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Abstract: Many recent studies have shown that various multi-objective evolutionary algorithms

have been widely applied in the field of search-based software engineering (SBSE) for optimal so-

lutions. Most of them either focused on solving newly re-formulated problems or on proposing

new approaches, while a number of studies performed reviews and comparative studies on the

performance of proposed algorithms. To evaluate such performance, it is necessary to consider

a number of performance metrics that play important roles during the evaluation and compari-

son of investigated algorithms based on their best-simulated results. While there are hundreds of

performance metrics in the literature that can quantify in performing such tasks, there is a lack of

systematic review conducted to provide evidence of using these performance metrics, particularly in

the software engineering problem domain. In this paper, we aimed to review and quantify the type of

performance metrics, number of objectives, and applied areas in software engineering that reported

in primary studies—this will eventually lead to inspiring the SBSE community to further explore

such approaches in depth. To perform this task, a formal systematic review protocol was applied

for planning, searching, and extracting the desired elements from the studies. After considering

all the relevant inclusion and exclusion criteria for the searching process, 105 relevant articles were

identified from the targeted online databases as scientific evidence to answer the eight research

questions. The preliminary results show that remarkable studies were reported without consider-

ing performance metrics for the purpose of algorithm evaluation. Based on the 27 performance

metrics that were identified, hypervolume, inverted generational distance, generational distance,

and hypercube-based diversity metrics appear to be widely adopted in most of the studies in software

requirements engineering, software design, software project management, software testing, and soft-

ware verification. Additionally, there are increasing interest in the community in re-formulating many

objective problems with more than three objectives, yet, currently are dominated in re-formulating

two to three objectives.

Keywords: search-based software engineering; multi-objective evolutionary algorithms; many-

objective evolutionary algorithms; performance metrics

1. Introduction

Tackling problems in the software engineering (SE) discipline (i.e., regarding products,
processes, and resources) has commonly been characterized as complex, error-prone,
and expensive. While there is thus a need to simplify these aspects of problem-solving
to make it less complex, less failure-prone, and less costly, objectively achieving these
conflicting goals within existing constraints is difficult for decision-makers. However,
many software engineering problems are specified as optimization problems—and to solve
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such problems, practitioners use optimization techniques (metaheuristics) to search for the
best (i.e., optimal) solutions. In the specialized literature, SBSE is the common term used
in relation to this [1], and it has been successfully applied in practice to SE areas, such as
software requirements, design, testing, and many more. This has led to many SE problems
being re-formulated as search problems [1,2]. For example, in test case prioritization in
regression testing aims to maximize coverage criteria, while minimizing a set of given
constraints, such as cost and time, however, this makes the decision-making process a
challenging task.

In the course of finding quality solutions to support the decision-making (DM) process,
several techniques are used. There are techniques (algorithms) that can improve and
maintain a single solution at a time, and those can maintain multiple solutions (population)
at once [3]. Most of these methods are inspired by the intelligence that has evolved in
nature in living things, as exemplified in biology through genetics and the movement of
animals (i.e., insects, birds, fish, etc.) for their survival.

In the initial stages of SBSE research, single objective problems (SOPs) are re-formulated
and solved using Simulated Annealing and Tabu Search. However, these methods can
only maintain and improve a single solution at a time [3,4]. In contrast, multi-objective
evolutionary algorithms (MOEAs) are improved versions of the initial methods and can
tackle multiple objective problems (MOPs) with no more than three objectives, simultane-
ously. There are also other improved methods that can handle many-objective optimization
problems (MaOPs) with more than three objectives. These methods are also called many-
objective evolutionary algorithms (MaOEAs) [5]. Both MOEAs and MaOEAs produce sets
of solutions with different trade-offs (Pareto optimal solutions).

However, in the available literature, there appears to be no agreement on the number
of objectives we call ‘multi’ or ‘many’ [6], and the focuses of these terminologies may
create confusion.

In practical approaches, these multi/many-objective methods deal with large num-
bers of conflicting objectives, and finding the best solutions may not be easily observable.
For such tasks, they can find multiple Pareto optimal solutions and perform better global
searches of the search space [7]. However, evaluation of the solution sets obtained by
these methods, which present different trade-offs among the objective problems, has to be
quantitatively assessed in a meaningful way using a number of measurement scales [8].
Such measurements have different purposes as some are specific to problems (e.g., some SE
testing papers use the average percentage of faults detected [APFD]), some use statisti-
cal measures, and others use the calculated execution time as a performance measure.
However, our study is focused on the metrics used to evaluate solvers. Terminologically,
these metrics are called performance metrics, also known as quality indicators.

On the other hand, solving the MOP requires to use of metaheuristic solvers to
optimize the number of conflicting objectives or functions and provide a set of solutions
(Pareto optimal set) to the decision-maker. However, there is no single solution that is better
than the other with respect to all objectives, thus, these solvers provide an approximation of
the Pareto front [9]. In the literature, several metrics are proposed to evaluate and compare
these approximations sets [10].

In our context, we review the use of performance metrics that is used to evaluate
the quality of solver (algorithm) outputs, or during comparisons with other solution sets
obtained by other solvers. In general, there is no universally good or bad algorithm;
however, one algorithm may perform well for a specific problem, thus, such types of
metrics may necessarily be used in the studies.

