71,586 research outputs found

    Evolutionary computing driven search based software testing and correction

    Get PDF
    For a given program, testing, locating the errors identified, and correcting those errors is a critical, yet expensive process. The field of Search Based Software Engineering (SBSE) addresses these phases by formulating them as search problems. This dissertation addresses these challenging problems through the use of two complimentary evolutionary computing based systems. The first one is the Fitness Guided Fault Localization (FGFL) system, which novelly uses a specification based fitness function to perform fault localization. The second is the Coevolutionary Automated Software Correction (CASC) system, which employs a variety of evolutionary computing techniques to perform testing, correction, and verification of software. In support of the real world application of these systems, a practitioner\u27s guide to fitness function design is provided. For the FGFL system, experimental results are presented that demonstrate the applicability of fitness guided fault localization to automate this important phase of software correction in general, and the potential of the FGFL system in particular. For the fitness function design guide, the performance of a guide generated fitness function is compared to that of an expert designed fitness function demonstrating the competitiveness of the guide generated fitness function. For the CASC system, results are presented that demonstrate the system\u27s abilities on a series of problems of both increasing size as well as number of bugs present. The system presented solutions more than 90% of the time for versions of the programs containing one or two bugs. Additionally, scalability results are presented for the CASC system that indicate that success rate linearly decreases with problem size and that the estimated convergence rate scales at worst linearly with problem size --Abstract, page ii

    Performance evaluation metrics for multi-objective evolutionary algorithms in search-based software engineering: Systematic literature review

    Get PDF
    Many recent studies have shown that various multi-objective evolutionary algorithms have been widely applied in the field of search-based software engineering (SBSE) for optimal solutions. Most of them either focused on solving newly re-formulated problems or on proposing new approaches, while a number of studies performed reviews and comparative studies on the performance of proposed algorithms. To evaluate such performance, it is necessary to consider a number of performance metrics that play important roles during the evaluation and comparison of investigated algorithms based on their best-simulated results. While there are hundreds of performance metrics in the literature that can quantify in performing such tasks, there is a lack of systematic review conducted to provide evidence of using these performance metrics, particularly in the software engineering problem domain. In this paper, we aimed to review and quantify the type of performance metrics, number of objectives, and applied areas in software engineering that reported in primary studies-this will eventually lead to inspiring the SBSE community to further explore such approaches in depth. To perform this task, a formal systematic review protocol was applied for planning, searching, and extracting the desired elements from the studies. After considering all the relevant inclusion and exclusion criteria for the searching process, 105 relevant articles were identified from the targeted online databases as scientific evidence to answer the eight research questions. The preliminary results show that remarkable studies were reported without considering performance metrics for the purpose of algorithm evaluation. Based on the 27 performance metrics that were identified, hypervolume, inverted generational distance, generational distance, and hypercube-based diversity metrics appear to be widely adopted in most of the studies in software requirements engineering, software design, software project management, software testing, and software verification. Additionally, there are increasing interest in the community in re-formulating many objective problems with more than three objectives, yet, currently are dominated in re-formulating two to three objectives

    A Requirement-centric Approach to Web Service Modeling, Discovery, and Selection

    Get PDF
    Service-Oriented Computing (SOC) has gained considerable popularity for implementing Service-Based Applications (SBAs) in a flexible\ud and effective manner. The basic idea of SOC is to understand users'\ud requirements for SBAs first, and then discover and select relevant\ud services (i.e., that fit closely functional requirements) and offer\ud a high Quality of Service (QoS). Understanding users’ requirements\ud is already achieved by existing requirement engineering approaches\ud (e.g., TROPOS, KAOS, and MAP) which model SBAs in a requirement-driven\ud manner. However, discovering and selecting relevant and high QoS\ud services are still challenging tasks that require time and effort\ud due to the increasing number of available Web services. In this paper,\ud we propose a requirement-centric approach which allows: (i) modeling\ud users’ requirements for SBAs with the MAP formalism and specifying\ud required services using an Intentional Service Model (ISM); (ii)\ud discovering services by querying the Web service search engine Service-Finder\ud and using keywords extracted from the specifications provided by\ud the ISM; and(iii) selecting automatically relevant and high QoS services\ud by applying Formal Concept Analysis (FCA). We validate our approach\ud by performing experiments on an e-books application. The experimental\ud results show that our approach allows the selection of relevant and\ud high QoS services with a high accuracy (the average precision is\ud 89.41%) and efficiency (the average recall is 95.43%)

    Using ontologies to support and critique decisions

    No full text
    Supporting decision making in the working environment has long being pursued by practitioners across a variety of fields, ranging from sociology and operational research to cognitive and computer scientists. A number of computer-supported systems and various technologies have been used over the years, but as we move into more global and flexible organisational structures, new technologies and challenges arise. In this paper, I argue for an ontology-based solution and present some of the early prototypes we have been developing, assess their impact on the decision making process and elaborate on the costs involved

    Thermal food processing computation software

    Get PDF
    The objective of this research consisted of developing the two following thermal food processing software: “F-CALC” is software developed to carry out thermal process calculations based on the well-known Ball's formula method, and “OPT-PROx” is software for thermal food processing optimization based on variable retort temperature processing and global optimization technique. Time-temperature data loaded from Excel-file is used by “F-CALC” software to evaluate the heat penetration parameters jh and fh, as well as to compute process lethality for given process time or vice versa. The possibility of computing the process time and lethality for broken heating curves is included. The diversity of thermal food processing optimization problems with different objectives and required constraints are solvable by “OPT-PROx” software. The adaptive random search algorithm coupled with penalty functions approach, and the finite difference method with cubic spline approximation are utilized by “OPT-PROx” for simulation and optimization thermal food processes. The possibility of estimating the thermal diffusivity coefficient based on the mean squared error function minimization is included. The “OPT-PROx” software was successfully tested on the real thermal food processing problems, namely in the case of total process time minimization with a constraint for average and surface retentions the “OPT-PROx” demonstrates significant advantage over the traditional constant temperature processes in terms of process time and final product quality. The developed user friendly dialogue and used numerical procedures make the “F-CALC” and “OPT-PROx” software extremely useful for food scientists (research and education) and engineers (real thermal food process evaluation and optimization)

    Enterprise engineering using semantic technologies

    No full text
    Modern Enterprises are facing unprecedented challenges in every aspect of their businesses: from marketing research, invention of products, prototyping, production, sales to billing. Innovation is the key to enhancing enterprise performances and knowledge is the main driving force in creating innovation. The identification and effective management of valuable knowledge, however, remains an illusive topic. Knowledge management (KM) techniques, such as enterprise process modelling, have long been recognised for their value and practiced as part of normal business. There are plentiful of KM techniques. However, what is still lacking is a holistic KM approach that enables one to fully connect KM efforts with existing business knowledge and practices already in IT systems, such as organisational memories. To address this problem, we present an integrated three-dimensional KM approach that supports innovative semantics technologies. Its automated formal methods allow us to tap into modern business practices and capitalise on existing knowledge. It closes the knowledge management cycle with user feedback loops. Since we are making use of reliable existing knowledge and methods, new knowledge can be extracted with less effort comparing with another method where new information has to be created from scratch
    corecore