1,620 research outputs found

    Fourier-based geometric shape prior for snakes

    No full text
    International audienceA novel method of snakes with shape prior is presented in this paper. We propose to add a new force which makes the curve evolve to particular shape corresponding to a template to overcome some well-known problems of snakes. The template is an instance or a sketch of the researched contour without knowing its exact geometric pose in the image. The prior information is introduced through a set of complete and locally stable invariants to Euclidean transformations (translation, rotation and scale factor) computed using Fourier Transform on contours. The method is evaluated with the segmentation of myocardial scintigraphy slices and the tracking of an object in a video sequence

    Leaf segmentation and tracking using probabilistic parametric active contours

    Get PDF
    Active contours or snakes are widely used for segmentation and tracking. These techniques require the minimization of an energy function, which is generally a linear combination of a data fit term and a regularization term. This energy function can be adjusted to exploit the intrinsic object and image features. This can be done by changing the weighting parameters of the data fit and regularization term. There is, however, no rule to set these parameters optimally for a given application. This results in trial and error parameter estimation. In this paper, we propose a new active contour framework defined using probability theory. With this new technique there is no need for ad hoc parameter setting, since it uses probability distributions, which can be learned from a given training dataset

    A computational efficient external energy for active contour segmentation using edge propagation

    Get PDF
    Active contours or snakes are widely used for segmentation and tracking. We propose a new active contour model, which converges reliably even when the initialization is far from the object of interest. The proposed segmentation technique uses an external energy function where the energy slowly decreases in the vicinity of an edge. This new energy function is calculated using an efficient dual scan line algorithm. The proposed energy function is tested on computational speed, its effect on the convergence speed of the active contour and the segmentation result. The proposed method gets similar segmentation results as the gradient vector flow active contours, but the energy function needs much less time to calculate

    Using Fourier-based shape alignment to add geometric prior to snakes

    No full text
    International audienceIn this paper, we present a new algorithm of snakes with geometric prior. A method of shape alignment using Fourier coefficients is introduced to estimate the Euclidean transformation between the evolving snake and a template of the searched object. This allows the definition of a new field of forces making the evolving snake to have a shape similar to the template one. Furthermore, this strategy can be used to manage several possible templates by computing a shape distance to select the best one at each iteration. The new method also solves some well-known limitations of snakes such as evolution in concave boundaries, and enhances the robustness to noise and partially occluded objects. A series of experimental results is presented to illustrate performances

    Tracking multiple objects using intensity-GVF snakes

    Get PDF
    Active contours or snakes are widely used for segmentation and tracking. Multiple object tracking remains a difficult task, characterised by a trade off between increasing the capturing range of edges of the object of interest, and decreasing the capturing range of other edges. We propose a new external force field which is calculated for every object independently. This new force field uses prior knowledge about the intensity of the object of interest. Using this extra information, this new force field helps in discriminating between edges of interest and other objects. For this new force field, the expected intensity of an object must be estimated. We propose a technique which calculates this estimation out of the image

    Multi-references shape constraint for snakes

    Get PDF
    In this research, we intend to present a new method of snakes with an invariant shape prior. We consider the general case where different templates are available and we have to choose the most suitable ones to define the shape constraint. A new external force is then proposed which is able to take into account several references at the same time with proportional weighting factors. Both a Fourier based shape alignment method and a complete and stable set of shape descriptors are used to ensure invariance and robustness of the prior knowledge to Euclidean transformations. To illustrate the efficiency of our approach, a set of experiments are applied on synthetic and real data. Promising results are obtained and commented

    Robust active contour segmentation with an efficient global optimizer

    Get PDF
    Active contours or snakes are widely used for segmentation and tracking. Recently a new active contour model was proposed, combining edge and region information. The method has a convex energy function, thus becoming invariant to the initialization of the active contour. This method is promising, but has no regularization term. Therefore segmentation results of this method are highly dependent of the quality of the images. We propose a new active contour model which also uses region and edge information, but which has an extra regularization term. This work provides an efficient optimization scheme based on Split Bregman for the proposed active contour method. It is experimentally shown that the proposed method has significant better results in the presence of noise and clutter

    Image processing for plastic surgery planning

    Get PDF
    This thesis presents some image processing tools for plastic surgery planning. In particular, it presents a novel method that combines local and global context in a probabilistic relaxation framework to identify cephalometric landmarks used in Maxillofacial plastic surgery. It also uses a method that utilises global and local symmetry to identify abnormalities in CT frontal images of the human body. The proposed methodologies are evaluated with the help of several clinical data supplied by collaborating plastic surgeons
    • …
    corecore