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Abstract. Active contours or snakes are widely used for segmentation and track-
ing. Recently a new active contour model was proposed, combining edge and
region information. The method has a convex energy function, thus becoming in-
variant to the initialization of the active contour. This method is promising, but
has no regularization term. Therefore segmentation results of this method are
highly dependent of the quality of the images. We propose a new active con-
tour model which also uses region and edge information, but which has an extra
regularization term. This work provides an efficient optimization scheme based
on Split Bregman for the proposed active contour method. It is experimentally
shown that the proposed method has significant better results in the presence of
noise and clutter.
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1 Introduction

Since Kass et al. [1] introduced there snakes, the active contour framework has become
a constant recurring topic in segmentation literature. The framework allows easy tuning
to specific segmentation and tracking problems. Prior motion information of objects
which need to be tracked [2–4], specific shape models [2, 5, 6], region statistics of ob-
jects [7, 8], etc. These are just a small notion of different forms of prior knowledge
which have been incorporated in the active contour framework.

In the active contour framework, an initial contour is moved and deformed in or-
der to minimize a specific energy function. This energy function should be minimal
when the contour is delineating the object of interest, e.g. a leaf. Two main groups can
be distinguished in the active contour framework: one group representing the active
contour explicitly as a parameterized curve and a second group which represents the
contour implicitly using level sets. In the first group, also called snakes, the contour
generally converges towards edges in the image [1, 9, 5]. The second group generally
has an energy function based on region properties, such as variance of intensity of the
enclosed segment [7, 10]. These level set approaches has gained a lot of interest since
they have some benefits over snakes. For example, they can easily change their topol-
ogy, e.g. splitting a segment into multiple unconnected segments. Recently an active
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contour model has been proposed with a convex energy function, making it possible to
define fast global optimizers [11, 12]. These global active contours have the benefit that
there result is no longer dependent on the initialization.

In [13], Bresson et al. proposed a new type of active contour with a convex en-
ergy function, a model which combined edge information and region information. This
method combines the original snake model [1] with the active contour model without
edges [7]. The proposed model has an energy function which is completely defined by
the image, thus eliminating the possibility of regularization. Although the method has
some interesting benefits, it lacks robustness to noise and clutter. To tackle this problem,
we propose a new active contour model which has the benefits of the model proposed
in [13], but which has an extra regularization term. This regularization term enforces
smoothness of the boundaries of the segments. This results in segments with a smooth
boundary, i.e. avoiding jaggy edges due to noise.

This paper is arranged as follows. The next section briefly enumerates the notations
and symbols used in this paper. In section 3 the current state of the art of global opti-
mum active contours is summarized and expanded with the proposed method. Section
4 elaborates on a fast optimization method which can be used to calculate the proposed
active contour. The next section shows some examples and quantitative results of our
technique in comparison to other active contour formulations. Both convergence speed
and segmentation result are examined. Section 6 recapitulates and concludes.

2 Notations and Definitions

In the remaining of this paper we will use specific notations some conventional, some
more peculiar to this work. Therefore we briefly summarize the notations and symbols
used in this work.

We will refer to an image, F in its vector notation, i.e. f(i ∗ m + j) = F (i, j),
where m × n is the dimension of the image. In a similar way we will represent the
contour in vector format, u. If a pixel U(i, j) is part of the segment, it will have a value
above a certain threshold, all background pixels will have a value lower than the given
threshold. Note that this is similar to level-sets. The way these contours are optimized
however is different than with classical level-set active contours, as is explained in the
next section. We will use image operators, i.e. gradient, divergence and Laplacian in
combination with this vector notation, however the semantics of the image operators
remains the same as if it was used with the classical matrix notation:

∇(f(i ∗m+ j)) =
(
F (i+ 1, J)− F (i, j), F (i, J + 1)− F (i, j)

)
∇ · (f(i ∗m+ j)) =

(
F (i+ 1, J)− F (i, j)

)
+
(
F (i, J + 1)− F (i, j)

)
∇2(f(i ∗m+ j)) = ∇ · ∇(f(i ∗m+ j))
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Further we will use the following inner product and norm notations:

〈f ,g〉 =
mn∑
i=1

f(i), g(i)

‖f‖α,g =
( mn∑
i=1

g(i)
(
| f(i) |

)α) 1
α

If the weights g(i) = 1 for all i, then we will omit g, since we assume this will not
cause confusion, but will increase readability.