To fill this gap, researchers have developed a number of performance metrics [11,12].
In the specialized literature [13–15], these metrics are roughly grouped into capacity,
convergence, diversity (distribution, spread), or combination (convergence, diversity)
metrics [13]. It is worth noting that some studies have reported that no single performance
metric is enough to assess all the qualities of such methods [8,9,15] because each metric
can only assess one or two desirable properties of the solution sets (e.g., convergence,
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diversity, or both) [16]. However, the rapid growth in the usage and development of
multi/many-objective methods, performance metrics, and comparison of algorithms has
received little attention [15].

Apart from the performance metrics, there are studies re-formulate the number of
objectives and target specific areas in the SE domain. Nevertheless, readers are redirected
toward the formal definitions of these metrics, critical analysis, and comparison of different
metrics [9,13,14,17], which are not covered here.

To the best of our knowledge, according to an overwhelming number of studies in
the field of SBSE, there have been few systematic literature review studies relevant to
the use of such metrics, number of objectives, and sub-field of SE applied over the last
decade. This served as a motivation to explore, investigate, and interpret the relevant
studies (based on our research questions). This research will serve as a guide and reference
for research practitioners to obtain new knowledge in order to see the possible gaps that
might exist in this area, which will lead to improving the current practice in this niche,
such as increasing the number of performance metrics, increase the number of objectives,
and to apply new SE areas.

This research is meant to analyze how the SBSE community progressively evolved the
performance metrics, number of objectives, and applied SE areas. The rest of this paper
is organized as follows: Section 2 mainly provides an overview of the existing secondary
studies (related works) in the field. Section 3 defines the review method, including the
study research questions, search strategies, study selection criteria, and data extraction
process. In Section 4, the analysis and results of the study are detailed, and finally, Section 5
provides a discussion and summary of the findings as a conclusion of the study.

2. Related Work

This section describes the secondary studies that have been conducted within the
context under consideration.

Ramirez et al. [18] conducted a study that relied on a guided review motivated by
the growing attention being focused on many-objective problems. The research sought to
discover the limitations on problem formulation, algorithm selection, experimental design,
and industrial applicability. In the findings, it was agreed that multi and many-objective
EAs use the same indicators, but no quantifiable results were obtained or objectively stated
in the study on the distribution of these metrics.

An early informal review conducted by Sayyad and Ammar [19] aimed to collect data
on the algorithms, tools, quality indicators, and number of objectives used in the SBSE
community. The researchers concluded that the use of MOEAs was becoming a new trend
and found that many articles used single algorithms. They also reported that a few articles
employed performance metrics, and HV was the most used one. However, research in the
community has increased, and the use of multi/many-objective methods are on the rise.
Hence, conducting up-to-date SLR is advisable to accommodate new trends and challenges.

Colanzi et al. [20] focused on the Brazilian authors and their contribution to the field
of SBSE. Some of their objectives included tallying the number of publications of the
community, the areas in which they focused, and their optimization techniques, as well
as identification of the authors and their levels of collaboration. However, although their
defined research questions were aimed at the SBSE field, the research was limited in scope,
and their results are not generalizable.

Assunção et al. [21] also reported a similar mapping study targeting Brazil to expose
existing research groups within the Brazilian SBSE community mainly discussed questions
addressing evolved problems in SE, techniques used in solutions, and the number of
researchers, institutions, and regions involved in these areas. Their findings showed
significant growth in the community.

Another recent critical review was conducted by Chen et al. [17] within a limited
timeframe (2009–2019). The study analyzed the quality indicators (performance metrics),
problems involved in subfields of SE, and overall general issues in SBSE. The review
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finally provided methodological guidance on how to select and use evaluation methods in
different scenarios. However, the study did not discuss how the community was currently
using the metrics, which metrics were most used or least used, or how many metrics each
study involved. Such discovery is our objective, and it may lead the community to better
understand current practices.

The above-mentioned studies focused on SBSE but with regard to different or specific
subjects, such as specific location [20,21], or specific techniques [18], while some of them
are old [19], and some are new [17]. Hence, our study with its guided protocol is mainly
meant to provide a generalizable result to the SBSE community by discovering how the
community practitioners are employing the above-mentioned metrics, and this might
eventually reveal pertinent issues and future opportunities.

It is worth considering that in the accumulated literature, we found a number of
review studies targeted on specific contexts of SBSE, such as different areas in testing,
requirements, design, and software refactoring, and many others, but their results may
not be generalizable and address little attention to the broader collection of literature in
this field, especially in performance metrics. In this regard, to utilize our limited scope,
readers are redirected to references [22–33].

Thus, to keep the SBSE community up to date on this subject, since performance met-
rics are equally used to evaluate algorithm performance, especially when new algorithms
are proposed, there are other studies from other communities that mainly discussed the
issues related to the performance metrics used. Such studies, including a study reported by
Jiang et al. [13], grouped the performance metrics in the literature into four main classes and
then analyzed the relationships between representative metrics from the groups. However,
the study was limited to only investigating the performance metrics categorized in the
literature and their relationships among symmetric and continuous Pareto fronts (PFs).
The‘authors suggested further investigation of the relationships of other geometric perspec-
tives in performance metrics, such as asymmetric and discrete PFs, and also highlighted
the need for appropriate metrics with hypervolume (HV) use for concave shapes.

