47,070 research outputs found

    Formation of Quantum Shock Waves by Merging and Splitting Bose-Einstein Condensates

    Full text link
    The processes of merging and splitting dilute-gas Bose-Einstein condensates are studied in the nonadiabatic, high-density regime. Rich dynamics are found. Depending on the experimental parameters, uniform soliton trains containing more than ten solitons or the formation of a high-density bulge as well as quantum (or dispersive) shock waves are observed experimentally within merged BECs. Our numerical simulations indicate the formation of many vortex rings. In the case of splitting a BEC, the transition from sound-wave formation to dispersive shock-wave formation is studied by use of increasingly stronger splitting barriers. These experiments realize prototypical dispersive shock situations.Comment: 10 pages, 8 figure

    Formation Splitting and Merging

    Get PDF
    This paper presents an approach to swarm split and rejoin maneuvers of a system of multi-robots formations. A post split formation is split into low-degree sub-swarms when the swarm encounters an obstacle. The sub-swarms reestablish links with other sub-swarms and converge into its pre-split formation after avoiding collisions with the obstacles. The leader-follower control strategy is used for maintaining formation shape in the sub-swarms. A set of artificial potential field functions is proposed for avoiding inter-robot, inter-formation and obstacle collisions and attraction to their designated targets. The Direct Method of Lyapunov is then used to establish stability of the given system. The effectiveness of the proposed nonlinear acceleration control laws is demonstrated through a computer simulation

    Distributed Formation Control for Multi-Vehicle Systems With Splitting and Merging Capability

    Get PDF
    This letter develops a novel strategy for splitting and merging of agents travelling in formation. The method converts the formation control problem into an optimization problem, which is solved among the agents in a distributed fashion. The proposed control strategy is one type of Distributed Model Predictive Control (DMPC) which allows the system to cope with disturbances and dynamic environments. A modified Alternating Direction Method of Multipliers (ADMM) is designed to solve the trajectory optimization problem and achieve formation scaling. Furthermore, a mechanism is designed to implement path homotopy in splitting and merging of the formation, which examines the H-signature of the generated trajectories. Simulation shows that, by using the proposed method, the formation is able to automatically resize and dynamically split to better avoid obstacles, even in the case of losing communication among agents. Upon splitting the newly formed groups proceed and merge again when it becomes possible

    A coincidence of disturbed morphology and blue UV colour: minor-merger driven star formation in early-type galaxies at z~0.6

    Get PDF
    We exploit multi-wavelength photometry of early-type galaxies (ETGs) in the COSMOS survey to demonstrate that the low-level star formation activity in the ETG population at intermediate redshift is likely to be driven by minor mergers. Splitting the ETGs into galaxies that show disturbed morphologies indicative of recent merging and those that appear relaxed, we find that ~32% of the ETG population appears to be morphologically disturbed. While the relaxed objects are almost entirely contained within the UV red sequence, their morphologically disturbed counterparts dominate the scatter to blue UV colours, regardless of luminosity. Empirically and theoretically determined major-merger rates in the redshift range z<1 are several times too low to account for the fraction of disturbed ETGs in our sample, suggesting that minor mergers represent the principal mechanism driving the observed star formation activity in our sample. The young stellar components forming in these events have ages between 0.03 and 0.3 Myrs and typically contribute <10% of the stellar mass of the remnant. Together with recent work which demonstrates that the structural evolution of nearby ETGs is consistent with one or more minor mergers, our results indicate that the overall evolution of massive ETGs may be heavily influenced by minor merging at late epochs and highlights the need to systematically study this process in future observational surveys.Comment: MNRAS in press (significant revisions to version 1

    Formation and kinetics of transient metastable states in mixtures under coupled phase ordering and chemical demixing

    Full text link
    We present theory and simulation of simultaneous chemical demixing and phase ordering in a polymer-liquid crystal mixture in conditions where isotropic- isotropic phase separation is metastable with respect to isotropic-nematic phase transition. It is found that mesophase formation proceeds by a transient metastable phase that surround the ordered phase, and whose lifetime is a function of the ratio of diffusional to orientational mobilities. It is shown that kinetic phase ordering in polymer-mesogen mixtures is analogous to kinetic crystallization in polymer solutions.Comment: 17 pages, 5 figures accepted for publication in EP

    Coalitional Games in MISO Interference Channels: Epsilon-Core and Coalition Structure Stable Set

    Full text link
    The multiple-input single-output interference channel is considered. Each transmitter is assumed to know the channels between itself and all receivers perfectly and the receivers are assumed to treat interference as additive noise. In this setting, noncooperative transmission does not take into account the interference generated at other receivers which generally leads to inefficient performance of the links. To improve this situation, we study cooperation between the links using coalitional games. The players (links) in a coalition either perform zero forcing transmission or Wiener filter precoding to each other. The ϵ\epsilon-core is a solution concept for coalitional games which takes into account the overhead required in coalition deviation. We provide necessary and sufficient conditions for the strong and weak ϵ\epsilon-core of our coalitional game not to be empty with zero forcing transmission. Since, the ϵ\epsilon-core only considers the possibility of joint cooperation of all links, we study coalitional games in partition form in which several distinct coalitions can form. We propose a polynomial time distributed coalition formation algorithm based on coalition merging and prove that its solution lies in the coalition structure stable set of our coalition formation game. Simulation results reveal the cooperation gains for different coalition formation complexities and deviation overhead models.Comment: to appear in IEEE Transactions on Signal Processing, 14 pages, 14 figures, 3 table

    Anisotropic merging and splitting of dipolar Bose-Einstein condensates

    Full text link
    We study the merging and splitting of quasi-two-dimensional Bose-Einstein condensates with strong dipolar interactions. We observe that if the dipoles have a non-zero component in the plane of the condensate, the dynamics of merging or splitting along two orthogonal directions, parallel and perpendicular to the projection of dipoles on the plane of the condensate are different. The anisotropic merging and splitting of the condensate is a manifestation of the anisotropy of the roton-like mode in the dipolar system. The difference in dynamics disappears if the dipoles are oriented at right angles to the plane of the condensate as in this case the Bogoliubov dispersion, despite having roton-like features, is isotropic.Comment: 9 pages and 9 figure
    corecore