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ABSTRACT

Active contours or snakes are widely used for segmentation
and tracking. We propose a new active contour model, which
converges reliably even when the initialization is far from
the object of interest. The proposed segmentation technique
uses an external energy function where the energy slowly de-
creases in the vicinity of an edge. This new energy function
is calculated using an efficient dual scan line algorithm. The
proposed energy function is tested on computational speed, its
effect on the convergence speed of the active contour and the
segmentation result. The proposed method gets similar seg-
mentation results as the gradient vector flow active contours,
but the energy function needs much less time to calculate.

Index Terms— Active Contours, Image Segmentation,
Image Analysis, Complexity theory

1. INTRODUCTION

The reliable estimation of object features in images is a
time consuming task. In many application areas the anal-
ysis requires human intervention. This is e.g. the case in
cell analysis, where a microscopist first has to identify cells
of interest, then delineate them in order to measure the cell
growth. Although interactive software tools can ease this
work, the approach becomes impractical in monitoring when
huge amounts of images need to be processed. In order to de-
crease the time used by human operators, the aid of automatic
or semi-automatic image analysis algorithms is desired.

The active contour framework is widely used for auto-
matic and supervised segmentation. This method translates
and deforms an initial contour in order to minimize an energy
function, which results in a contour delineating the object of
interest. Depending on the application, different energy func-
tions have been proposed. The adjustability of the energy
function has resulted in numerous energy functions which can
incorporate prior knowledge of motion [1, 2, 3], region statis-
tics [4, 5], expected shapes [1, 6, 7], etc.
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Two main classes of active contours are found in litera-
ture: the first class represents the contour explicitly as a para-
metric curve; the second class represents the contour implic-
itly using level sets. In this paper we will define a new exter-
nal energy which does not need the iterative optimization of
a force field, which results in good segmentation and which
has straightforward parameters. The proposed energy term is
defined to be used with parametric active contours. In [8, 9]
the use of similar external forces and energies are used for
geometric active contours, which suggest that the proposed
technique can be adjusted to work with geometric active con-
tours as well. However, in the scope of this paper we will
limit us to parametric active contours.

This paper is arranged as follows. The next section pro-
vides a detailed description of active contours. In section 3
our proposed algorithm is presented. Section 4 shows the re-
sults of our technique and is compared to the results from
other active contour formulations. Section 5 recapitulates and
concludes.

2. ACTIVE CONTOURS

2.1. Parametric Active Contours

The original parametric active contour model proposed by
Kass et al. [4], defines the active contour as a paramet-
ric curve, r(s) = (x(s), y(s)), which moves in the spa-
tial domain until an energy functional reaches its minimum
value. Such an energy functional is a linear combination of
an internal and external energy, respectively Eint[r(.)] and
Eext[r(.)]. A common internal energy function is defined as
follows:

Eint[r(.)] =
1

2

∫ (
α
∣∣∣dr(s)
ds

∣∣∣2 + β
∣∣∣d2r(s)
ds2

∣∣∣2)ds. (1)

where α and β are weighting parameters. The first term, also
known as the tension energy, prevents the contour from stick-
ing to isolated points by penalizing stretching of the contour.
The second term, known as the bending energy, measures the
smoothness, e.g. by penalizing sharp corners. More complex
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energy terms, for example based on Fourier descriptors, have
also been reported in literature [6, 10, 7].

The external energy is derived from the image, such that
the contour will be attracted to features of interest. Given a
gray level image I(x, y), a common external energy is defined
as:

Eext[r(.)] = −
∫
F (r(s))ds. (2)

where F (x, y) is a feature map. Common features of interest
are edges, e.g.

F (x, y) =| ∇I(x, y) |2 (3a)

or
F (x, y) =

∣∣∣∇(Gσ(x, y) ∗ I(x, y))∣∣∣2 (3b)

where∇ is the gradient operator,Gσ(x, y) a 2D Gaussian ker-
nel with standard deviation σ and where ∗ is the convolution
operator.

Eq. (??) can be minimized using gradient descent by
treating r(s) as a function of time, i.e. r(s, t). This requires
finding x(s, t) and y(s, t) such that

∂x(s, t)

∂t
= α

∂2x(s, t)

∂s2
− β ∂

4x(s, t)

∂s4
+
∂F
(
r(s, t)

)
∂x

(4a)

and

∂y(s, t)

∂t
= α

∂2y(s, t)

∂s2
− β ∂

4y(s, t)

∂s4
+
∂F
(
r(s, t)

)
∂y

(4b)

vanish for all s.