Riquelme et al. [14] conducted informal and small review focused on the frequency
usage of 54 performance metrics in MOEAs with their advantages and disadvantages from
five editions (2005, 2007, 2009, 2011, and 2013) by only main sourcing the published studies
of bi-annual evolutionary multi-objective optimization (EMO) community conferences.

A recent review study observed by Li and Yao [34] categorized and analyzed the
weaknesses and strengths of 100 state-of-the-art performance metrics with their desir-
able properties. With the help of that, they concluded that there is no perfect metric to
measure the solution sets, since different metrics are appropriate in different situations.
Another research direction suggested was to design new performance metrics suitable to
the preferences of decision-makers (DMs).

Okabe et al. [8] reviewed the existing performance metrics by categorizing them
into a number of groups based on their functionalities, then showing the advantages
and disadvantages of performance metrics. Thus, a comparative study was done that
discovered some of the metrics were misleading. Therefore, their point of discussion
appeared to be that no single metric alone can quantify the qualities of the solution sets
obtained by solvers.

Laszczyk and Myszkowski [35] described a taxonomy-based surveying 38 of the
existing performance metrics and their definitions along with their advantages and disad-
vantages. They claim their proposed complementary set of metrics can create meaningful
results when used on solution sets obtained by solvers.

Audet et al. [36] is another review study of performance metrics recently published,
which intended to focus on using 57 metrics grouped into four categories: Cardinality,
convergence, distribution, and spread. The research gap reported in this paper is the need
for new metrics that can tackle the limitations faced by the HV.

While these papers are similarly discussed and focus on discovering the weaknesses
of the existing performance metrics in use by the EMO community, no paper tracked how
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the current research in SBSE practice uses these metrics (i.e., their applications to real-world
problems instead of artificial problems). This research will, therefore, discover if enough
practitioners are using these metrics and distributions and the types of metrics employed.

For further performance metric analysis on their strengths and weaknesses with
practical guidance, readers are referred to references [37–40].

3. Research Methodology

Systematic literature review (SLR) is a process of identifying the relevant research
questions, collecting the relevant secondary data, evaluating and interpreting such data.

To obtain a good sample of primary studies, several approaches are discussed in the
literature, such as standard SLR, Systematic Mapping Study (SMS), Snowballing, or Quasi-
Gold Standard (GQS) methods. In relation to these methods, SMS is mainly employed
when the primary studies are huge or to cover broad topics, however, the cost of assessing
all the studies would be unreasonably high [41]. To reduce such constraints, it is required
to stop classification processes at a certain level, thus, it may reduce or leads to missing
important articles. On the other hand, Snowballing (backward and forward) is also used
to find primary studies, however, it might be necessary, if used a well-defined reliable,
and efficient search strings in the digital libraries. While some studies use the concept of
GQS to improve the search steps, thus, this depends too much on a good QGS [41].

While standard SLR is driven by a very specific research question that is used to
identify, analyze, and interpret the relevant studies [41,42]. In SLR, the primary studies
are identified with the help of the search process, and data extraction process (such as
inclusion and exclusion criteria) [42]. We believe the standard SLR methodology used in
our study is essential to support this research constructively.

In this aspect, we describe the methodology of this SLR method guided by Kitchenham
et al. [43] to systematically collect, analyze and summarize the quantifiable data obtained
from the specialized literature. In the following subsections, we will discuss our research
questions, search strategies, study selection, and data extraction process.

3.1. Research Questions

To define what we are trying to answer, it is essential to design our research ques-
tions (RQs) at the studies that quantitatively evaluate the Pareto-based methods using
performance metrics, number of objectives, and applied SE areas, thus, we consider the
following RQs:

RQ1: What are the studies that applied none or one or more performance metrics?
To answer this RQ, we investigate the number of performance metrics that the SBSE

community employed over the years, we aim to check the number of performance metrics
each study employed by adopting a grouping strategy. This discovery will help the
practitioners to understand how the existed studies measuring the quality of the solution
sets obtained by the solvers.

RQ2: What metrics are most or least used in the studies?
In this question, we aim to identify the metrics that reported mostly or least used.

From this point of discovery, tallying, and grouping (adopting previous grouping strategy),
the different set of metrics in each group and their frequencies are discussed.

RQ3: What is the rank order of the metrics most or least used in the studies?
To see how the overall metrics and their ranks, we calculate their total frequencies.

In RQ2, the overall rank of these metrics were not discussed. However, in this RQ, we in-
tended to identify the metric frequencies and group them using their frequencies and
calculate their percentages. In this case, we also avoid using the previous grouping strategy.

RQ4: How do the top popular metrics (>5%) increase or decrease in the studies?
It is beneficial to see how a set of metrics distributed in the study group (adopting

previous grouping strategy), especially those gained more than five percent. This investiga-
tion will help us to increase our knowledge about how a set of metrics become increasingly
popular or decreased in the study groups.
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RQ5: How well do the current studies in SBSE use performance metrics?
In this RQ, we also identify and further investigate the study groups by showing the

total number of studies in each study group, their total number of unique metrics, and their
total frequency metric.

