
Fine-Grained Complexity Analysis of Two Classic
TSP Variants∗

Mark de Berg1, Kevin Buchin2, Bart M. P. Jansen3, and
Gerhard Woeginger4

1 Eindhoven University of Technology, Eindhoven, The Netherlands
m.t.d.berg@tue.nl

2 Eindhoven University of Technology, Eindhoven, The Netherlands
k.a.buchin@tue.nl

3 Eindhoven University of Technology, Eindhoven, The Netherlands
b.m.p.jansen@tue.nl

4 Eindhoven University of Technology, Eindhoven, The Netherlands
g.woeginger@tue.nl

Abstract
We analyze two classic variants of the Traveling Salesman Problem using the toolkit of
fine-grained complexity.

Our first set of results is motivated by the Bitonic tsp problem: given a set of n points in
the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamic-
programming exercise to solve this problem in O(n2) time. While the near-quadratic dependency
of similar dynamic programs for Longest Common Subsequence and Discrete Fréchet
Distance has recently been proven to be essentially optimal under the Strong Exponential Time
Hypothesis, we show that bitonic tours can be found in subquadratic time. More precisely, we
present an algorithm that solves bitonic tsp in O(n log2 n) time and its bottleneck version in
O(n log3 n) time. In the more general pyramidal tsp problem, the points to be visited are labeled
1, . . . , n and the sequence of labels in the solution is required to have at most one local maximum.
Our algorithms for the bitonic (bottleneck) tsp problem also work for the pyramidal tsp problem
in the plane.

Our second set of results concerns the popular k-opt heuristic for tsp in the graph setting.
More precisely, we study the k-opt decision problem, which asks whether a given tour can be
improved by a k-opt move that replaces k edges in the tour by k new edges. A simple algorithm
solves k-opt in O(nk) time for fixed k. For 2-opt, this is easily seen to be optimal. For k = 3
we prove that an algorithm with a runtime of the form Õ(n3−ε) exists if and only if All-Pairs
Shortest Paths in weighted digraphs has such an algorithm. For general k-opt, it is known
that a runtime of f(k)·no(k/ log k) would contradict the Exponential Time Hypothesis. The results
for k = 2, 3 may suggest that the actual time complexity of k-opt is Θ(nk). We show that this is
not the case, by presenting an algorithm that finds the best k-move in O(nb2k/3c+1) time for fixed
k ≥ 3. This implies that 4-opt can be solved in O(n3) time, matching the best-known algorithm
for 3-opt. Finally, we show how to beat the quadratic barrier for k = 2 in two important settings,
namely for points in the plane and when we want to solve 2-opt repeatedly.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory, I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases Traveling salesman problem, fine-grained complexity, bitonic tours, k-opt

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.5

∗ This work was supported by NWO Gravitation grant 024.002.003 “Networks” (all authors), NWO grant
612.001.207 “A framework for progressive, user-steered algorithms in visual analytics” (Buchin), and
NWO Veni grant “Frontiers in Parameterized Preprocessing” (Jansen).

EA
T

C
S

© Mark de Berg, Kevin Buchin, Bart M.P. Jansen, and Gerhard Woeginger;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 5; pp. 5:1–5:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922064?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Fine-Grained Complexity Analysis of Two Classic TSP Variants

1 Introduction

1.1 Motivation
We analyze two classic variants of the Traveling Salesman Problem (tsp) by applying
the modern toolkit of fine-grained complexity analysis. The first tsp variant can for instance
be found in Chapter 15 of the well-known textbook “Introduction to Algorithms” by Cormen,
Leiserson, Rivest, and Stein [15]. The chapter discusses dynamic programming, and its
problem section poses the following classic exercise:

15-3 Bitonic euclidean traveling-salesman problem
In the euclidean traveling-salesman problem, we are given a set of n points in the plane,
and we wish to find the shortest closed tour that connects all n points. The general problem
is NP-complete, and its solution is therefore believed to require more than polynomial time.
J. L. Bentley has suggested that we simplify the problem by restricting our attention to
bitonic tours, that is, tours that start at the leftmost point, go strictly rightward to the
rightmost point, and then go strictly leftward back to the starting point. In this case, a
polynomial-time algorithm is possible. Describe an O(n2)-time algorithm for determining an
optimal bitonic tour.

This exercise already showed up in the very first edition of the book in 1991. Since
then, thousands of students pondered about it and (hopefully) found the solution. One
might wonder whether O(n2) runtime is best possible for this problem. As one of our main
contributions, we will show that in fact it is not.

The second tsp variant concerns k-opt, a popular local search heuristic that attempts to
improve a suboptimal solution by a k-opt move (or: k-move for short), which is an operation
that removes k edges from the current tour and reconnects the resulting pieces into a new
tour by inserting k new edges. The cases k = 2 [16] and k = 3 have been studied extensively
with respect to various aspects such as experimental performance [7, 24, 27], (smoothed)
approximation ratio [13, 26], rate of convergence [13, 17], and algorithm engineering [19, 21,
29, 30]. The decision problem associated with k-opt asks, given a tour in an edge-weighted
graph, whether it is possible to obtain a tour of smaller weight by replacing k edges. There
are Θ(nk) possibilities to choose k edges that leave the current tour, and for each choice the
number of ways to reconnect the resulting pieces back into a tour is constant (for fixed k). As
the weight change for each reconnection pattern can be evaluated in O(k) time, this simple
algorithm finds the best k-opt improvement in time O(nk) for each fixed k. The survey
chapter [25] by Johnson and McGeoch extensively discusses k-opt. On page 233 they write:

To complete our discussion of running times, we need to consider the time per move as well
as the number of moves. This includes the time needed to find an improving move (or verify
that none exists), together with the time needed to perform the move. In the worst case,
2-opt and 3-opt require Ω(n2) and Ω(n3) time respectively to verify local optimality, assuming
all possible moves must be considered.