3 Convex Energy Active Contours

In [11] an active contour model was proposed which has global minimizers. This active
contour is calculated by minimizing the following convex energy:

E[u] = ‖∇u‖1 + µ〈u, r〉 (1)

with
r = (mf − f)2 − (mb− f)2 (2)

Here f represents the intensity values in the image, mf and mb are respectively the
mean intensity of the segment and the mean intensity of the background, i.e. every
pixel not belonging to the segment. Note that this energy is convex, only if mf and mb
are constant. This problem can be solved by iterating between the following two steps:
first fix mf and mb and minimize eq. (1), secondly update mf and mb. Chan et al.
found that the steady state of the gradient flow corresponding to this energy, i.e.

du

dt
= ∇ · ∇u

|∇u|
− µr (3)

coincides with the steady state of the gradient flow of the original Chan-Vese active
contours [11, 7]. So minimizing eq. (1) is equivalent to finding an optimal contour which
optimizes the original Chan-Vese energy function. Although the energy in eq. 1 does
not have a unique global minimizer, a well defined minimizer can be found within the
interval [0, 1]n:

u∗ = argmin
u∈[0,1]n

‖∇u‖1 + µ〈u, r〉 (4)

Note that this results in a minimizer which values are between 0 and 1. It is however
desirable to have a segmentation result where the values of a minimizer are constrained
to (0, 1), i.e. a pixel belongs to a segment or not. Therefore u∗ is tresholded, i.e.

Φα(u
∗(x)) =

{
1 if u∗(x) > α

0 otherwise
(5)

with a predefined α ∈ [0, 1]. In [14] it is shown that Φα(u∗) is a global minimizer for
the energy in eq. (1) and by extension for the energy function of the original Chan-Vese
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active contour model. In [13] the convex energy function in eq. (1) was generalized in
order to incorporate edge information:

E[u] = ‖∇u‖1,g + µ〈u, r〉 (6)

where g is the result of an edge detector, e.g. g = 1
1+|∇f | . The active contour mini-

mizing this energy function can be seen as a combination of edge based snake active
contours [1] and the region based Chan-Vese active contours [7]. Since this method
only minimizes energy terms based on the image, it is highly influenced by the quality
of the image. In the presence of noise and clutter the method will find false segments or
distorted segment boundaries. In order to make the method more robust we propose to
extend the energy function in eq. (6) with an extra regularization term:

E[u] = ‖∇u‖1 + γ‖∇u‖1,g + µ〈u, r〉 (7)

Where γ is a weighting parameter defining the influence of the extra regularization
therm. This regularization term approximates the length of the segments boundary, thus
penalizing small false segments and high curved boundaries due to noise.

4 Optimization

Due to the convexity of the energy function in eq. (7), a wide range of minimizers
can be used to find an optimal contour u†. The Split Bregman method is an efficient
optimization technique for solving L1-regularized problems and has good convergence
properties. In order to find a contour which minimizes eq. (7), the Split Bregman method
will ”de-couple” the L1 and L2 norm, by introducing a new variable d and by putting
constraints on the problem. This results in the following optimization problem:

(u†,d†) = argmin
u,d

‖d‖1 + γ‖d‖1,g + µ〈u, r〉 such that d = ∇u (8)

This optimization problem can be converted to an unconstrained problem by adding a
quadratic penalty function, i.e.

(u†,d†) = argmin
u,d

‖d‖1 + γ‖d‖1,g + µ〈u, r〉+ λ

2
‖d−∇u‖22 (9)

Where λ is a weighting parameter. If γ is heigh, d = ∇u. However setting γ high
introduces numerical instability. Note that the quadratic penalty function only approx-
imates the constraint d = ∇u. However, by using a Bregman iteration technique [15],
this constraint can be enforced exactly in an efficient way. In the Bregman iteration
technique an extra vector, bk is added to the penalty function. Then the following two
unconstrained steps are iteratively solved.

(uk+1,dk+1) = argmin
uk,dk

‖dk‖1 + γ‖dk‖1,g + µ〈uk, r〉+
λ

2
‖dk −∇uk − bk‖22(10)

bk+1 = bk +∇uk+1 − dk+1 (11)
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The first step requires optimizing for two different vectors. We approximate these op-
timal vectors by alternating between optimizing eq. (10) for u and optimizing eq. (10)
for d independently:

uk+1 = argmin
uk

µ〈uk, r〉+
λ

2
‖dk −∇uk − bk‖22 (12)

dk+1 = argmin
dk

‖dk‖1 + γ‖dk‖1,g +
λ

2
‖dk −∇uk+1 − bk‖22 (13)

The first problem can be optimized by solving a set of Euler-Lagrange equations. For
each element u(i) of the optimal u the following optimality condition should be satis-
fied:

∇2u(i) =
µ

λ
r(i) +∇ · (d(i)− b(i)) (14)

Note that this system of equations can be written as Au = w. In [12] they proposed to
solve this linear system using the iterative Gauss-Seidel method. In order to guarantee
the convergence of this method, A should be strictly diagonally dominant or should
be positive semi definite. Unfortunately is A neither. Instead we will optimize eq. (14)
using the iterative conjugate residual method, which is a Krylov subspace method for
which convergence is guaranteed if A is Hermitian [16].

