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ABSTRACT 

Excess capacity of the UK’s national grid is widely quoted to be reducing to around 4% 

over the coming years [1] as a consequence of increased economic growth (and hence 

power usage) and reductions in power generation plants. There is concern that short 

term variations in power demand could lead to serious wide-scale disruption on a 

national scale. This is therefore spawning greater attention on augmenting traditional 

generation plants with renewable and localized energy storage technologies, and 

consideration of improved demand side responses (DSR), where power consumers are 

incentivized to switch off assets when the grid is under pressure. It is estimated, for 

instance, that refrigeration/HVAC systems alone could account for ~14% of the total 

UK energy usage, with refrigeration and water heating/cooling systems, in particular, 

being able to act as real-time ‘buffer’ technologies that can be demand-managed to 

accommodate transient demands by being switched-off for short periods without 

damaging their outputs. Large populations of thermostatically controlled loads (TCLs) 

hold significant potential for performing ancillary services in power systems since they 

are well-established and widely distributed around the power network. In the domestic 

sector, refrigerators and freezers collectively constitute a very large electrical load since 

they are continuously connected and are present in almost most households. The rapid 

proliferation of the ‘Internet of Things’ (IoT) now affords the opportunity to monitor 

and visualise smart buildings appliances performance and specifically, schedule the 

operation of the widely distributed domestic refrigerator and freezers to collectively 

improve energy efficiency and reduce peak power consumption on the electrical grid. 

To accomplish this, this research proposes the real-time estimation of the thermal mass 

of individual refrigerators in a network using on-line parameter identification, and the 

co-ordinated (ON-OFF) scheduling of the refrigerator compressors to maintain their 

respective temperatures within specified hysteresis bands—commensurate with 

accommodating food safety standards. Custom Model Predictive Control (MPC) 

schemes and a Machine Learning algorithm (Reinforcement Learning) are researched to 

realize an appropriate scheduling methodology which is implemented through COTS 

IoT hardware. Benefits afforded by the proposed schemes are investigated through 

experimental trials which show that the co-ordinated operation of domestic refrigerators 

can 1) reduce the peak power consumption as seen from the perspective of the electrical 

power grid (i.e. peak power shaving), 2) can adaptively control the temperature 

hysteresis band of individual refrigerators to increase operational efficiency, and 3) 



Demand Management using in-situ Heating and Cooling Capacity for Energy Security and Sustainability – 

Mohammad Reza Zavvar Sabegh – June 2021 

contribute to a widely distributed aggregated load shed for Demand Side Response 

purposes in order to aid grid stability. Comparative studies of measurements from 

experimental trials show that the co-ordinated scheduling of refrigerators allows energy 

savings of between 19% and 29% compared to their traditional isolated (non-co-

operative) operation. Moreover, by adaptively changing the hysteresis bands of 

individual fridges in response to changes in thermal behaviour, a further 20% of savings 

in energy are possible at local refrigerator level, thereby providing benefits to both 

network supplier and individual consumer. 
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1 INTRODUCTION 

1.1 Demand Side Response in the Residential Sector 

Demand Side Response (DSR) focuses on adjusting demand to follow power production 

and infrastructure availability for effective and efficient power system operation. With 

fossil fuels becoming ever more costly and the use of renewable energy power rapidly 

increasing in the UK [1], it has become increasingly problematic to match supply with 

demand. By increasing the penetration of renewables in power systems, demand side 

participation becomes more important. It is well known that demand response increases 

system reliability and flexibility to manage the variability and uncertainty of some 

renewable energy resources, decreases the cost of operation, and enhances system 

efficiency. Participation of demand response can be achieved by active consumer 

participation in real-time to maintain the balance between generation and demand using 

two-way communication [2], [3]. DSR can vary from a temporary short period demand 

adjustment to a permanent change in the load. Power system demands can be broadly 

classified as industrial, commercial, and domestic [4]. The residential sector, in 

particular, has suitable appliances present in most households eg. refrigerators and 

freezers, which provides an opportunity to devise and test candidate technologies that 

can be widely deployed. The total load that can be released by controlling small 
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domestic loads cannot individually match those of large industries. However, the 

unavailability of large industrial loads for control has a substantial impact on the service 

commitment to the power system. Studies have therefore considered exploiting the 

potential availability of the widely distributed residential sector [5], [6]. The authors of 

[5] found that more frequent and short-term switching (On/Off) of suitable residential 

loads are more acceptable than infrequent and long curtailment. The author of [6] 

analysed different household appliances and their potential to delay (remain Off) their 

load consumption and concluded that 5% to 20% of these devices could use a delay 

option in the future. 

1.2 Thermostatically Controlled Loads 

Thermostatically Controlled Loads (TCLs) have been identified as key contributors to 

facilitate the implementation of improved power control and demand side response 

schemes. Refrigerators in particular form a fundamental part of daily power 

consumption with around 1.4 billion fridges being used across the world which 

consume around 650 TWh per year [7]. 

In 2018, the total demand for electricity in the UK was 334 TWh over the year, with 

domestic energy consumption accounting for 31.7% of the total [8], [9]. Buildings are 

therefore natural candidates for providing demand-side flexibility. A study in [10] 

attempted to quantify the DSR potential of TCLs by calculating their average electricity 

consumption in households, as shown in Figure 1.1. The number of appliances in the 

calculation is estimated through a questionnaire survey. The average annual electricity 

consumption of a specific appliance is calculated from the average consumption of both 

new and decade old equipment. Among those loads, thermostatically controlled 

appliances, including space and water heaters, refrigerators and freezers, have presented 

great value, due to their considerable volume and stable profile during the day and 

throughout the year. For example, refrigerators have the highest electricity 
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consumption, as shown in Figure 1.1, followed by the freezers and heaters, and are all 

thermostatically controlled. 

 

Figure 1.1: The average electricity consumption of different household appliance [11] 

In 2019, there were 27.8 million households in the UK (Office for National Statistics, 

2015), and it is estimated that there are around 50 million refrigerators in the UK along 

with an annual energy consumption approaching 18 TWh/year [12]. Notably, the UK 

consumes ~1/69th of the total electrical power generated globally, and ~1/36th of the 

electricity globally consumed for refrigeration and freezing [13], [14]. Based on Statista 

reports, Figure 1.2 presents the brands of refrigerators and combined fridge/freezers 

ranked by their number of users in the UK in 2018. As can be seen, the highest value is 

owned by Beko. Beko fridges and fridge/freezers use a dial to control both the fridge 

and freezer temperatures. The dial displays 5 numbers, where 0 indicates no cooling, 1 

and 5 indicate the warmest and coldest temperatures, respectively. Beko's American 

Style Fridge Freezers offer digital control panel that sits flush within the main doors. 

Moreover, the American Style are powered by two separate cooling systems which use 

automatic fans. The fridge focuses on providing 2x faster cooling and keeping humidity 

levels high to maintain food freshness while the freezer focuses on maintaining a dry 

environment to prevent ice build-up. In a fridge freezer with a single cooling system, 
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both the fridge and freezer compartments work collectively. Whereas in a dual cooling 

system, the fridge and freezer compartments work separately which allows each 

compartment to focus on specific tasks, such as keeping food fresh and the freezer free 

of ice build-up [124].  

 

Figure 1.2: The number of UK users of brands of refrigerators and fridge/freezers in 

2018 

The main feature which makes refrigerators a strong candidate for direct load control 

demand response programs is that they have a stable aggregate load profile throughout 

the day regardless of the small variations resulting from changes in the ambient 

temperature in summer and winter and the frequency of door openings which increases 

in the evening around dinner time. Due to the thermal storage of the chilled contents, 

short interruptions in the power supply of refrigerators should not affect the service 

provided so, fridges with thermal are best suited for DSR. 

1.3 Research Objectives 

The research presented in this thesis is divided into four main parts. The first provides a 

real-time recursive based system identification strategy to monitor and estimate the 
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internal temperature of individual domestic refrigerators based on their internal thermal 

mass (product). A first-order ARX (Autoregressive with Exogenous Variables) model is 

implemented then, real-time recursive based system identification strategies with and 

without considering ambient temperature effects are implemented and compared. The 

results of the experimental trials demonstrate that a real-time model update can identify 

the refrigerator dynamics and respond to common disturbances such as door openings. 

The second proposes the deployment of an IoT scheme for local and remote accesses to 

monitor and control the appliances and schedule the operation of aggregated domestic 

refrigerators. An IP-based synchronized wireless mesh network is implemented through 

IoT hardware (based on a NodeMCU) and Google Sheets to monitor and schedule the 

operation of aggregated domestic refrigerators. Benefits afforded by the proposed 

technique are investigated through experimental trials sited in three different domestic 

locations in the city of Lincoln, UK. Results show that the proposed network is able to 

monitor the widely distributed refrigerators and schedule the appliances. In parts three 

and four of the thesis, the use of a new, custom MPC control scheme and a Machine 

Learning algorithm (Reinforcement Learning) are developed, respectively, for jointly 

scheduling the operation of multiple distributed refrigerators. The effectiveness of the 

scheduling approaches is analysed through experimental trials on a suite of common 

domestic refrigerators distributed across Lincoln (UK), which is shown to facilitate 

peak power shaving which, if expanded to a larger scale, could aid grid stability and 

contribute to effective DSR. Moreover, the impact of temperature hysteresis bands is 

investigated, and it is shown that by adaptively changing the hysteresis bands of 

individual fridges in response to changes in thermal behaviour, 20% of savings in 

energy are possible at the local refrigerator level. 
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2 LITERATURE SURVEY 

2.1 Smart Grid and Demand Side Response 

The smart grid was introduced in 1980 to provide cooperation between suppliers and 

consumers in response to price and system reliability concerns. This approach was 

initially termed “homeostasis utility control”. An approach that uses suppliers' and 

consumers' economic reactions to price together with developments in communication 

and computation hardware were used to devise internally correcting control schemes 

that are efficient, accurate, and consistent [15]. To build a national smart grid, a large 

number of renewable sources are required (both large scale and distributed) along with 

the electrification of transportation and heating. An integrated approach to control and 

communication will enable: 1) consumer participation in the energy market, 2) energy 

storage and 3) the integration of local and national electricity markets [16]. As well as 

changing the supply side, the demand side can also be transformed. The term demand 

side response (DSR) refers to the modification of consumer loads as a result of price or 

grid stability [17]. In order to improve the efficiency of electricity markets and maintain 

system stability, DSR mechanisms have been widely investigated eg. [18]. In a power 

system, aggregated generation and consumption must be balanced almost 
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instantaneously and continuously, and the network operator has various controllable 

reserves to achieve this balance [19]. As a result, power systems are traditionally 

designed and operated according to the 'supply follows demand' principle, which has 

been recently criticized [15]: 

1. Fast activation of reserves leads to inefficient fuel use. 

2. In order to supply the peak demand, additional generation and transportation 

capacity must be available. 

3. The use of fixed electricity prices discourages the consumers to follow the 

supply. 

4. The absence of real-time supply-side information for the consumers, leads to 

vulnerable situation to both short-term and long-term emergencies. 

Accordingly, the concept of demand response in Europe entails that end-user consumers 

adjust their electric usage away from their normal behavioural patterns in response to 

changes in electricity prices, or if their bid is accepted, they can adjust their usage if 

they respond to an incentive payment [20]. The two general types of demand response 

are: 1) controllable demand response that can be dispatched similarly to generation and 

2) dynamic tariff scheme based on price-based demand response [21]. 

Electricity demand is affected by numerous factors: 1) weather [22], [23], 2) building 

characteristics [24]-[26], 3) design of appliances [27], [28] and 4) Control of the 

domestic appliances [29], [30]. These factors contribute to the intensity of demand. 

Homes that are poorly insulated, for example, use more energy to reach the same 

temperature as those that are well insulated. Older appliances tend to be less efficient 

and use more electricity, gas, and water than newer ones. Heating and cooling loads are 

directly affected by the weather. As a result, it helps to clarify how energy demand is 

considered. 
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2.2 Peak Energy Demand and the Residential Sector 

Providing Demand Side Response in the residential sector and balancing supply and 

demand will require a combination of using aggregate load profiles and patterns of 

activity to inform interventions on load shifting. Using social practice approaches, it can 

be identified what is routine and what activities in the household are flexible in terms of 

energy consumption. In other words, the use of electricity is typically more predictable 

and repetitive during a particular time of day [31]. Flexible consumption and 

consumption timing are strongly influenced by household economics. Individuals' 

behaviour can be described as flexible decision makers that require little or no 

investment in the short or long term [32]. As a result of consumers' unwillingness to 

swap out one appliance use for another, the supposedly flexible component of 

consumption is in fact limited in its utility as an indicator of energy elasticity [33]. The 

term inflexibility is commonly used when describing inelasticity in energy economics 

literature [34]. Residential electricity demand is inelastic due to two main factors. Due 

to the flat tariffs that have been imposed on the vast majority of residential consumers 

over the past decade, information about true electricity costs are unavailable. It is 

typical to expect that a 100% price increase will result in a 20% change in demand [35]. 

As a result of the prevalence of flat tariffs in the retail market, customers are particularly 

unresponsive. As a result of the low supply of energy during a time of simultaneous 

demand, network operators are therefore compelled to produce additional energy that is 

expensive and often highly carbon-intensive. The second problem is that electricity 

prices are usually too low in developed countries for any significant change in 

behaviour to take place [36]. 

According to UK usage data, people's activities vary dramatically depending on their 

gender and whether or not they have children with them [31]. There are differences 

between men and women in housework, paid work, and media use, for example. For 

instance, early evening consumption is predominantly initiated by women who, broadly 
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over the population, are more likely often finish paid work sooner, pick up children 

from school, take them home, do activities such as entertainment, housework and 

cooking. Over the population men generally return home later and then contribute 

heavily to the evening peak. This type of household behaviour is unlikely change as a 

result of requests to ‘load shift’ during the evening peaks. Meanwhile, a significant 

percentage of people now work from home. Approximately 14 percent of UK workers 

work from home regularly. The number of people working from home has reached its 

highest level since records were kept by the Office for National Statistics: 4.2 million in 

2014 compared to 1.3 million in 1998 [37]. In addition, these statistics indicate that 

home workers are generally employed in high-skilled occupations and statistically earn 

higher salaries. People who work from home are generally less restricted from carrying 

out power consuming activities at particular times of the day. In these scenario, it is 

clear which households will avoid load shifting, but which households could benefit 

more from DSR: electric storage, TCLs, smart appliances, and electric vehicles are all 

potential opportunities. The challenges presented by morning peaks are similar to those 

presented by evening peaks, though the latter includes a greater variety of activities. It is 

therefore more likely to see people doing the same thing in the morning than in the 

evening. There are some examples of DSR trialled in the UK such as "Sunshine Tariff" 

and "TIDE". The “Sunshine Tariff” in Wadebridge, Cornwall looked to understand how 

different customers engage with a cheaper daytime tariff and how active they become in 

changing their consumption patterns in response to this price signal. The project aimed 

to resolve network capacity issues in the local area by incentivising customers to use 

electricity between 10am and 4pm in the summer months, which is often when solar 

generation is at its greatest. Participants on the “Sunshine Tariff” on average shifted 10 

percent of their demand into the 10:00-16:00 period. Moreover, the average household 

shifted a total of just under 150 kWh over the 10:00-16:00 period from April to 

September. In order to offset the generation from a 250 kW solar farm, approximately 

650 Sunshine Tariff customers would be required. This would be approximately 20% of 

the homes in Wadebridge [125]. TIDE uses 100% renewable electricity and it helps 

consumers access low overnight prices and take back control of energy bill [126]. 
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2.3 History of DSR Using Cooling Appliances 

The concept of using domestic cooling appliances to stabilize the grid frequency was 

introduced in the 1980s [38], although more recent investigations have set out to model 

refrigerator populations with authors developing models for largescale aggregated 

networks of TCLs and the impact of cooling appliances on the grid frequency. Studies 

on load shifting by adaptive control of air conditioning of buildings and refrigerated 

warehouses have been considered for some time [39], [40]. DSR with refrigerators as 

primary assets have been considered for several smart grid applications [41]-[45]. 

Specifically, [43] recommend the use of refrigerators for flexible power balancing, 

whilst the authors of [44] propose the inclusion of domestic appliances in congestion 

management and recommend refrigerators and freezers as suitable for load shifting. 

The most widely used control structures used in industry for numerous applications is 

based on traditional Proportional+Integral_Derivative (PID) implementations. The main 

reason for its wide usage is that it is easy to understand and realise eg. it is used from 

simple temperature control applications to complex systems [46], including for 

refrigerators. For instance, [46] used a classical PID control scheme to adjust the fan 

speed of a refrigerator in order to respond to sudden plant outages and maintaining the 

power system’s frequency for a longer period compared to that of a relay controller. 

There are also other, more complex control techniques that have been amalgamated PID 

to provide improved performance, such as fuzzy techniques and neural networks, and 

others that have been developed for adaptive and self-tuning of the PID parameters [47] 

in response to system dynamic changes eg. [48]. The authors of [49] present a study of a 

PI-fuzzy controller for temperature and humidity. The outputs of their controller are 

changed as a result of the power consumption of the refrigerator and evaporator. In [50], 

a controller for temperature and humidity of frost-free refrigerators was designed based 

on fuzzy logic and controls the speed of the compressor to control temperature and 

relative humidity, and can change the speed of the evaporator fan for flow control. 
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The authors of [51]-[54] proposed a decentralized stochastic controller for the 

aggregated control of refrigerators to respond to mains frequency fluctuations. The 

relative merits of both centralized and decentralized control approaches are summarized 

in Table 2.1 [55]. Moreover, the use of food retailing refrigeration systems for a large 

supermarket chain to contribute to Firm Frequency Response (FFR) Demand Side 

Response (DSR) is presented in [56]. The authors show the beneficial impact of 

responding to a DSR event on the temperature profiles of the refrigerators and the active 

power consumed by the compressors. In particular, it is shown that using refrigerators to 

respond to DSR events can actually provide greater overall efficiency since the 

refrigerators operate in more efficient regions of their operating envelope. In [57], large-

scale control of domestic refrigerators is used to reduce peak power demand and reduce 

losses in a power distribution system. The proposed strategy considered the 

refrigerator’s thermal characteristics and incorporates models of door opening and food 

insertion. In [58], three experimental fuzzy logic control systems for a single domestic 

refrigerator are used to investigate its thermal and energy characteristics, whilst taking 

into consideration the frequency and duration of door opening. The fuzzy system 

controls the speed of the compressor in order to reduce energy consumption while 

keeping the temperature as close as possible to desired temperature boundaries. 
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              Table 2.1 Comparison of centralized and decentralized control techniques 

Centralized Control Approach Decentralized Control Approach 

Pros 

1. High degree of controllability 

practiced over lower tiers. 

 

2. High level of system 

reliability and security. 

Pros 

1. Do not require safe and reliable 

communication network. 

 

2. Reduced amount of 

computation for every controller. 

Cons 

1. The High cost associated with 

maintaining secure 

communication network. 

 

2. Huge processing burden of a 

centralized controller. 

 

3. Feasible only with a limited 

number of control loads. 

Cons 

1. Local measurement of 

frequency 

signal with accuracy is difficult. 

 

2. Frequency measurement units 

are 

expensive to be installed in every 

house. 

 

Recent trends in the scheduling and control of TCLs show that MPC is implemented for 

use in various domestic system. It provides a control approach that determines optimal 

actuation inputs based on a model of known system dynamics, with ‘forward looking’ 

predictions of behaviour and the ability to inherently incorporate constraints and 
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accommodate exogenous disturbances. A further advantage of MPC is given by its ease 

of reconfiguration and adaptability to changes in the controlled system. With the 

development of IoT and Cloud computing MPC is increasingly applied to building 

management and energy systems [59]. In [60] the use of MPC has showed improved 

heating and energy savings in an old residential building, whilst [59] reports on the 

efficacy of various existing MPC algorithms for heating ventilation and air conditioning 

systems. In [61] a model predictive controller is developed for a domestic freezer, 

whilst the work in [62] develops a grey-box model for a domestic freezer and applies 

MPC to control its power consumption as a Demand Side Management (DSM) 

application. Finally, a novel non-parametric adaptive MPC scheme for domestic 

refrigerators is proposed in [63] which reacts to hourly pricing DSM programs and 

facilitates a decrease in energy consumption during the peak periods. 

2.4 Refrigerator Modelling 

Domestic refrigerators are widely modelled in literature, with work usually 

concentrating on the three main elements of i) the cabinet e.g. [64], ii) evaporator e.g. 

[65] and iii) compressor e.g. [66]. A common property of these models is that they tend 

to be very detailed, albeit very accurate, but are not computationally effective for use 

with low-cost microcontrollers. The objective of developing a model for control 

purposes is to create a linear, discrete, parametric model of the refrigerator which is 

sufficiently accurate for intelligent control. 

Many modeling techniques already exist to estimate the available thermal capacity of 

the refrigerator [67], [68]. For instance, the black box method presented in [41] requires 

only two measurements, namely the refrigerator power consumption and the refrigerator 

cool chamber temperature, to accurately predict cool chamber temperature at steady-

state. This also provides a generalized modelling methodology suitable for other 

thermostatically-controlled loads. Such a model is suitable for experiments with a large 

number of refrigerators, where the number of parameters measured is limited. However, 
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the model provides little physical insight into the structure of the dynamic behaviour 

and interaction of states. 

Three dynamic models of a domestic refrigerator were investigated in [69]. The 

simplest describes the system with a single linear inhomogeneous ordinary differential 

equation with constant coefficients. The model captures the inside air temperature of the 

refrigerator correctly, but the back of the cabinet is not included in the model. The 

second model improves on the first, but still has significant modeling error in the cool-

down phase. Figure 2.1 shows the most exact model is the third presented contribution, 

containing three capacitances: 1) cabinet load heat storage capacity (Cc) with cabinet 

temperature (Tc). This temperature is increased by the ambient temperature (Ta). Heat 

transfers are bounded by the thermal resistance of the insulation (Ri) and the thermal 

resistance of the wall between the cabinet and the evaporator (Rec 2) the back of the 

cabinet, with the evaporator capacitance (Ce) with temperature (Te). 3) condenser 

capacity Ccond with voltage source (Tcond) and the compressor supplies refrigerant Tcomp 

to the condenser through a narrow tube Rcond. It applies two differential equations to 

describe the warm-up phase and three equations when the compressor is on. It is based 

on the second model, but the cool-down phase model is extended with an equation for 

the condenser of the refrigerator. 

 

Figure 2.1: Refrigerator model with three capacitances [69] 
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A ‘grey box’ model is used to capture the dominant dynamics rather than all the 

physical dynamics of the system in order to cover different cooling technologies such as 

compressor and thermoelectric and different insulations and sizes that affect the thermal 

mass. Because this thesis wants to cover the different technologies of cooling and didn’t 

want to be specific about underpinning technology but be adaptive about the dominant 

characteristics. This model will be used in other chapters in controllers since it is the 

fundamental part of model predictive control and reinforcement learning. 

2.5 Effect of Ambient Temperature on Refrigerators' Energy 

Consumption 

The energy consumption of refrigerators is greatly affected by room temperature, door 

openings and thermal regulation, hence energy consumption is highly variable and 

sensitive to consumer behaviour and conditions in private homes. Daily energy 

consumption of a domestic appliance can be up to 2000 Wh, depending on refrigerator 

capacity, type (fridge, fridge/freezer, and cooler), consumer behaviour and ambient 

temperature [70]. 

Early research into refrigerator energy consumption identified that external ambient 

temperature was a key parameter that influences energy consumption [71], [72]. This 

has been confirmed in many recent studies, which conclude that the room temperature 

in which the appliance operates is the most important factor that impacts on energy 

consumption in conditions of normal use [73]-[76]. The literature has many examples of 

simulations of the energy consumption of households and many of these models can 

estimate the energy consumption of a specific refrigerator in various ambient 

temperatures [77]-[79]. 

Authors of [80] examine laboratory data for 111 appliances where energy consumption 

is measured at four ambient temperatures from 10 °C to 40 °C. Field data for 235 

appliances in homes is also examined.  They found that room temperature has two main 
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effects on the energy consumption of refrigerating appliances. Firstly, the temperature 

difference between compartment temperatures and the room temperature dictates the 

heat gain into the appliance through the cabinet wall insulation and door seals. The 

second main effect is that a change in room temperature affects the condensing 

temperature. An increase in room temperature reduces overall refrigerating system 

coefficient of performance by increasing the difference between the evaporating and 

condensing temperatures. 

2.6 Monitor and Control of Appliances Using IoT 

A key factor for improving the management of energy consumption in the residential 

sector is by the remote real-time supervision and control of domestic appliances. 