RQ6: What are the number of objectives used in the studies?
In this aspect, we show the number of objectives the community employing in practice

by grouping the studies based on the objective count. This will discover the current practice
of SBSE practitioners and the future direction of the research.

RQ7: What are the applied areas in SE of the studies?
In this RQ, we investigate the most and least common investigated software engi-

neering (SE) areas by showing the studies’ distribution among these. Previously software
testing was nominated, but recently, many areas in SE were investigated in the SBSE com-
munity. In this case, we also adopt the grouping made by the previous studies [19,20].
This might help and lead the current practitioners to further investigate these areas.

RQ8: What are the performance metrics distribution in each SE applied area?
In this RQ, we also identify how the previously investigated performance metrics

(based on the grouping strategy) are distributed on the applied SE areas. This will help the
SBSE practitioners to understand which SE areas are employing more or fewer metrics.

Answering the above RQs will help the practitioners to understand how studies have
measured the quality of the solution sets obtained by solvers. There may be philosophical
ideas among members of SE communities that might be revealed through answering
these RQs, thus giving them meaning. To address the scope of the RQs, we limit the
research papers published over years, which ranges from 2000–2020. While, we selected
the publications only in relation to SBSE, especially those involving the multi/many-
objective methods and their employed performance metrics, and number of objectives
utilized in their evaluation setups and in applied areas of SE.

3.2. The Search Strategy

To avoid missing the relevant studies, we used a manual search method from the four
most suitable digital libraries:

I. IEEExplore
II. Scopus
III. Web of Science
IV. Science Direct

To avoid covering limited articles, we selected a set of digital liberties that can cover
a large number of articles. We make a detailed search string and relevant to our topic to
collect a significant number of studies. The construction of these strings are inspired by
several literature reviews [17,20,23,26,44,45]. These queries are enough to cover a wide
range of articles and match the article title, abstract, and keywords.

To identify publications, we used a set of keyword strings in our search parameters,
as shown in Table 1. These keywords are categorized into those related to SE, Search Based,
and performance metrics. This group organization was inspired by that found in Reference [44].

The keywords related to SE field areas, Search Based, and performance metrics were
extracted and then combined using Boolean operators, such as “OR” and “AND.” All the
search parameters targeted article titles, abstracts, and keyword sections. Finally, these strings
were executed by splitting them into shorter segments because some of the targeted databases
would not fully accept long strings, (to avoid showing unsatisfactory results).

3.3. Study Selection

To select the candidate papers, we employed inclusion and exclusion criteria as we
mainly aimed to not miss any beneficial articles that matched our research objectives and
were written in the English language in sources from specified publishers (IEEExplore,
Science Direct) or indexers (Scopus, Web of Science). To finally select the desired studies,
we filtered the fetched articles by carefully reading the titles, abstracts, keywords, and body



Appl. Sci. 2021, 11, 3117 7 of 25

texts, iteratively. The steps in the process of searching and selecting are illustrated in
Figure 1.

Table 1. Related terms to execute.

Group Query String Keyword

Software Engineering General terms Software engineering OR software development

Software engineering
(SE) related terms

Software requirement OR software design OR software
modeling OR quality attributes OR software component

OR reusable components OR software testing OR test
cases OR test cases generation OR test case prioritization

OR test specification OR test suite OR software
specifications OR software verifications OR model

checking OR fault tolerance OR fault localization OR
refactoring OR reverse engineering OR object-oriented

design OR software development methodology

Search-Based
Software Engineering

Multi-objective
evolutionary related terms

Multi-criteria optimization OR multi-objective
optimization OR multi-objective optimization OR

multi-objective optimization algorithms OR
multi-objective evolutionary algorithms OR

many-objective optimization OR many-objective
optimization OR many-objective optimization algorithms

OR many-objective evolutionary algorithms OR
bi-objective evolutionary algorithm OR

bi-objective optimization OR MOEA

Performance Metric General terms
Performance indicator OR

performance metrics OR quality indicator

Figure 1. Search and selection steps.
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In the above steps (from top to bottom), Step 1 shows the number of studies returned
from each database, with a total of 699 studies. In Step 2, we excluded those mismatched by
title. In Step 3, deletion of the duplicates was performed. In Step 4, the abstracts were read,
and those that were out of our scope were excluded; and finally, in Step 5, a full reading of
the remaining articles was performed. We also applied the inclusion and exclusion criteria
in every step if matched.

The inclusion criteria are as follows:

1. The study must be related to the topic (SBSE) and must use multi-objective or many-
objective methods.

2. The study must be written in the English language.
3. The study must be available online and in electronic format.

And the exclusion criteria are:

1. Studies not related to SBSE;
2. Thesis, tutorials, book chapters, editorials;
3. Not written in the English language;
4. Not available online.

3.4. Data Extraction Process

In this step, after full text reading, we extracted the desired data from the final
selected studies that satisfied our criteria. To review the primary studies, multiple re-
searchers (three researchers) are randomly assigned to assess the relevant papers, then the
researchers extract the data from the relevant studies, and the obtained data were cross-
checked. The data are then stored in Excel spreadsheets for further analyses. The desired
extracted parameters included the name and number of performance metrics and num-
ber of objectives and subfield of SE used. This process facilitated easy classification and
analysis to answer our research questions.