The two lower bounds in the last sentence are stated without further justification. It
is clear that finding an improving k-move takes Ω(nk) time, if we require that all possible
moves must be enumerated explicitly. However, one might wonder whether there are other,

M. de Berg, K. Buchin, B.M. P. Jansen, and G. Woeginger 5:3

faster algorithmic approaches that proceed without enumerating all moves. As one of our
main contributions, we will show that such faster approaches do not exist for k = 3 (under
the All-Pairs Shortest Paths conjecture), but do exist for all k ≥ 4.

1.2 Our contributions

We investigate whether the long-standing runtimes of O(n2) for bitonic tours and O(nk)
for finding k-opt improvements are optimal. Such optimality investigations usually involve
two ingredients: fast algorithms and runtime lower bounds. While proving unconditional
lower bounds is far out of reach, in recent years there has been an influx of techniques for
establishing lower bounds on the running time of a given problem, based on a hypothesis
about the best-possible running time for another problem. Recent results in this direction
consider the problems of computing the Longest Common Subsequence [1, 10] of two
length-n strings, the Edit Distance [5, 10] from one length-n string to another, or the
Discrete Fréchet Distance [9] between two polygonal n-vertex curves in the plane. If
one of these problems allows an algorithm with running time O(n2−ε), then this would yield
an algorithm to test the satisfiability of an n-variable CNF formula φ in time (2−ε)n · |φ|O(1).
As decades of research have not led to algorithms with such a running time for cnf-sat,
this gives evidence that the classic O(n2)-time algorithms for these problems are optimal up
to no(1) factors.

Pyramidal tours in the plane. Consider a symmetric tsp instance that is defined by an
edge-weighted complete graph. For a linear ordering 1, . . . , n of the vertices in the graph,
a pyramidal tour has the form (1, i1, . . . , ir, n, j1, . . . , jn−r−2), where i1 < i2 < . . . < ir and
j1 > j2 > . . . > jn−r−2. A bitonic tour for a Euclidean tsp instance is pyramidal with
respect to the left-to-right order on the points in the plane. Bitonic and pyramidal tours play
an important role in the combinatorial optimization literature on the tsp; see [6, 11, 20].
They form an exponentially large set of tours over which we can optimize efficiently, and
they lead to well-solvable special cases of the tsp. Combined with a procedure for generating
suitable permutations of the vertices, heuristic solutions to tsp can be obtained by computing
optimal pyramidal tours with respect to the generated orders [12].

We will show that the classic O(n2) dynamic program for finding bitonic tours in the
Euclidean plane is far from optimal: by an appropriate use of dynamic geometric data
structures, the running time can be reduced to O(n log2 n). To the best of our knowledge,
this presents the first improvement in finding bitonic tours since the problem was popularized
in Introduction to Algorithms [15] in 1991. In fact, we prove the stronger result that an
optimal pyramidal tour among n points in the plane can be computed in O(n log2 n) time
with respect to any given linear order on the points. Our techniques extend to the related
Bottleneck Pyramidal tsp problem in the plane, where the goal is to find a pyramidal
tour among the cities that minimizes the length of the longest edge. We prove that the
underlying decision problem (given a linearly ordered set of points and a bottleneck value B,
is there a pyramidal tour of the points whose longest edge has length at most B?) can
be solved in O(n logn) time, while the underlying optimization version (given a linearly
ordered set of points, compute a bitonic tour that minimizes the length of the longest edge)
can be solved in O(n log3 n) time. For the decision version of the bottleneck problem, we
prove a matching Ω(n logn) time lower bound in the algebraic computation tree model by a
reduction from Set Disjointness with integer inputs [34]; this reduction even applies to
the bitonic setting where the points are ordered from left to right.

ICALP 2016

5:4 Fine-Grained Complexity Analysis of Two Classic TSP Variants

k-OPT in the graph setting. The complexity of k-opt has been analyzed using the
framework of parameterized complexity theory. Marx [28] proved that deciding whether there
is a k-move that improves a given tour is W[1]-hard parameterized by k, giving evidence
that there is no algorithm with runtime f(k) · nO(1). Guo et al. [22] refined this result
and proved that, under the Exponential Time Hypothesis [23], there is no algorithm that
determines whether a tour in a weighted complete graph can be improved by a k-move in
time f(k) · no(k/ log k) for any function f . This lower bound shows that the exponent of n in
the runtime of any k-opt algorithm must grow almost linearly with k. The next question that
we settle in this paper is: can one do better than O(nk) for finding a k-opt improvement?
The answer turns out to depend on the value of k. For 2-opt, an easy adversarial argument
shows that any deterministic algorithm must inspect all the edge weights. This gives a
trivial lower bound of Ω(n2), matching the upper bound. For larger values of k, the question
becomes more interesting.

The 3-opt Detection problem asks whether the weight of a given tour can be reduced
by some 3-move. We show that it is unlikely that 3-opt Detection with weights in the
range [−M, . . . ,M] allows an algorithm with a truly subcubic runtime of O(n3−ε polylog(M))
for ε > 0. We prove that the Negative Edge-Weighted Triangle problem (given an
edge-weighted graph, is there a triangle of negative weight?) reduces to 3-opt Detection
by a reduction that takes O(n2) time and increases the size of the graph by only a constant
factor. As Negative Edge-Weighted Triangle is equivalent to All-Pairs Shortest
Paths in weighted digraphs (apsp) with respect to having truly subcubic algorithms [33], a
truly subcubic algorithm for 3-opt Detection would contradict the apsp conjecture [2, 3]
which states that apsp cannot be solved in truly subcubic time. We also give a reduction in
the other direction: finding a 3-opt improvement reduces to finding a negative edge-weighted
triangle. Consequently, 3-opt Detection is equivalent to Negative Edge-Weighted
Triangle and apsp with respect to truly subcubic runtimes. This adds yet another classic
problem to the growing list of such equivalent problems [2, 33].

As a final result in this direction, we design an algorithm that finds the best k-opt
improvement in weighted n-vertex complete graphs in O(nb2k/3c+1) time for each fixed value
of k. For k = 2 and k = 3, this expression simply boils down to the straightforward time
complexities of O(n2) and O(n3) for 2-opt and 3-opt respectively. For k ≥ 4, however, our
result yields a substantial improvement over the trivial O(nk) time bound. For example,
4-opt can be solved in Θ(n3) time, matching the best-known algorithm for 3-opt. The
algorithm mixes enumeration of partial solutions with a simple dynamic program.

