1,301 research outputs found

    Emission rate and chemical state estimation by 4-dimensional variational inversion

    Get PDF
    This study aims to assess the potential and limits of an advanced inversion method to estimate pollutant precursor sources mainly from observations. Ozone, sulphur dioxide, and partly nitrogen oxides observations are taken to infer source strength estimates. As methodology, the four-dimensional variational data assimilation technique has been generalised and employed to include emission rate optimisation, in addition to chemical state estimates as usual objective of data assimilation. To this end, the optimisation space of the variational assimilation system has been complemented by emission rate correction factors of 19 emitted species at each emitting grid point, involving the University of Cologne mesoscale EURAD model. For validation, predictive skills were assessed for an August 1997 ozone episode, comparing forecast performances of pure initial value optimisation, pure emission rate optimisation, and joint emission rate/initial value optimisation. <br><br> Validation procedures rest on both measurements withheld from data assimilation and prediction skill evaluation of forecasts after the inversion procedures. Results show that excellent improvements can be claimed for sulphur dioxide forecasts, after emission rate optimisation. Significant improvements can be claimed for ozone forecasts after initial value and joint emission rate/initial value optimisation of precursor constituents. The additional benefits applying joint emission rate/initial value optimisation are moderate, and very useful in typical cases, where upwind emission rate optimisation is essential. In consequence of the coarse horizontal model grid resolution of 54 km, applied in this study, comparisons indicate that the inversion improvements can rest on assimilating ozone observations only, as the inclusion of NO<sub>x</sub> observations does not provide additional forecast skill. Emission estimates were found to be largely independent from initial guesses from emission inventories, demonstrating the potential of the 4D-var method to infer emission rate improvements. The study also points to the need for improved horizontal model resolution to more efficient use of NO<sub>x</sub> observations

    Content in the Context of 4D-Var Data Assimilation. II: Application to Global Ozone Assimilation

    Get PDF
    Data assimilation obtains improved estimates of the state of a physical system by combining imperfect model results with sparse and noisy observations of reality. Not all observations used in data assimilation are equally valuable. The ability to characterize the usefulness of different data points is important for analyzing the effectiveness of the assimilation system, for data pruning, and for the design of future sensor systems. In the companion paper [Sandu et al.(2011)] we derived an ensemble-based computational procedure to estimate the information content of various observations in the context of 4D-Var. Here we apply this methodology to quantify two information metrics (the signal and degrees of freedom for signal) for satellite observations used in a global chemical data assimilation problem with the GEOS-Chem chemical transport model. The assimilation of a subset of data points characterized by the highest information content, gives analyses that are comparable in quality with the one obtained using the entire data set

    Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models

    Get PDF
    Abstract. Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of three-dimensional chemical (including aerosol) concentrations and perform inverse modeling of input variables or model parameters (e.g., emissions). Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. They offer the possibility to assimilate both meteorological and chemical data; however, because CCMM are fairly recent, data assimilation in CCMM has been limited to date. We review here the current status of data assimilation in atmospheric chemistry models with a particular focus on future prospects for data assimilation in CCMM. We first review the methods available for data assimilation in atmospheric models, including variational methods, ensemble Kalman filters, and hybrid methods. Next, we review past applications that have included chemical data assimilation in chemical transport models (CTM) and in CCMM. Observational data sets available for chemical data assimilation are described, including surface data, surface-based remote sensing, airborne data, and satellite data. Several case studies of chemical data assimilation in CCMM are presented to highlight the benefits obtained by assimilating chemical data in CCMM. A case study of data assimilation to constrain emissions is also presented. There are few examples to date of joint meteorological and chemical data assimilation in CCMM and potential difficulties associated with data assimilation in CCMM are discussed. As the number of variables being assimilated increases, it is essential to characterize correctly the errors; in particular, the specification of error cross-correlations may be problematic. In some cases, offline diagnostics are necessary to ensure that data assimilation can truly improve model performance. However, the main challenge is likely to be the paucity of chemical data available for assimilation in CCMM

    The Distribution of Atmospheric Pollutants in Europe: Optimal Use of Models and Observations with a Data Assimilation Approach