Recently published research shows the potential of accessing home appliances remotely 

and implementing intelligent smart home systems based on web-based and smartphone 

applications [81]-[88]. The authors of [82] propose the implementation of IoT 

connections for home appliances through Google Assistant (voice commands) as well as 

World Wide Web services to switch on/off devices such as fans and lighting etc. 

without requiring any physical interaction, for the elderly or those with disabilities for 

instance, whilst [83] proposes an IoT based home automation system using an Arduino 

microcontroller for indoor and outdoor remote control of appliances. It develops an 

Android-based application to provide on/off control of six home electrical appliances 

namely lamp, AC, fan, refrigerator, TV and washing machine. Furthermore [84] uses a 

STM32F407 embedded development board for remote environmental monitoring. It 

shows how the integration of the STM32F407, Reduced Media Independent Interface 

(RMII), Flexible Static Memory Controller (FSMC) interface and web development can 

provide a real-time remote monitor function. The authors of [85] develop an Android-

based application for a smart home automation system using ThingSpeak for data 

acquisition and visualisation, whilst [87] proposes the inclusion of Big Data in IoT with 

a unique IP address in a mesh wireless network of devices and recommend users to 
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remotely monitor and control devices and generate on-line bills via a mobile app. This 

platform can accommodate up to 4000 users. In [88] an ESP8266 and a MCU 

STM32F103 microcontroller are used to realise a home appliance control system with a 

mobile terminal for remote control, whilst in [89] a low-cost smart switch system based 

on an Arduino UNO interface to facilitate remote controllability and cloud analytics. 

This system also helps in not overloading the power grid at the peak usage time and 

take advantage of lower tariffs if provided by the electricity board.  Finally, home 

automation using Message Queuing Telemetry Transport (MQTT) and a Raspberry Pi is 

proposed in [90] to enable measurements of temperature and humidity. Such systems 

enable users to benefit from the remote monitoring and control of devices at isolated 

sites. However, more substantial benefits can be obtained from the coordinated control 

of widely distributed home appliances for aggregated load management and load shed 

for DSR purposes. In Chapter 4, a IP-based synchronized wireless network is proposed 

and implemented for monitoring and jointly scheduling the widely distributed domestic 

refrigerators in DSR events. 

2.7 Reinforcement Learning Approaches for the Scheduled 

Operation of the Heating and Cooling Systems 

In the field of computer science, Machine Learning (ML) is a relatively new emerging 

branch of artificial intelligence (at the time of writing), and amalgamates concepts of 

physiology, data mining, statistics and probability, and control theory.  Recently, 

several new fields of research have developed and emerged that are related to ML due 

to advancements in computational hardware. The following provide some merits of 

machine learning and why it might be considered for load scheduling [91]: 

• New and unknown environments: during the process of designing or controlling 

a system, some of the system's features remain unknown or may change. ML can 
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learn and adapt to these overtime. Moreover, much greater amounts of data can 

be accommodated that can be handled by humans. 

• In some cases, problems cannot be accurately described due to high complexity; 

in such cases, they could be specified as generic input/output problems and ML 

used to design and control complex systems through learning. 

• The environment may change over time; The ML agent can adapt to these 

changes and modifies agents of decision-making processes to improve 

performance over the time. 

Types of ML can be classified in many ways, but in general, there are three major 

categories [92]: 

1. Supervised Learning: There is a set of training data that specifies the value of 

each input, output, or function. This learning agent aims to obtain a hypothesis 

that describes the function or relationship between input and output. 

Classification and regression are examples of supervised learning. 

2. Unsupervised Learning: An example of training data exists in which only the 

inputs are known, and the correct outputs remain unknown. For instance, 

Clustering can be described as unsupervised learning. 

3. Reinforcement Learning (RL): The agent tries to interact with the environment 

through trial and error and learns to choose the optimal action to achieve the 

goal. In this thesis, the RL is proposed for the scheduled operation of the 

domestic refrigerators. 

The Table 2.2 provides examples for each of the proposed ML categories used in 

different fields [93]. 
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                           Table 2.2 Examples of the three different ML categories 

Supervised Learning Unsupervised Learning 
Reinforcement 

Learning 

Regression 

1. Ad popularity prediction. 

2. Weather forecasting. 

3. Market forecasting. 

4. Population growth prediction. 

Clustering 

1. Recommender systems. 

2. Targeted marketing. 

3. Customer segmentation 

1.Real-time decisions. 

2. Robot navigation. 

3. Learning tasks. 

4. Skill acquisition. 

5. Games. 

 

Classification 

1. Image classification. 

2. Customer retention. 

3. Identify fraud detection. 

4. Diagnostics. 

Dimensionality Reduction 

1. Big data visualisation. 

2. Meaningful compression. 

3. Structure discovery. 

4. Feature elicitation. 

 

 

Artificial intelligence has been used in many fields recently, including for the control of 

household appliances, especially TCLs. In [94], a Reinforcement Learning (RL) agent is 

proposed to control a HVAC system by optimising both occupant comfort and energy 

costs. Results show that the ‘learning thermostat’ can save up to 10% in energy costs 

when compared to a traditional thermostat. A model free RL based on Q-functions is 

presented in [95] to construct a day-ahead schedule for a heat-pump thermostat, whilst 

in [96] model-free Q-learning is used to control HVAC and window systems. 

Experimental results in hot-and-humid Miami and warm-and-mild Los Angeles shows 
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that the proposed strategy led to 13% and 23% lower HVAC system energy 

consumption, respectively, compared to heuristic control. In [97], two different RL 

algorithms, including Deep Q Network (DQN) and Deep Deterministic Policy Gradient 

(DDPG), are used for load shifting in a simulated cooling network which leads to 

weekly cost savings of 14 % compared to direct load coverage. A DQN based 

centralised and decentralized controller is studied in [98] to improve setpoint tracking 

and reduce energy costs in smart buildings. In [99], the Proximal Policy Optimisation 

(PPO) RL algorithm is employed for the efficient scheduling and control of the HVAC 

system in a commercial building, whilst taking into consideration the achievement of 

demand response objectives. Simulation results show that a maximum weekly energy 

reduction of up to 22% can be achieved compared to use of a traditional controller. The 

authors in [100] show up to 30% and 21% cost reduction for the simulation and 

experimental results, respectively, when using DQN based HVAC control on different 

house models with varying user comforts. HVAC and refrigerators have different 

models due to different thermal mass and insulation but in terms of control objectives, 

they have similarities such as thermal comfort tracking. DQN can also be tested on 

refrigerators, given that there are many similarities between HVAC control at home and 

domestic refrigerator control, such as user thermal comfort. Therefore, the DQN reward 

function (thermal comfort tracking or reference tracking) structure provided for HVAC 

can be used and tested in a similar manner for refrigerators. [101], [102] introduces a 

multi-advisor DQN approach with user-defined importance weighting objectives for 

tracking temperature set-points and reducing power usage in a domestic heating system. 

Finally, a novel DDPG method for a multi-zone residential HVAC system is proposed 

in [103] which generates an optimal heating profile with a 15% and 79% reduction in 

energy consumption comfort violation, respectively, compared to the DQN controller.  

It is due to these successes that this promising suite of techniques is researched for 

investigation of scheduling TCLs in this study. 
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2.8 Conclusion 

Literature review indicates that continuous programming is used for scheduling HVAC 

systems, however, binary programming is required for scheduling TCLs. As a result, a 

binary quadratic programming algorithm is developed utilizing Model Predictive 

Control (MPC) and Reinforcement Learning to accomplish the scheduling methodology 

through the Internet of Things. Of notable importance is the formulation of life-time 

indices as part of the MPC and RL strategies to accommodate a maximum number of 

compressor starts per hour as part of the scheduling to avoid too frequent on/off 

switching events while the literature does not address life-time indices. Moreover, when 

power consumption is beyond what can be reasonably supplied to support the cooling of 

all the refrigerators in the network, the proposed MPC formulation allows for the 

prioritization of power distribution to ‘preferred’ units. The thesis also proposes and 

implements an IP-based synchronized wireless mesh network for monitoring and jointly 

scheduling widely distributed domestic refrigerators, whereas in the literature only 

wireless networks for single appliances are considered.  

As can be seen from figure 2.2, a fundamental part of RL and MPC control schemes is 

the identification of the underlying system dynamics. The application to refrigerators is 

complicated because of significant dynamic changes due to ambient conditions, opening 

and closing the door and the changes in product mass and constitution within the 

refrigerator (the product). Real-time model updates are therefore essential for high 

performance control i.e. adaptive mechanisms are necessary. Finally, IoT platforms with 

local and remote access are designed to undertake experimental trials and implement the 

proposed MPC and RL on domestic refrigerators. 
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Figure 2.2: The thesis research overview 
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3 IDENTIFICATION OF 

REFRIGERATOR DYNAMICS 

AND MODEL PREDICTIVE 

CONTROL WITH BINARY 

QUADRATIC PROGRAMMING 

3.1 Introduction 

Here, real-time system identification techniques are considered to identify refrigerator 

dynamics. The first is based on a first-order ARX (Autoregressive with Exogenous 

Variables) model, and then a real-time recursive based system identification strategy to 

monitor and estimate the internal temperature of individual domestic refrigerators based 

on their internal thermal mass (product), is proposed. The latter is ultimately used to 

adaptively modify the hysteresis temperature bounds of individual refrigerators, and in 

so doing, show that significant overall energy savings can be obtained. An important 
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feature is that the proposed model has an ability to accommodate uncertain events e.g., 

ambient conditions, opening and closing the door and changes in product mass. Initially, 

the experiments are conducted using the simple ARX model, followed by ARX with 

RLS without a temperature consideration, and then ARX with RLS considering a 

temperature consideration. The objective of these experiments is to examine how 

ambient temperature and updating a, b, and c parameters affect refrigerator temperature 

prediction. Several different thermal masses and events are also used in each experiment 

to test model accuracy, such as an empty refrigerator, six litres of water, and opening 

and closing the door. 

Therefore, the research presented in this chapter proposes a time-varying priority-based 

on-off scheduling algorithm that can effectively schedule networks of widely distributed 

refrigerators using an IoT controlled platform. Specifically, Binary Quadratic 

Programming is used to formulate a Model Predictive Control problem. Importantly, the 

number of compressor ‘starts per hour’ for each refrigerator is also bounded as an 

inherent design feature of the algorithm so as not to operationally overstress the 

compressors and reduce their lifetime—typically, refrigerator compressor lifetime is 

based on 6 ON-OFF events per hour of operation.  Experimental trials will show that 

such co-ordinated operation of refrigerators can reduce energy consumption by ~30% 

whilst also providing peak power shaving, thereby affording benefits to both individual 

consumers as well as electrical network suppliers. Moreover, the chapter considers the 

impact of various temperature hysteresis bands on the projected annual energy 

consumption of a typical domestic refrigerator when operating empty of product and 

when including internal product. Benefits afforded by the proposed technique are 

investigated through experimental trials on VonShef 13/291 (50W, compressor based 

technology), iGENIX IG 3920 (55W, compressor based technology) and Russell Hobbs 

RHCLRF17B (50W, thermoelectric technology) domestic refrigerators. The NodeMCU 

is used as a microcontroller because it has an integrated Wi-Fi module to connect smart 

plug and send/receive data from the cloud data centre (ThingSpeak). The TP-LINK 
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HS110 smart plug is used to measure power usage and receive ON/OFF commands 

using the NodeMCU Wi-Fi module, and it is easy to communicate with this plug using 

Arduino and Python codes. In order to measure fridge internal temperatures, the 

DS18B20 waterproof version sensor is used. This sensor is used within the fridge so it 

should be waterproof. Data acquisition and monitoring are accomplished using 

ThingSpeak, since this platform is connected to MATLAB and displays the data 

graphically in real-time. 

3.2  System Identification 

System identification is a methodology for building mathematical models of dynamic 

systems by utilizing measurements of the system's input and output measurements. Two 

common classifications of methods are available [104]: 

• Non-parametric Methods: The results are curves, tables, etc. These methods are 

simple to apply; they give basic information about time delays and time 

constants of the system, for instance. 

• Parametric Methods: The results are values of the parameters in the model such 

as ARX, AR-MAX (Autoregressive–moving-average), OE (Output Error) and 

BJ (Box-Jenkins). These methods may provide better accuracy but are often 

computationally more demanding. 

3.3 ARX structure 

This model uses a generalized notion of transfer function to express the relationship 

between the input, u(t), and the output, y(t) using the equation [104]: 

𝑦(𝑡) + 𝑎1𝑦(𝑡 − 1) + ⋯+ 𝑎𝑛𝑦(𝑡 − 𝑛) =  𝑏1𝑢(𝑡 − 1) + ⋯+ 𝑏𝑚𝑢(𝑡 − 𝑚)            (3.1)                                       
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𝑦(𝑡 − 1)…𝑦(𝑡 − 𝑛)— Previous outputs on which the current output depends (𝑦(𝑡)) 

𝑢(𝑡 − 1)…𝑢(𝑡 − 𝑚)— Previous inputs 

So, in ARX model the estimated value (𝑦(𝑡)) depends on previous measured outputs 

(𝑦(𝑡 − 1)…𝑦(𝑡 − 𝑛)) and inputs 𝑢(𝑡 − 1)…𝑢(𝑡 − 𝑚). 

ARX (equation 3.1) time series models are a linear representation of a dynamic system 

in discrete time (it is not accurate at the first step because it is linear and have constant a 

and b parameters as can be seen in the measurement trials Figure 3.3). Putting a model 

into ARX form is the basis for many methods in process dynamics and control analysis 

— See figure 3.3 

The system is represented in discrete time, primarily since observed data are always 

collected by sampling. It is thus more straightforward to relate observed data to discrete 

time models. (3.1) can be reduced to a more compact notation: 

𝑦(𝑡) =  𝜑𝑇(𝑡)𝜃                                                                                                            (3.2)                                                            

where: 

𝜃(𝑡) = [𝑎1, … , 𝑎𝑛, 𝑏1, … , 𝑏𝑛]
𝑇                                                                                     (3.3)                                                                                                                              

𝜑(𝑡) = [−𝑦(𝑡 − 1),… ,−𝑦(𝑡 − 𝑛), 𝑢(𝑡 − 1),…𝑢(𝑡 − 𝑚)]𝑇                                      (3.4)                                                  

To emphasize that the estimated value of y(t) from past data depends on the parameters 

in 𝜃, the estimated value is denoted 𝑦̂(𝑡|𝜃) where: 

𝑦̂(𝑡|𝜃) =  𝜑𝑇(𝑡)𝜃                                                                                                        (3.5)                                                                   

Based on the equations, 𝜃 in ARX model always has a constant value based on a single 

set of data, therefore, in presence of disturbance and uncertainties, it is not possible to 

always provide an accurate model. 
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3.4 Real-time Identification of Refrigerator Dynamics 

Since the dynamics of refrigerators change with ambient conditions, opening and 

closing of the door and changes in product thermal mass, the provision of an adaptive 

dynamic model is essential. Here, the author proposes the use of an online recursive 

identification algorithm that captures the dominant dynamics and disturbance patterns 

of the refrigerator.  It is based on work originally proposed in [105]. The model (3.6) is 

widely used in refrigerator control literature, e.g. [51-53, 61, 106-108]: 

𝑇(𝑡) =  𝑒
−𝜏×𝐴

𝑚𝑐 × 𝑇(𝑡 − 1) + (1 − 𝑒
−𝑆𝑇×A

𝑚𝑐 ) × (𝑇𝑎𝑚𝑏(𝑡 − 1) − 
ɳ×𝑃(𝑡−1)𝑠(𝑡−1)

𝐴
)          (3.6)                             

where T(t) is the estimated internal temperature of the refrigerator at time t. Parameter 

P(t) denotes the electrical power required during the last time interval, and is dependent 

on whether the compressor is turned ON or OFF; 𝑠(𝑡) ∈ [0,1] is the state of device at 

time t (a binary ON (1) /OFF (0)); A is the overall thermal insulation (W/ºC); ɳ is the 

coefficient of performance; mc is the thermal mass (J/ºC), and 𝑆𝑇 is the sample time 

between t-1 and t. Tamb (t) describes the ambient temperature at time t. To simplify 

notation, the following model (3.7) is used, where a represents the thermal 

characteristics of refrigerator inner temperature, b the impact of the energy transfer from 

the compressor due to the operation of the system, and c the impact of ambient 

temperature. The thermal insulation (A) can be calculated, from the physical 

characteristics of the fridge. Knowing the thermal conductivity coefficient (k), the area 

of the fridge S and approximating the thickness of the fridge wall x, the thermal 

insulation parameter A can be computed. It is assumed to be a constant parameter since 

it strictly depends on the physical construction properties of the fridge: 𝐴 = 
𝑘×𝑆

𝑥
 

The coefficient of performance represents the ratio between the cabinet heat loss Qtot 

and the energy consumption measured Wconsumed. Assuming that 60% of the heat loss is 
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due to convection [61], the total heat loss Qtot (cabinet heat loss) is computed: 𝑄𝑡𝑜𝑡(𝑡) =

0.6 × 𝑄𝑐𝑜𝑛𝑣(𝑡) 

The convective heat loss Qconv is calculated as a function of the thermal insulation A, the 

difference between the ambient temperature (𝑇𝑎𝑚𝑏), average temperature of the fridge 

compartment ( 𝑇𝑎𝑣𝑔 ) and the time duration of the off cycle ∆𝑡𝑜𝑓𝑓 : 𝑄𝑐𝑜𝑛𝑣(𝑡) =

𝐴 × (𝑇𝑎𝑚𝑏(𝑡) − 𝑇𝑎𝑣𝑔) × ∆𝑡𝑜𝑓𝑓 

The overall expected shape of this model is provided in figure 3.1 [61]: 

 

Figure 3.1: The measured (continuous line) and estimated (interrupted line) temperature 

of the freezer [61]. 

Figure 3.1 [61] shows a model in which at the beginning the predicted and measured 

distances are very close, but as time passes, because the parameters stay constant, the 

predicted and measured distances get further apart. The constant parameters are used 

here, and section 3.5.2 shows the results if the parameters are allowed to change. 

Based on equation 3.6, parameters are in the form of coefficients for refrigerator 

temperature ( 𝑇(𝑡 − 1) ), power consumption (𝑃(𝑡 − 1) ), and ambient temperature 
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(𝑇𝑎𝑚𝑏(𝑡 − 1) ) from the previous measured time step. Therefore, instead of using 

equations and the physical characteristics of the fridge to calculate these coefficients, 

they are identified by the proposed ARX method and the ARX with RLS method. 

Compared to a model with fixed coefficients, the ARX with the RLS method offers a 

more accurate estimate since its coefficients are updated every time a sample is taken. 

Refrigerator internal temperature ( 𝑇(𝑡 − 1) ), power consumption (𝑃(𝑡 − 1) ), and 

ambient temperature (𝑇𝑎𝑚𝑏(𝑡 − 1)) from the previous measured time step. a represents 

the thermal characteristics of refrigerator inner temperature, b the impact of the energy 

transfer from the compressor due to the operation of the system, and c the impact of 

ambient temperature. T(t) is the estimated internal temperature of the refrigerator at time 

t but Tamb (t) describes the ambient temperature at time t: 𝑎 = 𝑒
−𝜏×𝐴

𝑚𝑐 , 𝑏 = −(
ɳ

𝐴
) × (1 −

𝑒
−𝑆𝑇×𝐴

𝑚𝑐 ), c = 1 − 𝑒
−𝑆𝑇×A

𝑚𝑐  

𝑇(𝑡) =  𝑎 × 𝑇(𝑡 − 1) + 𝑏 × 𝑃(𝑡 − 1)𝑠(𝑡 − 1) +  𝑐 × 𝑇𝑎𝑚𝑏(𝑡 − 1)                          (3.7)                                                    

This can be reduced to the more compact notation: 

𝑇(𝑡) =  𝜑𝑇(𝑡)𝜃                                                                                                            (3.8)                                                    

where: 

𝜃(𝑡) = [𝑎, 𝑏, 𝑐]𝑇                                                                                                           (3.9)                                                                                                          

𝜑𝑇(𝑡) = [𝑇(𝑡 − 1), 𝑃(𝑡 − 1)𝑠(𝑡 − 1), 𝑇𝑎𝑚𝑏(𝑡 − 1)]                                                (3.10)                                                         

Subsequently, 𝜃(𝑡) is obtained using Recursive Least Squares (RLS) to update the 𝜃(𝑡) 

based on the dominant dynamics and disturbance patterns of the refrigerator in each 

sample time [104]:  

𝜃(𝑡) =  𝜃(𝑡 − 1) + 𝐾(𝑡)[𝑇(𝑡) − 𝜑𝑇(𝑡)𝜃(𝑡 − 1)]                                                   (3.11)                                                                      
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𝐾(𝑡) =  
𝑞(𝑡−1)𝜑(𝑡)

1+ 𝜑𝑇(𝑡)𝑞(𝑡−1)𝜑(𝑡)
                                                                                           (3.12)                                            

𝑞(𝑡) = [𝑞(𝑡 − 1) − 
𝑞(𝑡−1)𝜑(𝑡)𝜑𝑇(𝑡)𝑞(𝑡−1)

1+ 𝜑𝑇(𝑡)𝑞(𝑡−1)𝜑(𝑡)
]                                                                 (3.13)   

The expected response for equation 3.6 is provided in figure 3.1 [61]. The experimental 

results for ARX and ARX with RLS are illustrated in sections (3.5.1) -(3.5.3).                                           

3.5 Experimental System Identification 

To show the efficacy of the parameter estimation using ARX, first-order ARX with 

RLS and first-order ARX with RLS considering ambient temperature, trials are initially 

undertaken on a single VonShef 13/291 (50W) refrigerator. The experimental setup 

employs a NodeMCU microcontroller and an IoT smart-plug based platform to monitor 

the power usage of the refrigerator. ThingSpeak is used for a data acquisition and 

monitoring—see Figure 3.2. The refrigerator is instrumented with a DS18B20 

waterproof sensor and a TMP102 module to monitor, respectively, the internal 

refrigeration temperature T and ambient temperature 𝑇𝑎𝑚𝑏. A fixed sampling period of 

20 seconds is used.  
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Figure 3.2: Experimental setup 

3.5.1 First-order ARX 

The first-order ARX model is used to identify the fridge model using experimental trials 

with 6-litres of water in the fridge: 

𝑇(𝑡) =  𝑎 × 𝑇(𝑡 − 1) + 𝑏 × 𝑃(𝑡 − 1)𝑠(𝑡 − 1)                                                        (3.14) 

Parameters a and b are calculated using equations (3.2) -(3.5) and the results are as 

follows: 
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a = 1.0022, b = -0.002                                                                                                (3.15) 

The resultant dynamics are presented in Figure 3.3, with constant a and b parameters 

(thereby providing a linear model). There are notable discrepancies between the 

measured and estimated temperatures—this first-order model therefore cannot 

accurately estimate the internal temperature during uncertain events such as door 

opening. 

 

Figure 3.3: Internal temperature and parameter estimation using first-order ARX model 

Since the parameters are constant, and according to Equation 3.14, the estimated 

internal temperature also depends on the power consumption. Figure 3.3 illustrates 

when the refrigerator is turned on, the temperature drops immediately without delay, 

while in the measured temperature there is a delay between power usage (input) and 

internal temperature (output) due to thermal mass (the same trend in figure 3.1 [61]). 
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3.5.2 ARX model with RLS 

The first-order ARX model proposed in (3.14) is now used with RLS to estimate the a 

and b parameters at each sample time step. Experimental trials are carried out under 

three different conditions: 1) empty fridge 2) with additional product (6-litres of water) 

3) door opening and closing events. Figures 3.4 and 3.5 show the results when the 

refrigerator is empty and when it contains 6-litres of water respectively. As can been 

seen from the results, the model is able estimate the internal temperature correctly with 

and without additional products in the refrigerator due to the recursive parameter 

optimisation in each time step. 
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 Figure 3.4: Internal temperature and parameter estimation using ARX model with RLS 

without product 
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Figure 3.5: Internal temperature and parameter estimation using ARX and RLS model 

with additional product (6L water) 

Figure 3.6 presents the results when there are 3 door opening and closing events. It can 

be seen that the model cannot estimate the internal temperature correctly when the door 

opening event occurred, because the impact of the ambient temperature is not 

considered in this model. 
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Figure 3.6: Internal temperature and parameter estimation using ARX and RLS model 

with 3 different door opening events 

3.5.3 ARX model with RLS considering Ambient Temperature 

Experimental measurements are taken to identify parameters when the refrigerator is 

both empty and when it contains product (6-litres of water in this instance). The results 



Chapter 3: Identification of Refrigerator Dynamics and Model Predictive Control with Binary Quadratic 

Programming 

 

  

  

 

Mohammad Reza Zavvar Sabegh 53 

are presented in Figures 3.7 and 3.8 for each condition, respectively. It can be seen that 

the estimation of temperature rapidly converges to the correct value (due to the 

recursive optimization of model parameters) and errors become negligible (<0.5 ºC) in 

steady state. Notably when employing RLS in this way, b responds to observations from 

the power usage of the compressor. When the compressor is in the OFF state, b remains 

constant, and when the compressor is in the ON state, b is allowed to dynamically 

adapt. 