4. Results

To make a detailed explanation in this stage, we analyzed the extracted data from
the final 105 studies after applying inclusion and exclusion criteria to answer the research
questions. To start, we first summarized all the 27 unique metrics used in the studies,
as shown in Table 2. Figure 2 shows the number of studies by publication year.

RQ1: What are the studies that applied none or one or more performance metrics?
In order to see how the existing studies used performance metrics, we grouped our

collected studies based on the number of metrics used. After full reading, we found that the
maximum number of metrics used in the nominated studies was six. Thus, our grouping
strategy adopted these abbreviations: M0 means zero metrics, M1 for one metric, M2
for two metrics, M3 for three metrics, M4 for four metrics, M5 for five metrics, and M6
for six metrics. This means articles that had not employed or not reported the defined
performance metrics would be listed in the M0 group and those with one metric in M1,
etc. Figure 3 shows that most of the studies, based on this grouping, used zero metrics,
which accounted for 37 articles, and the second rank deployed two metrics. Meanwhile,
the graph shows a decline in the studies that employed more than two metrics. It is worth
noting that only four studies employed six metrics (M6), and four others used five metrics
(M5). However, to make it more meaningful, we needed to address what the dominant
metrics were, thus creating another detail from this point by showing how they (the 27
metrics) were used over 105 studies. This would answer another RQ.

RQ2: What metrics are most or least used in the studies?
From this point of discovery, tallying of the used metrics is discussed. It is not

surprising that some of the employed metrics were selected, due to their broad usage in the
literature [10,46]. We only tallied the sections of the studies that used performance metrics;
hence, those using zero metrics were excluded, such as the M0 set. With the help of Excel
spreadsheet visualization, the obtained result is presented in figures. Figure 4, which shows
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the distribution of the metrics for the M1 group, which had a total of 19 articles, yet they
employed one metric in each of the studies, and therefore, there were only two unique
metrics involved, which were HV and IGD. However, IGD was only used once, while HV
was used 18 times in this set of the M1 group.

Table 2. List of performance metrics.

No. Metric Symbol

1 Hypervolume HV
2 Hypervolume ratio HVR
3 Hypervolume with R-metric R-HV
4 Pareto front size PFS
5 Number of non-dominated solutions NDS
6 Generalized spread GS
7 Error ratio ER
8 Inverted generational distance IGD
9 Generational distance GD
10 R-metric R2
11 Maximum spread MS
12 Contribution metric -
13 Maximum Pareto front error MPFE
14 Hypercube-based diversity metric -
15 Spread: Delta measure ∆

16 Convergence metric CM
17 Coverage difference D
18 Two set coverage C
19 Euclidean distance ED
20 Epsilon family ǫ

21 Spacing S
22 Inverted generational distance IGD+
23 Overall nondominated vector generation ONVG
24 Percentage P
25 Lp-norm-based diversity Lp-norm
26 Number of solutions in the region of interest Proi
27 Convergence measure ρ

Figure 2. Number of studies by publication year.
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Figure 3. Publication distribution for the study groups.

Figure 4. Metrics distribution in M1 group.

Figure 5 shows that a total of 24 articles employed sets of two metrics. Although
the number of studies involved in this group (M2) was more than the previous one (M1),
it comprised a good number of metrics (good diversity with a total of 11 unique metrics),
and yet HV and IGD were the leading ones, which means they were the most used metrics.
HV was used 18 times, IGD was used six times, and there were nine other additional
metrics in this set, which were the hypercube-based diversity metric, which was used five
times, and delta spread (∆) and ED, which were used four times each. The remaining
metrics were used as follows: ǫ and S were used three times each, GD two times, and finally,
HVR, NDS, and ρ (convergence measure) were used only one time each.
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Figure 5. Metrics distribution in M2 group.

Figure 6 shows a total of 16 metrics that appeared in the publications. After comparison
according to their usage, HV was found to be the highest in total with seven cases, while NDS
and the hypercube-based diversity metric were ranked five and four, respectively. While GD,
the contribution metric, ∆, and CM were used two times each, and the remaining nine
metrics in this list had the lowest values, only having been used once.

Figure 6. Metrics distribution in M3 group.
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In the M4 group, as Figure 7 shows, GD is the most used for the first time, having
been used five times, and HV and IGD are in second position, having been used four times.
In this graph, 11 unique metrics are involved with a total of six articles in the set (M4) and a
two-set coverage (C). Spacing (S) metrics gained three and two, respectively, while the rest
of the metrics had one use in each, which are HVR, PFS, GS, the hypercube-based diversity
metric, ∆, and ED metrics.

Figure 7. Metrics distribution in M4 group.

In Figure 8, although the articles utilizing more than two metrics are lower in number,
the number of unique metrics is high. The figure indicates 15 unique metrics with the
frequency used for each metric and their scores as follows: HV was used three times,
and MS, ǫ, and S were used two times each, while the rest (HVR, GS, ER, IGD, GD, R2, ∆,
CM, D, C, and IGD+) were reported only one time each.