    Get PDF
    The research activity presented in this manuscript deals with the implementation of a methodology to merge in an optimal way atmospheric modelling and observations at different spatial scales. In particular, we approached the problem of assimilation of ground measurements and satellite columnar data and how the Data Assimilation (DA) could improve the chemical transport model (CTMs) and correct biases and errors in the chemical species forecast. The work focused on tropospheric ozone and the species linked to its formation, since they play a crucial role in chemical processes during photochemical pollution events. The study was carried out implementing and applying an Optimal Interpolation (OI) DA technique in the air quality model BOLCHEM and the CHIMERE CTM. The OI routine was chosen because it has given satisfactory results in air quality modelling and because it is relatively simple and computationally inexpensive. In the first part of the study we evaluated the improvement in the capability of regional model BOLCHEM to reproduce the distribution of tropospheric pollutants, using the assimilation of surface chemical observations. Among the many causes of uncertainties of CTMs simulations, a particular focus is given by uncertainties in emissions, that are known to be high. The scientific purpose was to analyse the efficacy of DA in correcting the biases due to perturbed emission. The work was performed using an Observing System Simulation Experiment (OSSE), which allowed the quantification of assimilation impact, through comparison with a reference state. Different sensitivity tests were carried out in order to identify how assimilation can correct perturbations on O3, induced by NOx emissions biased in flux intensity and time. Tests were performed assimilating different species, varying assimilation time window length and starting hour of assimilation. Emissions were biased quantitatively up to ± 50% and shifted temporally up to ± 2 hours. The analysis brought to the conclusions that NO2 assimilation significantly improves O3 maxima during the assimilation, making it almost independent on different emission scenarios. The assimilation impact lasts up to 36-40 hours after the end of the assimilation window. This is a considerable result, especially when it is taken into account that DA generally yields significantly better forecasts in the 6-12 hours range, but improvements vanish afterwards. The NO2 night-time chemistry has the role of maintaining the correction of O3 due to assimilation also in the following day. Assimilating NO2 and O3 simultaneously bring to rather better results, although the benefit lasts only a few hours after the end of the assimilation window. It was found that the best results are achieved assimilating observations during the photochemically active period (06-18 UTC). It was also found that temporally biased NOx emissions only slightly perturb O3 concentration during the photochemically active regime, while the perturbation is larger during night-time. Assimilation has a very low impact during the assimilation window and a negligible impact after its end. The second part of PhD research activity dealt with the evaluation of the impact of assimilation of satellite NO2 tropospheric columns on the distribution of pollutants at the ground level during photochemical pollution events at continental scale. In particular, we focused on the assimilation of observations from SCIAMACHY and from OMI, and its effect on ozone in the lowermost troposphere in Europe. For an effective improvement in assimilated fields it is particularly important the consistency between satellite and model resolution. SCIAMACHY and OMI have a considerable difference in spatial and temporal resolution, allowing to test the role of data resolution on the effectiveness of assimilation. The role of data resolution on the effectiveness of assimilation was investigated also changing the model resolutions. It was found the perturbation on NO2 field due to assimilation causes a modification on ozone field that appears more spatially variable and higher in some photochemical polluted areas. Similar effects are detected both for SCIAMACHY and OMI assimilation. Significative effects of assimilation on ozone can be appreciate in polluted areas at local scale. Focusing on specific subdomains, it was found that the effect of assimilation lasts, in general, 8 hours and in few cases until the reactivation of active photochemical period in the following day. This is a strong impact, considering that assimilation is performed at most once a day and it is probably linked to the model underestimate of ozone and its precursors in polluted areas with respect to those measured by SCIAMACHY and OMI. In wide and highly polluted areas assimilation achieves satisfactory results, comparing simulated ground ozone with independent ground measurements. In that region where OMI assimilation in the coarse and fine resolution simulations and SCIAMACHY assimilation were confronted, we could conclude that these different assimilation set-up are almost similar. Whereas, in more localised polluted areas (i.e. comparable to model and satellite resolution), OMI assimilation in the finer resolution simulation performs better with respect to OMI assimilation in the coarse resolution simulation and SCIAMACHY assimilation. As a general conclusive statement, assimilation can be an important tool to make the spatial and temporal distribution of pollutants more realistic and closer to the specific local differences with the caveat of horizontal resolution of the assimilated columns and model simulations