Figure 3.9 presents parameter identification results when the VonShef refrigerator is 

subject to 3 door opening and closing events that induce transient disturbances. The first 

event lasts for 20 seconds (one sample time), the second for 60 seconds and the third for 

120 seconds. It can be seen that parameter tracking remains robust to the induced 

disturbances and very good temperature tracking performance is maintained.  
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Figure 3.7: Internal temperature and parameter estimation without product (empty) 
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Figure 3.8: Internal refrigerator temperature and parameter estimation with additional 

product (6L water) 
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Figure 3.9: Internal temperature and parameter estimation with 3 different door opening 

events 

Figure 3.9 also shows how parameter c responds to the door opening events by 

recognizing the impact of exposure to the ambient temperature i.e, the internal 

temperature rises, and hence so does parameter c, and time span of the change is 
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reflected by how long the door was open—for instance, the rise in c for the 120 second 

door opening case is greater than of the 60 seconds door opening scenario etc. 

“a” is linked to fridge internal temperature. In addition to previously measured data 

(𝑇(𝑡 − 1)), (𝑃(𝑡 − 1)) and (𝑇𝑎𝑚𝑏(𝑡 − 1))), the parameters a, b, and c are also updated 

based on previous a, b, and c parameters (equations 3.11 to 3.13). This results in 

different parameters over time. 

3.6 Comparison of Refrigerator Identification Techniques 

The Root Mean Square Error (RMSE) is the standard deviation of prediction errors 

which is always non-negative, and a value of 0 (almost never achieved in practice) 

would indicate a perfect fit to the data. Therefore, the RMSE is used to compare the 

proposed models for the refrigerator. RMSE is calculated using: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖− 𝐴𝑐𝑡𝑢𝑎𝑙𝑖)

2𝑁
𝑖=1

𝑁
                                                                          (3.16) 

The RMSE is obtained for each model, and the results given in Table 3.1. It can be seen 

that the RMSE of First-order ARX model is 0.2175 which shows a large difference 

between predicted and measured values (as expected), whilst the RLS has a good 

performance with and without additional product, but with door opening and closing 

events the RMSE is 0.67 which shows the lack of ambient temperature information. 

After considering ambient temperature, the RMSE in each case is less than 0.24 which 

shows a negligible difference between values predicted by the model and the values 

observed. 
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                                        Table 3.1 RMS errors in each case 

Algorithm Case name RMSE 

First-order ARX 6-litres of water 0.2175 

First-order ARX with RLS 

Empty 0.1722 

6-litres of water 0.1467 

Door opening and closing events 0.67 

RLS with ambient temperature 

Empty 0.1704 

6-litres of water 0.1450 

Door opening and closing events 0.2383 

3.7 Load Levelling by the Scheduled Operation of Multi-

Refrigerator Systems 

A Model Predictive Scheduling Control scheme is used to control a set of domestic 

refrigerators [109]. A state space model of the refrigerator network with r inputs and n 

outputs is given in (3.17) where the parameters are obtained from the online 

identification process given previously. 

{
  𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑇(𝑡) = 𝐶𝑥(𝑡)
                                                                                    (3.17)                                                                                   

where 𝑥 ∈ ℝ𝑛×1 as the state vector, 𝑢(𝑡) ∈ ℝ𝑟×1 input vector (𝑠𝑖(𝑡) ∈ [0,1] and Tamb(t) 

are considered as input variables), 𝐴 ∈ ℝ𝑛×𝑛  system matrix, 𝐵 ∈ ℝ𝑛×𝑟  input matrix, 

𝑇(𝑡) ∈ ℝ𝑛×1 the estimated fridge temperature, 𝐶 ∈ ℝ𝑛×𝑛 output matrix and where the t 

denotes discrete time quantities: 

𝑥(𝑡) =  [

𝑇1(𝑡)
𝑇2(𝑡)
⋮

𝑇𝑛(𝑡)

],  𝑢(𝑡) =  

[
 
 
 
 
 
 
 
𝑠1(𝑡)
𝑠2(𝑡)
⋮

𝑠𝑛(𝑡)
𝑇𝑎𝑚𝑏1(𝑡)
𝑇𝑎𝑚𝑏2(𝑡)

⋮
𝑇𝑎𝑚𝑏𝑛(𝑡)]

 
 
 
 
 
 
 

,  𝐴 =  

[
 
 
 
 
𝑎1 0 0 … 0
0 𝑎2 0 … 0
0 0 𝑎3 … 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … 𝑎𝑛]

 
 
 
 

                       (3.18)                                                   
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𝐵 =  

[
 
 
 
 
𝑏1 𝑐1 0 0 0 … 0
0 𝑏2 𝑐2 0 0 … 0
0 0 𝑏3 𝑐3 0 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … 0 𝑏𝑛 𝑐𝑛]

 
 
 
 

,   𝐶 =  

[
 
 
 
 
1 0 0 … 0
0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … 1]

 
 
 
 

                           (3.19)                                                      

The proposed general form of optimization model for controlling of aggregated 

refrigerators uses a Binary Quadratic cost function (J): 

𝐽 =  ∑ 𝑅(𝑗) × [𝑇(𝑡 + 𝑗) − 𝑇𝑟𝑒𝑓(𝑡 + 𝑗)]
2 + ∑ 𝑄(𝑗) × [𝑢(𝑡 + 𝑗) −

𝑗= 𝑁𝑢
𝑗=1

𝑗= 𝑁2
𝑗= 𝑁1

𝑢(𝑡 − 1 + 𝑗)]2                                                                                                            (3.20) 

s.t. ∑ 𝑃𝑖 × 𝑠𝑖 ≤ 𝑃𝑚𝑎𝑥,𝑖     ∀𝑡 ∈  𝜏                                                                                (3.21)                                             

Refrigerator i operational constraint,  ∀𝑖 

when 𝑠𝑖(𝑡 − 1) = 0 𝑎𝑛𝑑 𝑠𝑖(𝑡 − 2) = 1, then ∑ 𝑠𝑖(𝑡 + 𝑗)
𝑗= 𝑚𝑖𝑛𝑜𝑓𝑓
𝑗=1 = 0                   (3.22)                                            

when 𝑠𝑖(𝑡 − 1) = 1 𝑎𝑛𝑑 𝑠𝑖(𝑡 − 2) = 0, then ∑ 𝑠𝑖(𝑡 + 𝑗)
𝑗= 𝑚𝑖𝑛𝑜𝑛
𝑗=1 = 1                    (3.23)                                          

where N1 and N2 are the minimum and maximum prediction horizons and Nu is the 

control horizon. Weighting factors for predicted error and control increments are R(j) 

and Q(j), respectively. The parameter 𝑇𝑟𝑒𝑓(𝑡)  specifies the internal temperature 

references for each refrigerator which should be kept within upper and lower bounds; i 

is the refrigerator identifier and 𝜏  is a set of indices in the scheduling horizon. 

Constraint (3.20) ensures that maximum power consumption at a given time (𝑃𝑚𝑎𝑥 ) 

does not exceed a specified boundary value, and constraints (3.22) and (3.23) ensure the 

minimum off-time (minoff) and minimum on-time (minon) per cycle for each 

refrigerator, respectively. This is an important consideration as it allows the number of 

compressor starts per hour to be bounded so that the scheduling algorithm does not 

detrimentally overstress any of the compressors and reduce operational lifetime. The 

solution to the optimization problem to minimize J and calculate 𝑠𝑖(𝑡)  follows the 
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procedure presented in [110]. In what follows, the parameters used in the MPC are 

N1=1, N2=5 and Nu=5. As the prediction and control horizons are set at five, the MPC 

provides prediction and control for the next 5 time steps in the output, however, 

information is received from the controller in each step using the IoT platform, so only 

the first output is used for the next time step. The parameters N1, N2 and Nu have not 

changed during all the tests. 

The procedure to obtain the scheduled operation of domestic Refrigerators using MPC 

can be described as follows: 

Algorithm_ MPC with BQP for the scheduled operation of domestic refrigerators 

Input: 

N1, N2, Nu  

For each appliance i: 
𝑇𝑟𝑒𝑓(𝑖)   

Minoff(i) 

Minon(i) 

Q(i) 

R(i) 

for t = 0:Tfinish 

            Receive the measured Ti(t), Pi(t) and Tamb(t) from ThingSpeak 

            Calculate the A, B and C matrices using (3.8)-(3.13) and (3.17)-(3.19) 

            Receive 𝑃𝑚𝑎𝑥(𝑡 + 1) from ThingSpeak 

            Minimize J considering the constraints (3.21)-(3.23) and calculate 𝑠𝑖(𝑡 + 1), using opti in MATLAB 

            Send 𝑠𝑖(𝑡 + 1) to ThingSpeak 

end 

3.8 Experimental Setup 

The laboratory-based test facility is shown in Figure 3.10 and includes a NodeMCU 

microcontroller to implement the MPC and an IoT smart-plug based platform to provide 

ON-OFF control of the iGENIX IG 3920 (55W), VonShef 13/291(50W) and the Russell 

Hobbs RHCLRF17B (50W) domestic refrigerators (each refrigerator is ON-OFF 

controlled via its own smart-plug). It is important to note that the RHCLRF17B uses 

thermoelectric cooling technology, so no refrigerant is used. Consequently, no 

compressor is required, and the unit normally operates at 100% duty (i.e., always ON) 
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[111]. Internal and ambient temperatures are measured using a DS18B20 waterproof 

sensors and a TMP102 module, respectively. 

 

Figure 3.10: Experimental setup for local access 

The hardware test facility comprises of three domestic refrigerators, see Figure 3.11. A 

detailed summary of the appliances is given in Table 3.2. Each refrigerator is 

instrumented with a DS18B20 waterproof sensor to measure the internal temperature. 

The sensors have a −55 °C to +125 °C temperature range and a ±0.5 °C accuracy. 

During the tests, the ambient temperature is measured with an accuracy of ±0.5 °C from 

−40 °C to +125 °C by a TMP102 module. Real-time power consumption of each 

refrigerator is measured using TP-Link Smart Wi-Fi Plug (HS110) with an accuracy of 
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±0.2 W. The Smart plug is also used to provide ON-OFF control of the refrigerator. The 

network connection is established using a NodeMCU which is an open-source IoT 

platform that includes integrated support for Wi-Fi. The experimental setup uses 

ThingSpeak for data acquisition and monitoring in the cloud. 

                                      Table 3.2 Specification of appliances 

 iGENIX VonShef Russell Hobbs 

Model IG 3920 13/291 RHCLRF17B 

Type Compressor Compressor Thermoelectric 

Energy rating A+ A+ A+ 

Total storage capacity (Litres) 90 47 17 

Power (W) 55 50 50 

Voltage (V) 220-240 220-240 220-240 

Frequency (Hz) 50 50 50 

 

 

Figure 3.11: The hardware setup used in the measurement tests for local access 
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3.9 Experimental Results 

The developed MPC algorithm is implemented with a sampling rate of 20 seconds and 

experimental trials are undertaken over a period of 210 minutes in each case. A key 

feature of the algorithm is a constraint on the total maximum power consumption 

(accumulative sum of the 3 refrigerators), and thereby facilitate peak power shaving.  

Also, the number of ON-OFF events is constrained to be 6 in each case. The test 

schedule is as follows: 

 

A) Refrigerators operate in isolation without any scheduling controller. This aligns 

with the normal operating conditions of domestic refrigerators and provides a 

comparative benchmark. 

B) 𝑃𝑚𝑎𝑥 is limited to 110W: the maximum aggregated power for all refrigerators is 

constrained with equal power supply priority given to all refrigerators. 

C) 𝑃𝑚𝑎𝑥  is limited to 60W and all refrigerators are given equal power supply 

priority weightings. 

D) 𝑃𝑚𝑎𝑥 is limited to 60W and the refrigerators are given unequal power supply 

priority weightings. 

For consistency, the ambient temperature is controlled to be within the range 23ºC  

1ºC since it is known that it can have a significant influence on energy consumption 

[112], [113]. The temperature bands are taken from reference [127]. According to the 

food legislation [127], different upper and lower band temperatures are considered for 

each refrigerator. For example, the temperature of the cooler, which is used to keep 

drinks cool, should not exceed 8 °C, and that of ready-to-eat foods should not exceed 6 

°C (preferably 2 to 4 °C). Three different types of refrigerators with different 

technologies (compressor and thermoelectric) that were cheap, and best-selling were 

selected. 

The iGENIX, VonShef and Russell Hobbs refrigerators are unevenly loaded with 10L, 

6L and 2L of water, respectively, and the doors remained closed for the duration of the 
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trials. Desired upper and lower temperature setpoints and minimum OFF and ON times 

per cycle for each refrigerator, are chosen as in Table 3.3. 

                   Table 3.3 Data for iGENIX, VonShef and Russell Hobbs 

Name Upper Band (ºC) Lower Band (ºC) 
Minimum on 

time (sec) 

Minimum off 

time (sec) 

iGENIX 3.5 2 220 240 

VonShef 2.5 1.5 260 200 

Russell Hobbs 7.5 4.5 380 100 

3.9.1 Trial A: Refrigerators operate in isolation without a scheduling MPC 

controller 

This initial trial investigates how the refrigerators operate with no co-ordinated MPC 

scheduling applied. This effectively mimics how each would operate in a normal 

isolated domestic setting, and the aggregated power characteristic that would be 

obtained. Figure 3.12 shows each refrigerator’s internal temperature, the ambient 

temperature, individual power consumption and the total aggregated power 

consumption. The hysteresis controller described in [114] is used to adjust the upper 

and lower temperature setpoints for the VonShef and iGENIX units, whilst the Russell 

Hobbs unit employs thermoelectric cooling technology and, as such, it nominally has a 

100% operational duty (not ON-OFF) with variable power usage, as can be seen from 

Figure 3.12. Of particular note from Figure 3.12 is that without any constraints or co-

ordinated (scheduling) control, there are significant periods when all units are ON, and 

periods of relatively high peak power consumption are therefore evident. 
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Figure 3.12: Refrigerator’s results and total power consumption for trial A 

Figure 3.13 shows total power and power of the individual refrigerators on the same 

timescale for clarity. 
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Figure 3.13: Refrigerator’s power and total power for trial A 

Russell Hubbs uses thermoelectric technology instead of a compressor, and has very 

small dimensions, so it is sensitive to changes in ambient temperature. As the ambient 

temperature increases, its power consumption rises in order to maintain a constant 

internal temperature. 

3.9.2 Trial B: MPC scheduling with Pmax=110W and equal supply priority 

is given to all refrigerators 

Figure 3.14 shows results of a trial under the condition of Pmax=110W, effectively 

limiting the MPC algorithm to supplying power to a maximum of 2 refrigerators at any 

instant. In this case, the supply priority weightings are chosen to be equal with Q = 

[1,1,1] and R = [1e-5,1e-5,1e-5]. From the results of Figure 3.14, it is clear that all of 

the refrigerators can maintain their temperatures within required bounds and 

demonstrates that although the peak power has been constrained, there remains 
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sufficient power overhead to supply the cooling requirements of each unit so long as 

they are appropriately scheduled. 

 

 

Figure 3.14: Refrigerator’s results and total power consumption for trial B 

Figure 3.15 shows total power and power of the individual refrigerators on the same 

timescale for clarity. 
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Figure 3.15: Refrigerator’s power and total power for trial B 

3.9.3 Trial C: MPC scheduling with Pmax = 60W and equal supply priority 

given to all refrigerators 

Since there will always exist a minimum average power necessary to control the internal 

temperatures of all the refrigerators, it is instructive to investigate what happens when 

the demanded constraint on peak power (𝑃𝑚𝑎𝑥) is reduced to a value that is below what 

is required for all the refrigerators to adequately cool their product. For this scenario, 

𝑃𝑚𝑎𝑥 is now reduced to 60W, effectively constraining the MPC to allow power delivery 

to allow only a single refrigerator at any instant—this constitutes a very severe power 

constraint for this refrigerator network. Again, the supply priority weighting matrices 

are chosen to be Q = [1,1,1] and R = [1e-5,1e-5,1e-5]. From the results of Figure 3.16, 

it can be seen that the temperatures now exceed the required bounds due to the severe 

power constraint, although the temperature of the iGENIX unit is less affected as a 

result of its higher thermal product mass (10L of water), and hence it takes longer for 

the temperature to rise and exceed the bounds. Nevertheless, it is clear from the results 
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that the MPC controller still constrains the power to < 60W i.e. forces peak power 

shaving. 

 

 

Figure 3.16: Refrigerator’s internal temperature, ambient temperature, power 

consumption and total power consumption for trial C 
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Food safety and the quality of refrigerated food depend on the good performance of the 

refrigerator and are closely linked to temperature distribution and airflow inside the 

refrigerator. Depending on the exceeding time and the type of food or medicine in the 

refrigerator, it can cause spoilage and increase the risk of food-borne outbreaks in 

domestic households [127]. 

Figure 3.17 shows total power and power of the individual refrigerators on the same 

timescale for clarity. 

 

Figure 3.17: Refrigerator’s power and total power for trial C 

3.9.4 Trial D: MPC scheduling with Pmax = 60W and power preferentially 

delivered to the VonShef unit 

Finally, under conditions where 𝑃𝑚𝑎𝑥  is again limited so that it does not allow all 

refrigerators to maintain their temperature with required bounds, (as in test trial C), the 

proposed MPC algorithm can readily accommodate preferred priority scheduling, where 

the refrigerators can be allowed power preferentially. To show this, a trial similar to C) 
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is conducted with Pmax = 60W but with the priority biased towards delivering power to 

the VonShef unit i.e. in this case the weighting matrices are chosen to be Q = [1,2,1] 

and R = [1e-5,1e-5,1e-5]. Figure 3.18 shows the results of the experimental trial. A 

comparison with those from Trial C shows that the Russell Hobbs refrigerator exceeds 

its bounds more rapidly, whilst the VonShef unit is given preferential power to better 

maintain its temperature, albeit it still exceeds its bounds periodically due to the 

extremely severe power limitation. 

 

Figure 3.18: Refrigerator’s internal temperature, ambient temperature, power 

consumption and total power consumption for trial D 
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Figure 3.19 shows total power and power of the individual refrigerators on the same 

timescale for clarity. 

 

Figure 3.19: Refrigerator’s power and total power for trial D 

3.9.5 Comparison of Energy Consumption 

The energy consumption during each of the trials has been measured, Figure 3.20. It can 

be seen that in trial D, the VonShef unit consumed 29.52Watt-seconds more energy and 

Russel Hobbs 34.53 Watt-seconds less energy compared to trial C. This is due to the 

higher priority weightings for the VonShef unit in D. In trial B, iGENIX and VonShef 

have energy savings of up to 19% and 29%, respectively, compared to the trial A, 

though in both A and B all of refrigerators remain within required temperature bounds. 

In contrast, Russell Hobbs consumed more energy in B compared to the A because it 

uses thermoelectric technology instead of a compressor and therefore loses stored 

thermal energy more rapidly, and hence is turned ON more. Moreover, the Russell 

Hobbs unit operates at around 27W in isolated mode, but this power usage reaches 50W 

when the MPC controller schedules its operation. These results indicate that in addition 
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to facilitating peak power shaving, operational energy savings can be accrued in 

compressor-based refrigerators. This is because the compressor-based refrigerators have 

compressors to move the refrigerant through the system, and cools through repeated 

refrigeration cycles. On the other hand, the cooler (Russell Hobbs) uses thermoelectric 

cooling technology, so no refrigerant is used and it transfers heat from one side to the 

other directly using electrical energy which is less efficient and the internal temperature 

rises faster when it is switched OFF. Since Russell Hobbs does not have a compressor, 

it loses cold air quickly, so when the total power is limited to 110 W in trial B, Russell 

Hobbs consumes more energy to keep the temperature of the refrigerator within the 

defined upper and lower temperatures. However, the other two refrigerators have 

compressors and lose cold air later. A well-designed compressor-based system will use 

30% to 35% less power than the equivalent thermoelectric system [128]. 

 

               Figure 3.20: Refrigerator’s energy consumption for Scenario A, B, C and D 

The authors in [56] present results to show how the temperature profiles of the 

refrigeration cases, the active power and the current drawn by the compressors are 
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affected by responding to a DSR event. Performed DSR tests revealed that, depending 

on the amount of contents of refrigeration case, this can result in an increase of product 

temperature to up to 2 °C above its nominal value for the duration of the pull-down. 

During the July tests, the pack operation post-DSR demonstrated less stable cycling of 

active compressors, varying from 1 to 4 active compressors compared to 1 to 2 active 

compressors during March tests, with all 4 compressors being active immediately after 

the end of DSR. Measurements have shown an increase in supply current (by 

approximately 30%) after responding to the DSR event compared to the normal 

operation. It has been found that a 101 A transient inrush current over a period of 10 ms 

creates a drop in line voltages of up to 1.5 kV (~10% of rated) at the primary side and 

100 V (~30% of rated) at the secondary side of the transformer, with a transition time of 

25 μs. Inrush currents of the load have direct impact on the terminal voltage and current 

of the HV and LV sides of the step-down transformer and can cause voltage fluctuations 

on the power supply and potentially cause instability to the local power supply system. 

Moreover, inrush current can be much greater if the subsequent start-up sequence of 

multiple compressors is synchronized. 

3.10 Domestic Refrigerators and Demand Side Response (DSR) 

The advent and proliferation of IoT will ultimately allow the aggregation of widely 

distributed networks of domestic appliances, such as refrigerators and freezers, to take 

part in Demand Side Response (DSR) load-shedding events to help maintain grid 

frequency stability. Indeed, the advantages of using widely distributed networks of retail 

refrigerators to contribute to DSR events has already been recognized and reported in 

[56] and [115]. Here then, an experimental study investigates how domestic 

refrigerators can respond to DSR events using the presented MPC methodology. 

Specifically, results stemming from the initiation of two DSR events for the small 

network of refrigerators used in this study are given in Figure 3.21, where each 

refrigerator unit is given equal supply priority weighting on power, and load shedding is 
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initiated by instantaneously reducing Pmax to 60W.  The first event occurs at t = 7140s 

and lasts for 30 minutes and the second occurs at t = 16060s and lasts for one hour. 

Moreover, Figure 3.23 shows a similar condition with a DSR demanded at t = 7200s 

and ending at t = 10780s but where the Russell Hobbs unit is given preferential access 

to power through the weighting matrices Q = [1,1,3] and R = [1e-5,1e-5,1e-5]. As can 

be seen from the measurements in Figures 3.21 and 3.23, the refrigerators are able to 

respond instantly to power shedding events and the total power usage has been reduced 

to 60W when required. In addition, from Figure 3.23 it can be seen that the Russell 

Hobbs unit largely remains within temperature limits due to the additional priority 

biasing given to it by the MPC. Although only on a very small scale, this demonstrates 

the potential for the co-ordinated scheduling of widely distributed domestic refrigerators 

for contributing to aggregated load shedding events. In this section, only the controller 

performance is evaluated in terms of DSR event response, so there is no control for the 

ambient temperature and residents can change the ambient temperature as desired. 
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Figure 3.21: Results for DSR event with equal priority weighting given to all units 

Figure 3.22 shows total power and power of the individual refrigerators on the same 

timescale for clarity. 
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Figure 3.22: Refrigerator’s power and total power for DSR event with equal priority 

weighting given to all units 
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Figure 3.23: Results for DSR event (Russell Hobbs unit is given greater priority 

weighting) 

Figure 3.24 shows total power and power of the individual refrigerators on the same 

timescale for clarity. 
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Figure 3.24: Refrigerator’s power and total power for DSR event (Russell Hobbs unit is 

given greater priority weighting) 

3.11 Impact of Hysteresis Band and Internal Thermal Mass on 

Refrigerator Operational Efficiency 

As well as contributing to the co-ordinated operation of multiple refrigerators, the 

proposed MPC algorithm also allows for reductions in energy consumption of 

individual refrigerator units by virtue of being able to adaptively change their 

temperature hysteresis boundaries in real-time. It is shown below that knowledge of the 

underlying dynamics of each refrigerator from its identified parameters (an integral part 

of the proposed Binary Quadratic MPC) allows the hysteresis bands to be tailored to 

how much product is contained within the refrigerator. The benefits afforded by this are 

shown through experimental trials on the candidate iGENIX unit. Firstly, an initial 

experimental trial is undertaken with the temperature-controlled hysteresis band set to 

0 ºC i.e., effectively mimicking a non-hysteresis type control scheme. The results are 
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given in Figure 3.25, which shows a high degree of compressor switching activity to try 

and maintain ideal temperature tracking. As can be seen from figure 3.25, due to the 

thermal mass in compressor-based refrigerator, there is a delay between power usage 

and fridge temperature changes. 

