Discrete Frechet Distance has recently been proven to be essentially optimal under the Strong Exponential Time Hypothesis, we show that bitonic tours can be found in subquadratic time. More precisely, we present an algorithm that solves bitonic TSP in O(nlog2n)O(n \log^2 n) time and its bottleneck version in O(nlog3n)O(n \log^3 n) time. Our second set of results concerns the popular kk-OPT heuristic for TSP in the graph setting. More precisely, we study the kk-OPT decision problem, which asks whether a given tour can be improved by a kk-OPT move that replaces kk edges in the tour by kk new edges. A simple algorithm solves kk-OPT in O(nk)O(n^k) time for fixed kk. For 2-OPT, this is easily seen to be optimal. For k=3k=3 we prove that an algorithm with a runtime of the form O~(n3ϵ)\tilde{O}(n^{3-\epsilon}) exists if and only if All-Pairs Shortest Paths in weighted digraphs has such an algorithm. The results for k=2,3k=2,3 may suggest that the actual time complexity of kk-OPT is Θ(nk)\Theta(n^k). We show that this is not the case, by presenting an algorithm that finds the best kk-move in O(n2k/3+1)O(n^{\lfloor 2k/3 \rfloor + 1}) time for fixed k3k \geq 3. This implies that 4-OPT can be solved in O(n3)O(n^3) time, matching the best-known algorithm for 3-OPT. Finally, we show how to beat the quadratic barrier for k=2k=2 in two important settings, namely for points in the plane and when we want to solve 2-OPT repeatedly.Comment: Extended abstract appears in the Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016

    Fine-grained complexity and algorithm engineering of geometric similarity measures

    Get PDF
    Point sets and sequences are fundamental geometric objects that arise in any application that considers movement data, geometric shapes, and many more. A crucial task on these objects is to measure their similarity. Therefore, this thesis presents results on algorithms, complexity lower bounds, and algorithm engineering of the most important point set and sequence similarity measures like the Fréchet distance, the Fréchet distance under translation, and the Hausdorff distance under translation. As an extension to the mere computation of similarity, also the approximate near neighbor problem for the continuous Fréchet distance on time series is considered and matching upper and lower bounds are shown.Punktmengen und Sequenzen sind fundamentale geometrische Objekte, welche in vielen Anwendungen auftauchen, insbesondere in solchen die Bewegungsdaten, geometrische Formen, und ähnliche Daten verarbeiten. Ein wichtiger Bestandteil dieser Anwendungen ist die Berechnung der Ähnlichkeit von Objekten. Diese Dissertation präsentiert Resultate, genauer gesagt Algorithmen, untere Komplexitätsschranken und Algorithm Engineering der wichtigsten Ähnlichkeitsmaße für Punktmengen und Sequenzen, wie zum Beispiel Fréchetdistanz, Fréchetdistanz unter Translation und Hausdorffdistanz unter Translation. Als eine Erweiterung der bloßen Berechnung von Ähnlichkeit betrachten wir auch das Near Neighbor Problem für die kontinuierliche Fréchetdistanz auf Zeitfolgen und zeigen obere und untere Schranken dafür

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters
    corecore