Faster 2-OPT in the repeated setting and in the planar setting. For the 2-opt problem
in graphs, the runtime for finding a single tour improvement cannot be improved below the
trivial Θ(n2). However, in the context of local search we are often interested in repeatedly
finding tour improvements. It is therefore natural to consider whether speedups can be
obtained when repeatedly finding improving tours on the same tsp instance. We prove that
this is indeed the case: after O(n2) preprocessing time, one can repeatedly find the best
2-opt improvement in O(n logn) time per iteration.

The quadratic lower bound for 2-opt applies only in the graph setting. This raises the
question: can we solve 2-opt faster for points in the plane? We show the answer is yes, by
giving an algorithm for 2-opt Detection with runtime O(n8/5+ε) for all ε > 0. Similarly,
3-opt Detection can be solved in expected time O(n80/31+ε).

M. de Berg, K. Buchin, B.M. P. Jansen, and G. Woeginger 5:5

2 Faster pyramidal TSP

In this section we show that the pyramidal tsp and the bottleneck pyramidal tsp problem in
the plane can be solved in subquadratic time. For simplicity we only show how to compute
the value of an optimal solution; the actual tour can be computed in the standard manner.

Let P be the ordered input set of n points with distinct x-coordinates in the plane. Our
algorithm will consider the points in P in order, and maintain a collection of partial solutions
that are locally optimal. To make this precise, define Pi := {p1, . . . , pi} to be the first i
points in P . A partial solution for Pi, for some 1 ≤ i ≤ n, is a pair P ′, P ′′ of monotone paths
(w.r.t. the order on P) that together visit all the points in Pi and that only share p1. We call
a partial solution for Pi an (i, j)-partial tour, for some 1 ≤ j < i, if one of the paths ends
at pi – this is necessarily the case in a partial solution for Pi – and the other path ends at pj .

Our starting point is the standard dynamic-programming solution. It uses a 2-dimensional
table1 A[1..n, 1..n], where A[i, j], for 1 ≤ j < i ≤ n, is defined as the minimum length of an
(i, j)-partial tour; for i ≤ j ≤ n the entries A[i, j] are undefined. We can compute the entries
in the table row by row, using the recursive formula

A[i+ 1, j] =
{

A[i, j] + |pipi+1| if 1 ≤ j < i

min1≤k<i (A[i, k] + |pkpi+1|) if j = i
(1)

where A[2, 1] = |p1p2|. Let us briefly verify this recurrence. For (i + 1, j)-partial tours
with j < i, the path P ′ that visits pi+1 must also visit pi: the other path P ′′ ends at
index j < i and the monotonicity requirement ensures P ′′ cannot visit i and go back to j.
So for j < i any (i + 1, j)-partial tour consists of an (i, j)-partial tour together with the
segment pipi+1. For (i+ 1, i)-partial tours, the predecessor of pi+1 cannot be pi, since a path
ends at pi. Hence an (i+ 1, i)-partial tour consists of an (i, k)-partial tour for some 1 ≤ k < i

together with the segment pkpi+1. The cheapest combination yields the best partial tour.
After computing the last row of A, the minimum length of a pyramidal tour can be found

by computing min1≤k<n (A[n, k] + |pkpn|). There are O(n2) entries in A of the first type
that each take constant time to evaluate. There are O(n) entries of the second type that
need time Θ(n). Hence the dynamic program can be evaluated in O(n2) time.

Our subquadratic algorithm is based on the following two observations. First, any two
subsequent rows A[i, 1..n] and A[i+ 1, 1..n] are quite similar: the entries A[i+ 1, j], for j < i,
can all be obtained from A[i, j] by adding the same value, namely |pipi+1|. Second, the
computation of A[i+ 1, i] can be sped up using appropriate geometric data structures. Thus
our algorithm will maintain a data structure that implicitly represents the current row and
allows for fast queries and so-called bulk updates (see below).

Recall that Pi := {p1, . . . , pi}. The point that defines min1≤k<i (A[i, k] + |pkpi+1|) is the
point pk ∈ Pi−1 closest to the query point q := pi+1 if we use the additively weighted distance
function

dist(pk, q) := wk + |pkq|, (2)

where wk := A[i, k] is the weight of pk. Thus we need a data structure for storing a weighted
point set that supports the following operations:

1 Some of our results can also be obtained from an alternative DP with n states. As we need the
2-dimensional approach for Theorem 4, we present all our results in this setting.

ICALP 2016

5:6 Fine-Grained Complexity Analysis of Two Classic TSP Variants

perform a nearest-neighbor query with a query point q, which reports the point pk closest
to q according to the additively weighted distance function,
perform a bulk update of the weights, which adds a given value ∆ to the weights of all
the points currently stored in the data structure;
insert a new point with a given weight into the data structure.

Answering nearest-neighbor queries for the weighted point set P can be done by performing
point location in the additively weighted Voronoi diagram [18] of P augmented by a point
location data structure [32]. This (static) data structure has size O(n), can be computed
in O(n logn) time, and allows for O(logn)-time queries. To allow for insertions we use the
logarithmic method [8]. The logarithmic method makes a data structure semi-dynamic by
storing O(logn) static data structures of increasing size (resulting in an additional log-factor
in the query time). The main observation is that we can handle bulk updates by storing a
correction term for the weights with each of the static additively weighted Voronoi diagrams.
The additively-weighted nearest neighbor structure does not change when adding the same
constant to each point weight, which means we do not have to update the Voronoi diagrams
when performing bulk updates. This leads to an implementation that supports each operation
in O(log2 n) amortized time. The details are deferred to the full version. Using the data
structure we obtain the following theorem.

I Theorem 1. Let P be an ordered set of n points in the plane. Then we can compute a
minimum-length pyramidal tour for P in O(n log2 n) time and using O(n) storage.