 

Figure 3.25: Internal temperature and power variation with 0 ºC hysteresis band 

Two additional trials are subsequently undertaken with i) no product in the refrigerator, 

and ii) with 10L of water in the refrigerator. Operation of the refrigerator using different 

hysteresis bands is investigated under the two scenarios. Specifically, hysteresis bands 

of 0.5 ºC, 1 ºC, 1.5 ºC and 2 ºC are used in each case. The results are shown in 

Figures 3.26 and 3.27. Notably, it can be seen that smaller hysteresis bands create more 

compressor ON-OFF events in both cases. Moreover, the empty condition requires a 

greater number of compressor starts than when there is product in the refrigerator, due 

to the availability of increased thermal mass in the latter case. For commercial 

compressors the number of starts per hour are typically assumed to be ≤6 [116], [117], 

and this is the value used in the proposed Binary Quadratic MPC algorithm. Based on 
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reference [127], 3 °C was selected as the reference temperature and different hysteresis 

bands were tested to investigate the effect of hysteresis band on energy consumption. 

 

Figure 3.26: Internal temperature, ambient temperature, and consumed power for 

hysteresis bands of 0.5 ºC, 1 ºC, 1.5 ºC and 2 ºC without internal product 

(refrigerator empty) 
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Figure 3.27: Internal temperature, ambient temperature and consumed power for 

hysteresis bands of 0.5 ºC, 1 ºC, 1.5 ºC and 2 ºC with internal product consisting of 

10L of water 

Of particular interest is the amount of energy consumed by the refrigerators when 

different hysteresis band are employed. For the cases considered, Figure 3.28 shows the 

energy consumption of each case projected over 1 year of usage. The energy 

consumption in each hysteresis band can be calculated using the area under the power 

usage curve. Figures 3.29 and 3.30 shows the energy savings for different hysteresis 

bands under empty and with 10L of water conditions respectively. The results indicate 

that with appropriate real-time adaptive identification and control the hysteresis band 

can be changed to accommodate varying product, and hence improve the long-term 

energy consumption. For instance, in the two scenarios identified, energy savings of up 

to 20% and 10%, respectively, can be expected between best- and worst-case 

conditions. Notably, increasing the product thermal mass has the impact of making the 

refrigerator less sensitive to the imposed hysteresis band. The authors in [56] states that 
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the absence of (product) thermal inertia and undermined cooling capacity contributed to 

the extended pull-down state during DSR events. The authors in [56] shows the effect of 

the thermal inertia, which assists the air-off temperature to slowly reach the set point 

value, with only a short-period region. 

 

Figure 3.28: Projected annual energy consumption for different Hysteresis bands 

(Empty and including internal product (10L of water)) 
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Figure 3.29: Projected annual energy savings for different Hysteresis bands (Empty) 

 

Figure 3.30: Projected annual energy savings for different Hysteresis bands (including 

internal product (10L of water)) 
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3.12 Conclusions 

The research presented in this chapter has proposed a real-time identification of 

refrigerator dynamics. Experimental trials show that such a real-time model update can 

identify the refrigerator dynamics, and respond to common disturbances such as door 

openings. Moreover, a fundamental part of subsequently investigated MPC control 

schemes is the identification of the underlying system dynamics. Real-time model 

updates are therefore essential for high-performance control i.e., adaptive mechanisms 

are necessary. In addition, the research presented in this chapter has proposed a time-

varying priority-based on-off scheduling algorithm that can effectively schedule 

networks of widely distributed refrigerators. Comparative studies of measurements from 

experimental trials show that the co-ordinated scheduling of refrigerators allows energy 

savings of between 19% and 29% compared to their traditional isolated (non-co-

operative) operation. Moreover, by adaptively changing the hysteresis bands of 

individual fridges in response to changes in thermal behaviour, a further 20% of savings 

in energy are possible at local refrigerator level, thereby providing benefits to both 

network supplier and individual consumer. Importantly, manufacturers do not need to 

make any significant hardware changes to reap these benefits, as the control 

methodology uses only sensor and actuation mechanisms already present in modern 

domestic refrigerators. 

It should be noted that whilst the proposed methodology has been specifically directed 

towards the co-ordinated operation of refrigerators, the underlying techniques are more 

widely applicable, for instance, for the preferential charging of a multiple electric 

vehicles with constrained total aggregate power availability, or HVAC systems in large 

buildings.  

The MPC controller described in Chapter 3 will be used in Chapter 4. In chapter 4, an 

IoT platform is proposed to remotely monitor and schedule multiple fridges using MPC.  
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Customers can monitor the fridge remotely using a phone or laptop, and adaptive 

hysteresis bands could be beneficial for customers. Also, customers can define the 

upper and lower band temperatures for each fridge. Based on food safety standards, 

setpoint temperatures are selected for this experiment [127]. The stability of the grid can 

be improved using scheduling of multiple fridges and instant response to DSR events. 
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4 SYNCHRONISED POWER 

SCHEDULING OF WIDELY 

DISTRIBUTED 

REFRIGERATORS USING IOT 

4.1 Introduction 

This chapter proposes an IoT controlled platform to remotely monitor and control 

appliances in the residential sector. An IP-based synchronized wireless mesh network is 

implemented through IoT hardware (based on a NodeMCU) and Google Sheets to 

monitor and schedule the operation of aggregated domestic refrigerators under a Model 

Predictive Control (MPC) scheme. Benefits afforded by the proposed technique are 

investigated through experimental trials from VonShef 13/291 (50W), iGENIX IG 3920 

(55W) and Russell Hobbs RHCLRF17B (50W) domestic refrigerators sited in three 

different domestic locations in the city of Lincoln, UK. Results show that the proposed 

network is able to monitor the widely distributed refrigerators and adaptively schedule 

the appliances to reduce peak operational loads and facilitate Demand Side Response.   
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Further widespread expansion of the proposed technique would allow a rapidly 

deployed regional Demand Side Response (DSR) strategy to aid grid stability. This 

platform can be used with Wi-Fi, 4G and 5G networks, as long as the network has an 

assigned public IP address. In the event of an internet connection failure, based on the 

prediction and control horizons in MPC (chapter 3), the scheduling decision will be 

available for 5 sample times, if internet connectivity does not return for the next five 

steps the refrigerators will return to normal operation. 

4.2 IP-based synchronized wireless network (remote control and 

monitoring) 

This section proposes an IoT controlled platform to remotely monitor and control 

appliances in the residential sector. An IP-based synchronized wireless network is 

implemented through IoT hardware. A suitably widespread mesh network affords the 

opportunity to schedule and monitor the operation of distributed domestic appliances 

simultaneously to collectively improve energy efficiency and reduce peak power 

consumption on the electrical grid. Here then, this chapter proposes the implementation 

of a Model Predictive Control (MPC) scheme, initially proposed in chapter 3, to provide 

the co-ordinated scheduling of power to domestic refrigerators in a small number of 

households around the City of Lincoln, UK. Measurements are taken from the 

refrigerators under the IP-based wireless mesh network and Google Sheets is used for 

cloud data acquisition and monitoring. The proposed network shown in Figure 4.1 

consists of two main parts: the server and client units. Client units are deployed at the 

different refrigerator locations. Each client is assigned a unique public IP address to 

provide remote access, and is used to collect measurements (e.g., internal fridge 

temperature, ambient temperature and the power consumption of the fridge), send the 

measurements to the server via received HTTP requests, receive control instructions 

from the server and apply them to the house appliances (e.g., fridge on/off commands).  
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The server can be located anywhere with Wi-Fi access and is used to send control 

commands and HTTP requests to the clients using the ‘port forwarding’ feature of the 

routers to collect sensor data simultaneously and send them to the Google Sheets for 

data acquisition and monitoring—see Figure 4.1. 

 

Figure 4.1: IP-based synchronized wireless network structure 
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The controller is in the server side. Server receives all the data from clients then make 

the decisions based on MPC and finally, send the scheduling decisions to clients 

(fridges). 

The customer sets the upper and lower temperature bands for each refrigerator. The 

measured ambient and internal temperatures and power consumption are sent to the 

server using the mentioned sensors. The server makes decisions using the received data 

and MPC and sends them to clients to apply decisions for each refrigerator using the 

smart plug. 

Customers will gain benefit if they participate in DSR events also they can monitor their 

appliances remotely from everywhere. Also, it helps to improve the grid stability. 

As previously indicated, the study uses a wireless IoT scheme based on a synchronized 

wireless mesh network to remotely monitor and schedule three domestic refrigerators 

under Binary Quadratic MPC control to simulate DSR load-shedding events. The 

locations of the refrigerators are distributed around Lincoln (UK) as shown in Figure 

4.2. These locations were selected because they were easily accessible because of 

COVID-19 restrictions. Any place can be chosen as long as the available Wi-Fi, 4G or 

5G network has an assigned public IP address. The test facility components and 

hardware setup are also shown in Figure 4.2. Each refrigerator is instrumented with two 

DS18B20 waterproof sensors to measure the internal and ambient temperatures, a 

NodeMCU microcontroller to implement the Binary Quadratic MPC algorithm and a 

TP-Link Smart Wi-Fi Plug (HS110) to provide on-off control and measure the real-time 

power consumption of the refrigerators. Moreover, another NodeMCU is located at the 

University of Lincoln as a server to request the data from clients simultaneously and 

send them to Google Sheets for data logging.  
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                          (a) 

 

                          (b) 

Figure 4.2: System setup (a) The location of the refrigerators in the City of Lincoln, UK 

(b) hardware and fridges for measurement and control for remote access 
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An overview of router port forwarding features is given in the Appendices. The 

instructions for sending data to Google Sheets, related MicroPython code for client and 

the Arduino code for server can also be found in Appendices 1, 2 and 3. 

4.3 Experimental Results 

Measurements are taken with a fixed sampling period of 60 seconds to show the 

performance of the IP-based synchronized wireless mesh network under conditions of i) 

the refrigerators operating in isolation without any scheduling controller to show the 

monitoring feature of the proposed network, and ii) the custom Binary Quadratic MPC 

algorithm is implemented for jointly scheduling the operation of refrigerators in DSR 

events. The Server receives the DSR events from utility and based on the events and 

measured data the decisions using MPC will send these to clients (smart plugs). An 

initial experiment is conducted under normal operating conditions with no co-ordinated 

MPC scheduling applied. This effectively shows how the proposed network can monitor 

the domestic fridges remotely. The second trial shows the performance of the proposed 

network to investigate how the widely distributed domestic refrigerators can respond to 

DSR events using the MPC controller proposed in chapter 3. 

4.3.1 Trial 1: Refrigerators operate under normal conditions without a 

scheduling controller (Monitoring mode) 

An initial experiment is conducted under normal operating conditions with no co-

ordinated MPC scheduling applied. This effectively shows how the proposed network 

can monitor the domestic fridges remotely. Figure 4.3 shows examples of 12-hour 

experiment trial intervals for each refrigerator’s internal temperature, the ambient 

temperature, individual power consumption and the total aggregated power 

consumption. 
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Figure 4.3: Refrigerators’ internal temperatures, ambient temperatures, power 

consumption and total power for trial 1 
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4.3.2 Trial 2: Responding to DSR events using power scheduling 

Measurements now show the performance of the synchronized wireless mesh network 

to investigate how the widely distributed domestic refrigerators can respond to DSR 

events using the MPC controller proposed in chapter 3. The iGENIX, VonShef and 

Russell Hobbs refrigerators are loaded with 12L, 6L and 3.5L of water, respectively, 

and the doors remained closed for the duration of the trials. The prediction and control 

horizon parameters used in the MPC are set to 5 samples. Desired upper and lower 

temperature setpoints and minimum non-working (minimum OFF) and working 

(minimum ON) times per cycle for each refrigerator, are shown in Table 4.1.  These are 

required in order to limit the ON-OFF demand frequency so as to not unduly stress the 

compressor. 

                        Table 4.1 Data for iGENIX, VonShef and Russell Hobbs 

Name 

Upper 

Band 

(ºC) 

Lower 

Band 

(ºC) 

Minimum 

on time 

(sec) 

Minimum 

off time 

(sec) 

iGENIX 3 0.5 220 240 

VonShef 2.5 0.5 260 200 

Russell  8 4 380 100 

 

Results are given in Figure 4.4.  In this scenario the Russell Hobbs unit is given 

preferential access to power during the DSR event via the weighting matrices in the 

MPC controller. DSR demanded with the total power usage of 60W occurs at t = 90 

mins and lasts for 45 minutes. As can be seen from the measurements (Figure 4.4), the 

refrigerators are able to respond (virtually) instantaneously to power shedding events 

and the peak power consumption is limited to 60W. Moreover, all the refrigerators 

maintain their temperatures within required bounds before the DSR event whilst the 

Russell Hobbs unit remains within temperature limits due to the additional power 

supply priority attributed to it by the MPC. 
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Figure 4.4: Refrigerators’ internal temperatures, ambient temperatures, power 

consumption and total power for trial 2 
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Figure 4.5 shows total power and power of the individual refrigerators on the same 

timescale for clarity. 

 

Figure 4.5: Refrigerators’ power consumption and total power usage for trial 2 

In the event of an internet connection failure, based on the prediction and control 

horizons in MPC (chapter 3), the scheduling decision will be available for 5 sample 

times, if internet connectivity does not return for the next five steps the refrigerators will 

return to normal operation. 

4.4 Conclusions 

In this chapter, the IP-based synchronized wireless network is proposed and 

implemented for monitoring and jointly scheduling the widely distributed domestic 

refrigerators in DSR events using the MPC controller. It is shown that the refrigerators 

are remotely monitorable from everywhere that internet access is available and they are 

able to respond to power shedding events almost instantaneously. It should be noted that 

the proposed methodology can be implemented more widely for other house appliances, 
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for instance, heating ventilation and air conditioning (HVAC) systems, or other TCLs. 

The proposed network performance was evaluated through two tests. During the first 

experiment, the monitoring feature was examined, and it was found that each 

refrigerator was monitored remotely. Second, the refrigerator's response to DSR events 

was examined, and the refrigerators responded instantly after receiving the DSR signal. 
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5 REINFORCEMENT LEARNING 

APPROACHES FOR THE 

SCHEDULED OPERATION OF 

TCLS 

5.1 Introduction 

Emerging technologies like Artificial Intelligence (AI) and home appliances are 

increasingly shaping the future of the world. By employing machine learning techniques 

(such as deep Reinforcement Learning), homes can become more energy-efficient while 

improving occupant comfort and reducing energy consumption. To accomplish this, this 

chapter proposes Reinforcement Learning (RL) approaches for the scheduled operation 

of the aggregated domestic refrigerators. Initially, a hysteresis band controller is 

designed for a single refrigerator using Q and Deep Q Networks (DQNs), then a new 

DQN model is developed for jointly scheduling the operation of multiple refrigerators. 
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The effectiveness of the scheduling approach is analysed through the designed 

environment for three different domestic refrigerators using OpenAI Gym.  

5.2 Introduction to Reinforcement Learning 

Scheduling the cooperation of refrigerators requires a controller that can make 

decisions. The RL method in ML is used to control and schedule refrigerators based on 

the interaction between agent and environment, so the RL method is used to control and 

schedule refrigerators. Table 2.2 shows the examples of the three different ML 

categories (chapter 2). The RL method can learn over time and has an interaction with 

the environment. So, RL can adapt itself to changes in the environment, but MPC has a 

fixed objective function and constraints and does not change with time. RL, on the other 

hand, decides based on the trained network, which has a faster response than MPC, 

since optimization calculations are performed in each sample time. The RL is a 

paradigm within Machine Learning (ML) whereby a self-learning agent learns some 

type of interaction between it and the environment [118]. In a RL task (see Figure 5.1): 

1. The agent wants to achieve a goal within the environment. 

2. In each time step, action is performed by the agent. 

3. This action changes the state of the environment. 

4. Based on the success, the agent will receive a certain reward. 

Therefore, to start with a RL problem, these four components should be clearly defined: 

1. Goal 

2. State space 

3. Action space 

4. Reward function 
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Figure 5.1: Basic RL structure 

5.3 Markov Decision Process and Q-Learning 

In the Markov Decision Process (MDP) each state within an environment is a 

consequence of its previous state which in turn is a result of its previous state. 

Therefore, for sequential decision problems, the MDP provides a formalized 

description. The MDP is characterized by its S: state-space, A: action-space, transition 

probabilities P: St × At × St+1, and a reward function R: St × At. This framework 

provides a formal description of the problem in which an agent seeks an optimal policy. 

Policy maps the current states of the environment to the best action that the agent can 

take in a particular environment state [119]. The policy is learned implicitly in the form 

of state-action-values. Using Bellman’s equation, Q-values are updated in Q-Learning 

[120]:  

𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) = (1 − 𝛼)×𝑄𝑜𝑙𝑑(𝑠𝑡, 𝑎𝑡)+  𝛼 × (𝑟𝑡(𝑠𝑡, 𝑎𝑡)+ 𝛾×max(𝑄(𝑠𝑡+1, 𝑎)))       (5.1)                                                                                       
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where the learning-rate α represents the sensitivity against new experiences, the 

discount factor 𝛾  determines the weighting between immediate and future rewards, 

𝑟𝑡(𝑠𝑡, 𝑎𝑡) represents the reward and max(𝑄(𝑠𝑡+1, 𝑎)) estimates the optimal future value. 

All these Q-values are stored in a Q-table with the rows for states and the columns for 

actions —Table 5.1 provides an example.  

                              Table 5.1 The example of Q-table structure 

 

For clarity, here is a breakdown of the Q-Learning steps —see Figure 5.2: 

1. Initialize the table with random Q-values. 

2. Pick the action 𝑎𝑡 , from the set of actions defined for that state 𝑠𝑡  using 

max(𝑄(𝑠𝑡, 𝑎𝑡)). 

3. Perform action 𝑎𝑡. 

4. Observe reward 𝑟𝑡(𝑠𝑡, 𝑎𝑡) and the next state 𝑠𝑡+1. 

5. Select the 𝑎𝑡+1using max(𝑄(𝑠𝑡+1, 𝑎𝑡+1)) for the state 𝑠𝑡+1. 

6. Update the value for the state using the equation (5.1). 

7. Repeat steps 2-6 for each episode. 
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Figure 5.2: The Q-learning structure 

A drawback of this type of learning is that it can converge towards scenarios which may 

not offer the best solution. Therefore, the parameter epsilon (ε) is used to explore new 

actions and perhaps provide improved ‘exploration’ or adopt a previously learned agent, 

termed exploitation. 

5.4 Deep Q-Networks 

In complex environments, the number of states and actions can significantly increase, 

and in such circumstances it becomes unrealistic to infer the Q-value of new states from 

already explored states.  Moreover, the amount of memory required to save and update 

the table also increases. Thus, Q-values can be approximated using machine learning 

models such as artificial neural networks. The schematic structure of a Deep Q-Network 

for state-action-value approximation is shown in Figure 5.3. The input and output layers 
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contain state vector and related Q-value for each possible action, respectively, while 

there are a certain number of hidden layers between the input and output layers [121]. 

 

                                          Figure 5.3: The Deep Q-Network structure 

5.5 Hysteresis Band Control Using the RL 

In this section, the Q-Learning and DQN are tested on a single refrigerator to schedule 

on/off control for various temperature hysteresis bands. 

5.5.1 Implementation of Q-Learning 

Q-Learning is realised with a fixed sampling period of 1 min on the VonShef 

refrigerator model proposed in equation (3.7). The door remains closed for the duration 

of the training. The detailed parameters of the Q-Learning are shown in Table 5.2. In 

simulations, it is assumed that the ambient temperature is controlled between 21 °C and 

22 °C and can fluctuate within this range and the temperature bands are taken from 

reference [127]. 
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                                 Table 5.2 Q-Learning structure for the VonShef 

Parameter Value  

Upper band 2.6 (ºC) 

Lower band 1.4 (ºC) 

a fridge 

b fridge 

c fridge 

Operation power 

Min-on time 

Min-off time 

Number of training episodes 

Each episode length 

epsilon (ε) 

Learning rate 

Discount factor 

0.98 

0.0032 

0.004 

51 W 

8 min 

14 min 

100000 

200 min 

0.5 

0.1 

0.95 

The controller turns on/off the refrigerator based on a lower and upper bound set points 

therefore, the action space is as follows: 

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 =  {𝑂𝑁 = 1, 𝑂𝐹𝐹 = 0}                                                                                (5.2)                                                                                            

States are used to describe the environment at different points in time. In this model, a 

state is defined as a set of five values: setpoint temperature, the internal temperature, 

ambient temperature, and minimum on and off times—see equation (5.3). 

𝑆𝑡𝑎𝑡𝑒𝑠 =  {𝑇𝑠𝑒𝑡, 𝑇𝑖𝑛, 𝑇𝑎𝑚𝑏 , 𝑚𝑖𝑛𝑜𝑛, 𝑚𝑖𝑛𝑜𝑓𝑓 }                                                                (5.3)                                                                    

The main goal of this RL algorithm is to control the internal temperature within the 

defined upper and lower bands without turning the refrigerator on/off too frequently. 

The agent will receive a high penalty when it chooses the wrong action based on 

𝑚𝑖𝑛𝑜𝑛 𝑜𝑟 𝑚𝑖𝑛𝑜𝑓𝑓 values.  Conversely, if the internal temperature hits the upper or lower 

bands, the agent will receive a large reward, otherwise, the difference between internal 

temperature and setpoint temperature will be considered as a reward. The reward 

function is given by equation (5.4). The important aspect of choosing the numbers is the 

difference between the penalty and reward should be large, since a large difference 

helps the agent to learn the right and wrong actions during the training. For this study, 

four different penalty and reward pairs are chosen to show the agent can learn using any 
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arbitrary number with a large difference between reward and penalty eg. (-300, 200), (-

100, 35), (-100, 500) and (-4000, 4000) are chosen for the penalty and reward pairs, 

respectively. Any other arbitrary numbers can be chosen.  

𝑅𝑒𝑤𝑎𝑟𝑑 =  

{
 
 

 
 
−300,−100,−100,−4000 𝑚𝑖𝑛𝑜𝑛 >  0 & 𝑎𝑐𝑡𝑖𝑜𝑛 =  0
−300,−100,−100,−4000 𝑚𝑖𝑛𝑜𝑓𝑓 >  0 & 𝑎𝑐𝑡𝑖𝑜𝑛 =  1

200, 35, 500, 4000 𝑇𝑠𝑒𝑡 = 𝑢𝑝𝑏𝑎𝑛𝑑  𝑇𝑖𝑛 ≥ 𝑢𝑝𝑏𝑎𝑛𝑑
200, 35, 500, 4000 𝑇𝑠𝑒𝑡 = 𝑙𝑜𝑤𝑏𝑎𝑛𝑑  𝑇𝑖𝑛 ≤ 𝑙𝑜𝑤𝑏𝑎𝑛𝑑

−( 𝑇𝑖𝑛 −  𝑇𝑠𝑒𝑡)
2 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

              (5.4)                                                                          

The episode will be finished when the episode-length (200 min) is 0 or the current 

reward is −300,−100,−100,−4000  —see equation (5.5). 

