63 research outputs found

    Natural Heterogeneity Prevents Synchronization of Fridges With Deterministic Frequency Control

    Get PDF
    Appliances that cycle on and off throughout the day, such as fridges, freezers, and air-conditioners can collectively provide second-by-second electricity supply-demand balancing known as frequency response. Previous studies have shown that deterministic temperature set-point control of a homogeneous population of such appliances can cause herding behavior with detrimental effects on the system. Here, we use computational modeling to establish the minimum population heterogeneity required to prevent herding problems without requiring centralized or stochastic control. We discover a linear relationship between the benefits that fridges can provide and their number. The impact on system benefits and on fridge temperatures of varying fridge frequency sensitivity is also explored, and a viable range for sensitivity (the control parameter) is proposed. Our approach involves simulating a large heterogeneous population of frequency-sensitive fridges using 12 months' GB system data from National Grid. We compare the historic frequency response from other response providers with their response in our fridge simulations to determine the benefits of the fridge population response. We find that a fridge population can offer a valuable demand-side response service to the electricity system operator, requiring neither the expensive infrastructure of centralized control nor the regular intervention of stochastic control for temperature cycle desynchronization

    Dynamic demand and mean-field games

    Get PDF
    Within the realm of smart buildings and smart cities, dynamic response management is playing an ever-increasing role thus attracting the attention of scientists from different disciplines. Dynamic demand response management involves a set of operations aiming at decentralizing the control of loads in large and complex power networks. Each single appliance is fully responsive and readjusts its energy demand to the overall network load. A main issue is related to mains frequency oscillations resulting from an unbalance between supply and demand. In a nutshell, this paper contributes to the topic by equipping each signal consumer with strategic insight. In particular, we highlight three main contributions and a few other minor contributions. First, we design a mean-field game for a population of thermostatically controlled loads (TCLs), study the mean-field equilibrium for the deterministic mean-field game and investigate on asymptotic stability for the microscopic dynamics. Second, we extend the analysis and design to uncertain models which involve both stochastic or deterministic disturbances. This leads to robust mean-field equilibrium strategies guaranteeing stochastic and worst-case stability, respectively. Minor contributions involve the use of stochastic control strategies rather than deterministic, and some numerical studies illustrating the efficacy of the proposed strategies

    Robust Engineering of Dynamic Structures in Complex Networks

    Get PDF
    Populations of nearly identical dynamical systems are ubiquitous in natural and engineered systems, in which each unit plays a crucial role in determining the functioning of the ensemble. Robust and optimal control of such large collections of dynamical units remains a grand challenge, especially, when these units interact and form a complex network. Motivated by compelling practical problems in power systems, neural engineering and quantum control, where individual units often have to work in tandem to achieve a desired dynamic behavior, e.g., maintaining synchronization of generators in a power grid or conveying information in a neuronal network; in this dissertation, we focus on developing novel analytical tools and optimal control policies for large-scale ensembles and networks. To this end, we first formulate and solve an optimal tracking control problem for bilinear systems. We developed an iterative algorithm that synthesizes the optimal control input by solving a sequence of state-dependent differential equations that characterize the optimal solution. This iterative scheme is then extended to treat isolated population or networked systems. We demonstrate the robustness and versatility of the iterative control algorithm through diverse applications from different fields, involving nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI), electrochemistry, neuroscience, and neural engineering. For example, we design synchronization controls for optimal manipulation of spatiotemporal spike patterns in neuron ensembles. Such a task plays an important role in neural systems. Furthermore, we show that the formation of such spatiotemporal patterns is restricted when the network of neurons is only partially controllable. In neural circuitry, for instance, loss of controllability could imply loss of neural functions. In addition, we employ the phase reduction theory to leverage the development of novel control paradigms for cyclic deferrable loads, e.g., air conditioners, that are used to support grid stability through demand response (DR) programs. More importantly, we introduce novel theoretical tools for evaluating DR capacity and bandwidth. We also study pinning control of complex networks, where we establish a control-theoretic approach to identifying the most influential nodes in both undirected and directed complex networks. Such pinning strategies have extensive practical implications, e.g., identifying the most influential spreaders in epidemic and social networks, and lead to the discovery of degenerate networks, where the most influential node relocates depending on the coupling strength. This phenomenon had not been discovered until our recent study

    Large Scale Demand Response of Thermostatic Loads

    Get PDF

    DEEP REINFORCEMENT LEARNING AND MODEL PREDICTIVE CONTROL APPROACHES FOR THE SCHEDULED OPERATION OF DOMESTIC REFRIGERATORS