Proof. We aim to speed up the classic dynamic-programming algorithm using the data
structure described above. Instead of computing the entire dynamic programming table A
explicitly, we maintain an implicit representation of one row of the table and compute the
rows one by one. The i-th row of A has i − 1 well-defined entries. We define an implicit
representation of row i to be an instance of the data structure storing the weighted point
set Pi−1 = {p1, . . . , pi−1} such that w(pj) = A[i, j]. The first nontrivial row in A is the
second row, A[2, 1..n]. An implicit representation for that row consists of the point p1 of
weight A[2, 1] = |p1p2|.

If we have an implicit representation of row i, we can efficiently obtain an implicit
representation of row i+ 1, as we describe next. By our choice of implicit representation, the
value of A[i+ 1, i] according to (1) is exactly the distance from pi+1 to its closest neighbor
in the data structure under the additively weighted distance function. Hence, the value
of k that minimizes the lower expression in (1) can be found by a nearest neighbor query
with pi+1. We can therefore transform a representation of row i into a representation for
row i+ 1 as follows:
1. Query with point pi+1 to find the value A[i+ 1, i] and remember this value.
2. Perform a bulk update to increase the weight of the points p1, . . . , pi−1 that are already

in the structure by ∆ := |pipi+1|. Recall that for cells j with 1 ≤ j < i their value in
row i+ 1 is obtained from their value in row i by adding |pipi+1|.

3. Insert point pi of weight A[i+ 1, i] into the structure.2
It is easy to verify that this yields an implicit representation of row i+1. Since a representation
of the first nontrivial row can be found in constant time, and each successive row can
be computed from the previous using three data structure operations that take O(log2 n)

2 We could also insert pi with weight A[i + 1, i] − ∆. This way we would not have to subtract ∆ from the
weights of p1, . . . , pi−1 in Step 2, and the bulk updates are not needed. As they are trivial in our data
structure, we prefer the version that keeps the correspondence between weights and A[i, j] values.

M. de Berg, K. Buchin, B.M. P. Jansen, and G. Woeginger 5:7

amortized time each, it follows that an implicit representation of the final row can be computed
in O(n log2 n) time. The minimum cost of a pyramidal tour is min1≤k<n (A[n, k] + |pkpn|),
which can be found by querying the representation of the final row with point pn. J

Bottleneck pyramidal TSP. Using a similar global approach but different supporting data
structures we can also solve the bottleneck version of the problem – here the goal is to
minimize the length of the longest edge in the tour – in subquadratic time. For the decision
version of the problem we need the following result.

I Theorem 2. We can maintain a collection D of n congruent disks in a data structure such
that we can decide in O(logn) time if a query point q lies in Union(D). The data structure
uses O(n) storage and a new disk can be inserted into D in O(logn) amortized time.

This result is obtained as follows. Assume the disks have radius
√

2 and consider the integer
grid. Let D(C) ⊆ D be the set of disks whose centers lie inside a grid cell C. To decide if
q ∈ Union(D) we need to test if q ∈ Union(D(C)) for O(1) grid cells C that are sufficiently
close to q. Now consider a cell C with D(C) 6= ∅. Obviously C itself is completely covered
by Union(D(C)). Let `top(C) be the line containing the top edge of C. Then the part
of Union(D(C)) above `top(C) – the other parts are handled similarly – is x-monotone.
Moreover, we can show that each disk Di ∈ D(C) contributes at most one arc to the
boundary of Union(D(C)) above `top(C), and the left-to-right order of the contributed arcs
is consistent with the left-to-right order of the corresponding disk centers. Using this fact,
we can do point locations and insertions in O(logn) time. Details can be found in the full
version.

Combining the global technique of the previous section with Theorem 2 we obtain the
following theorem.

I Theorem 3. Let P be an ordered set of n points in the plane, and let B > 0 be a given
parameter. Then we can decide in O(n logn) time and using O(n) storage if P admits a
pyramidal tour whose longest edge has length at most B. This problem requires Ω(n logn)
time in the algebraic computation tree model of computation.

The algorithm for the decision version does not easily extend to solve the minimization
version of the problem. We therefore design a specialized data structure – a tree storing
unions of disks and (regular) Voronoi diagrams – that allows us to obtain the following result.

I Theorem 4. Let P be an ordered set of n points in the plane. Then we can compute a
pyramidal tour whose bottleneck edge has minimum length in O(n log3 n) time and using
O(n logn) storage.

3 The k-OPT problem in general graphs

In this section we change the perspective from Euclidean problems to the tsp in general
graphs. A tour of an undirected graph G is a Hamiltonian cycle in the graph. Depending on
the context, we may treat a tour as a permutation of the vertex set or as a set of edges. We
consider undirected, weighted complete graphs to model symmetric TSP inputs. The weight
of a tour is simply the sum of the weights of its edges. Recall that a k-move of a tour T is
an operation that replaces a set of k edges in T by another set of k edges from G in such a
way that the result is a valid tour. In degenerate cases, such an operation may delete and
reinsert the same edge. The associated decision problem is defined as follows.

ICALP 2016

5:8 Fine-Grained Complexity Analysis of Two Classic TSP Variants

k-opt Detection
Input: A complete undirected graph G along with a (symmetric) distance func-
tion d : E(G)→ N, an integer k, and a tour T ⊆ E(G).
Question: Is there a k-move that strictly improves the cost of T?
The optimization problem k-opt Optimization is to compute, given a tour in a graph,

a k-move that gives the largest cost improvement, or report that no improving k-move exists.

3.1 On truly subcubic algorithms for 3-OPT
We say that an algorithm for n-vertex graphs with integer edge weights in the range
[−M, . . . ,M] runs in truly subcubic time if its runtime is bounded by O(n3−ε polylog(M))
for some constant ε > 0. Vassilevska-Williams and Williams [33] introduced a framework for
relating the truly subcubic solvability of several classic problems to each other. We use it to
show that the existence of a truly subcubic algorithm for 3-opt is unlikely. Their framework
uses a notion of subcubic reducibility based on Turing reducibility [33, §IV] that solves one
instance of problem A by repeatedly solving inputs of problem B. For our applications,
simple reductions suffice that transform one input of problem A into one input of problem B

of roughly the same size, in O(n2) time.3 Such reductions preserve the existence of truly
subcubic algorithms, so we take this simpler viewpoint. The following problem is the starting
point for our reductions.