2.2. Force Based Active Contours

The external energy term defined in the previous section usu-
ally requires a good initialization, close to the object bound-
ary, in order to achieve correct convergence. This limitation is
caused by the nature of the external energy term, which is typ-
ically non-flat only in the proximity of the object’s boundary.
To overcome this problem, Xu and Prince [11] proposed the
use of an external force field, v(x, y) = (P (x, y), Q(x, y)),
where P (r(s, t)) andQ(r(s, t)) replace the partial derivatives
of F (r(s, t)) in Eq. (4a) and (4b) respectively. This vector
field is calculated by minimizing the following energy func-
tional:

EGV F [v(., .)] =∫∫
µ
(∂P (x, y)

∂x

2

+
∂P (x, y)

∂y

2

+
∂Q(x, y)

∂x

2

+
∂Q(x, y)

∂y

2)
+ | ∇F (x, y) |2| v(x, y)−∇F (x, y) |2 dxdy (5)

where µ is a nonnegative parameter expressing the degree of
smoothness imposed on the field v and where F is a feature

map such as in Eq. (3). The first term of Eq. (5) keeps the
field v smooth, whereas the second term forces the field v
to resemble the original edge force in the neighbourhood of
edges. This external force is called Gradient Vector Flow
(GVF) field. The force field with minimal energy can be
found using gradient descent [11].

A different approach is proposed by Li et al. [12] and
by Wang et al. [13], who define an external force by using
Vector Field Convolution (VFC). If the active contours are
used for tracking, the optical flow can be used as a force therm
as proposed in [14], this however can’t be done for single
frame segmentation.

3. EDGE PROPAGATION

The GVF force field extends the capturing range of the ac-
tive contours by iteratively updating the external force field.
Although this force field has been proven useful, it comes
at a great cost: iteratively updating of the force field in or-
der to minimize an energy function is both memory and time
consuming. The VFC force field does not suffer from this
problem, but it is difficult to find an optimal kernel function
for a specific application. In the following section we pro-
pose a new external energy which does not need the iterative
optimization of a force field, but which has straightforward
parameters.

We start from a feature map F (x, y), such as in Eq. (3)
where the feature map expresses how much evidence there
is that there is an edge at pixel (x, y). The goal is to create
a new feature map, Fep(x, y), where there is high edge evi-
dence at the edge itself and where the edge evidence gradually
decreases if you get further away from the edge. The main
idea is to propagate strong edge evidence at a certain pixel to
its neighbouring pixels with lower edge evidence. This step
only propagates edge evidence to the direct neighbours, which
would require an iterative process as well. This can however
be avoided by the following dual scan line algorithm:

1. Scan the edge map row by row from top to bottom

2. In each row, the pixels are scanned from left to right

3. Replace the pixels by:

Fep(x, y) = max
(
F (x, y), γFep(x, y − 1),

γFep(x−1, y−1), γFep(x−1, y), γFep(x−1, y+1)
)
(6)

where γ ∈ [0, 1] is a weighting coefficient, which de-
termines the speed at which edge evidence decreases.
This propagates edge evidence of a pixel beyond its di-
rect neighbours in the scanning direction.

This algorithm propagates edge evidence from top to bottom
and from left to right of the image. Repeat the algorithm in



order to propagate edge evidence in the remaining directions,
but in opposite scanning direction, i.e. from bottom to top and
from right to left. Then each pixel is replaced by:

Fep(x, y) = max
(
Fep(x, y), γFep(x, y + 1),

γFep(x+ 1, y− 1), γFep(x+ 1, y), γFep(x+ 1, y+ 1)
)
(7)

Note that all pixels of the edge map Fep, except Fep(x, y),
are already processed in previous steps, due to the scanning
order. The feature map resulting from this scanning algorithm
defines the new external energy. Edge propagation snakes can
be optimized by gradient descent, where the partial deriva-
tives of r(s, t) with respect to t are given by Eq.(4).