𝐸𝑝𝑖𝑠𝑜𝑑𝑒 𝑖𝑠 𝑑𝑜𝑛𝑒 =  {
𝐸𝑝𝑖𝑠𝑜𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 0

𝑟𝑒𝑤𝑎𝑟𝑑 =  −300,−100,−100,−4000 
                                (5.5)                                                                                                                 

Details of the proposed Q-learning algorithm are given in Algorithm 1. Initially, the 

refrigerator parameters are randomly selected based on the data given in table 5.2, and 

the Q-table is randomly initialized, as shown in lines 1–2. Starting from line 3, for each 

iteration, the system state is first initialized, then the on/off action is chosen based on 

the epsilon, as shown in lines 7-11. Next, in lines 12–14, the selected action is executed 

in the environment for the entire control interval, and the received reward and the next 

state are observed. The maximum future Q and current Q values are calculated, and the 

Q-table is updated based on the rewards and (5.1), as shown in lines 15-24. When the 

current reward is -300, the current episode is finished, and the agent will start the next 

episode. Finally, after finishing all the episodes, the trained Q-table is stored to be 

further used for tests. Full python code is provided in Appendix 4.  
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Algorithm 1: Q-Learning method for hysteresis bands controller 

1: Initialize the parameters of the fridge and Q-table using table 5.2 

2: Initialize the Q-table with random numbers 

3:      for episode = 1 to Number of training episodes, do 
4:          Initialize system states (𝑇𝑠𝑒𝑡, 𝑇𝑖𝑛, 𝑇𝑎𝑚𝑏 , 𝑚𝑖𝑛𝑜𝑛,𝑚𝑖𝑛𝑜𝑓𝑓) with random numbers 

5:          for step = 1 to max steps, do 
6:                Get the observation space (𝑇𝑠𝑒𝑡, 𝑇𝑖𝑛, 𝑇𝑎𝑚𝑏 , 𝑚𝑖𝑛𝑜𝑛,𝑚𝑖𝑛𝑜𝑓𝑓) 

7:                if random number > epsilon, do 

8:                       Get the action using argmax (Q-table [observation space]) 

9:                else, do      

10:                     Get the random action [0,1]  

11:              end if 

12:              Apply the action and calculate the new internal temperature using equation (3.7),  

                   calculate the new minon, minoff, ambient temperature and setpoint temperature  

13:              Calculate the reward using equation (5.4) 

14:              Get the new observation space 

15:              Calculate the max Q value for this new observation using  

                   Max-future-Q = argmax (Q-table [new observation]) 

16:              Calculate the current Q for the chosen action using 

                   Current-Q = Q-table[observation][action] 

17:              Update the Q-table using: 

18:              if reward == setpoint-reward (200), do  

19:                   new-Q = setpoint-reward (200)          

20:              elseif reward == large-penalty (-300), do 

21:                   new-Q = large-penalty (-300) 

22:              else, do 

23:                   Calculate the new-Q using equation (5.1) 

24:              end if 

25:              if reward == large-penalty (-300), do 

26:                   break 

27:              end if             

28:          end for 

29:      end for 

30: Save the trained Q-table 

 

The Q-table is created after 100,000 training episodes in this case. Figures 5.4, 5.5, 5.6 

and 5.7 show the average reward values during the training for the various penalty-

reward pairs. It can be seen that the reward starts from negative numbers during the first 

episodes. In between, there is a consistent trend of greater rewards as the episodes 

increase until 70,000, then tends to be relatively constant thereafter, indicating that the 

agent (Q-table) is well trained. 



Chapter 5: Reinforcement Learning approaches for the scheduled operation of TCLs 

 

  

  

 

Mohammad Reza Zavvar Sabegh 107 

 

Figure 5.4: The average reward values during the Q-table training for penalty-reward 

pair of (-300, 200) 

 

Figure 5.5: The average reward values during the Q-table training for penalty-reward 

pair of (-100, 35) 
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Figure 5.6: The average reward values during the Q-table training for penalty-reward 

pair of (-100, 500) 

 

Figure 5.7: The average reward values during the Q-table training for penalty-reward 

pair of (-4000, 4000) 
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The trained Q-table is tested to schedule the on/off states to control the internal 

temperature between the defined setpoints (1.4, 2.6). Figures 5.8, 5.9, 5.10 and 5.11 

show the refrigerator’s internal temperature, the ambient temperature and the on/off 

states using the trained table for different penalty-reward pairs. As can been seen the 

agent is able to schedule the refrigerator compressor to maintain its respective 

temperature within the specified hysteresis bands whilst considering the number of 

compressor starts per hour. 

 

Figure 5.8: Refrigerator’s internal temperature, ambient temperature, and on/off state 

for Q-Learning for penalty-reward pair of (-300, 200) 
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Figure 5.9: Refrigerator’s internal temperature, ambient temperature, and on/off state 

for Q-Learning for penalty-reward pair of (-100, 35) 

 

Figure 5.10: Refrigerator’s internal temperature, ambient temperature, and on/off state 

for Q-Learning for penalty-reward pair of (-100, 500) 
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Figure 5.11: Refrigerator’s internal temperature, ambient temperature, and on/off state 

for Q-Learning for penalty-reward pair of (-4000, 4000) 

5.5.2 Implementation of DQN 

An agent is trained using DQN to control the VonShef internal temperature. The agent 

environment is designed using the OpenAI Gym [122]. The implementation of the DQN 

algorithm is carried out using the Python library Tensorflow and Keras-RL [123]. Table 

5.3 summarizes the parameters used in DQN. All other parameters, action space, state 

space and reward function are the same as they were for previous Q-Learning case. To 

build a good DQN, the settings are tried from the simplest settings, layers, networks 

until the network is properly trained and the suggestions provided in [94]-[103] the 

references are also used. 
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                                  Table 5.3 DQN structure for the VonShef 

Parameter Value  

Input layer 

Number of hidden layers 

Number of neurons in each hidden layer 

Output layer 

Activation function 

Number of training episodes 

Each episode length 

Learning rate 

Optimiser 

Loss 

States (5) 

2 

24 

Actions (2) 

Rectified Linear Unit (ReLU) 

20000 

500 min 

0.001 

Adam 

Mean Square Error (MSE) 

Algorithm 2 and figure 5.12 outline the pseudocode for the proposed DQN. After 

initializing the parameters of the refrigerator (line 1), the custom fridge environment is 

created using the OpenAI Gym environment. To create an environment with OpenAI 

Gym, the following functions should be defined:  

1. init: Initialize the system states and get the first observation space, as shown in 

lines 4-7. 

2. step: Apply the selected action to the environment and calculate the new 

observation space, reward, and episode status, as shown in lines 8-12. 

3. reset: Reset the environment, episode rewards and the observation space, as 

shown in lines 13-15. 

4. render: add graphical options to the environment such as plots. 

Next, in lines 18-30, the deep neural network model and the DQN agent are defined 

based on the data given in table 5.3. Finally, the DQN agent is trained and stored in 

lines 31-32. The full python code for the proposed DQN can be found in Appendix 5. 
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Figure 5.12: DQN flowchart for hysteresis bands controller 
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Algorithm 2: DQN method for hysteresis bands controller 

1: Initialize the parameters of the fridge using table 5.2 

2: Create the fridge environment using OpenAI Gym (init, step, render and reset functions) 

3: Class fridge-environment 

4:      def init: 
5:          Initialize system states (𝑇𝑠𝑒𝑡, 𝑇𝑖𝑛, 𝑇𝑎𝑚𝑏 , 𝑚𝑖𝑛𝑜𝑛,𝑚𝑖𝑛𝑜𝑓𝑓) with random numbers 

6:          Get the observation space (𝑇𝑠𝑒𝑡 , 𝑇𝑖𝑛, 𝑇𝑎𝑚𝑏 , 𝑚𝑖𝑛𝑜𝑛, 𝑚𝑖𝑛𝑜𝑓𝑓) 

7:       end def 

8:       def step: 

9:           Apply the action and calculate the new internal temperature using equation (3.7), 

              calculate the new minon, minoff, ambient temperature and setpoint temperature 

10:         Calculate the reward using equation (5.4)    

11:         Check if episode is done using equation (5.5) 

12:      end def 

13:      def rest: 
14:         Reset the states (𝑇𝑠𝑒𝑡, 𝑇𝑖𝑛, 𝑇𝑎𝑚𝑏 , 𝑚𝑖𝑛𝑜𝑛,𝑚𝑖𝑛𝑜𝑓𝑓)  

15:      end def 

16: end Class 

17: Create the deep neural network model 

18: def deep model: 

19:       model.add (input layer = states) 

20:       model.add (hidden layer 1, activation function) 

21:       model.add (hidden layer 2, activation function) 

22:       model.add (output layer = actions) 

23: end def  

24: Build the DQN agent 

25: def DQN: 

26:       Initialize the parameters of the DQN using table 5.3 

27:       policy = BoltzmannQPolicy 

28:       model = deep model 

29:       environment = fridge-environment 

30: end def 

31: DQN.train 

32: Save the trained DQN 

Tests are carried out on the trained agent for three different setpoints: (1.4–2.6 ºC), 

(1.5–4 ºC) and (2–3.5 ºC). Figures 5.13, 5.14 and 5.15 show the refrigerator’s internal 

temperature, the ambient temperature, the on/off state, and step reward value under 

three different upper and lower bands. By comparison with the results from Q-table, 

here it can be seen that the relative number of training episodes has reduced from 

100,000 to 20,000. Moreover, the DQN model is able to control the internal temperature 

for different setpoint other than the trained setpoint (1.4–2.6 ºC), whereas the Q-table 

counterpart only works for the trained setpoint. 
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Figure 5.13: Refrigerator’s internal temperature, ambient temperature, on/off state and 

step reward for setpoint (1.4–2.6 ºC) under DQN scheme 

 

Figure 5.14: Refrigerator’s internal temperature, ambient temperature, on/off state and 

step reward for setpoint (2–3.5 ºC) under DQN scheme 
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Figure 5.15: Refrigerator’s internal temperature, ambient temperature, on/off state and 

step reward for setpoint (1.5–4 ºC) under DQN scheme 

5.6 Multi-Refrigerator Systems and DSR Using DQN 

This study investigates the use of the previously presented DQN to respond to DSR 

events in domestic refrigerators. Table 5.4 summarise the data for three different 

domestic refrigerators models that are designed using the OpenAI Gym environment. 

                          Table 5.4 Data for the designed three domestic refrigerators 

Fridge 

Number 

Upper 

band 

(ºC) 

Lower 

band 

(ºC) 

Min-on 

time 

(min) 

Min-

off 

time 

(min) 

Parameter 

a 

Parameter 

b 

Parameter 

c 

Operation 

power 

(W) 

VonShef 2.6 1.4 6 12 0.98 0.0032 0.004 51 

iGenix 4.5 2.5 5 15 0.99 0.0047 0.003 55 

Russell 

Hobbs 

5 3 9 10 0.95 0.005 0.006 50 
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The DQN is used to train the agent using Keras-RL library in Python. In this DSR 

event, the agent can turn on only one fridge at each time step. Therefore, the action 

space is a set of four values: 

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 =  {𝑂𝐹𝐹_𝑂𝐹𝐹_𝑂𝐹𝐹 (000), 𝑂𝑁_𝑂𝐹𝐹_𝑂𝐹𝐹 (100), 𝑂𝐹𝐹_𝑂𝑁_𝑂𝐹𝐹 (010),

𝑂𝐹𝐹_𝑂𝐹𝐹_𝑂𝑁 (001)}                                                                                                 (5.5)                                                                                      

The state space includes setpoint temperature, internal temperature, ambient 

temperature, minimum on and off times for each refrigerator:  

𝑆𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒 = {

𝑇𝑠𝑒𝑡1, 𝑇𝑖𝑛1, 𝑇𝑎𝑚𝑏1,𝑚𝑖𝑛𝑜𝑛1, 𝑚𝑖𝑛𝑜𝑓𝑓1,

 𝑇𝑠𝑒𝑡2, 𝑇𝑖𝑛2, 𝑇𝑎𝑚𝑏2,𝑚𝑖𝑛𝑜𝑛2, 𝑚𝑖𝑛𝑜𝑓𝑓2,

𝑇𝑠𝑒𝑡3, 𝑇𝑖𝑛3, 𝑇𝑎𝑚𝑏3, 𝑚𝑖𝑛𝑜𝑛3, 𝑚𝑖𝑛𝑜𝑓𝑓3

}                                             (5.6)                                                                                                                                                                                                     

The reward functions for each refrigerator are given by equations (5.7), (5.8) and (5.9). 

𝑅𝑒𝑤𝑎𝑟𝑑1 = 

{
 
 

 
 

−1000 𝑚𝑖𝑛𝑜𝑛1 >  0 & 𝑎𝑐𝑡𝑖𝑜𝑛1 =  0
−1000 𝑚𝑖𝑛𝑜𝑓𝑓1 >  0 &  𝑎𝑐𝑡𝑖𝑜𝑛1 =  1

200 𝑇𝑠𝑒𝑡1 = 𝑢𝑝𝑏𝑎𝑛𝑑1  𝑇𝑖𝑛1 ≥ 𝑢𝑝𝑏𝑎𝑛𝑑1
200 𝑇𝑠𝑒𝑡1 = 𝑙𝑜𝑤𝑏𝑎𝑛𝑑1  𝑇𝑖𝑛1 ≤ 𝑙𝑜𝑤𝑏𝑎𝑛𝑑1

−( 𝑇𝑖𝑛 −  𝑇𝑠𝑒𝑡)
2 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                   (5.7)                                                                             

𝑅𝑒𝑤𝑎𝑟𝑑2 = 

{
 
 

 
 

−1000 𝑚𝑖𝑛𝑜𝑛2 >  0 & 𝑎𝑐𝑡𝑖𝑜𝑛2 =  0
−1000 𝑚𝑖𝑛𝑜𝑓𝑓2 >  0 &  𝑎𝑐𝑡𝑖𝑜𝑛2 =  1

200 𝑇𝑠𝑒𝑡2 = 𝑢𝑝𝑏𝑎𝑛𝑑2  𝑇𝑖𝑛2 ≥ 𝑢𝑝𝑏𝑎𝑛𝑑2
200 𝑇𝑠𝑒𝑡2 = 𝑙𝑜𝑤𝑏𝑎𝑛𝑑2  𝑇𝑖𝑛2 ≤ 𝑙𝑜𝑤𝑏𝑎𝑛𝑑2

−( 𝑇𝑖𝑛 −  𝑇𝑠𝑒𝑡)
2 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                   (5.8)                                                             

𝑅𝑒𝑤𝑎𝑟𝑑3 = 

{
 
 

 
 

−1000 𝑚𝑖𝑛𝑜𝑛3 >  0 & 𝑎𝑐𝑡𝑖𝑜𝑛3 =  0
−1000 𝑚𝑖𝑛𝑜𝑓𝑓3 >  0 &  𝑎𝑐𝑡𝑖𝑜𝑛3 =  1

200 𝑇𝑠𝑒𝑡3 = 𝑢𝑝𝑏𝑎𝑛𝑑3  𝑇𝑖𝑛3 ≥ 𝑢𝑝𝑏𝑎𝑛𝑑3
200 𝑇𝑠𝑒𝑡3 = 𝑙𝑜𝑤𝑏𝑎𝑛𝑑3  𝑇𝑖𝑛3 ≤ 𝑙𝑜𝑤𝑏𝑎𝑛𝑑3

−( 𝑇𝑖𝑛 −  𝑇𝑠𝑒𝑡)
2 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                   (5.9)                                                       

Finally, the integrated total reward function is given by equation (5.10). 

𝑅𝑒𝑤𝑎𝑟𝑑 =  𝑅𝑒𝑤𝑎𝑟𝑑1 + 𝑅𝑒𝑤𝑎𝑟𝑑2 + 𝑅𝑒𝑤𝑎𝑟𝑑3                                                     (5.10)                                                                            
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The structure of the DQN is proposed in Table 5.5. 

                                  Table 5.5 DQN structure for the VonShef 

Parameter Value  

Input layer 

Number of hidden layers 

Number of neurons for hidden layer 1 

Number of neurons for hidden layer 2 

Output layer 

Activation function 

Number of training episodes 

Each episode length 

Learning rate 

Optimiser 

Loss 

States (15) 

2 

120 

32 

Actions (4) 

Gaussian Error Linear Units (GELUs) 

33000 

500 min 

0.001 

Adam 

Mean Square Error (MSE) 

The full python code for the proposed DQN structure can be found in Appendix 6. 

Tests on refrigerator models now show the performance of the DQN to investigate how 

the widely distributed domestic refrigerators can respond to DSR events. Tests on 

refrigerators 1, 2, and 3 include two different sets of setpoint data and the trained 

setpoint, and the doors remained closed for the duration of the trials. Desired upper and 

lower temperature setpoints for different tests for each refrigerator are shown in Table 

5.6. 

                     Table 5.6 Desired upper and lower temperature setpoints for the tests 

 Test 1 Test 2 Test 3 

Fridge 

Number 

Upper 

band 

(Trained) 

(ºC) 

Lower 

band 

(Trained) 

(ºC) 

Upper 

band 

(ºC) 

Lower 

band 

(ºC) 

Upper 

band  

(ºC) 

Lower 

band  

(ºC) 

VonShef 2.6 1.4 2.5 1.5 2.5 1.5 

iGenix 4.5 2.5 3 2 3 1.5 

Russell 

Hobbs 

5 3 4 1.5 6 4 

 

Results for test 1 are given in Figures 5.16, 5.17 and 5.18, for test 2 are given in Figures 

5.19, 5.20 and 5.21 and for test 3 are given in Figures 5.22, 5.23 and 5.24. DSR 
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demanded with the total power usage of 60W lasts for 500 minutes. As can be seen from 

the measurements, the refrigerators are able to respond (virtually) instantaneously to 

power shedding events and the peak power consumption is limited to 60W. Moreover, 

all the refrigerators maintain their temperatures within required bounds during the DSR 

event. 

 

Figure 5.16: Refrigerator’s internal temperatures, on/off state and step reward for Test 1 
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Figure 5.17: Refrigerator’s ambient temperatures for Test 1 

 

Figure 5.18: Refrigerator’s total power usage for Test 1 
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Figure 5.19: Refrigerator’s internal temperatures, on/off state and step reward for Test 2 

 

Figure 5.20: Refrigerator’s ambient temperatures for Test 2 
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Figure 5.21: Refrigerator’s total power usage for Test 2 

 

Figure 5.22: Refrigerator’s internal temperatures, on/off state and step reward for Test 3 
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Figure 5.23: Refrigerator’s ambient temperatures for Test 3 

 

Figure 5.24: Refrigerator’s total power usage for Test 3 
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5.7 Conclusions 

In this chapter, the Q-Learning and Deep Q-Network are proposed and implemented for 

hysteresis band controlling and jointly scheduling the widely distributed domestic 

refrigerators in DSR events. The Q-table is trained with 2.6 and 1.4 (ºC) setpoint 

temperatures to implement hysteresis control but Q-table only works for the trained 

setpoint. In order to resolve this problem, the deep neural network is used instead of a 

tabular model. The custom fridge environment is created using the OpenAI Gym 

environment and DQN is implemented and tested using Keras-RL and it is shown that 

the DQN model is able to control the internal temperature for different setpoint other 

than the trained setpoint. Moreover, the DQN is implemented to respond to DSR events 

in three domestic refrigerators. Tests are carried out with two different sets of setpoint 

data and the trained setpoint and the peak power consumption is limited to 60W (the 

agent can only provide power one fridge at each time step due to the strict power 

constraint). It is shown that the refrigerators are able to respond to power shedding 

events almost instantaneously. It should be noted that the proposed methodology can be 

implemented more widely for other house appliances, for instance, boilers, or other 

TCLs. Since the RL method uses a trained network and optimization calculations are 

not performed every time step, it can provide an instant response. In contrast to MPC, 

there are no control and prediction horizon parameters in the RL method, so the 

refrigerators will return to normal operation immediately after a failure of the Internet 

connection. 

There are some difficulties in experimental work in chapter 5. It was an odder of 

magnitude more difficult than experimental trails for the other chapters and would 

investigate in future works. The practical difficulties in the implementation for a 

practical system compared with previous methods: The previous controller was 

developed in the MATLAB environment with Arduino, but RL is created in the Python 

environment, so implementing RL on refrigerators requires a new communication setup 
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using new hardware (such as Raspberry Pi) or a new programming language such as 

MicroPython. Additionally, it needs to be figured out how to communicate between 

sensors and how to receive and send data via smart plugs and the Python environment. 
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6 CONCLUSIONS AND 

RECOMMENDATIONS 

This thesis has presented new methods for monitoring and jointly scheduling of widely 

distributed domestic refrigerators using MPC and Reinforcement Learning approaches. 

Here, we draws together the various elements undertaken in the course of the research. 

The main conclusions are discussed, with recommendations for future work presented. 

6.1 Conclusions 

There are four objectives in section 1.3 of this thesis which are summarised: 

First, the real-time identification of refrigerator dynamics is proposed, and experimental 

trials are carried out when the refrigerator is empty, when it contains product (6-litres of 

water) and with door opening and closing events to show the recursive based system 

identification strategy is able to accommodate uncertainty e.g., ambient conditions, 

opening and closing the door and changes in product mass. The results show that the 

difference between the predicted and actual data become negligible (<0.5 ºC) in steady 

state and RMSE in each trial case is lower than 0.24. 
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A suitably widespread network affords the opportunity to schedule and monitor the 

operation of distributed domestic appliances simultaneously to collectively improve 

energy efficiency and reduce peak power consumption on the electrical grid. In this 

thesis, the IP-based synchronized wireless network is proposed and implemented for 

monitoring and jointly scheduling the widely distributed domestic refrigerators in DSR 

events using the proposed Model Predictive Control with Binary Quadratic 

Programming. Benefits afforded by the proposed technique are investigated through 

experimental trials from VonShef 13/291 (50W), iGENIX IG 3920 (55W) and Russell 

Hobbs RHCLRF17B (50W) domestic refrigerators sited in three different domestic 

locations in the city of Lincoln, UK. The algorithm is able to put a constraint on the 

total maximum power consumption of the fridges and the number of ON-OFF events is 

constrained to be 6-8 per hour for each fridge. Also, supply priority is considered. The 

experimental results are carried out under four different conditions including: 1) 

refrigerators operate in isolation 2) total maximum power consumption is limited to 

110W with equal supply priority 3) total maximum power consumption is limited to 

60W with equal supply priority 4) total maximum power consumption is limited to 60W 

with unequal supply priority. The results show that in trial 2, iGENIX and VonShef 

have energy savings of up to 19% and 29%, respectively, compared to the trial 1, 

though in trials A and B all of refrigerators remain within required temperature bounds 

based on food safety standards proposed in [127]. Moreover, an experimental study 

investigates how domestic refrigerators can respond to DSR events. Results stemming 

from the initiation of two DSR events for the small network of refrigerators with equal 

and unequal supply priorities, show that the proposed network is able to adaptively 

schedule the appliances to reduce peak operational loads and facilitate Demand Side 

Response. Further widespread expansion of the proposed technique would allow a 

rapidly deployed regional DSR strategy to aid grid stability. 

The effect of varying hysteresis bands and internal product on the energy consumption 

of a domestic refrigerator is investigated as part of an IoT controlled platform. It is 

shown that the energy consumption of the empty refrigerator increases as the hysteresis 



Deep Reinforcement Learning and Model Predictive Control Approaches for the Scheduled Operation of 

Domestic Refrigerators 

 

 

 

 

128  Mohammad Reza Zavvar Sabegh 

band increases. However, as the amount of product is increased (greater thermal mass) 

the opposite trend is shown to occur. It is demonstrated that potential energy savings of 

up to 20% are possible by judicious choice of hysteresis band with respect to the 

amount of product within the refrigerator. This requires a real-time adaption scheme 

based on identifying an underlying model of the refrigerator dynamics, and its control, 

as presented in this thesis for example. For largescale distributed refrigeration systems, 

as found in superstores for example, the use of IoT in the manner presented in this thesis 

will also allow candidacy algorithms to be implemented (to facilitate DSM) as well as 

local hysteresis band control to accommodate product mass changes in real time. 

Finally, the custom fridge environment is created using OpenAI Gym environment and 

the RL based methods using Q-table and DQN are developed to control a single 

refrigerator within a defined upper and lower temperature bands. The results reveal that 

the Q-table works only with the trained setpoint temperatures, but that DQN can control 

the internal temperature other than at the trained setpoint point. Moreover, the DQN is 

used and tested to schedule the aggregated domestic refrigerators for peak shaving 

purposes considering refrigerators’ compressor life-time indices to accommodate a 

maximum number of compressor starts per hour as part of the scheduling, to avoid too 

frequent on/off switching events. The results show that the proposed DQN can respond 

to power shedding events (total maximum power consumption is limited to 60W) and 

all of refrigerators remain within required temperature bounds not only for the trained 

setpoint but also for the setpoints other than at the trained setpoint.  

In the experiments, smart plugs were used to connect the refrigerators to the Internet 

and control their ON/OFF states. In a wider dimension, smart plugs and sensors can also 

be integrated inside refrigerators as a way to transmit and receive data, as well as 

ON/OFF commands. Moreover, some smart refrigerators have this feature and are 

currently connected to the Internet such as LG GSXV91BSAE Wifi Connected 

American Fridge Freezer, Bosch Serie 8 KFF96PIEP Wifi Connected American Fridge 

Freezer and LG GBB92STAXP Wifi Connected 70/30 Frost Free Fridge Freezer. 
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The novelty in this thesis include: 

1.  A grey box model is proposed and tested for refrigerators to be used in control 

methods.  