Negative Edge-Weighted Triangle
Input: An undirected, complete graph G and a weight function w : E(G)→ Z.
Question: Does G contain a triangle whose total edge-weight is negative?
Vassilevska-Williams and Williams [33, Thm. 1.1] proved that Negative Edge-

Weighted Triangle has a truly subcubic algorithm if and only if the All-Pairs Shortest
Paths problem on digraphs with non-negative integral edge weights has a truly subcubic
algorithm.

I Lemma 5. Negative Edge-Weighted Triangle can be reduced to 3-opt Detection
in time O(n2), increasing the size of the graph and the largest weight by a constant factor.

Proof. Consider an instance (G,w) of Negative Edge-Weighted Triangle, and let
v1, . . . , vn be an enumeration of the vertices of G. Let M be the largest absolute value of an
edge weight. We introduce an instance of 3-opt Detection that consists of 2n vertices
a1, . . . , an and b1, . . . , bn, where the starting tour T uses the ordering a1, b1, a2, b2, . . . , an, bn.
The (symmetric) distances d(·, ·) between these vertices are defined as follows:

d(ai, bi) = 0 for 1 ≤ i ≤ n;
d(bn, a1) = −3M , and d(bi, ai+1) = −3M for 1 ≤ i ≤ n− 1;
d(ai, bj) = w({vi, vj}) for 1 ≤ i < j ≤ n;
d(bi, aj) = w({vi, vj}) for 1 ≤ i < j − 1 ≤ n− 1;
d(ai, aj) = d(bi, bj) = 3M for 1 ≤ i 6= j ≤ n.

(For convenience, we allow distances to be negative in this construction. One easily moves to
non-negative distances by adding the constant 4M to all distances.)

I Claim 6. The constructed instance of 3-opt Detection allows an improving 3-opt
move, if and only if the graph G contains a triangle of negative edge-weight.

3 We assume that simple arithmetic on weights can be done in constant time. The polylog(M) factors
used in the framework originate from repeated executions to perform binary search on weight values.

M. de Berg, K. Buchin, B.M. P. Jansen, and G. Woeginger 5:9

Proof. (⇐) Assume that the vertices vi, vj , vk span a triangle of negative edge-weight in G
for i < j < k. We remove the three edges {ai, bi}, {aj , bj}, and {ak, bk} from tour T , and we
reconnect the resulting pieces by the three edges {ai, bj}, {aj , bk}, and {ak, bi}. The three
removed edges have total length 0, while the three inserted edges have negative total length.

(⇒) Now assume that there exists an improving 3-move for tour T . This improving
move cannot remove any edge {bi, ai+1} or {bn, a1}, as these edges have length −3M while
all newly inserted edges have non-negative length. Consequently, the three removed edges
will be {ai, bi}, {aj , bj}, and {ak, bk} for some i < j < k. As these three edges have total
length 0, the total length of the three inserted edges must be strictly negative. The edges
{ax, ay} and {bx, by} all have length 3M , while the edges {ax, by} all have length between
−M and M . This implies that every inserted edge is either of the type {ax, by}, or coincides
with one of the removed edges. Suppose for the sake of contradiction that one of the inserted
edges coincides with a removed edge {ak, bk}, so that we are actually dealing with a 2-move.
Then the two inserted edges in the 2-move must be {ai, aj} and {bi, bj}, so that the new tour
is by 6M longer than the old tour T . This contradiction leaves only two possibilities for the
three inserted edges: either {ai, bj}, {aj , bk}, {ak, bi}, or {ai, bk}, {ak, bj}, {aj , bi} (of which
the latter is actually not a valid 3-move). Since the total length of the three inserted edges
is strictly negative, the three vertices vi, vj , vk form a triangle of strictly negative weight
in G. J

The claim shows the correctness of the reduction. It is easy to perform in O(n2) time. J

There is an analogous reduction in the other direction, which can be found in the full
version. Together, these lemmata show the equivalence of finding negative-weight triangles
and detecting improving 3-opt moves. From our reductions and the results of Vassilevska-
Williams and Williams [33, Thm. 1.1], we obtain the following theorem.

I Theorem 7. There is a truly subcubic algorithm for 3-opt Detection if and only if
there is such an algorithm for All-Pairs Shortest Paths on weighted digraphs.

3.2 A fast k-OPT algorithm
We will prove that the k-opt Optimization problem can be solved significantly faster
than Θ(nk) when k ≥ 4. To this end, we first analyze the structure of k-opt moves.
Consider a k-move for a given tour T ⊆ E(G), and let e1, . . . , ek be the removed edges with
ei = {v2i−1, v2i}. We assume throughout that these vertices (and edges) are indexed in such
a way that T traverses the vertices vi in order of increasing index. We assume furthermore
that the vertices v1, . . . , v2n are pairwise distinct; all our arguments also go through without
this assumption, but the notation becomes more complicated in the equality case. The k
edges that are then inserted into T are denoted f1, . . . , fk. The signature of this k-move is a
permutation π of {1, . . . , 2k}, such that vj and vπ(j) form the endpoints of one of the edges
f1, . . . , fk; see Fig. 1.

Note that the removed edges e1, . . . , ek together with the signature π fully determine the
k-move (and in particular determine the inserted edges f1, . . . , fk).

Note furthermore that not every permutation π yields a feasible signature that corresponds
to some k-move: First, in a feasible signature π(i) = j always implies π(j) = i, and we
will always have π(i) 6= i. Secondly, in a feasible signature the edge set that results from
T by removing e1, . . . , ek and by inserting f1, . . . , fk must form a single Hamiltonian cycle –
it must never form a collection of two or more cycles. It is easy to check whether a given
permutation π constitutes a feasible signature, and to enumerate all feasible signatures.

ICALP 2016

5:10 Fine-Grained Complexity Analysis of Two Classic TSP Variants

e1

e2

e3

e4

v1

v2

v3 v4
v5

v6
v7v8

f1

f2

f3

f4

Figure 1 A 4-change with signature 4,5,7,1,2,8,3,6. Edges e1 and e4 are non-interfering. As we
work on symmetric TSP, the graph and distance function are undirected; the arc directions merely
indicate the traversal direction with respect to an arbitrary orientation of the tour.