    Development of the adjoint of GEOS-Chem

    Get PDF
    We present the adjoint of the global chemical transport model GEOS-Chem, focusing on the chemical and thermodynamic relationships between sulfate – ammonium – nitrate aerosols and their gas-phase precursors. The adjoint model is constructed from a combination of manually and automatically derived discrete adjoint algorithms and numerical solutions to continuous adjoint equations. Explicit inclusion of the processes that govern secondary formation of inorganic aerosol is shown to afford efficient calculation of model sensitivities such as the dependence of sulfate and nitrate aerosol concentrations on emissions of SOx, NOx, and NH3. The adjoint model is extensively validated by comparing adjoint to finite difference sensitivities, which are shown to agree within acceptable tolerances; most sets of comparisons have a nearly 1:1 correlation and R2>0.9. We explore the robustness of these results, noting how insufficient observations or nonlinearities in the advection routine can degrade the adjoint model performance. The potential for inverse modeling using the adjoint of GEOS-Chem is assessed in a data assimilation framework through a series of tests using simulated observations, demonstrating the feasibility of exploiting gas- and aerosol-phase measurements for optimizing emission inventories of aerosol precursors

    A Practical Method to Estimate Information Content in the Context of 4D-Var Data Assimilation. II: Application to Global Ozone Assimilation

    Get PDF
    Data assimilation obtains improved estimates of the state of a physical system by combining imperfect model results with sparse and noisy observations of reality. Not all observations used in data assimilation are equally valuable. The ability to characterize the usefulness of different data points is important for analyzing the effectiveness of the assimilation system, for data pruning, and for the design of future sensor systems. In the companion paper (Sandu et al., 2012) we derive an ensemble-based computational procedure to estimate the information content of various observations in the context of 4D-Var. Here we apply this methodology to quantify the signal and degrees of freedom for signal information metrics of satellite observations used in a global chemical data assimilation problem with the GEOS-Chem chemical transport model. The assimilation of a subset of data points characterized by the highest information content yields an analysis comparable in quality with the one obtained using the entire data set

    Four-Dimensional Variational Assimilation of Aerosol Data from In-situ and Remote Sensing Platforms

    Get PDF
    Die Assimilation von Aerosoldaten war bisher im Wesentlichen auf die Verwendung von Messungen der Gesamtmassenkonzentrationen von Partikeln bis zu einer bestimmten Größe und Messungen von optischer Tiefe beschränkt. Das Chemie-Transport-Modell EURAD-IM des Rheinischen Instituts für Umweltforschung (RIU) enhält ein hochentwickeltes vierdimensionales variationales (4D-var) Assimilationssystem für Gasphasenspezies, das nun um eine teilweise adjungierte Version des Aerosol-modells MADE erweitert wurde, um speziesaufgelöste Aerosolmessungen assimilieren zu können. Vorbereitend wurde bereits der äusserst rechenzeitaufwendige Mechanismus zur Lösung der Chemie der sekundären anorganischen Aerosole innerhalb des MADE mithilfe eines I/O-mapping-Verfahrens ersetzt. Der resultierende Algorithmus wurde nun adjungiert und die Funktionalität des adjungierten Aerosoltransportes sichergestellt. Desweiteren wurden verschiedene Beobachtungsoperatoren entwickelt und gleichzeitig adjungiert. Dazu gehören Integrationsroutinen für Massenkonzentrationen und Anzahldichten. Im Rahmen des AERO-SAM Projektes wurde ein Strahlungstransportmodell, Teil eines Satelliten-Retrieval-Systems, in das Modell eingebaut. Die Besonderheit liegt darin, dass das Modell speziesaufgelöste aerosoloptische Tiefen liefert. Das so konstruierte Aerosolassimilationssystem ist auf zwei Episoden angewandt worden. Als erstes auf den Sommer 2003, als ein langanhaltendes Hochdruckgebiet über Europa lag. Diese Wetterlage begünstigte Waldbrände und brachte stark erhöhte Feinstaubbelastung mit sich. In diesem Zeitraum wurde das neue Assimilationssystem getestet und der Nutzen der Assimilation von PM10 insbesondere von speziesaufgelösten Satellitendaten untersucht. Außerdem wurde die ZEPTER-2 Messkampagne aus dem Herbst 2008 ausgewählt. Ein zur Messplatform umgebauter Zeppelin, der mit einem CPC (Condensation Particle Counter) ausgestattet war, hat räumlich und zeitlich hochaufgelöste Partikelanzahldichten gemessen. In dieser Episode wurde der Fokus auf die Assimilation der Anzahldichten sowie der Leistung des Systems auf Modellgittern mit hoher Auflösung gerichtet. In beiden Fällen wurde Anfangswertoptimierung durchgeführt und das System selbst, sowie das Vermögen, die Vorhersage von Aerosolen zu verbessern, untersucht. Es hat sich herausgstellt, dass sich durch Assimilation von Aerosolen eine deutliche Verbesserung der Vorhersage insgesamt erzielen lässt, während durch die Assimilation speziesaufgelöster Retrievals zusätzlich die Zusammensetzung der Aerosole angepasst werden kann