4. RESULTS

For the validation of the segmentation, the Dice coefficient is
used. If S is the resulting segment from the active contour, i.e.
the region enclosed by r(s), and GT the ground truth segment,
then the Dice coefficient between S and GT is defined as:

d(S,GT ) =
2 Area(S ∧GT )

Area(S) + Area(GT )
(8)

where S ∧ GT consist of all pixels which both belong to the
detected segment as well as to the ground truth segment. If
S and GT are equal, the Dice coefficient is equal to one. The
Dice coefficient will approach zero if the regions hardly over-
lap.

4.1. Convergence

To test the convergence of the active contours using the pro-
posed external energy, a database with pictures of leaves was
used. This tests how the proposed technique converges to re-
alistic shapes with concavity’s. The database contains 194
pictures of isolated leaves from six different plant species.
These are colour pictures of 512 × 512 pixels. The leaves
were extracted by thresholding the RGB values. An exam-
ple of such a leaf is shown in the upper part of Fig. 1. The
active contour was initialised by a square delineating the full
image. Then the Dice coefficient between the active contour
and the leaf was measured every 10 iterations. The average
results can be seen in Fig. 2.a. The proposed active contours
(EP) are compared with the GVF and VFC active contours
[11, 12]. As can be seen, the VFC perform better in the ini-
tial iterations, but it converges to a worse result than the other
methods. The proposed method converges to the same result
as the GVF active contours, but converges significantly faster:
it reaches a Dice coefficient of 0.93 in 80 iterations, compared
to GVF which needs approximately 117 iterations to achieve
the same Dice coefficient.

Fig. 1. Examples of images used to test the active contours:
left a binary image of the leaf database, right an example of
an isolated cell in a fluorescent micrograph.

In a second experiment, the proposed technique is tested
on real data. The goal is to segment isolated cells in fluores-
cent micrographs. On the right of Fig. 1 an example of such
a micrograph is shown. Twenty cells where manually delin-
eated and compared with the resulting segments from both
the proposed and the GVF active contours. For both methods
tests were done with several parameter combinations, i.e. µ
in Eq. (5) and γ in Eq. (6). For GVF, µ = 0.22 resulted in
the best average dice coefficient, γ = 0.97 gave the best re-
sult for the proposed method. The resulting Dice coefficients
for GVF with γ = 0.97, and the result for our method with
γ = 0.97 are compared in the bottom part of Fig. 2. Both
methods perform well with almost all Dice coefficients be-
tween 0.8 and 1. Except for cell 18, where the GVF active
contour converged to a false optimum due to clutter in the mi-
crograph, while the proposed method did not suffer from this
problem.

4.2. Computational Cost

The proposed scanning algorithm recalculates the value of
each pixel twice, resulting in a O(N2) algorithm for a square
image with dimension N × N . The VFC force computa-
tion has a complexity of O(N2 logN2) which is determined
by the complexity of the 2D FFT and IFFT algorithms used.
Since the GVF field needs O(N2) operations for each iter-
ation and N iterations are generally needed to calculate the
force field, the GVF field has an O(N3) complexity. In Fig.
3 the computation time of GVF, VFC and the proposed force
field are compared in function of the image size. Note that the
time axis is log scaled. These experimental results were cal-
culated on a computer with an AMD Athlon 64 3400+ CPU
and 1509 RAM. All computations where programmed in Mat-
lab R2007b. The GVF code was provided by Xu and Prince
[11]. The code for VFC was provided by the Virginia Image
& Video Analysis group [12]. In agreement with the theoret-
ical complexity analysis, is the GVF field the slowest to cal-
culate. The VFC field is much faster than GVF, but is signif-
icantly slower than the proposed method, while the proposed
method outperforms VFC on segmentation quality as well.
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Fig. 2. Top, convergence of Different Active contours. Bot-
tom, the resulting Dice coefficients of GVF and EP active
contours.

5. CONCLUSION

In this paper a new variant on the active contour framework
is defined. This method propagates edge evidence in order to
extend the capturing range of active contours. Experiments
show that the proposed method is much faster than GVF and
VFC, while resulting in similar segmentation results as GVF.
It produces better segmentation results than VFC. The method
has been tested both on binary and real fluorescent micro-
graphs and shows good convergence properties. The proposed
method only has one parameter which allows easy tuning.
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