2. Model predictive control with binary quadratic programming for the scheduled 

operation of domestic refrigerators is designed and implemented. 

3. The impact of hysteresis control and internal thermal mass on the energy 

efficiency of domestic refrigerators is investigated. 

4. An IoT platform is designed to remotely monitor and control domestic 

appliances and this platform is to be used to implement the proposed MPC. 

5. A DQN agent is trained and used to control hysteresis bands in a single fridge 

and schedule the operation of multiple fridges during DSR events. 

 

 

6.2 Recommendations for Further Work 

Potential future improvements include: 

1- Investigation of the RLS system identification method is presented in other 

models of refrigerators that have more physical characteristics. 

2- Experimental validation for simulation results using DQN and investigating a 

communication network using Raspberry Pi and domestic fridges. 

3- Identifying limitations and improving the proposed scheduling methods by 

implementing them in a wider scale. 

4- Improve the proposed RL and investigate how to add different supply priorities 

to all refrigerators. 

5- Implementation of other types of RL-based approaches to have a more 

comprehensive evaluation. 
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6- Considering other types of TCLs and residential heating systems using smart 

thermostats. 

7- Considering more constraints in scheduling section related to human activities 

such as door opening in refrigerators. 

8- IoT based energy management of commercial controllable loads such as 

commercial refrigerators in super stores using RL.  
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APENDIX1 INSTRUCTIONS ON SENDING DATA TO GOOGLE 

SHEETS 

1. Login to the Gmail (It is better to create a new google account without two step 

verification security). 

2. Go to the App icon in Top Right Corner and Click on Sheets. 

3. Create a New Blank Sheet. 

4. The Blank Sheet will be created with an “Untitled Spreadsheet”. 

5. Write the names of the columns in the sheet. 

6. Select the ‘Tools’ menu and click on “<> Script Editor” option. 

7. The new Google Script is created with “Untitled project”. 

8. Use the provided Google Script code, then edit the Sheet name and sheet_id in 

the code. The Sheet ID is accessible from the Sheet URL. 

9. Use the case to add new sensors (this example includes the set of four sensors). 

10. Go to ‘Publish’ menu and select the ‘Deploy as Web App…’. 

11. The “Project version” will be “New”. Select “your email id” in the “Execute the 

app as” field. Choose “Anyone, even anonymous” in the “Who has access to the 

app” field. And then Click on “Deploy”. 

12. Click on “Review Permissions”. Click on “Advanced” then click on “Go to 

‘your_script_name’(unsafe)” Click on “Allow” and this will give the permission 

to deploy it as web app. The new screen is created with a given link and named 

as “Current web app URL”. This URL contains Google Script ID. 

13. Put Wi-Fi SSID and password. Also, put Google script ID (GAS_ID) in the 

Arduino code. 

14. Add the sensors in the url section of the Arduino code. 

15. Upload the Arduino code to the NodeMCU. 

Google Script code 

function doGet(e) {  

  Logger.log( JSON.stringify(e) );  // view parameters 
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  var result = 'Ok'; // assume success 

  if (e.parameter == 'undefined') { 

    result = 'No Parameters'; 

  } 

  else { 

    var sheet_id = '1mrJvHifHRD7gk4efAJcbD_22pTnYPDN9W-a-3iQG3aY';  

 // Spreadsheet ID 

    var sheet = SpreadsheetApp.openById(sheet_id).getActiveSheet();  // get 

Active sheet 

    var newRow = sheet.getLastRow() + 1;       

    var rowData = []; 

 var Curr_Date = new Date();  

    rowData[0] = Curr_Date;        

    // Date in column A 

 var Curr_Time = Utilities.formatDate(Curr_Date, "Etc/GMT", 'HH:mm:ss'); 

 rowData[1] = Curr_Time;        

    // Time in column B 

    for (var param in e.parameter) { 

      Logger.log('In for loop, param=' + param); 

      var value = stripQuotes(e.parameter[param]); 

      Logger.log(param + ':' + e.parameter[param]); 

      switch (param) { 

        case 'sensor1': //Parameter 

          rowData[2] = value; //Value in column C 

          break; 

        case 'sensor2': //Parameter 

          rowData[3] = value; //Value in column D 

          break;  
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        case 'sensor3': //Parameter 

          rowData[4] = value; //Value in column E 

          break; 

        case 'sensor4': //Parameter 

          rowData[5] = value; //Value in column F 

          break; 

        default: 

          result = "unsupported parameter"; 

      } 

    } 

    Logger.log(JSON.stringify(rowData)); 

    // Write new row below 

    var newRange = sheet.getRange(newRow, 1, 1, rowData.length); 

    newRange.setValues([rowData]); 

  } 

  // Return result of operation 

  return ContentService.createTextOutput(result); 

} 

/** 

* Remove leading and trailing single or double quotes 

*/ 

function stripQuotes(value) { 

  return value.replace(/^["']|['"]$/g, ""); 

} 

//----------------------------------------------- 

// End of file 
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//----------------------------------------------- 

 

Arduino Code 

#include <ESP8266WiFi.h> 

#include <WiFiClientSecure.h> 

WiFiClientSecure gsclient; 

double sensor1; 

double sensor2; 

double sensor3; 

double sensor4; 

//const char* ssid = "………";                //replace with our wifi ssid 

//const char* password = "……….";         //replace with your wifi password 

//const char* ssid = "…..";                //replace with our wifi ssid 

//const char* password = "……..";         //replace with your wifi password 

const char* ssid = "……";                //replace with our wifi ssid 

const char* password = "…….";         //replace with your wifi password 

 

String GAS_ID = "……";//getactivespreadsheetID 

const char* fingerprint = "46 B2 C3 44 9C 59 09 8B 01 B6 F8 BD 4C FB 00 74 91 2F EF 

F6"; 

const char* host = "script.google.com"; 

const int httpsPort = 443; 

 

void setup() { 

  delay(1000); 

  Serial.begin(115200); 

  Serial.println(); 
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  Serial.print("Connecting to wifi: "); 

  Serial.println(ssid); 

  WiFi.begin(ssid, password); 

  while (WiFi.status() != WL_CONNECTED) { 

    delay(500); 

    Serial.print("."); 

  } 

  Serial.println(""); 

  Serial.println("WiFi connected"); 

} 

//........................................................................................................................... .................. 

void loop() { 

    sensor1 = 4.68; 

    sensor2 = 56.32; 

    sensor3 = 101.78; 

    sensor4 = 84.17; 

    sendData(sensor1, sensor2, sensor3, sensor4); 

    delay(1000); 

 

} 

//........................................................................................................................... .................. 

void sendData(double x, double y, double z, double t) 

{ 

  gsclient.setInsecure(); 

  if (!gsclient.connect("script.google.com", httpsPort)) { 

    Serial.println("connection failed"); 
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    return; 

  } 

  if (gsclient.verify(fingerprint, host)) { 

  } else { 

  } 

  String string_x     =  String(x, DEC); 

  String string_y     =  String(y, DEC); 

  String string_z     =  String(z, DEC); 

  String string_t     =  String(t, DEC); 

  String url = "/macros/s/" + GAS_ID + "/exec?sensor1=" + string_x + "&sensor2=" + 

string_y + "&sensor3=" + string_z + "&sensor4=" + string_t; 

  gsclient.print(String("GET ") + url + " HTTP/1.1\r\n" + 

                 "Host: " + host + "\r\n" + 

                 "User-Agent: BuildFailureDetectorESP8266\r\n" + 

                 "Connection: close\r\n\r\n"); 

  while (gsclient.connected()) { 

    String line = gsclient.readStringUntil('\n'); 

    if (line == "\r") { 

      break; 

    } 

  } 

  String line = gsclient.readStringUntil('\n'); 

  Serial.println(line); 

  if (line.startsWith("{\"state\":\"success\"")) { 

  } else { 

  } 
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} 
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APPENDIX 2 CLIENT CODE (MICROPYTHON) 

try: 

  import usocket as socket 

except: 

  import socket 

from machine import Pin 

import network 

from umqtt.simple import MQTTClient 

import time 

import os 

import sys 

import socket 

import json 

import struct 

import machine 

import onewire 

import ds18x20 

import esp 

esp.osdebug(None) 

import gc 

gc.collect() 

ssid = '…….' 

password = '…….' 

#staticIP ='192.168.1.13' 

#subnet = '255.255.255.0' 
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#gateway = '192.168.1.1' 

#dns = '194.168.1.1' 

TP_Link_address= "192.168.1.12" 

THINGSPEAK_Read_CHANNEL_ID = b'……..' 

THINGSPEAK_CHANNEL_READ_API_KEY = b'……..' 

ds_pin = machine.Pin(2) 

ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin)) 

roms = ds_sensor.scan() 

romfridge = roms[1] 

romambient = roms[0] 

station = network.WLAN(network.STA_IF) 

station.active(True) 

#station.ifconfig((staticIP, subnet, gateway, dns)) 

station.connect(ssid, password) 

count = 0 

while station.isconnected() == False: 

  pass 

#print('Connection successful') 

print(station.ifconfig()) 

 

def cb(topic, msg): 

    global onoff 

    onoff = float(str(msg,'utf-8')) 

    #print(onoff) 

def encrypt(string): 

    key = 171 
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    result = b"\0\0\0\0" 

    for i in string: 

        a = key ^ i 

        key = a 

        result += a.to_bytes((len(bin(a))-2 + 7) // 8, 'big') 

    return result 

def decrypt(string): 

    key = 171 

    result = b"" 

    for i in string: 

        a = key ^ i 

        key = i 

        result += a.to_bytes((len(bin(a))-2 + 7) // 8, 'big') 

    return result 

def send_hs_command(address, port, cmd): 

    data = b"" 

    tcp_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

    tcp_sock.connect((address, port)) 

    tcp_sock.send(encrypt(cmd)) 

    data = tcp_sock.recv(2048) 

    return data 

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

s.bind(('', 80)) 

s.listen(5) 

 

while True: 
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  conn, addr = s.accept() 

  #print('Got a connection from %s' % str(addr)) 

  request = conn.recv(1024) 

  request = str(request) 

  #print('Content = %s' % request) 

  recievedReq = request.find('/fridgetemperature') 

  recievedReq1 = request.find('/ambienttemperature') 

  recievedReq2 = request.find('/power') 

  ds_sensor.convert_temp() 

  time.sleep_ms(50) 

   

  if recievedReq == 6: 

    #print('Reading Fridge Sensor') 

    try: 

      Tempfridge = ds_sensor.read_temp(romfridge) 

      TempfridgeStr = str(Tempfridge) 

    except: 

      pass 

    response = TempfridgeStr 

    conn.send('HTTP/1.1 200 OK\n') 

    conn.send('Content-Type: text/html\n') 

    conn.send('Connection: close\n\n') 

    conn.sendall(response) 

    conn.close() 

    count = count + 1 

  if recievedReq1 == 6: 
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    #print('Reading Ambient Sensor') 

    try: 

      TempAmb = ds_sensor.read_temp(romambient) 

      TempAmbStr = str(TempAmb) 

    except: 

      pass 

    response = TempAmbStr 

    conn.send('HTTP/1.1 200 OK\n') 

    conn.send('Content-Type: text/html\n') 

    conn.send('Connection: close\n\n') 

    conn.sendall(response) 

    conn.close() 

    count = count + 1 

  if recievedReq2 == 6: 

    #print('Reading power') 

    data1 = send_hs_command(TP_Link_address, 9999, b'{"emeter":{"get_realtime":{}}}') 

    decrypted_data1 = decrypt(data1[4:]).decode() 

    json_data1 = json.loads(decrypted_data1) 

    emeter1 = json_data1["emeter"]["get_realtime"] 

    power1=emeter1["power"] 

    #print(power1) 

    power1Str = str(power1) 

    response = power1Str 

    conn.send('HTTP/1.1 200 OK\n') 

    conn.send('Content-Type: text/html\n') 

    conn.send('Connection: close\n\n') 
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    conn.sendall(response) 

    conn.close() 

    count = count + 1 

  if count == 3: 

    randomNum = int.from_bytes(os.urandom(3), 'little') 

    myMqttClient = bytes("client"+str(randomNum), 'utf-8') 

    client1 = MQTTClient(client_id=myMqttClient, server=b"mqtt.thingspeak.com", 

user=b'J487S61H5W6B7NIE', password=b'0Z60O5K6WO410BGH', ssl=False) 

    client1.connect() 

    subscribeTopic = bytes("channels/{:s}/subscribe/fields/field4/{:s}".format(b'670681', 

b'RLJCBZN66R1C9QNQ'), 'utf-8') 

    client1.set_callback(cb) 

    client1.subscribe(subscribeTopic) 

    client1.wait_msg() 

    client1.disconnect() 

    count = 0 

    if onoff == 1: 

      send_hs_command(TP_Link_address, 9999, 

b'{"system":{"set_relay_state":{"state":0}}}') 

      #print('TP-Link turned off') 

    elif onoff == 2: 

      send_hs_command(TP_Link_address, 9999, 

b'{"system":{"set_relay_state":{"state":1}}}') 

      #print('TP-Link turned on') 
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APPENDIX 3 SERVER CODE (ARDUINO) 

#include <ESP8266WiFi.h> 

#include <ESP8266HTTPClient.h> 

#include <WiFiClient.h> 

#include <ESP8266WiFiMulti.h> 

#include <WiFiClientSecure.h> 

ESP8266WiFiMulti WiFiMulti; 

 

const char* MY_SSID = "……….."; 

const char* MY_PWD = "………"; 

 

const char* server = "api.thingspeak.com"; 

String apiKeyChannel1 ="……."; 

String apiKeyChannel4 ="…….."; 

 

//Your IP address or domain name with URL path 

const char* serverNameIntTempVonShef = "http://82.30.166.126:303/fridgetemperature"; 

const char* serverNameAmbTempVonShef = 

"http://82.30.166.126:303/ambienttemperature"; 

const char* serverNamepowerVonShef = "http://82.30.166.126:303/power"; 

 

const char* serverNameIntTempiGenix = "http://89.240.127.106:80/fridgetemperature"; 

const char* serverNameAmbTempiGenix = 

"http://89.240.127.106:80/ambienttemperature"; 

const char* serverNamepoweriGenix = "http://89.240.127.106:80/power"; 
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const char* serverNameIntTempRussell = "http://82.31.108.103:303/fridgetemperature"; 

const char* serverNameAmbTempRussell = 

"http://82.31.108.103:303/ambienttemperature"; 

const char* serverNamepowerRussell = "http://82.31.108.103:303/power"; 

 

String InttemperatureVonShef; 

String AmbtemperatureVonShef; 

String powerVonShef; 

 

String InttemperatureiGenix; 

String AmbtemperatureiGenix; 

String poweriGenix; 

 

String InttemperatureRussell; 

String AmbtemperatureRussell; 

String powerRussell; 

 

const long interval = 60000; 

 

unsigned long previousMillis = 0; 

//...........................................................................................................................  

void setup() { 

  Serial.begin(115200); 

  Serial.println(); 

  delay(1000); 

  connectWifi(); 

} 
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//........................................................................................................................... 

void loop() { 

  unsigned long currentMillis = millis(); 

   

  if(currentMillis - previousMillis >= interval) { 

     // Check WiFi connection status 

    if ((WiFiMulti.run() == WL_CONNECTED)) { 

      InttemperatureVonShef = httpGETRequest(serverNameIntTempVonShef); 

      AmbtemperatureVonShef = httpGETRequest(serverNameAmbTempVonShef); 

      powerVonShef = httpGETRequest(serverNamepowerVonShef); 

 

      InttemperatureiGenix = httpGETRequest(serverNameIntTempiGenix); 

      AmbtemperatureiGenix = httpGETRequest(serverNameAmbTempiGenix); 

      poweriGenix = httpGETRequest(serverNamepoweriGenix); 

 

      InttemperatureRussell = httpGETRequest(serverNameIntTempRussell); 

      AmbtemperatureRussell = httpGETRequest(serverNameAmbTempRussell); 

      powerRussell = httpGETRequest(serverNamepowerRussell); 

       

      Serial.println("Fridge Temperature VonShef: " + InttemperatureVonShef + " *C "); 

      Serial.println("Ambient Temperature VonShef: " + AmbtemperatureVonShef + " *C "); 

      Serial.println("power VonShef: " + powerVonShef + " W "); 

 

      Serial.println("Fridge Temperature iGenix: " + InttemperatureiGenix + " *C "); 

      Serial.println("Ambient Temperature iGenix: " + AmbtemperatureiGenix + " *C "); 

      Serial.println("power iGenix: " + poweriGenix + " W "); 
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      Serial.println("Fridge Temperature Russell: " + InttemperatureRussell + " *C "); 

      Serial.println("Ambient Temperature Russell: " + AmbtemperatureRussell + " *C "); 

      Serial.println("power Russell: " + powerRussell + " W "); 

      delay(200); 

      sendDataToChannel1(InttemperatureVonShef, powerVonShef, InttemperatureiGenix, 

poweriGenix, InttemperatureRussell, powerRussell, AmbtemperatureVonShef, 

AmbtemperatureiGenix); 

      sendDataToChannel4(AmbtemperatureRussell); 

      delay(500); 

       

      // save the last HTTP GET Request 

      previousMillis = currentMillis; 

    } 

    else { 

      Serial.println("WiFi Disconnected"); 

    } 

  } 

} 

//...........................................................................................................................  

String httpGETRequest(const char* serverName) { 

  WiFiClient client; 

  HTTPClient http; 

     

  // Your IP address with path or Domain name with URL path  

  http.begin(client, serverName); 
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  // Send HTTP POST request 

  int httpResponseCode = http.GET(); 

   

  String payload = "--";  

   

  if (httpResponseCode>0) { 

    Serial.print("HTTP Response code: "); 

    Serial.println(httpResponseCode); 

    payload = http.getString(); 

  } 

  else { 

    Serial.print("Error code: "); 

    Serial.println(httpResponseCode); 

  } 

  // Free resources 

  http.end(); 

 

  return payload; 

} 

//................................................................................................................... 

void connectWifi() 

{ 

  Serial.print("Connecting to "+*MY_SSID); 

  WiFi.begin(MY_SSID, MY_PWD); 

  while (WiFi.status() != WL_CONNECTED) { 

  delay(1000); 
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  Serial.print("."); 

  } 

   

  Serial.println(""); 

  Serial.println("Connected to WiFi Network"); 

  Serial.println("");   

}//end connect..........................................................................................................  

void sendDataToChannel1(String a, String b, String c, String d, String e, String f, String g, 

String h){ 

  WiFiClient client; 

  if (client.connect(server, 80)) { // use ip 184.106.153.149 or api.thingspeak.com 

   //Serial.println("WiFi Client connected "); 

 

   String postStr = apiKeyChannel1; 

   postStr += "&field1="; 

   postStr += String(a); 

   postStr +="&field2="; 

   postStr += String(b); 

   postStr += "&field3="; 

   postStr += String(c); 

   postStr +="&field4="; 

   postStr += String(d); 

   postStr +="&field5="; 

   postStr += String(e); 

   postStr +="&field6="; 

   postStr += String(f); 

   postStr +="&field7="; 
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   postStr += String(g); 

   postStr +="&field8="; 

   postStr += String(h); 

   postStr += "\r\n\r\n"; 

    

   client.print("POST /update HTTP/1.1\n"); 

   client.print("Host: api.thingspeak.com\n"); 

   client.print("Connection: close\n"); 

   client.print("X-THINGSPEAKAPIKEY: " + apiKeyChannel1 + "\n"); 

   client.print("Content-Type: application/x-www-form-urlencoded\n"); 

   client.print("Content-Length: "); 

   client.print(postStr.length()); 

   client.print("\n\n"); 

   client.print(postStr); 

   }//end if 

   client.stop(); 

} 

//........................................................................................................................... ......................

. 

void sendDataToChannel4(String aa){ 

  WiFiClient client; 

  if (client.connect(server, 80)) { // use ip 184.106.153.149 or api.thingspeak.com 

   //Serial.println("WiFi Client connected "); 

 

   String postStr = apiKeyChannel4; 

   postStr += "&field1="; 
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   postStr += String(aa); 

   postStr += "\r\n\r\n"; 

    

   client.print("POST /update HTTP/1.1\n"); 

   client.print("Host: api.thingspeak.com\n"); 

   client.print("Connection: close\n"); 

   client.print("X-THINGSPEAKAPIKEY: " + apiKeyChannel4 + "\n"); 

   client.print("Content-Type: application/x-www-form-urlencoded\n"); 

   client.print("Content-Length: "); 

   client.print(postStr.length()); 

   client.print("\n\n"); 

   client.print(postStr); 

   }//end if 

   client.stop(); 

} 
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APPENDIX 4 HYSTERESIS BAND CONTROL USING Q-TABLE 

import numpy as np  # for array stuff and random 

#import numpy 

from PIL import Image  # for creating visual of our env 

import cv2  # for showing our visual live 

import matplotlib.pyplot as plt  # for graphing our mean rewards over time 

import pickle  # to save/load Q-Tables 

from matplotlib import style  # to make pretty charts because it matters. 

import time  # using this to keep track of our saved Q-Tables. 

 

style.use("ggplot")  # setting our style! 

 

#upper_temp_real = 2.8 

#lower_temp_real = 1.2 

 

upper_temp_virtual = 2.6 

lower_temp_virtual = 1.4 

 

a_Fridge = 0.98 

b_Fridge = 0.0032 

c_Fridge = 0.004 

 

power_usage = 51 

min_on = 8 

min_off = 14 
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HM_EPISODES = 1000 

steps = 200 

#IN_BOUND_PENALTY = (Tinternal - Tsetpoint)^2 

setpoint_reward = 200 

#EXCEED_BOUNDS_PENALTY = 100 

MIN_ON_AND_OFF_TIME_PENALTY = 300 

 

epsilon = 0.5  # randomness 

EPS_DECAY = 0.9999  # Every episode will be epsilon*EPS_DECAY 

SHOW_EVERY = 100  # how often to play through env visually. 

 

start_q_table = "qtable-1622045057.pickle"  # if we have a pickled Q table, we'll put the 

filename of it here. 