    Tropospheric Chemical State Estimation by Four-Dimensional Variational Data Assimilation on Nested Grids

    Get PDF
    The University of Cologne chemistry transport model EURAD and its four-dimensional variational data assimilation implementation is applied to a suite of measurement campaigns for analysing optimal chemical state evolution and flux estimates by inversion. In BERLIOZ and VERTIKO, interest is placed on atmospheric boundary layer processes, while for CONTRACE and SPURT upper troposphere and tropopause height levels are focussed. In order to achieve a high analysis skill, some new key features needed to be developed and added to the model setup. The spatial spreading of introduced observational information can now be conducted by means of a generalised background error covariance matrix. It has been made available as a flexible operator, allowing for anisotropic and inhomogeneous correlations. To estimate surface fluxes with high precision, the facility of emission rate optimisation using scaling factors is extended by a tailored error covariance matrix. Additionally, using these covariance matrices, a suitable preconditioning of the optimisation problem is made available. Furthermore, a module of adjoint nesting was developed and implemented, which enables the system to operate from the regional down to the local scale. The data flow from mother to daughter grid permits to accomplish nested simulations with both optimised boundary and initial values and emission rates. This facilitates to analyse constituents with strong spatial gradients, which have not been amenable to inversion yet. Finally, an observation operator is implemented to get to assimilate heterogeneous sources of information like ground-based measurements, airplane measuring data, Lidar and tethered balloon soundings, as well as retrieval products of satellite observations. In general, quality control of the assimilation procedure is obtained by comparison with independent observations. The case study analyses show considerable improvement of the forecast quality both by the joint optimisation of initial values and emission rates and by the increase of the horizontal resolutions by means of nesting. Moreover, simulation results for the two airplane campaigns exhibit outstanding characteristics of the assimilation system also in the middle and upper troposphere region

    Assimilation of OMI NO<sub>2</sub> retrievals into the limited-area chemistry-transport model DEHM (V2009.0) with a 3-D OI algorithm

    Get PDF
    Data assimilation is the process of combining real-world observations with a modelled geophysical field. The increasing abundance of satellite retrievals of atmospheric trace gases makes chemical data assimilation an increasingly viable method for deriving more accurate analysed fields and initial conditions for air quality forecasts. We implemented a three-dimensional optimal interpolation (OI) scheme to assimilate retrievals of NO2 tropospheric columns from the Ozone Monitoring Instrument into the Danish Eulerian Hemispheric Model (DEHM, version V2009.0), a three-dimensional, regional-scale, offline chemistry-transport model. The background error covariance matrix, B, was estimated based on differences in the NO2 concentration field between paired simulations using different meteorological inputs. Background error correlations were modelled as non-separable, horizontally homogeneous and isotropic. Parameters were estimated for each month and for each hour to allow for seasonal and diurnal patterns in NO2 concentrations. Three experiments were run to compare the effects of observation thinning and the choice of observation errors. Model performance was assessed by comparing the analysed fields to an independent set of observations: ground-based measurements from European air-quality monitoring stations. The analysed NO2 and O3 concentrations were more accurate than those from a reference simulation without assimilation, with increased temporal correlation for both species. Thinning of satellite data and the use of constant observation errors yielded a better balance between the observed increments and the prescribed error covariances, with no appreciable degradation in the surface concentrations due to the observation thinning. Forecasts were also considered and these showed rather limited influence from the initial conditions once the effects of the diurnal cycle are accounted for. The simple OI scheme was effective and computationally feasible in this context, where only a single species was assimilated, adjusting the three-dimensional field for this compound. Limitations of the assimilation scheme are discussed
    corecore