Figure 8. Metrics distribution in M5 group.
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Finally, articles that employed six metrics (M6) were also fewer in quantity (four in
total), and they used ten unique metrics. Figure 9 shows the frequencies of these metrics.
HV and IGD had four each, and the remaining eight metrics were reported with three
different scores: PFS, GS, and ǫ had three each, ER and GD had two each, while the
contribution metric, MPFE, and S were reported once each.

Figure 9. Metrics distribution in M6 group.

Although the total of the unique reported metrics is 27 out of 105 articles, and they are
repeatedly used in some of them. From this perspective, we can answer another research
question on the total ranks of these 27 metrics over the studies.

RQ3: What is the rank order of the metrics most or least used in the studies?
To show the overall metrics with their ranks by calculating the total frequency of

each metric, the above-mentioned analysis was used to determine how group studies
employed these metrics in separate representations. Thus, in this section, the most or least
used metrics (high or low in frequency) are described using their total frequencies. Table 3
shows the 27 unique metrics grouped based on their frequencies in column two. This means
those that received the same value will be in the same set or rank. Column three shows the
percentages calculated for each metric as the product of the frequency/total frequency of
168 multiplied by 100. Please note the total of the percentage values should be calculated
as follows. For example, frequency number five has three metrics in that position (PFS, GS,
C), and each of them has the value 3.0%, which means their total must be calculated as 3.0
+ 3.0 + 3.0 = 9, and the rest should be calculated in the same manner (only if a set of metrics
is in the cells) to reach a total of 100%.

Table 3. Units for list rank of used metrics.

Metrics Frequency %

HV 54 32.1
IGD 17 10.1
GD 12 7.1
Hypercube-based diversity metric 10 6.0
∆, ǫ, S 8 4.8
NDS, ED 6 3.6
PFS, GS, C 5 3.0
HVR, ER, Contribution metric, CM 3 1.8
MS 2 1.2
R-HV, R2, MPFE, D, IGD+, ONVG, Norm-based, Proi, ρ, γ 1 0.6
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The result is that HV has the highest frequency of 54, and is, thus, positioned in
the first position in terms of the number of times used (frequency), and in percentage,
this metric accounts for 32.1%. In the second position, IGD is presented, which has a
frequency of 17 and accounts for 10.1% of the total. In position three and four, GD and the
hypercube-based diversity metric (also called spread [S]) scored 12 and 10 in frequency
and 7.1% and 6.0% in the percentage column, respectively. The reaming metrics are less
than 6.0% in score; hence, they are the least used metrics in this report. In position five (∆,
ǫ, S) and six (NDS, ED), there are sets of metrics in the cells with total frequency scores of 8
and 6 and percentages of 4.8% and 3.6%, respectively. As shown in Table 3, the rest of the
metrics account for less than 3.6% in scores. However, another RQ mainly concerns how
the top metric evolution was based on grouping.

RQ4: How do the top popular metrics (>5%) increase or decrease in the studies?
To answer this question, we need to show the distribution of special metrics, particu-

larly those used more than 5%, in order to increase our knowledge about how these metrics
got increasingly popular or when they decreased in the overall studies. We made a bar
chart to visualize the distribution of these metrics over the above-mentioned groups (M1 to
M6). Figure 10 shows that for M1, M2, M3, and M5, the HV metric was the most used, and
for the rest, it was used less than in M1 and M2. For the M4 and M5 groups, HV and IGD
were comparable. In M2, IGD, the hypercube-based diversity metric, and GD appeared
with higher values, respectively. Although the number of publications in the remaining sets
is less than the previous ones, some of the metrics in this list also decreased in use, such as
the hypercube-based diversity metric, which declined in use after its first appearance in
M2, and it was not reported in M1, M5, or M6, while IGD was represented in all of the
groups and GD is present in M2–M6. However, the graph shows most of the studies relied
on HV in M1 and in M2 when the studies started using more than two metrics together
with other metrics, such as IGD, GD, and the hypercube-based diversity metric. In all of
the groups, HV was top-ranked except in M4, where GD was highest in frequency, and M6,
where it was equal with IGD. It must be noted, however, that there are more studies in
M1 and M2 (43 articles in total) compared to M3, M4, M5, and M6. This means most of
the studies (according to M1–M6) employed one or two metrics, as shown in Figure 3 and
Table 4. In short, this graph shows HV is preferred for DM when it comes to using one
metric, while the rest of these metrics only become desirable when it comes to using more
than one metric.

Figure 10. Top metrics distribution over the study groups.
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Table 4. List of study groups and their references.

Study Group Reference Total

M0 [7,47–82] 37
M1 [83–101] 19
M2 [3,46,102–123] 24
M3 [124–134] 11
M4 [135–140] 6
M5 [141–144] 4
M6 [6,145–147] 4

RQ5: How well do the current studies in SBSE use performance metrics?
In Table 4, the total 105 articles and the study groups (M0 to M6) together with their

references are reported. The total number of articles in each set (as earlier mentioned)
together with the total number of unique metrics employed in each set and the total
frequencies of use shown in Figure 10 visually emphasize that more metrics are used in
sets M2, M3, M4, M5, and M6. Thus, while the articles involved are fewer in quantity,
more diverse metrics were used.