    Get PDF
    Excess capacity of the UK’s national grid is widely quoted to be reducing to around 4% over the coming years as a consequence of increased economic growth (and hence power usage) and reductions in power generation plants. There is concern that short term variations in power demand could lead to serious wide-scale disruption on a national scale. This is therefore spawning greater attention on augmenting traditional generation plants with renewable and localized energy storage technologies, and consideration of improved demand side responses (DSR), where power consumers are incentivized to switch off assets when the grid is under pressure. It is estimated, for instance, that refrigeration/HVAC systems alone could account for ~14% of the total UK energy usage, with refrigeration and water heating/cooling systems, in particular, being able to act as real-time ‘buffer’ technologies that can be demand-managed to accommodate transient demands by being switched-off for short periods without damaging their outputs. Large populations of thermostatically controlled loads (TCLs) hold significant potential for performing ancillary services in power systems since they are well-established and widely distributed around the power network. In the domestic sector, refrigerators and freezers collectively constitute a very large electrical load since they are continuously connected and are present in almost most households. The rapid proliferation of the ‘Internet of Things’ (IoT) now affords the opportunity to monitor and visualise smart buildings appliances performance and specifically, schedule the operation of the widely distributed domestic refrigerator and freezers to collectively improve energy efficiency and reduce peak power consumption on the electrical grid. To accomplish this, this research proposes the real-time estimation of the thermal mass of individual refrigerators in a network using on-line parameter identification, and the co-ordinated (ON-OFF) scheduling of the refrigerator compressors to maintain their respective temperatures within specified hysteresis bands—commensurate with accommodating food safety standards. Custom Model Predictive Control (MPC) schemes and a Machine Learning algorithm (Reinforcement Learning) are researched to realize an appropriate scheduling methodology which is implemented through COTS IoT hardware. Benefits afforded by the proposed schemes are investigated through experimental trials which show that the co-ordinated operation of domestic refrigerators can 1) reduce the peak power consumption as seen from the perspective of the electrical power grid (i.e. peak power shaving), 2) can adaptively control the temperature hysteresis band of individual refrigerators to increase operational efficiency, and 3) contribute to a widely distributed aggregated load shed for Demand Side Response purposes in order to aid grid stability. Comparative studies of measurements from experimental trials show that the co-ordinated scheduling of refrigerators allows energy savings of between 19% and 29% compared to their traditional isolated (non-co-operative) operation. Moreover, by adaptively changing the hysteresis bands of individual fridges in response to changes in thermal behaviour, a further 20% of savings in energy are possible at local refrigerator level, thereby providing benefits to both network supplier and individual consumer

    A comparative thermoacoustic insulation study of silica aerogels reinforced with reclaimed textile fibres: cotton, polyester and wool

    Get PDF
    Silica aerogels are highly porous materials with exceptional thermal insulation performance. They become even more attractive if combined thermal and acoustic insulation is achieved. Silica aerogel composites reinforced with fibres are an ingenious way to surpass the fragility stemmed from the aerogel’s intrinsic porosity, and textile fibres are good sound absorption materials. Reclaimed fibres are a relatively low-cost feedstock and were obtained in this work exclusively through mechanical processes from textile wastes, thus promoting the concept of circular economy, namely for cotton, polyester and wool fibres. These reclaimed fibres were used as reinforcement matrices for silica aerogel composites obtained from sol–gel transformation of tetraethyl orthosilicate and isobutyltriethoxysilane/or vinyltrimethoxysilane precursors and dried at ambient pressure after silylation. Silica aerogel composites reinforced with reclaimed cotton fibres had the best sound absorption coefficient (a peak value of 0.89), while the polyester-reinforced composite exhibited the lowest thermal conductivity (k = ~24 mW m−1 K−1, Hot Disk). The better combined results on thermal and acoustic insulation were achieved by the wool-reinforced composites. The thermal conductivity values were less than 27 mW m−1 K−1, and the sound absorption coefficient achieved a peak value of 0.85. Therefore, the aerogel composites developed here can be selected for thermal or/and acoustic barriers by choosing a suitable type of fibre. Their design and preparation protocol followed environmental-friendly and cost-effective approaches.Teresa Linhares acknowledges the PhD grant Ref. SFRH/BD/131819/2017, attributed by Fundação para a Ciência e Tecnologia, I.P. (FCT, Portugal), funded by national funds from MCTES (Ministério da Ciência, Tecnologia e Ensino Superior) and, when appropriate, co-funded by the European Commission through the European Social Fund. Consumables for the syntheses and characterizations performed at CIEPQPF and 2C2T research units were funded by the European Regional Development Fund (ERDF), through COMPETE 2020 Operational Programme for Competitiveness and Internationalization, combined with Portuguese National Funds, through FCT, I.P. under the projects POCI-01-0145-FEDER-006910 and POCI-01-0145-FEDER-007136 (FCT Refs. UIDB/EQU/00102/2020 and UID/CTM/00264/2020, respectively)

    Batteries and Supercapacitors Aging

    Get PDF
    Electrochemical energy storage is a key element of systems in a wide range of sectors, such as electro-mobility, portable devices, and renewable energy. The energy storage systems (ESSs) considered here are batteries, supercapacitors, and hybrid components such as lithium-ion capacitors. The durability of ESSs determines the total cost of ownership, the global impacts (lifecycle) on a large portion of these applications and, thus, their viability. Understanding ESS aging is a key to optimizing their design and usability in terms of their intended applications. Knowledge of ESS aging is also essential to improve their dependability (reliability, availability, maintainability, and safety). This Special Issue includes 12 research papers and 1 review article focusing on battery, supercapacitor, and hybrid capacitor aging

    Publications of the Jet Propulsion Laboratory, July 1969 - June 1970

    Get PDF
    JPL bibliography of technical reports released from July 1969 through June 197
    • …
    corecore