We say that two of the removed edges ei and ej interfere with each other in a k-move, if
there exists an inserted edge f that connects one of the endpoints of ei to an endpoint of ej .

I Lemma 8. For any signature π, we can find a subset Eπ ⊆ {e1, . . . , ek} of at least dk/3e
removed edges that are pairwise non-interfering.

Proof. The 2k edges e1, . . . , ek and f1, . . . , fk induce a set of cycles on the vertices v1, . . . , v2k.
If such a cycle contains an even number of removed edges, say 2`, we put every other removed
edge along this cycle into Eπ; this yields ` out of 2` edges for Eπ. If the cycle contains only
a single removed edge, we put this single edge into Eπ; this yields one out of one edge for Eπ.
If the cycle contains an odd number of removed edges, say 2`+ 1 ≥ 3, we ignore the first
removed edge and then put every other removed edge along the cycle into Eπ; this yields `
out of 2`+ 1 edges for Eπ. The weakest contribution to Eπ comes from cycles with three
removed edges, which yield only one out of three edges for Eπ. The claimed bound dk/3e
follows. J

I Theorem 9. For every fixed k ≥ 3, the k-opt Optimization problem on an n-vertex
graph can be solved in O(nb2k/3c+1) time.

Proof. For computing the best k-move for tour T , it is sufficient to compute for every feasible
signature π – for fixed k there are only O(1) such signatures – the best k-move for tour T
with that particular signature. This is done as follows. We first determine a set Eπ of
pairwise non-interfering edges according to the above lemma. Then we enumerate and handle
all possible cases for the locations of the b2k/3c removed edges not in Eπ along T . This
yields O(nb2k/3c) cases to handle, and every such case will be handled in O(n) time; note
that this yields the claimed complexity. In handling a case, the positions of the removed
edges not in Eπ are frozen, while the edges in Eπ have to be embedded into T . The cost of a
k-move with signature π decomposes into two parts:

The first part consists of the total weight of all frozen edges (which is subtracted) and
the total weight of inserted edges between frozen edges (which is added).
The second part consists of the individual contributions of the edges in Eπ. For an edge
e ∈ Eπ and an edge e′ ∈ T , the cost of embedding e into e′ equals the weight of the two
inserted edges adjacent to e minus the weight of e′. As the edges in Eπ are pairwise
non-interfering, their individual cost contributions do not interact with each other.

As the cost of the first part is fixed in every considered case, our goal is to minimize the
total cost of the second part. The frozen edges subdivide the tour T into a number of tour
pieces, and we have to find the cheapest way of embedding the corresponding edges from Eπ

M. de Berg, K. Buchin, B.M. P. Jansen, and G. Woeginger 5:11

into such a tour piece. The following paragraph sketches a straightforward dynamic program
for finding the optimal embedding for each tour piece in time proportional to the length of
the piece. As the length of all tour pieces combined is O(n), every case is indeed handled in
time O(n).

We are essentially dealing with the following optimization problem. There are r locations
L1, . . . , Lr (the edges along tour T between two consecutive frozen edges) and s objects
O1, . . . , Os (the edges in Eπ that should be embedded between the two considered frozen
edges). The objects are to be embedded into the locations, so that the location of object Oi
always precedes the location of object Oi+1. The cost of embedding object Oi into location
Lj is denoted c(i, j). For 1 ≤ x ≤ s and 1 ≤ y ≤ r, let V (x, y) denote the smallest possible
cost incurred by embedding the first x objects O1, . . . , Ox into the first y locations L1, . . . , Ly.
As V (x, y) equals the minimum of V (x, y − 1) and V (x− 1, y − 1) + c(x, y), all these values
V (x, y) can easily be computed in O(rs) time. In our situation, r is the length of the
considered tour piece and s ≤ k is a constant that does not depend on the input; hence the
complexity is indeed proportional to the length of the considered tour piece. J

4 Faster 2-OPT

In this section we show that it is possible to beat the quadratic barrier for 2-opt in two
important settings, namely when we want to apply 2-moves repeatedly, and in the Euclidean
setting in the plane.

Repeated 2-OPT. In the repeated 2-opt problem, we apply 2-opt repeatedly (e.g. until no
further improvements are possible). One can considerably speed up the 2-opt computations
at each of the iterations, except the first one. The following theorem gives our improvement
for the 2-opt Optimization problem, where the goal is to find the best 2-move (rather
than any 2-move that improves the tour).

I Theorem 10. After O(n2) preprocessing and using O(n2) storage we can repeatedly solve
the 2-opt Optimization problem in O(n logn) time per iteration.

The speedup claimed in the theorem relies on a tour representation that supports efficient
2-moves. To apply a 2-move that removes two edges e and e′ and replaces them by the
appropriate diagonal connections, one effectively has to reverse the part of the tour between e
and e′, or the part between e′ and e. It can therefore take Ω(n) time to apply a 2-move to a
tour represented as a sequence of vertices in an array. Chrobak et al. [14] give a speedup by
storing the cities on the tour in an ordered balanced binary search tree. Each node in the
tree stores a bit indicating whether the tour order is given by an in-order traversal of the
subtree rooted there, or by the reverse of the in-order traversal. This allows a 2-move to be
applied in O(logn) time by manipulating reversal bits.

Our approach for repeated 2-opt Optimization is based on a similar data structure
that represents tours in balanced search trees. However, instead of having only one tree that
stores the current tour, we have n trees; one for each edge e1, . . . , en in the current tour. A
query in the tree T (ei) corresponding to edge ei can be used to determine which edge ej
yields the most profitable 2-move together with ei. After initializing these n trees, which
takes O(n2) time, an iteration of 2-opt Optimization can be performed as follows. For
each ei on the current tour, we query in tree T (ei) to find the best 2-move that removes ei
and some unknown edge ej in O(logn) time. In this way we find the best overall 2-move
which removes, say, edges ei and ej . We can update all trees T (e`) for ` 6= i, j by deleting ei

ICALP 2016

5:12 Fine-Grained Complexity Analysis of Two Classic TSP Variants

and ej , and inserting the appropriate replacement edges. Using the reversal bits this can be
done in O(logn) time. Trees T (ei) and T (ej) are destroyed; we build two new trees from
scratch for the two new edges ei′ and ej′ that enter the tour. This gives O(n logn) time per
iteration.