 

LEARNING_RATE = 0.1 

DISCOUNT = 0.95 

 

class OneFridge: 

     

    def __init__(self): 

        self.inTemp = round(np.random.uniform(lower_temp_virtual, upper_temp_virtual), 2) 

        self.inTempSave = self.inTemp 

        self.s = 1 #np.random.randint(0, 2) 

        self.sSave = self.s 

        self.minimumon = 0 

        self.minimumoff = 0 
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        self.setpoint = np.random.choice([upper_temp_virtual, lower_temp_virtual]) 

        self.setpointprev = self.setpoint 

        self.AmbTemp = round(np.random.uniform(23, 24), 2) 

     

    def __str__(self): 

        return f"Internal Temp is: {self.inTemp}, fridge state is: {self.s}, cons on is: 

{self.minimumon}, cons off is: {self.minimumoff}, setpoint is: {self.setpoint}, prevsetpoint 

is: {self.setpointprev}" 

     

    def __sub__(self, other): 

        return (round(self.inTemp-other.setpoint, 1)) 

     

    def action(self, choice): 

        if choice == 0: 

            self.move(s=0) 

        elif choice == 1: 

            self.move(s=1) 

 

    def move(self,s=False): 

        self.s = s 

        self.AmbTemp = round(np.random.uniform(21, 22), 2) 

        self.inTemp = round((a_Fridge * self.inTempSave) - (b_Fridge * power_usage * 

self.s) + (c_Fridge * self.AmbTemp), 2) 

        self.inTempSave = self.inTemp 

         

        if self.sSave == 0 and self.s == 1: 

            self.minimumon = min_on 
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        elif self.sSave == 1 and self.s == 0: 

            self.minimumoff = min_off 

         

        self.sSave = self.s 

         

        if self.minimumon == 0: 

            self.minimumon = 0 

        elif self.minimumon >= 0: 

            self.minimumon = self.minimumon - 1 

         

        if self.minimumoff == 0: 

            self.minimumoff = 0 

        elif self.minimumoff >= 0: 

            self.minimumoff = self.minimumoff - 1 

         

        self.setpointprev = self.setpoint 

         

        if self.inTempSave >= upper_temp_virtual: 

            self.setpoint = lower_temp_virtual 

        elif self.inTempSave <= lower_temp_virtual: 

            self.setpoint = upper_temp_virtual 

        elif self.inTempSave < upper_temp_virtual and self.inTempSave > 

lower_temp_virtual: 

            self.setpoint = self.setpoint 

 

if start_q_table is None: 

    # initialize the q-table# 
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    q_table = {} 

    for setTemp in [lower_temp_virtual, upper_temp_virtual]: 

        for delta_inTemp_setpoint in np.arange(-3, 3, 0.1): 

            delta_inTemp_setpoint = round(delta_inTemp_setpoint, 1) 

            for minon in range(0, min_on): 

                    for minoff in range(0, min_off): 

                        if (minon * minoff) == 0: 

                            q_table[(setTemp, delta_inTemp_setpoint, minon, minoff)] = 

[np.random.uniform(-5, 0) for i in range(2)] 

else: 

    with open(start_q_table, "rb") as f: 

        q_table = pickle.load(f) 

#print(q_table[(2.6, -0.9, 6, 13)]) 

 

episode_rewards = [] 

 

for episode in range(HM_EPISODES): 

     

    Internal_Temps = [] 

    Ambient_Temp = [] 

    Fridge_States = [] 

    upper = [] 

    lower = [] 

     

    VonShef = OneFridge() 
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    if episode % SHOW_EVERY == 0: 

        #print(f"on #{episode}, epsilon is {epsilon}") 

        #print(f"{SHOW_EVERY} ep mean: {np.mean(episode_rewards[-

SHOW_EVERY:])}") 

        show = True 

    else: 

        show = False 

     

    episode_reward = 0 

     

    for i in range(steps): 

        obs = (VonShef.setpoint, VonShef-VonShef, VonShef.minimumon, 

VonShef.minimumoff) 

        #print(obs) 

        if np.random.random() > epsilon: 

            # GET THE ACTION 

            action = np.argmax(q_table[obs]) 

        else: 

            action = np.random.randint(0, 2) 

        # Take the action! 

        VonShef.action(action) 

         

         

        if VonShef.minimumon > 0 and action == 0: 

            reward = -MIN_ON_AND_OFF_TIME_PENALTY 

        elif VonShef.minimumoff > 0 and action == 1: 

            reward = -MIN_ON_AND_OFF_TIME_PENALTY 
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        elif VonShef.setpointprev == upper_temp_virtual and VonShef.inTemp >= 

upper_temp_virtual: 

            reward = setpoint_reward 

        elif VonShef.setpointprev == lower_temp_virtual and VonShef.inTemp <= 

lower_temp_virtual: 

            reward = setpoint_reward 

        else: 

            reward = -round(pow((VonShef - VonShef), 2), 2) 

         

        new_obs = (VonShef.setpoint, VonShef-VonShef, VonShef.minimumon, 

VonShef.minimumoff)  # new observation 

        if (VonShef.minimumon * VonShef.minimumoff) == 0: 

            max_future_q = np.max(q_table[new_obs])  # max Q value for this new obs 

        current_q = q_table[obs][action]  # current Q for our chosen action 

         

        if reward == setpoint_reward: 

            new_q = setpoint_reward 

        elif reward == -MIN_ON_AND_OFF_TIME_PENALTY: 

            new_q = -MIN_ON_AND_OFF_TIME_PENALTY 

        else: 

            new_q = (1 - LEARNING_RATE) * current_q + LEARNING_RATE * (reward + 

DISCOUNT * max_future_q) 

         

        q_table[obs][action] = new_q 

         

        #if show: 

            #print(VonShef) 

            #print(f"step reward is {reward}, action is {action}") 
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        episode_reward += reward 

        if show: 

            Internal_Temps.append(VonShef.inTemp) 

            upper.append(upper_temp_virtual) 

            lower.append(lower_temp_virtual) 

            Fridge_States.append(VonShef.s) 

            #print(Fridge_States) 

            Ambient_Temp.append(VonShef.AmbTemp) 

            #print(Ambient_Temp) 

             

         

        if reward == -MIN_ON_AND_OFF_TIME_PENALTY: 

            break 

         

 

    #if episode == (HM_EPISODES - 1): 

        #print(f"episode reward is: {episode_reward}") 

        #plt.plot(Internal_Temps) 

        #plt.plot(Fridge_States) 

        #plt.plot(Ambient_Temp) 

        #plt.show() 

        #input("Press Enter to continue...") 

    if episode == (HM_EPISODES-SHOW_EVERY): 

        plt.subplot(211) 

        plt.plot(Internal_Temps, 'r', label="Internal Temp") 
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        plt.plot(Fridge_States, 'b', label="ON/OFF State") 

        plt.plot(upper, 'g', linestyle='--') 

        plt.plot(lower, 'g', linestyle='--') 

        plt.ylabel("Internal Temp (ºC)") 

        plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left', 

           ncol=2, mode="expand", borderaxespad=0.) 

        #plt.show() 

        plt.subplot(212) 

        plt.plot(Ambient_Temp, 'k') 

        plt.ylabel("Ambient Temp (ºC)") 

        plt.xlabel("Time (min)") 

        plt.show() 

    episode_rewards.append(episode_reward) 

    epsilon *= EPS_DECAY 

 

moving_avg = np.convolve(episode_rewards, np.ones((SHOW_EVERY,))/SHOW_EVERY, 

mode='valid') 

 

plt.plot([i for i in range(len(moving_avg))], moving_avg) 

plt.ylabel("Average reward") 

plt.xlabel("Episode number") 

plt.show() 

 

with open(f"qtable-{int(time.time())}.pickle", "wb") as f: 

    pickle.dump(q_table, f) 
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APPENDIX 5 HYSTERESIS BAND CONTROL USING DQN 

from gym import Env 

from gym.spaces import Discrete, Box, Tuple 

import numpy as np 

import random 

import time 

import matplotlib.pyplot as plt  # for graphing our mean rewards over time 

from matplotlib import style  # to make pretty charts 

# In[16]: 

style.use("ggplot")  # setting our style! 

upper_temp_virtual = 2.6 

lower_temp_virtual = 1.4 

a_Fridge = 0.98 

b_Fridge = 0.0032 

c_Fridge = 0.004 

power_usage = 51 

min_on = 8 

min_off = 14 

Each_episode_steps = 500 

setpoint_reward = 200 

MIN_ON_AND_OFF_TIME_PENALTY = 300 

Num_actions = 2 #number of actions 

Num_setpoints = 2 #number of Setpoints 

Low_delta_TinTset = -4 #min delta Tin and Tsetpoint 

High_delta_TinTset = 4 #max delta Tin and Tsetpoint 

#plot vars 
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Internal_Temps = [] 

Ambient_Temps = [] 

Fridge_OnOff_States = [] 

Step_rewards = [] 

upper = [] 

lower = [] 

# In[17]: 

class OneFridge(Env): 

    def __init__(self): 

        # Actions we can take, 0 and 1 

        self.action_space = Discrete(Num_actions) 

        # Observation Space(setpoint, Tin - Tsetpoint, minon, minoff) 

        self.observation_space = Tuple([Discrete(Num_setpoints),  

                                        Box(low=np.array([Low_delta_TinTset]), 

high=np.array([High_delta_TinTset]), dtype=np.float),  

                                        Box(low=np.array([0]), high=np.array([min_on]), dtype=np.int),  

                                        Box(low=np.array([0]), high=np.array([min_off]), 

dtype=np.int)]) 

        # set start setpoint 

        self.setpoint = np.random.choice([upper_temp_virtual, lower_temp_virtual]) 

        self.setpointprev = self.setpoint 

        if self.setpoint == upper_temp_virtual: 

            self.setpointstate = 1 

        elif self.setpoint == lower_temp_virtual: 

            self.setpointstate = 0    

        # Set start Internal Temp 

        self.inTemp = np.random.uniform(lower_temp_virtual, upper_temp_virtual) 
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        self.inTempSave = self.inTemp 

        # start delta Tin and Tsetpoint 

        self.delta_T= self.inTemp-self.setpoint 

        # set start minon and mioff 

        self.minimumon = 0 

        self.minimumoff = 0 

        # Set episode length 

        self.episode_length = Each_episode_steps 

         

        # Set start Ambient temp 

        self.AmbTemp = np.random.uniform(21, 22) 

        # Set start on off state 

        self.s = np.random.randint(0, 2) 

        self.sSave = self.s 

         

        #define start states 

        self.state = (self.setpointstate, self.delta_T, self.minimumon, self.minimumoff) 

         

    def step(self, action): 

        # get new ambient Temp 

        self.AmbTemp = np.random.uniform(21, 22) 

        # Apply action 

        self.inTemp = ((a_Fridge * self.inTempSave) - (b_Fridge * power_usage * action) + 

(c_Fridge * self.AmbTemp)) 

        self.inTempSave = self.inTemp  

        self.delta_T= self.inTemp-self.setpointprev 

        if self.sSave == 0 and action == 1: 
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            self.minimumon = min_on 

        elif self.sSave == 1 and action == 0: 

            self.minimumoff = min_off 

        self.sSave = action  

        if self.minimumon == 0: 

            self.minimumon = 0 

        elif self.minimumon >= 0: 

            self.minimumon = self.minimumon - 1 

         

        if self.minimumoff == 0: 

            self.minimumoff = 0 

        elif self.minimumoff >= 0: 

            self.minimumoff = self.minimumoff - 1 

         

        #update states 

        self.state = (self.setpointstate, self.delta_T, self.minimumon, self.minimumoff) 

         

        # Reduce episode length by 1 

        self.episode_length -= 1 

         

        # Calculate reward 

        if self.minimumon > 0 and action == 0: 

            reward = -MIN_ON_AND_OFF_TIME_PENALTY 

        elif self.minimumoff > 0 and action == 1: 

            reward = -MIN_ON_AND_OFF_TIME_PENALTY 

        elif self.setpointprev == upper_temp_virtual and self.inTemp >= upper_temp_virtual: 
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            reward = setpoint_reward 

        elif self.setpointprev == lower_temp_virtual and self.inTemp <= lower_temp_virtual: 

            reward = setpoint_reward 

        else: 

            reward = -pow((self.inTemp-self.setpointprev), 2) 

         

        # Check if episode is done 

        if self.episode_length <= 0:  

            done = True 

            Internal_Temps.append(self.inTemp) #Save the plot variables 

            Fridge_OnOff_States.append(action) 

            Ambient_Temps.append(self.AmbTemp) 

            Step_rewards.append(reward) 

            upper.append(upper_temp_virtual) 

            lower.append(lower_temp_virtual) 

        elif reward == -MIN_ON_AND_OFF_TIME_PENALTY: 

            done = True 

            Internal_Temps.append(self.inTemp) #Save the plot variables 

            Fridge_OnOff_States.append(action) 

            Ambient_Temps.append(self.AmbTemp) 

            Step_rewards.append(reward) 

            upper.append(upper_temp_virtual) 

            lower.append(lower_temp_virtual) 

        else: 

            done = False 

            Internal_Temps.append(self.inTemp) #Save the plot variables 



Deep Reinforcement Learning and Model Predictive Control Approaches for the Scheduled Operation of 

Domestic Refrigerators 

 

 

 

 

182  Mohammad Reza Zavvar Sabegh 

            Fridge_OnOff_States.append(action) 

            Ambient_Temps.append(self.AmbTemp) 

            Step_rewards.append(reward) 

            upper.append(upper_temp_virtual) 

            lower.append(lower_temp_virtual) 

             

        #update setpoint 

        if self.inTemp >= upper_temp_virtual: 

            self.setpoint = lower_temp_virtual 

            self.setpointstate = 0 

        elif self.inTemp <= lower_temp_virtual: 

            self.setpoint = upper_temp_virtual 

            self.setpointstate = 1 

        elif self.inTemp < upper_temp_virtual and self.inTempSave > lower_temp_virtual: 

            self.setpoint = self.setpoint 

            self.setpointstate = self.setpointstate 

         

        self.setpointprev = self.setpoint 

         

        # Set placeholder for info 

        info = {} 

         

        # Return step information 

        return self.state, reward, done, info 

         

    def render(self, mode='human'): 
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        global Step_rewards 

        global Internal_Temps 

        global Ambient_Temps 

        global Fridge_OnOff_States 

        global upper 

        global lower 

        if done: 

            plt.subplot(311) 

            plt.plot(Internal_Temps, 'r', label="Internal Temp") 

            plt.plot(Fridge_OnOff_States, 'b', label="ON/OFF State") 

            plt.plot(upper, 'g', linestyle='--') 

            plt.plot(lower, 'g', linestyle='--') 

            #plt.title('VoShef') 

            plt.ylabel("Internal Temp (ºC)") 

            #plt.xlabel("Time (min)") 

            plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left', ncol=2, 

mode="expand", borderaxespad=0.) 

            #plt.show() 

             

            plt.subplot(312) 

            plt.plot(Step_rewards, 'm') 

            plt.ylabel('Step Rewards') 

            #plt.xlabel("Time (min)") 

            #plt.show() 

             

            plt.subplot(313) 

            plt.plot(Ambient_Temps, 'k') 
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            plt.xlabel("Time (min)") 

            plt.ylabel("Ambient Temp (ºC)") 

            plt.show() 

             

            #Internal_Temps = [] 

            #Ambient_Temps = [] 

            #Fridge_OnOff_States = [] 

            #Step_rewards = [] 

     

    def reset(self): 

        # reset setpoint 

        self.setpoint = np.random.choice([upper_temp_virtual, lower_temp_virtual]) 

        self.setpointprev = self.setpoint 

        if self.setpoint == upper_temp_virtual: 

            self.setpointstate = 1 

        elif self.setpoint == lower_temp_virtual: 

            self.setpointstate = 0 

             

        # reset Internal Temp 

        self.inTemp = np.random.uniform(lower_temp_virtual, upper_temp_virtual) 

        self.inTempSave = self.inTemp 

        # reset delta Tin and Tsetpoint 

        self.delta_T= self.inTemp-self.setpoint 

        # reset minon and mioff 

        self.minimumon = 0 

        self.minimumoff = 0 
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        # reset episode length 

        self.episode_length = Each_episode_steps 

         

        # reset start Ambient temp 

        self.AmbTemp = np.random.uniform(21, 22) 

        # reset on off state 

        self.s = np.random.randint(0, 2) 

        self.sSave = self.s 

         

        #reset states 

        self.state = (self.setpointstate, self.delta_T, self.minimumon, self.minimumoff) 

        return self.state 

 

 

# In[18]: 

env = OneFridge() 

episodes = 1 

for episode in range(1, episodes+1): 

    state = env.reset() 

    done = False 

    score = 0  

    while not done: 

        action = env.action_space.sample() 

        n_state, reward, done, info = env.step(action) 

        score+=reward 

        print('New State:{} Reward:{} Action:{} Done:{}'.format(n_state, reward, action, 

done)) 
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    print('Episode:{} Score:{}'.format(episode, score)) 

    env.render() 

 

# In[19]: 

 

#Create a Deep Learning Model with Keras 

import numpy as np 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Flatten 

from tensorflow.keras.optimizers import Adam 

# In[20]: 

 

states = len(env.observation_space) 

actions = env.action_space.n 

print(states) 

print(actions) 

 

# In[21]: 

 

# Deep model (input layer(states), dense layer, dense layer, output layer (actions)) 

def build_model(states, actions): 

    model = Sequential() 

    model.add(Flatten(input_shape=(1,states))) 

    model.add(Dense(24, activation='relu')) 

    model.add(Dense(24, activation='relu')) 

    model.add(Dense(actions, activation='linear')) 
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    return model 

# In[22]: 

model = build_model(states, actions) 

model.summary() 

 

 

# In[23]: 

 

 

#Build Agent with Keras-RL 

from rl.agents import DQNAgent 

from rl.policy import BoltzmannQPolicy, GreedyQPolicy 

from rl.memory import SequentialMemory 

 

# In[26]: 

 

def build_agent(model, actions): 

    policy = BoltzmannQPolicy() 

    #policy =  GreedyQPolicy() 

    memory = SequentialMemory(limit=50000, window_length=1) 

    dqn = DQNAgent(model=model, memory=memory, policy=policy,  

                  nb_actions=actions, nb_steps_warmup=10, target_model_update=1e-2) 

    return dqn 

 

dqn = build_agent(model, actions) 

dqn.compile(Adam(lr=1e-3), metrics=['mse']) 
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dqn.fit(env, nb_steps=20000, visualize=False, verbose=1) 

 

# In[29]: 

 

Internal_Temps = [] 

Ambient_Temps = [] 

Fridge_OnOff_States = [] 

Step_rewards = [] 

upper = [] 

lower = [] 

env = OneFridge() 

states = len(env.observation_space) 

actions = env.action_space.n 

model = build_model(states, actions) 

dqn = build_agent(model, actions) 

dqn.compile(Adam(lr=1e-3), metrics=['mse']) 

dqn.load_weights('OneFridgeDqn2.h5f') 

 

 

# In[30]: 

 

 

scores = dqn.test(env, nb_episodes=1, visualize=False) 

 

plt.subplot(311) 

plt.plot(Internal_Temps, 'r', label="Internal Temp") 
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plt.plot(Fridge_OnOff_States, 'b', label="ON/OFF State") 

plt.plot(upper, 'g', linestyle='--') 

plt.plot(lower, 'g', linestyle='--') 

#plt.title('VoShef') 

plt.ylabel("Internal Temp (ºC)") 

#plt.xlabel("Time (min)") 

plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left', ncol=2, mode="expand", 

borderaxespad=0.) 

#plt.show() 

             

plt.subplot(312) 

plt.plot(Step_rewards, 'm') 

plt.ylabel('Step Rewards') 

                      

plt.subplot(313) 

plt.plot(Ambient_Temps, 'k') 

plt.xlabel("Time (min)") 

plt.ylabel("Ambient Temp (ºC)") 

plt.show() 

 

 

# In[31]: 

 

 

#_ = dqn.test(env, nb_episodes=1, visualize=True) 
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# In[230]: 

 

 

#Internal_Temps 

#Fridge_OnOff_States 

#Step_rewards 

#Ambient_Temps 

'''del model 

del dqn 

del env''' 
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APPENDIX 6 MULTI-REFRIGERATOR SYSTEMS AND DSR 

USING DQN 

from gym import Env 

from gym.spaces import Discrete, Box, Tuple 

import numpy as np 

import random 

import time 

import matplotlib.pyplot as plt  # for graphing our mean rewards over time 

from matplotlib import style  # to make pretty charts 

 

 

# In[16]: 

 

 

style.use("ggplot")  # setting our style! 

#Fridge One 

upper_temp_One = 2.5 

lower_temp_One = 1.5 

a_Fridge_One = 0.98 

b_Fridge_One = 0.0032 

c_Fridge_One = 0.004 

power_usage_One = 51 

min_on_One = 6 

min_off_One = 12 

Num_setpoints_One = 2 #number of Setpoints 

Low_delta_TinTset_One = -5 #min delta Tin and Tsetpoint 
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High_delta_TinTset_One = 5 #max delta Tin and Tsetpoint 

 

#Fridge Two 

upper_temp_Two = 3 

lower_temp_Two = 1.5 

a_Fridge_Two = 0.99 

b_Fridge_Two = 0.0047 

c_Fridge_Two = 0.003 

power_usage_Two = 55 

min_on_Two = 5 

min_off_Two = 15 

Num_setpoints_Two = 2 

Low_delta_TinTset_Two = -5 

High_delta_TinTset_Two = 5 

 

#Fridge Three 

upper_temp_Three = 6 

lower_temp_Three = 4 

a_Fridge_Three = 0.98 

b_Fridge_Three = 0.005 

c_Fridge_Three = 0.006 

power_usage_Three = 50 

min_on_Three = 9 

min_off_Three = 10 

Num_setpoints_Three = 2 

Low_delta_TinTset_Three = -5 
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High_delta_TinTset_Three = 5 

 

#constants 

Each_episode_steps = 500 

setpoint_reward = 200 

MIN_ON_AND_OFF_TIME_PENALTY = 1000 

Num_actions = 4 #number of actions 

 

#plot vars 

Internal_Temps_One = [] 

Ambient_Temps_One = [] 

Fridge_OnOff_States_One = [] 

Step_rewards_One = [] 

Internal_Temps_Two = [] 

Ambient_Temps_Two = [] 

Fridge_OnOff_States_Two = [] 

Step_rewards_Two = [] 

Internal_Temps_Three = [] 

Ambient_Temps_Three = [] 

Fridge_OnOff_States_Three = [] 

Step_rewards_Three = [] 

upper_One = [] 

lower_One = [] 

upper_Two = [] 

lower_Two = [] 

upper_Three = [] 
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lower_Three = [] 

Total_power = [] 

Total_powerlimit = [] 

 

 

# In[17]: 

 

 

class ThreeFridge(Env): 

    def __init__(self): 

        # Actions we can take, 000, 100, 001, 010, 110, 101, 011, 111 

        self.action_space = Discrete(Num_actions) 

        # Observation Space(setpoint, Tin - Tsetpoint, minon, minoff) 

        self.observation_space = Tuple([Discrete(Num_setpoints_One), 

                                        Discrete(Num_setpoints_Two), 

                                        Discrete(Num_setpoints_Three), 

                                        Box(low=np.array([Low_delta_TinTset_One]), 

high=np.array([High_delta_TinTset_One]), dtype=np.float), 

                                        Box(low=np.array([0]), high=np.array([min_on_One]), 

dtype=np.int), 

                                        Box(low=np.array([0]), high=np.array([min_off_One]), 

dtype=np.int),  

                                        Box(low=np.array([Low_delta_TinTset_Two]), 

high=np.array([High_delta_TinTset_Two]), dtype=np.float), 

                                        Box(low=np.array([0]), high=np.array([min_on_Two]), 

dtype=np.int), 

                                        Box(low=np.array([0]), high=np.array([min_off_Two]), 

dtype=np.int), 
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                                        Box(low=np.array([Low_delta_TinTset_Three]), 

high=np.array([High_delta_TinTset_Three]), dtype=np.float), 

                                        Box(low=np.array([0]), high=np.array([min_on_Three]), 

dtype=np.int), 

                                        Box(low=np.array([0]), high=np.array([min_off_Three]), 

dtype=np.int)]) 

        #Fridge one.............................................................................................  

        # set start setpoint fridge one 

        self.setpoint_One = np.random.choice([upper_temp_One, lower_temp_One]) 

        self.setpointprev_One = self.setpoint_One 

        if self.setpoint_One == upper_temp_One: 

            self.setpointstate_One = 1 

        elif self.setpoint_One == lower_temp_One: 

            self.setpointstate_One = 0 

         

        # Set start Internal Temp fridge one 

        self.inTemp_One = np.random.uniform(lower_temp_One, upper_temp_One) 

        self.inTempSave_One = self.inTemp_One 

        # start delta Tin and Tsetpoint fridge one 

        self.delta_T_One= self.inTemp_One-self.setpoint_One 

        # set start minon and mioff fridge one 

        self.minimumon_One = 0 

        self.minimumoff_One = 0 

        # Set start Ambient temp fridge one 

        self.AmbTemp_One = np.random.uniform(21, 22) 

        # Set start on off state fridge one 

        self.s_One = np.random.randint(0, 2) 

        self.sSave_One = self.s_One 
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        # fridge one end............................................................................... 

         

        #Fridge Two................................................................................... 

        # set start setpoint fridge two 

        self.setpoint_Two = np.random.choice([upper_temp_Two, lower_temp_Two]) 

        self.setpointprev_Two = self.setpoint_Two 

        if self.setpoint_Two == upper_temp_Two: 

            self.setpointstate_Two = 1 

        elif self.setpoint_Two == lower_temp_Two: 

            self.setpointstate_Two = 0 

         

        # Set start Internal Temp fridge two 

        self.inTemp_Two = np.random.uniform(lower_temp_Two, upper_temp_Two) 

        self.inTempSave_Two = self.inTemp_Two 

        # start delta Tin and Tsetpoint fridge Two 

        self.delta_T_Two= self.inTemp_Two-self.setpoint_Two 

        # set start minon and mioff fridge Two 

        self.minimumon_Two = 0 

        self.minimumoff_Two = 0 

        # Set start Ambient temp fridge two 

        self.AmbTemp_Two = np.random.uniform(21, 22) 

        # Set start on off state fridge two 

        self.s_Two = np.random.randint(0, 2) 

        self.sSave_Two = self.s_Two 

        # fridge two end................................................................................ 
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        #Fridge three................................................................................... 