The solution of eq. (14) is unconstrained, i.e. u(i) does not have to lie in the in-
terval [0, 1]. Note that minimizing eq. (12) for u(i), i.e. all other elements of u remain
constant, is equivalent to minimize a quadratic function. If u(i) /∈ [0, 1] then the con-
strained optimum is either 0 or 1, since a quadratic function is monotonic in an interval
which does not contain its extremum. So the constrained optimum can be calculated as
follows:

u∗(i) = max
(
min

(
u(i), 1

)
, 0
)

(15)

In order to calculate an optimal dk, we can rewrite eq. (13) as follows:

dk+1 = argmin
dk

‖dk‖1,(1+γg) +
λ

2
‖dk −∇uk+1 − bk‖22 (16)

A closed form solution for this optimization step can be calculated using the shrinking
operator, i.e.

dk+1(i) = shrink
(
∇u(i) + bk, 1 + γg(i), λ

)
(17)

where

shrink(τ, θ, λ) =

{
0 if ‖τ‖ ≤ θ

λ

τ − θ
λ sgn(τ) otherwise

(18)

In algorithm 1 we give an overview in pseudo code of the complete optimization al-
gorithm. As an initial value for d[t] and b[t] we chose (0, 0). The initial estimation
of mf and mb can be calculated based on Otsu thresholding. The CR function solves
eq. (14) using the Conjugate residual method, given the parameters bk,dk and rk.
Note that the last line is the update of rk based on the new mean intensity of the fore-
ground/background, which were calculated in the previous two lines of code.
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Algorithm 1: Split Bregman for active contour segmentation
1 while ‖u∗

k+1 − u∗
k‖2 > ε do

2 uk+1 = CR(bk,dk, rk)
3 u∗

k+1 = max(min(uk+1, 1), 0)
4 dk+1 = shrink(∇u∗

k+1 + bk, 1 + γg, λ)
5 bk+1 = bk +∇u∗

k+1 − dk+1

6 sk = φα(u
∗
k+1)

7 mfk+1 = ‖sk ◦ f‖1‖sk‖−1
1

8 mbk+1 = ‖sck ◦ f‖1‖sck‖−1
1

9 rk+1 = (mfk − f)2 − (mbk − f)2

10 end

5 Results

5.1 Examples

A typical application for active contours is segmentation of organs in medical images.
As an example Fig. 1 shows the result of segmenting white matter in an MRI image of
the brain. The top row shows the RAW MRI image on the left and the segmentation re-
sult of the Chan-Vese convex active contour (CVAC); this uses regularization but does
not incorporate edge information. The CVAC shows a good segmentation result, al-
though the method does make some small errors near the borders of the contour. These
errors generally exists of background pixels with ”high” intensity which are considered
to be foreground. Due to their ”high” intensity they resemble the segment, however con-
sidering the neighbouring edges; it is unlikely that they actually belong to the segment,
e.g. the white matter in this example. Some of these segmentation errors are indicated
by the green arrows. The bottom row of Fig. 1fig:exBrain shows the segmentation re-
sults of CVAC which incorporate edge information. The left image does not incorporate
a regularization term in its energy function, resulting in lots of small segments due to
noise. The right image shows the segmentation result of the proposed active contour
model. This active contour does not suffer from noise, nor has it the small errors near
borders which occur with the original Chan-Vese active contour model.