It is likely that these techniques can be extended to speed up repeated 3-opt as well. As
the technical details become substantially more cumbersome, we do not pursue this direction.

The planar case. For points in the plane (and under the Euclidean metric) we can speed
up 2-opt computations by using suitable geometric data structures for semi-algebraic range
searching; the details had to be omitted from this extended abstract. (Note that we do
not consider the repeated version of the problem, but the single-shot version.) A similar
approach can be used to speed up 3-OPT in the Euclidean setting in the plane. This leads
to the following theorem.

I Theorem 11. For any fixed ε > 0, 2-opt Detection in the plane can be solved in
O(n8/5+ε) time, and 3-opt Detection in the plane can be solved in O(n80/31+ε) expected
time.

5 Conclusion

Revisiting the worst-case complexity of k-opt and pyramidal tsp led to a number of new
results on these classic problems. Some, such as the equivalence between 3-opt and apsp
with respect to having truly subcubic algorithms, rely on very recent work. Other results,
such as the near-linear time algorithm for finding bitonic tours, and the k-opt algorithm
that beats the trivial O(nk) upper bound, are obtained using classic techniques. In this
respect, it is surprising that these results were not found earlier. These examples show that
the availability of new lower bound machinery can inspire new algorithms.

Our findings suggest several directions for further research, both theoretical and applied.
An interesting open problem regarding k-opt Detection is whether the problem is fixed-
parameter tractable when improving a given tour in an edge-weighted planar graph. This
question was also asked by Marx [28] and Guo et al. [22]. Similarly, it is open whether
the problem is fixed-parameter tractable when improving a given tour among points in the
Euclidean plane. It would be interesting to settle the exact complexity of k-opt in general
weighted graphs. Is Θ(nb 2k

3 c+1) the optimal running time for k-opt Detection? When all
weights lie in the range [−M, . . . ,M], one can detect a negative triangle in an edge-weighted
graph in time O(M · nω) using fast matrix multiplication [4, 31, 35]. By our reduction, this
gives an algorithm for 3-opt Detection with weights [−M, . . . ,M] in time O(M ·nω). Can
similar speedups be obtained for k-opt for larger k?

Given the great industrial interest in tsp, establishing the practical applicability of
these theoretical results is an important follow-up step. Several of our results rely on data
structures that are efficient in theory, but which are currently impractical. These include
the additively-weighted Voronoi diagram used for pyramidal tours on points in the plane,
and the semi-algebraic range searching data structures used to speed up 2-opt Detection.
In contrast, the O(nb2k/3c+1) algorithm for finding the best k-move improvement is self-
contained, easy to implement, and may have practical potential.

Acknowledgments. We are grateful to Hans L. Bodlaender, Karl Bringmann, and Jesper
Nederlof for insightful discussions, an anonymous referee for the observation in Footnote 1,
and Christian Knauer for the observation in Footnote 2.

M. de Berg, K. Buchin, B.M. P. Jansen, and G. Woeginger 5:13

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results

for LCS and other sequence similarity measures. In Proc. 56th FOCS, pages 59–78, 2015.
doi:10.1109/FOCS.2015.14.

2 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska-Williams. Subcubic equiva-
lences between graph centrality problems, APSP and diameter. In Proc. 26th SODA, pages
1681–1697, 2015. doi:10.1137/1.9781611973730.112.

3 Amir Abboud, Virginia Vassilevska-Williams, and Huacheng Yu. Matching triangles and
basing hardness on an extremely popular conjecture. In Proc. 47th STOC, pages 41–50,
2015. doi:10.1145/2746539.2746594.

4 Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs shortest path
problem. J. Comput. Syst. Sci., 54(2):255–262, 1997. doi:10.1006/jcss.1997.1388.

5 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In Proc. 47th STOC, pages 51–58, 2015. doi:
10.1145/2746539.2746612.

6 Md. Fazle Baki and Santosh N. Kabadi. Pyramidal traveling salesman problem. Computers
& OR, 26(4):353–369, 1999. doi:10.1016/S0305-0548(98)00067-7.

7 Jon Louis Bentley. Experiments on traveling salesman heuristics. In Proc. 1st SODA, pages
91–99, 1990.

8 J.L. Bently and J.B. Saxe. Decomposable searching problems I: Static-to-dynamic trans-
formation. J. Algorithms, 1:301–358, 1980. doi:10.1016/0196-6774(80)90015-2.

9 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In Proc. 55th FOCS, pages 661–670, 2014.
doi:10.1109/FOCS.2014.76.

10 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In Venkatesan Guruswami, editor, Proc. 56th FOCS,
pages 79–97. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.15.

11 Rainer E. Burkard, Vladimir G. Deineko, René van Dal, Jack A. A. van der Veen, and
Gerhard J. Woeginger. Well-solvable special cases of the traveling salesman problem: A
survey. SIAM Review, 40(3):496–546, 1998. doi:10.1137/S0036144596297514.

12 J. Carlier and P. Villon. A new heuristic for the travelling salesman problem. RAIRO –
Operations Research, 24:245–253, 1990.

13 Barun Chandra, Howard J. Karloff, and Craig A. Tovey. New results on the old k-OPT
algorithm for the traveling salesman problem. SIAM J. Comput., 28(6):1998–2029, 1999.
doi:10.1137/S0097539793251244.

14 M. Chrobak, T. Szymacha, and A. Krawczyk. A data structure useful for finding
hamiltonian cycles. Theoretical Computer Science, 71(3):419–424, 1990. doi:10.1016/
0304-3975(90)90053-K.

15 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

16 G. A. Croes. A method for solving traveling-salesman problems. Operations Research,
6:791–812, 1958. doi:10.1287/opre.6.6.791.

17 Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and probabilis-
tic analysis of the 2-opt algorithm for the TSP. Algorithmica, 68(1):190–264, 2014.
doi:10.1007/s00453-013-9801-4.