        # set start setpoint fridge three 

        self.setpoint_Three = np.random.choice([upper_temp_Three, lower_temp_Three]) 

        self.setpointprev_Three = self.setpoint_Three 

        if self.setpoint_Three == upper_temp_Three: 

            self.setpointstate_Three = 1 

        elif self.setpoint_Three == lower_temp_Three: 

            self.setpointstate_Three = 0 

        # Set start Internal Temp fridge three 

        self.inTemp_Three = np.random.uniform(lower_temp_Three, upper_temp_Three) 

        self.inTempSave_Three = self.inTemp_Three 

        # start delta Tin and Tsetpoint fridge Three 

        self.delta_T_Three= self.inTemp_Three-self.setpoint_Three 

        # set start minon and mioff fridge Three 

        self.minimumon_Three = 0 

        self.minimumoff_Three = 0 

        # Set start Ambient temp fridge three 

        self.AmbTemp_Three = np.random.uniform(21, 22) 

        # Set start on off state fridge three 

        self.s_Three = np.random.randint(0, 2) 

        self.sSave_Three = self.s_Three 

        # fridge three end..................................................................................  

         

        # Set episode length 

        self.episode_length = Each_episode_steps 
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        #define start states 

        self.state = (self.setpointstate_One,  

                      self.setpointstate_Two, 

                      self.setpointstate_Three, 

                      self.delta_T_One, self.minimumon_One, self.minimumoff_One, 

                      self.delta_T_Two, self.minimumon_Two, self.minimumoff_Two,  

                      self.delta_T_Three, self.minimumon_Three, self.minimumoff_Three) 

         

    def step(self, action): 

        # get new ambient Temp fridge one 

        self.AmbTemp_One = np.random.uniform(21, 22) 

        # get new ambient Temp fridge two 

        self.AmbTemp_Two = np.random.uniform(21, 22) 

        # get new ambient Temp fridge three 

        self.AmbTemp_Three = np.random.uniform(21, 22) 

         

        # Apply action 

        if action == 0: 

            action_One = 0 

            action_Two = 0 

            action_Three = 0 

        elif action == 1: 

            action_One = 0 

            action_Two = 0 

            action_Three = 1 

        elif action == 2: 
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            action_One = 1 

            action_Two = 0 

            action_Three = 0 

        elif action == 3: 

            action_One = 0 

            action_Two = 1 

            action_Three = 0 

        """"elif action == 4: 

            action_One = 1 

            action_Two = 1 

            action_Three = 0 

        elif action == 5: 

            action_One = 1 

            action_Two = 0 

            action_Three = 1 

        elif action == 6: 

            action_One = 0 

            action_Two = 1 

            action_Three = 1 

        elif action == 7: 

            action_One = 1 

            action_Two = 1 

            action_Three = 1""" 

        #fridge one..................................................................................................  

        self.inTemp_One = ((a_Fridge_One * self.inTempSave_One) - (b_Fridge_One * 

power_usage_One * action_One) + (c_Fridge_One * self.AmbTemp_One)) 

        self.inTempSave_One = self.inTemp_One 
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        self.delta_T_One = self.inTemp_One-self.setpointprev_One 

         

        if self.sSave_One == 0 and action_One == 1: 

            self.minimumon_One = min_on_One 

        elif self.sSave_One == 1 and action_One == 0: 

            self.minimumoff_One = min_off_One 

        self.sSave_One = action_One 

         

        if self.minimumon_One == 0: 

            self.minimumon_One = 0 

        elif self.minimumon_One >= 0: 

            self.minimumon_One = self.minimumon_One - 1 

         

        if self.minimumoff_One == 0: 

            self.minimumoff_One = 0 

        elif self.minimumoff_One >= 0: 

            self.minimumoff_One = self.minimumoff_One - 1 

        #fridge one end......................................................................................................  

         

        #fridge two....................................................................................................... 

        self.inTemp_Two = ((a_Fridge_Two * self.inTempSave_Two) - (b_Fridge_Two * 

power_usage_Two * action_Two) + (c_Fridge_Two * self.AmbTemp_Two)) 

        self.inTempSave_Two = self.inTemp_Two 

        self.delta_T_Two = self.inTemp_Two-self.setpointprev_Two 

         

        if self.sSave_Two == 0 and action_Two == 1: 
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            self.minimumon_Two = min_on_Two 

        elif self.sSave_Two == 1 and action_Two == 0: 

            self.minimumoff_Two = min_off_Two 

        self.sSave_Two = action_Two 

         

        if self.minimumon_Two == 0: 

            self.minimumon_Two = 0 

        elif self.minimumon_Two >= 0: 

            self.minimumon_Two = self.minimumon_Two - 1 

         

        if self.minimumoff_Two == 0: 

            self.minimumoff_Two = 0 

        elif self.minimumoff_Two >= 0: 

            self.minimumoff_Two = self.minimumoff_Two - 1 

        #fridge two end.................................................................................................... 

         

        #fridge three.....................................................................................................  

        self.inTemp_Three = ((a_Fridge_Three * self.inTempSave_Three) - (b_Fridge_Three 

* power_usage_Three * action_Three) + (c_Fridge_Three * self.AmbTemp_Three)) 

        self.inTempSave_Three = self.inTemp_Three 

        self.delta_T_Three = self.inTemp_Three-self.setpointprev_Three 

         

        if self.sSave_Three == 0 and action_Three == 1: 

            self.minimumon_Three = min_on_Three 

        elif self.sSave_Three == 1 and action_Three == 0: 

            self.minimumoff_Three = min_off_Three 

        self.sSave_Three = action_Three 
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        if self.minimumon_Three == 0: 

            self.minimumon_Three = 0 

        elif self.minimumon_Three >= 0: 

            self.minimumon_Three = self.minimumon_Three - 1 

         

        if self.minimumoff_Three == 0: 

            self.minimumoff_Three = 0 

        elif self.minimumoff_Three >= 0: 

            self.minimumoff_Three = self.minimumoff_Three - 1 

        #fridge three end.................................................................................................  

         

        #update states 

        self.state = (self.setpointstate_One, 

                      self.setpointstate_Two, 

                      self.setpointstate_Three, 

                      self.delta_T_One, self.minimumon_One, self.minimumoff_One, 

                      self.delta_T_Two, self.minimumon_Two, self.minimumoff_Two, 

                      self.delta_T_Three, self.minimumon_Three, self.minimumoff_Three) 

                       

        # Reduce episode length by 1 

        self.episode_length -= 1 

         

        # Calculate reward 

        # fridge one.............................................................................................  

        if self.minimumon_One > 0 and action_One == 0: 
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            reward_One = -MIN_ON_AND_OFF_TIME_PENALTY 

        elif self.minimumoff_One > 0 and action_One == 1: 

            reward_One = -MIN_ON_AND_OFF_TIME_PENALTY 

        elif self.setpointprev_One == upper_temp_One and self.inTemp_One >= 

upper_temp_One: 

            reward_One = setpoint_reward 

        elif self.setpointprev_One == lower_temp_One and self.inTemp_One <= 

lower_temp_One: 

            reward_One = setpoint_reward 

        else: 

            reward_One = -pow((self.inTemp_One-self.setpointprev_One), 2) 

        # fridge one end ......................................................................................... 

         

        # fridge two..............................................................................................  

        if self.minimumon_Two > 0 and action_Two == 0: 

            reward_Two = -MIN_ON_AND_OFF_TIME_PENALTY 

        elif self.minimumoff_Two > 0 and action_Two == 1: 

            reward_Two = -MIN_ON_AND_OFF_TIME_PENALTY 

        elif self.setpointprev_Two == upper_temp_Two and self.inTemp_Two >= 

upper_temp_Two: 

            reward_Two = setpoint_reward 

        elif self.setpointprev_Two == lower_temp_Two and self.inTemp_Two <= 

lower_temp_Two: 

            reward_Two = setpoint_reward 

        else: 

            reward_Two = -pow((self.inTemp_Two-self.setpointprev_Two), 2) 

        #fridge two end..............................................................................................  
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        # fridge three................................................................................................. 

        if self.minimumon_Three > 0 and action_Three == 0: 

            reward_Three = -MIN_ON_AND_OFF_TIME_PENALTY 

        elif self.minimumoff_Three > 0 and action_Three == 1: 

            reward_Three = -MIN_ON_AND_OFF_TIME_PENALTY 

        elif self.setpointprev_Three == upper_temp_Three and self.inTemp_Three >= 

upper_temp_Three: 

            reward_Three = setpoint_reward 

        elif self.setpointprev_Three == lower_temp_Three and self.inTemp_Three <= 

lower_temp_Three: 

            reward_Three = setpoint_reward 

        else: 

            reward_Three = -pow((self.inTemp_Three-self.setpointprev_Three), 2) 

        #fridge three end..............................................................................................  

         

        reward = reward_One + reward_Two + reward_Three 

         

        if reward >= 180 and reward <= 230: 

            reward = 200 

        elif reward >= 380 and reward <= 430: 

            reward = 200 

         

        # Check if episode is done 

        if self.episode_length <= 0: 

            done = True 

        elif reward_One == -MIN_ON_AND_OFF_TIME_PENALTY: 

            done = True 
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        elif reward_Two == -MIN_ON_AND_OFF_TIME_PENALTY: 

            done = True 

        elif reward_Three == -MIN_ON_AND_OFF_TIME_PENALTY: 

            done = True 

        else: 

            done = False 

         

        #Save the plot variables 

        Internal_Temps_One.append(self.inTemp_One) 

        Fridge_OnOff_States_One.append(action_One) 

        Ambient_Temps_One.append(self.AmbTemp_One) 

        Step_rewards_One.append(reward_One) 

        Internal_Temps_Two.append(self.inTemp_Two) 

        Fridge_OnOff_States_Two.append(action_Two) 

        Ambient_Temps_Two.append(self.AmbTemp_Two) 

        Step_rewards_Two.append(reward_Two) 

        Internal_Temps_Three.append(self.inTemp_Three) 

        Fridge_OnOff_States_Three.append(action_Three) 

        Ambient_Temps_Three.append(self.AmbTemp_Three) 

        Step_rewards_Three.append(reward_Three) 

        upper_One.append(upper_temp_One) 

        lower_One.append(lower_temp_One) 

        upper_Two.append(upper_temp_Two) 

        lower_Two.append(lower_temp_Two) 

        upper_Three.append(upper_temp_Three) 

        lower_Three.append(lower_temp_Three) 
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        Total_power.append((power_usage_One * action_One) + (power_usage_Two * 

action_Two) + (power_usage_Three * action_Three)) 

        Total_powerlimit.append(60) 

         

         

        #update setpoint fridge one.............................................................................. 

        if self.inTemp_One >= upper_temp_One: 

            self.setpoint_One = lower_temp_One 

            self.setpointstate_One = 0 

        elif self.inTemp_One <= lower_temp_One: 

            self.setpoint_One = upper_temp_One 

            self.setpointstate_One = 1 

        elif self.inTemp_One < upper_temp_One and self.inTempSave_One > 

lower_temp_One: 

            self.setpoint_One = self.setpoint_One 

            self.setpointstate_One = self.setpointstate_One 

        self.setpointprev_One = self.setpoint_One 

        # fridge one end...........................................................................................  

         

        #update setpoint fridge two............................................................................... 

        if self.inTemp_Two >= upper_temp_Two: 

            self.setpoint_Two = lower_temp_Two 

            self.setpointstate_Two = 0 

        elif self.inTemp_Two <= lower_temp_Two: 

            self.setpoint_Two = upper_temp_Two 

            self.setpointstate_Two = 1 
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        elif self.inTemp_Two < upper_temp_Two and self.inTempSave_Two > 

lower_temp_Two: 

            self.setpoint_Two = self.setpoint_Two 

            self.setpointstate_Two = self.setpointstate_Two 

        self.setpointprev_Two = self.setpoint_Two 

        #fridge two end.............................................................................................  

        #update setpoint fridge three............................................................................... 

        if self.inTemp_Three >= upper_temp_Three: 

            self.setpoint_Three = lower_temp_Three 

            self.setpointstate_Three = 0 

        elif self.inTemp_Three <= lower_temp_Three: 

            self.setpoint_Three = upper_temp_Three 

            self.setpointstate_Three = 1 

        elif self.inTemp_Three < upper_temp_Three and self.inTempSave_Three > 

lower_temp_Three: 

            self.setpoint_Three = self.setpoint_Three 

            self.setpointstate_Three = self.setpointstate_Three 

        self.setpointprev_Three = self.setpoint_Three 

        #fridge three end............................................................................................  

         

        # Set placeholder for info 

        info = {} 

         

        # Return step information 

        return self.state, reward, done, info 

     

    def render(self, mode='human'): 
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        global Internal_Temps_One 

        global Fridge_OnOff_States_One 

        global Ambient_Temps_One 

        global Step_rewards_One 

        global Internal_Temps_Two 

        global Fridge_OnOff_States_Two 

        global Ambient_Temps_Two 

        global Step_rewards_Two 

        global Internal_Temps_Three 

        global Fridge_OnOff_States_Three 

        global Ambient_Temps_Three 

        global Step_rewards_Three 

        global upper_One 

        global lower_One 

        global upper_Two 

        global lower_Two 

        global upper_Three 

        global lower_Three 

        global Total_power 

        global Total_powerlimit 

        if done: 

            plt.subplot(231) 

            plt.plot(Internal_Temps_One, 'r', label="Int Temp One") 

            plt.plot(Fridge_OnOff_States_One, 'b', label="ON/OFF One") 

            plt.plot(upper_One, 'g', linestyle='--') 

            plt.plot(lower_One, 'g', linestyle='--') 
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            plt.ylabel("Internal Temp (ºC)") 

            plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left', ncol=2, 

mode="expand", borderaxespad=0.) 

 

            plt.subplot(232) 

            plt.plot(Internal_Temps_Two, 'r', label="Int Temp Two") 

            plt.plot(Fridge_OnOff_States_Two, 'b', label="ON/OFF Two") 

            plt.plot(upper_Two, 'g', linestyle='--') 

            plt.plot(lower_Two, 'g', linestyle='--') 

            plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left', ncol=2, 

mode="expand", borderaxespad=0.) 

 

            plt.subplot(233) 

            plt.plot(Internal_Temps_Three, 'r', label="Int Temp Three") 

            plt.plot(Fridge_OnOff_States_Three, 'b', label="ON/OFF Three") 

            plt.plot(upper_Three, 'g', linestyle='--') 

            plt.plot(lower_Three, 'g', linestyle='--') 

            plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left', ncol=2, 

mode="expand", borderaxespad=0.) 

 

            plt.subplot(234) 

            plt.plot(Step_rewards_One, 'm') 

            plt.ylabel('Step Rewards') 

            plt.xlabel("Time (min)") 

 

            plt.subplot(235) 

            plt.plot(Step_rewards_Two, 'm') 

            plt.xlabel("Time (min)") 
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            plt.subplot(236) 

            plt.plot(Step_rewards_Three, 'm') 

            plt.xlabel("Time (min)") 

            plt.show() 

 

            plt.subplot(131) 

            plt.plot(Ambient_Temps_One, 'k') 

            plt.xlabel("Time (min)") 

            plt.ylabel("Ambient Temp (ºC)") 

 

            plt.subplot(132) 

            plt.plot(Ambient_Temps_Two, 'k') 

            plt.xlabel("Time (min)") 

 

            plt.subplot(133) 

            plt.plot(Ambient_Temps_Three, 'k') 

            plt.xlabel("Time (min)") 

            plt.show() 

 

            plt.plot(Total_power, 'y') 

            plt.plot(Total_powerlimit, 'g', linestyle='--') 

            plt.xlabel("Time (min)") 

            plt.ylabel("Total power (W)") 

            plt.show() 
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    def reset(self): 

        # reset setpoint fridge one................................................................................ 

        self.setpoint_One = np.random.choice([upper_temp_One, lower_temp_One]) 

        self.setpointprev_One = self.setpoint_One 

        if self.setpoint_One == upper_temp_One: 

            self.setpointstate_One = 1 

        elif self.setpoint_One == lower_temp_One: 

            self.setpointstate_One = 0 

         

        # reset Internal Temp fridge one 

        self.inTemp_One = np.random.uniform(lower_temp_One, upper_temp_One) 

        self.inTempSave_One = self.inTemp_One 

        # reset delta Tin and Tsetpoint fridge one 

        self.delta_T_One= self.inTemp_One-self.setpoint_One 

        # reset minon and mioff fridge one 

        self.minimumon_One = 0 

        self.minimumoff_One = 0 

        # reset start Ambient temp fridge one 

        self.AmbTemp_One = np.random.uniform(21, 22) 

        # reset on off state fridge one 

        self.s_One = np.random.randint(0, 2) 

        self.sSave_One = self.s_One 

        # fridge one end...............................................................................................  

        # reset setpoint fridge two.................................................................................... 

        self.setpoint_Two = np.random.choice([upper_temp_Two, lower_temp_Two]) 

        self.setpointprev_Two = self.setpoint_Two 
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        if self.setpoint_Two == upper_temp_Two: 

            self.setpointstate_Two = 1 

        elif self.setpoint_Two == lower_temp_Two: 

            self.setpointstate_Two = 0 

         

        # reset Internal Temp fridge two 

        self.inTemp_Two = np.random.uniform(lower_temp_Two, upper_temp_Two) 

        self.inTempSave_Two = self.inTemp_Two 

        # reset delta Tin and Tsetpoint fridge two 

        self.delta_T_Two= self.inTemp_Two-self.setpoint_Two 

        # reset minon and mioff fridge two 

        self.minimumon_Two = 0 

        self.minimumoff_Two = 0 

        # reset start Ambient temp fridge two 

        self.AmbTemp_Two = np.random.uniform(21, 22) 

        # reset on off state fridge two 

        self.s_Two = np.random.randint(0, 2) 

        self.sSave_Two = self.s_Two 

        #fridge two end..............................................................................................  

        # reset setpoint fridge three................................................................................. 

        self.setpoint_Three = np.random.choice([upper_temp_Three, lower_temp_Three]) 

        self.setpointprev_Three = self.setpoint_Three 

        if self.setpoint_Three == upper_temp_Three: 

            self.setpointstate_Three = 1 

        elif self.setpoint_Three == lower_temp_Three: 

            self.setpointstate_Three = 0 
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        # reset Internal Temp fridge three 

        self.inTemp_Three = np.random.uniform(lower_temp_Three, upper_temp_Three) 

        self.inTempSave_Three = self.inTemp_Three 

        # reset delta Tin and Tsetpoint fridge three 

        self.delta_T_Three= self.inTemp_Three-self.setpoint_Three 

        # reset minon and mioff fridge three 

        self.minimumon_Three = 0 

        self.minimumoff_Three = 0 

        # reset start Ambient temp fridge three 

        self.AmbTemp_Three = np.random.uniform(21, 22) 

        # reset on off state fridge three 

        self.s_Three = np.random.randint(0, 2) 

        self.sSave_Three = self.s_Three 

        #fridge three end............................................................................................. 

         

        # reset episode length 

        self.episode_length = Each_episode_steps 

         

        #reset states 

        self.state = (self.setpointstate_One, 

                      self.setpointstate_Two, 

                      self.setpointstate_Three, 

                      self.delta_T_One, self.minimumon_One, self.minimumoff_One, 

                      self.delta_T_Two, self.minimumon_Two, self.minimumoff_Two, 

                      self.delta_T_Three, self.minimumon_Three, self.minimumoff_Three) 
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        return self.state 

     

 

 

env = ThreeFridge() 

episodes = 1 

for episode in range(1, episodes+1): 

    state = env.reset() 

    done = False 

    score = 0  

     

    while not done: 

        action = env.action_space.sample() 

        n_state, reward, done, info = env.step(action) 

        score+=reward 

        print('New State:{} Reward:{} Action:{} Done:{}'.format(n_state, reward, action, 

done)) 

    print('Episode:{} Score:{}'.format(episode, score)) 

    env.render() 

 

# In[18]: 

 

#Create a Deep Learning Model with Keras 

import numpy as np 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Flatten 



Chapter 8: Appendices 

 

  

  

 

Mohammad Reza Zavvar Sabegh 215 

from tensorflow.keras.optimizers import Adam 

 

# In[19]: 

 

states = len(env.observation_space) 

actions = env.action_space.n 

print(states) 

print(actions) 

 

# In[20]: 

 

# Deep model (input layer(states), dense layer, dense layer, output layer (actions)) 

def build_model(states, actions): 

    model = Sequential() 

    model.add(Flatten(input_shape=(1,states))) 

    model.add(Dense(120, activation='gelu')) 

    model.add(Dense(32, activation='gelu')) 

    model.add(Dense(actions, activation='linear')) 

    return model 

 

# In[21]: 

 

model = build_model(states, actions) 

model.summary() 

 

# In[22]: 
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#Build Agent with Keras-RL 

from rl.agents import DQNAgent 

from rl.policy import BoltzmannQPolicy, GreedyQPolicy 

from rl.memory import SequentialMemory 

 

# In[23]: 

 

def build_agent(model, actions): 

    policy = BoltzmannQPolicy() 

    #policy =  GreedyQPolicy() 

    memory = SequentialMemory(limit=50000, window_length=1) 

    dqn = DQNAgent(model=model, memory=memory, policy=policy, 

                   nb_actions=actions, nb_steps_warmup=10, target_model_update=1e-2) 

    return dqn 

 

dqn = build_agent(model, actions) 

dqn.compile(Adam(lr=1e-3), metrics=['mse']) 

dqn.fit(env, nb_steps=50000, visualize=False, verbose=1) 

 

#plot vars 

Internal_Temps_One = [] 

Ambient_Temps_One = [] 

Fridge_OnOff_States_One = [] 

Step_rewards_One = [] 

Internal_Temps_Two = [] 
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Ambient_Temps_Two = [] 

Fridge_OnOff_States_Two = [] 

Step_rewards_Two = [] 

Internal_Temps_Three = [] 

Ambient_Temps_Three = [] 

Fridge_OnOff_States_Three = [] 

Step_rewards_Three = [] 

upper_One = [] 

lower_One = [] 

upper_Two = [] 

lower_Two = [] 

upper_Three = [] 

lower_Three = [] 

Total_power = [] 

Total_powerlimit = [] 

env = ThreeFridge() 

states = len(env.observation_space) 

actions = env.action_space.n 

model = build_model(states, actions) 

dqn = build_agent(model, actions) 

dqn.compile(Adam(lr=1e-3), metrics=['mae']) 

dqn.load_weights('ThreeFridge60Dqn12032330000mae.h5f') 

 

# In[25]: 

 

scores = dqn.test(env, nb_episodes=1, visualize=False) 
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plt.subplot(231) 

plt.plot(Internal_Temps_One, 'r', label="Int Temp One") 

plt.plot(Fridge_OnOff_States_One, 'b', label="ON/OFF One") 

plt.plot(upper_One, 'g', linestyle='--') 

plt.plot(lower_One, 'g', linestyle='--') 

plt.ylabel("Internal Temp (ºC)") 

plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left', ncol=2, mode="expand", 

borderaxespad=0.) 

 

plt.subplot(232) 

plt.plot(Internal_Temps_Two, 'r', label="Int Temp Two") 

plt.plot(Fridge_OnOff_States_Two, 'b', label="ON/OFF Two") 

plt.plot(upper_Two, 'g', linestyle='--') 

plt.plot(lower_Two, 'g', linestyle='--') 

plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left', ncol=2, mode="expand", 

borderaxespad=0.) 

 

plt.subplot(233) 

plt.plot(Internal_Temps_Three, 'r', label="Int Temp Three") 

plt.plot(Fridge_OnOff_States_Three, 'b', label="ON/OFF Three") 

plt.plot(upper_Three, 'g', linestyle='--') 

plt.plot(lower_Three, 'g', linestyle='--') 

plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left', ncol=2, mode="expand", 

borderaxespad=0.) 

 

plt.subplot(234) 
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plt.plot(Step_rewards_One, 'm') 

plt.ylabel('Step Rewards') 

plt.xlabel("Time (min)") 

 

plt.subplot(235) 

plt.plot(Step_rewards_Two, 'm') 

plt.xlabel("Time (min)") 

 

plt.subplot(236) 

plt.plot(Step_rewards_Three, 'm') 

plt.xlabel("Time (min)") 

plt.show() 

 

plt.subplot(311) 

plt.plot(Ambient_Temps_One, 'k') 

plt.xlabel("Time (min)") 

plt.ylabel("Amb temp One(ºC)") 

 

plt.subplot(312) 

plt.plot(Ambient_Temps_Two, 'k') 

plt.xlabel("Time (min)") 

plt.ylabel("Amb temp Two(ºC)") 

 

plt.subplot(313) 

plt.plot(Ambient_Temps_Three, 'k') 

plt.ylabel("Amb temp Three(ºC)") 
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plt.xlabel("Time (min)") 

plt.show() 

 

plt.plot(Total_power, 'r') 

plt.plot(Total_powerlimit, 'g', linewidth=4, linestyle='--') 

plt.xlabel("Time (min)") 

plt.ylabel("Total power (W)") 

plt.show() 

# In[27]: 

 

'''del model 

del dqn 

del env''' 

 

 

 

 