Regarding the data presented in Figure 11, it is worth mentioning that the M1 group
has a total of 19 studies that used single metrics, comprising a total of two unique metrics
(HV and IGD) with a frequency of 19; however, 18 of them were HV, while the remaining
one was IGD. In the same figure, the rest of the groups maintain a good diversity of
metrics. This indicates that few studies utilized multiple metrics in their research, but
the total number of unique metrics was high. For example, studies that employed more
than four metrics employed the highest number of metrics: M3 = 16, M4 = 11, M5 = 15,
and M6 = 10 metrics.

Figure 11. Total studies in each group, unique metrics, and their frequencies.

RQ6: What are the number of objectives used in the studies?
Figure 12 shows the number of objective functions or problems formulated in the

community. As above-mentioned there are MOPs with no more than three objectives
(2 and 3) and MaOPs with more than three objectives. As shown in Figure 12, two and
three objectives are the most re-formulated problems, while there are increasing interest
in the community in formulating MaOPs compared to previous studies’ review [19], al-
though there are number of studies that formulated a different number of objectives in a
single study, such as References [75,76,86,91,95,96,102,108,109,117,122–125,133,138,146,147].
Table 5 references of these objectives are stated.
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Figure 12. Studies using number of objectives.

Table 5. Number of objectives used in the studies and their references list.

Number of Objective Reference

Two Objectives
[7,46,47,50,51,56,57,62–64,67,69,72–74,76,80,81,84,86,88–91,95,99,100,104,106,108,109,113–115,119–
121,123–126,130–132,134,137–140,142,144]

Three Objectives
[49,53,55,66,68,70,71,75–78,82,83,85–87,91,94,95,97,102,103,105,107,109,110,116–118,122–125,127–
129,136,145]

Four Objectives [3,48,52,54,58,60,65,75,79,96,102,108,117,122,133,138,141,146,147]
Five Objectives [6,59,61,93,98,101,109,133,135,143,146,147]
Six Objectives [92]
Seven Objectives [96]
Nine Objectives [111,112]

RQ7: What are the applied areas in SE of the studies?
To answer this question, we adopt the grouping made by the previous related stud-

ies [19,20]. Figure 13 shows the studies’ distribution of common software engineering areas.
As shown in the graph, software testing is the most applied area, while the graph shows
a decline for software design, requirements, management, and verifications, respectively.
This also indicates that the SBSE community practically applied many applicable areas
in SE fields, and we believe some are still not mature, yet they are gaining popularity in
the community. On the other hand, some questions may arise regarding the popularity
of software testing or design. There are many convincing facts, and some are historically
related. For example, early SBSE studies were on software testing, and this might lead to a
new research gap or discoveries that result in further investigation. Another fact is that
software testing is a perfect fit for automation that might be applicable to SBSE, as well,
although testing activities are considered the most expensive in SE in terms of time, cost,
and resources. Regarding this aspect, practitioners might prefer to optimize conflicting
objectives, while SBSE pioneers believe the metric richness in SE fields is a perfect fit for
applying search-based methods. However, it is unknown if testing and design have more
metrics compared to other fields. Table 6 lists the references for applied areas in SE.
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Figure 13. Studies by applied areas in SE.

Table 6. List of references of the applied areas.

Metrics References

Management [7,49,56,71,78,89,102,122,128,129,135,141]
Requirements [6,69,88,90,96,101,104–107,116,121,126,130,131,133,134,137,143,146,147]
Design [3,47,48,51–55,58,59,61–63,65,67,68,77,79,87,95,98,99,103,109–115,123,132,136,145]
Testing [46,50,57,60,64,66,70,72–76,80–86,91–94,97,100,108,117,118,120,124,125,127,138–140,142,144]
Verification [119]

RQ8: What are the performance metrics distribution in each SE applied areas?
In this section, we show how the different performance metrics, based on the grouping

(M0–M6) are distributed on the applied areas reported in Figure 13. Regarding the data
presented in Figure 14 shows that requirement-based studies are the lowest in numbers
in M0 group (studies reported zero metric), only one study contributes to this list, while
design-based publications are the highest with a total of 17 studies in the same group, yet,
both requirement and design studies maintained consistency with the rest of the groups
(M1 to M6), except design-based studies which had not appeared in M5 group. On the
other hand, studies under management areas are the second-lowest according to M0, M2,
and M3 sets, but also appeared in M4 and M5. Although the testing areas are the highest
in numbers and verification studies are the lowest, yet, testing areas become the second
highest in M0, and ranked in second-lowest in M2 and M3, while there are studies that
employed four metrics and six metrics in M4 and M5, respectively, but had not appeared
in M6 group. Generally, the graph shows a decline in the studies that employed more than
two metrics.
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Figure 14. SE applied areas over the study groups.