18 Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153–174,
1987. doi:10.1007/BF01840357.

19 Michael L. Fredman, David S. Johnson, Lyle A. McGeoch, and G. Ostheimer. Data struc-
tures for traveling salesmen. J. Algorithms, 18(3):432–479, 1995. doi:10.1006/jagm.1995.
1018.

ICALP 2016

http://dx.doi.org/10.1109/FOCS.2015.14
http://dx.doi.org/10.1137/1.9781611973730.112
http://dx.doi.org/10.1145/2746539.2746594
http://dx.doi.org/10.1006/jcss.1997.1388
http://dx.doi.org/10.1145/2746539.2746612
http://dx.doi.org/10.1145/2746539.2746612
http://dx.doi.org/10.1016/S0305-0548(98)00067-7
http://dx.doi.org/10.1016/0196-6774(80)90015-2
http://dx.doi.org/10.1109/FOCS.2014.76
http://dx.doi.org/10.1109/FOCS.2015.15
http://dx.doi.org/10.1137/S0036144596297514
http://dx.doi.org/10.1137/S0097539793251244
http://dx.doi.org/10.1016/0304-3975(90)90053-K
http://dx.doi.org/10.1016/0304-3975(90)90053-K
http://dx.doi.org/10.1287/opre.6.6.791
http://dx.doi.org/10.1007/s00453-013-9801-4
http://dx.doi.org/10.1007/BF01840357
http://dx.doi.org/10.1006/jagm.1995.1018
http://dx.doi.org/10.1006/jagm.1995.1018

5:14 Fine-Grained Complexity Analysis of Two Classic TSP Variants

20 P.C. Gilmore, E.L. Lawler, and D.B. Shmoys. Well-solved special cases. In E.L. Lawler,
J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, editors, The Traveling Salesman
Problem, pages 87–143. Wiley, New York, 1985.

21 Fred Glover. Finding a best traveling salesman 4-Opt move in the same time as a best
2-Opt move. J. Heuristics, 2(2):169–179, 1996. doi:10.1007/BF00247211.

22 Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The parameterized
complexity of local search for TSP, more refined. Algorithmica, 67(1):89–110, 2013.
doi:10.1007/s00453-012-9685-8.

23 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

24 D. S. Johnson and L. A. McGeoch. Experimental analysis of heuristics for the STSP. In
G. Gutin and A. Punnen, editors, The Traveling Salesman Problem and its Variations,
pages 369–443. Kluwer Academic Publishers, Dordrecht, 2002.

25 D.S. Johnson and L.A McGeoch. The traveling salesman problem: A case study in local op-
timization. In E Aarts and J.K. Lenstra, editors, Local search in combinatorial optimization,
pages 215–310. Wiley, Chichester, 1997.

26 Marvin Künnemann and Bodo Manthey. Towards understanding the smoothed approx-
imation ratio of the 2-opt heuristic. In Proc. 42nd ICALP, pages 859–871, 2015. doi:
10.1007/978-3-662-47672-7_70.

27 Shen Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, 44(10):2245–2269, 1965. doi:10.1002/j.1538-7305.1965.tb04146.x.

28 Dániel Marx. Searching the k-change neighborhood for TSP is W[1]-hard. Oper. Res. Lett.,
36(1):31–36, 2008. doi:10.1016/j.orl.2007.02.008.

29 Ioannis Mavroidis, Ioannis Papaefstathiou, and Dionisios N. Pnevmatikatos. A fast FPGA-
based 2-opt solver for small-scale euclidean traveling salesman problem. In IEEE Sym-
posium on Field-Programmable Custom Computing Machines, pages 13–22, 2007. doi:
10.1109/FCCM.2007.40.

30 Molly A. O’Neil and Martin Burtscher. Rethinking the parallelization of random-restart hill
climbing: a case study in optimizing a 2-opt TSP solver for GPU execution. In Proceedings
of the 8th Workshop on General Purpose Processing using GPUs, pages 99–108, 2015. doi:
10.1145/2716282.2716287.

31 Liam Roditty and Virginia Vassilevska-Williams. Minimum weight cycles and triangles:
Equivalences and algorithms. In Proc. 52nd FOCS, pages 180–189, 2011. doi:10.1109/
FOCS.2011.27.

32 Jack Snoeyink. Point location. In Jacob E. Goodman and Joseph O’Rourke, editors,
Handbook of Discrete and Computational Geometry (2nd ed.). CRC Press, 2004.

33 Virginia Vassilevska-Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In Proc. 51th FOCS, pages 645–654, 2010. doi:10.1109/
FOCS.2010.67.

34 Andrew Chi-Chih Yao. Lower bounds for algebraic computation trees with integer inputs.
SIAM J. Comput., 20(4):655–668, 1991. doi:10.1137/0220041.

35 Gideon Yuval. An algorithm for finding all shortest paths using n2.81 infinite-precision mul-
tiplications. Inf. Process. Lett., 4(6):155–156, 1976. doi:10.1016/0020-0190(76)90085-5.

http://dx.doi.org/10.1007/BF00247211
http://dx.doi.org/10.1007/s00453-012-9685-8
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/978-3-662-47672-7_70
http://dx.doi.org/10.1007/978-3-662-47672-7_70
http://dx.doi.org/10.1002/j.1538-7305.1965.tb04146.x
http://dx.doi.org/10.1016/j.orl.2007.02.008
http://dx.doi.org/10.1109/FCCM.2007.40
http://dx.doi.org/10.1109/FCCM.2007.40
http://dx.doi.org/10.1145/2716282.2716287
http://dx.doi.org/10.1145/2716282.2716287
http://dx.doi.org/10.1109/FOCS.2011.27
http://dx.doi.org/10.1109/FOCS.2011.27
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1137/0220041
http://dx.doi.org/10.1016/0020-0190(76)90085-5

	Introduction
	Motivation
	Our contributions

	Faster pyramidal TSP
	The k-OPT problem in general graphs
	On truly subcubic algorithms for 3-OPT
	A fast k-OPT algorithm

	Faster 2-OPT
	Conclusion