A second example is shown in Fig: 2, where a squirrel has to be segmented out of a
gray-scale image. The original CVAC, shown in the top row on the right, results in poor
segmentation. A part of the head and a piece of the paw are missing in the segmentation
result. Incorporating edge information helps to recover these missing parts as can be
seen in the bottom row. Due to the clutter in the background the method finds a lot of
false segments if there is no regularization, as can be seen on the left. The proposed
method however finds the biggest part of the squirrel without adding any background
pixels as is shown on the right of Fig. 2. Although the proposed method gives better
results in noise images or images with noise, it comes with a cost, i.e. the active contour
converges slower. The proposed method does converge slower than the CVAC which
incorporates edge information. The convergence speed depends on the amount of reg-
ularization needed. If hardly any regularization is needed, i.e. γ in eq. (7) >> 1, the
speed approaches the convergence speed of CVAC with edge information [13]. Whereas
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Fig. 1. An example of brain white matter segmentation in MRI images. Top left shows an MRI
slice of the brain. Top right depicts the segmentation result of the Chan-Vese convex active con-
tours. Bottom left shows the Chan-Vese convex active contour segmentation using edge infor-
mation. Bottom right depicts the proposed segmentation method, i.e. active contours using edge
information with regularization.
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Fig. 2. An example of segmentation in photos with clutter. Top left shows a gray-scale photo of
a squirrel. Top right depicts the segmentation result of the Chan-Vese convex active contours.
Bottom left shows the Chan-Vese convex active contour segmentation using edge information.
Bottom right depicts the proposed segmentation method, i.e. active contours using edge informa-
tion with regularization.
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Fig. 3. Convergence speed of different active contours in function of the image size. The full lines
are active contours from literature, Chan-Vese active contours with and without incorporation of
edge information. The dotted lines represent the convergence speed of the proposed method with
different γ, i.e. different ratio’s of regulation.

if the regularization factor is dominant in the energy function, the convergence speed
approaches the convergence speed of the original CVAC using Split Bregman optimiza-
tion [15]. Fig. 3 shows the convergence speed in function of the image size. Between
these four different CVAC only the γ parameter was changed, µ and λ was constant
between all methods, i.e. 0.001 and 0.5 respectively. The full lines depict the CVAC’s
from literature, in green the method using edge information, in blue the method using
regularization without edge information. The dotted lines show the convergence speed
of the proposed method for different γ in eq. (7).

5.2 Error Metric

For the validation of the segmentation, the Dice coefficient is used. If S is the resulting
segment from the active contour, i.e. φ0.5u∗, and GT the ground truth segment based
on manual segmentation, then the Dice coefficient between S and GT is defined as:

d(S,GT ) =
2 Area(S ∧GT )

Area(S) + Area(GT )
(19)

where S ∧ GT consist of all pixels which both belong to the detected segment as well
as to the ground truth segment. If S and GT are equal, the Dice coefficient is equal to
one. The Dice coefficient will approach zero if the regions hardly overlap.

5.3 Noise robustness

In order to quantitatively validate the proposed method, a dataset of synthetic fluores-
cent microscopic images was segmented. This dataset has been developed by Ruusuvuri
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Fig. 4. An example of the micorscopy dataset used for vallidating the robustness of the proposed
segmentation technique. The image is contaminated with different levels of white Gaussian noise.
The top row has a SNR of 3,5,7 and 9 respectively. The bottom row as a SNR of 11,13,15 and 17
respectively.

et al. [17] and serves as a benchmark for segmentation algorithms. The dataset consists
of 20 images each containing the 300 fluorescent nuclei. We contaminated this dataset
with eight different levels of white Gaussian noise so that we could measure the influ-
ence of noise on the proposed segmentation technique. A close up of such an image
with different noise levels can be seen in Fig. 4. The segmentation quality of the pro-
posed method was measured using the average Dice coefficient for the full dataset and
compared with the average Dice coefficient of segmentation using CVAC with edge in-
formation. As can be seen in Fig. 3 is the proposed method significantly more robust.
The proposed method still gets a Dice coefficient of 0.7 for an image set with a SNR of
only 3 in comparison with a Dice coefficient of 0.4 for the state of the art CVAC.

6 Conclusion

In this paper a new active contour method has been proposed. The method is compa-
rable with the work proposed in [13], both methods are a combination of the original
Chan-Vese active contours and snakes. The proposed method allows extra regulariza-
tion, which was not possible in the method proposed by Bresson. The proposed method
uses a convex energy function, allowing the use of global optimizers. This paper pro-
poses a regularization term which enforces a smooth contour. However other convex
regularization terms could be used as well, for example regularization using non local
self similarity or based on texture such as is done in [18]. An efficient optimizer has
been proposed using the Split Bregman optimization scheme. This results in efficient
and fast optimization, although not as fast as the active contour proposed by Bresson
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Fig. 5. The average Dice coefficient for segmentation of a synthetic dataset contaminated with
different noise levels. The Dice coefficients were calculated for the segmentation result coming
from the Chan-Vese active contours with edge information as for segmentation using the proposed
method.

[13]. However it is experimentally proven that the proposed method is significantly
more robust to noise and clutter than the method proposed in [13].
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