5. Discussion and Conclusions

Performance metrics have been identified as having a promising role in better as-
sessing the quality of solutions provided by evolutionary algorithms and perform better
in comparison with them, thus becoming a key ingredient to support the preferences of
decision-makers. In this paper, the aim was to show the current practices or how the SBSE
practitioners used these metrics. It is believed such discoveries will eventually highlight
the possible sets of metrics, objective functions, or new areas in SE to explore in the future.
To achieve this, we carried out a systematic review with a guided protocol to carefully
(systematically) plan, collect, and present the dominant results, in detail. We technically
defined the relevant research questions to answer and also conducted a manual search from
a set of digital libraries to select the candidate papers. Inclusion and exclusion criteria were
applied, and finally, the desired extracted data were stored in Excel worksheets. We then
discussed the outcomes using tables and graphs to better digest the data. As a result,
the final 105 relevant publications revealed that there are (based on the groupings) several
studies that employed zero metrics (solver metrics). In the SBSE community, it is preferable
to use more metrics, and it is worth noting that only four studies employed six metrics,
and four others used five metrics. In addition, the analysis also discovered the number of
sets of metrics used in the studies and their ranks over the study groups. To this effect, HV
was the most widely used individual performance metric, while for groups, HV, IGD, GD,
and the hypercube-based diversity metric are top-ranked, respectively (they had frequency
scores of more 10). On the other hand, there is increasing interest in the community in
re-formulating MaOPs with more than three objectives, additionally, software testing was
the most applied area in software engineering.

Furthermore, we addressed some of the open issues found in our study, and they
are mainly related to these three main areas: Performance metrics, number of objectives,
and SE application areas. All the issues related to these should be addressed in the future.

Performance metric: We found that there are remarkable studies that did not employ
performance metrics, while those that used two metrics increased in number, and the
remaining studies, specifically in sets M3, M4, M5, and M6, used more diverse metrics.
However, in the literature, most researchers did not agree to evaluate their algorithms based
on a high number of performance metrics, but they agreed that no single performance
metric alone can assess all the qualities of the solution sets, since each metric can only be
targeted to evaluate a single or two desired properties.
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Another issue is metrics preference among researchers. We observed that some of the
studies justify the reason they employ these metrics as either based on a metric’s popularity
(i.e., usage or related work in which it was used) or if it best fits their choice of algorithm (i.e.,
References [6,86,87]), while some other studies adopted some of these metrics because they
are hybrids. For example, HV can cover both convergence and diversity [87], while some
others avoided using more metrics because that might have led to different conclusions
or threatened the validity of their results [122]. Thus, such gaps will remain in their
future work [122]. Some avoid these metrics, which would be a visible gap in their future
work [75]. With regard to such practice, it is also clear that the use of performance metrics
has received little attention. Since the current practice is dominated using 0 to 2 metrics,
hence such comparison might be unfair. Thus, we recommend employing more diverse
sets of metrics, since they have been found to be low in quantity in current practice.

Other possible research gaps that deserve further investigation include other metrics,
such as statistical measures, since these automated performance metrics produce sets of
numerical values, and these data require the application of further statistical analysis;
however, it is debatable which statistical model is best fit to describe these data.

The number of objectives: We believe in advancing the current practice of defining the
objective functions in SBSE will eventually reveal new research gaps. However, there are
increasing interests in the community in re-formulating MaOPs with more than three objec-
tives. We found not all the research studies define a new problem(s), some studies apply
the existed problems [102,122,125]. This depends on the objective of the paper, some papers
intend to formulate new problems while others only propose a new algorithm or compare
existed algorithms by either applying existed formulated problems or considering new
problem formulation. However, this does not indicate the practitioners are relaying the
existed formulated problems, since the majority of them are formulating new problems
with several objective functions, while we have seen studies employing a different number
of objectives in a single study [75,76,86,91,95,96,102,108,109,117,122–125,133,138,146,147].
Such practice of formulating a limited number of objectives shows the practitioners are
either facing difficulties in re-formulating more objective functions that normally need a
mathematical definition or defining a small number of objectives that are less expensive and
easy to perform. It is worth mentioning that the community is lacking theoretical studies
or discussions. Although, traditionally SBSE community re-formulated a single objective
problem, and currently dominated by two to three objectives, however, this indicates,
the opportunities of exploring a wide range of objectives are open issues.

Software engineering application areas: We observed that some of the applied areas
in SE are less explored, such as requirement, management, and verification, while some
areas are highly explored, such as software testing and software design. It is worth noting,
that the less dominated areas indicate there are limited problems to solve in that area while
the dominant areas are considered to have more diversity of problems to solve.

It is also interesting to address why some software engineering areas are less applied
compared to others. Some of the factors that can be linked to this include: Some areas in
software engineering disciplines are characterized to be expensive in terms of cost and time,
such areas include software testing. However, decision-makers might prefer solving such
constraints to have the best alternative solutions. Software testing was also considered one
of those SBSE practitioners previously applying, however, over the years, the discussion
was growing significantly while finding new research gaps become easy, and interest in
responding to such future works is another contributing factor. Another fact is that software
testing is easy to automate, thus, such automated problems are easy to measure, and such
measurements are used to guide the fitness functions. Although SBSE pioneers argue that
the software engineering field is rich in metric, however, this makes many areas in software
engineering subfields to become fit for re-formulating as a multi-objective problem and
applying search-based methods. However, it is required a future investigation and finding
if software testing and software design have more metrics compared to other subfields
such as management, requirement, and verification. Besides, it is recommended to explore
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more software engineering fields that are least applied and re-formulate their problem (e.g.,
formal methods).
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