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ABSTRACT OF THE DISSERTATION

Robust Engineering of Dynamic Structures in Complex Networks

by

Walter Botongo Bomela

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, August 2018

Research Advisor: Professor Jr-Shin Li

Populations of nearly identical dynamical systems are ubiquitous in natural and engineered sys-

tems, in which each unit plays a crucial role in determining the functioning of the ensemble. Robust

and optimal control of such large collections of dynamical units remains a grand challenge, espe-

cially, when these units interact and form a complex network. Motivated by compelling practical

problems in power systems, neural engineering and quantum control, where individual units often

have to work in tandem to achieve a desired dynamic behavior, e.g., maintaining synchronization

of generators in a power grid or conveying information in a neuronal network; in this dissertation,

we focus on developing novel analytical tools and optimal control policies for large-scale ensem-

bles and networks. To this end, we first formulate and solve an optimal tracking control problem

for bilinear systems. We developed an iterative algorithm that synthesizes the optimal control in-

put by solving a sequence of state-dependent differential equations that characterize the optimal

solution. This iterative scheme is then extended to treat isolated population or networked systems.

We demonstrate the robustness and versatility of the iterative control algorithm through diverse

applications from different fields, involving nuclear magnetic resonance (NMR) spectroscopy and

x



imaging (MRI), electrochemistry, neuroscience, and neural engineering. For example, we design

synchronization controls for optimal manipulation of spatiotemporal spike patterns in neuron en-

sembles. Such a task plays an important role in neural systems. Furthermore, we show that the

formation of such spatiotemporal patterns is restricted when the network of neurons is only par-

tially controllable. In neural circuitry, for instance, loss of controllability could imply loss of neural

functions. In addition, we employ the phase reduction theory to leverage the development of novel

control paradigms for cyclic deferrable loads, e.g., air conditioners, that are used to support grid

stability through demand response (DR) programs. More importantly, we introduce novel theoret-

ical tools for evaluating DR capacity and bandwidth. We also study pinning control of complex

networks, where we establish a control-theoretic approach to identifying the most influential nodes

in both undirected and directed complex networks. Such pinning strategies have extensive practical

implications, e.g., identifying the most influential spreaders in epidemic and social networks, and

lead to the discovery of degenerate networks, where the most influential node relocates depending

on the coupling strength. This phenomenon had not been discovered until our recent study.
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Chapter 1

Introduction

Naturally occurring biological, chemical, physical and also engineered systems exhibit a rich va-

riety of complex dynamical behaviors that have always attracted the attention of the scientific

community. The study of these systems helps us better understand how they work, and thus leads

to the development of the technology that allow us to manipulate their dynamics as desired. For

example, the understanding of how the auditory system processes sound has led to the development

of the cochlear implants that partially restore hearing via direct electrical stimulation of spiral gan-

glion neurons [1, 2]; however, the spectral coding is limited by the spread of excitation from each

electrode [1]. Inherent uncertainty of the physical systems and parameters dispersion, therefore,

call for the development of robust control methodologies for the manipulation of complex ensem-

ble systems that are often under-actuated, and in which feedback control laws are impractical or

restricted due to the lack of access to the system internal states.

In this dissertation, we study control problems involving ensemble of interacting and non-interacting

dynamical systems that are structurally identical, but with dispersion in their parameters. Further-

more, we consider collections of dynamical systems that are controlled by a common input signal

(broadcast control), and those that are controlled by a single control directly applied on a small

number of systems and whose effect propagates through the interactions between systems (pinning

1



control). This work is motivated by problems that naturally arise when manipulating ensembles

of dynamical systems, e.g., nuclear spins in nuclear magnetic resonance (NMR) spectroscopy and

imaging, neural networks, and even thermostatically controlled loads (TCLs) for demand response

(DR) applications. In order to fulfill the expectations and needs of scientists and engineers dealing

with these types of control problems, novel analytical methods, mathematical modeling and robust

control-theoretic approaches are needed. This introductory chapter reviews the motivating appli-

cations, basic mathematical modeling and control approaches for the type of systems considered

herein.

1.1 Iterative Control of Bilinear Systems

Bilinear systems represent a class of mathematical models that describe nonlinear physical systems

more accurately than linear systems [3, 4]. With physical relevance in various scientific fields such

as biology, socioeconomics, and engineering; bilinear systems are used to model various processes

including chemical reaction, nuclear reaction, fluid dynamics [5, 3], and quantum systems [6, 7, 8,

9]. The conventional form of a deterministic bilinear system in state-space is given by

dx
dt

= Ax+
m

∑
j=1

u jB jx+ B̄u, (1.1)

where x∈Rn, u∈Rm, A, B̄, and B j, with j = 1, · · · ,m, are matrices with appropriate dimensions. In

some cases, the control input can be constrained, e.g., |u(t)| ≤Umax, where Umax is the maximum

allowable control amplitude.

Pioneering research on bilinear systems, initially supported by the Atomic Energy Commission

(AEC) (currently the Department of Energy (DOE)) at Los Alamos, emerged from their natural
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occurrence in nuclear reactor dynamics in which, open-loop processes for nuclear fission, poison

buildup, heat transfer, and fluid dynamics are either bilinear or nearly bilinear [4, 3]. Since then,

many research groups have studied the properties of this class of systems [10, 11], e.g., their

controllability [12, 13], and various control procedures for manipulating the dynamics of bilinear

systems have been proposed [14, 15, 5, 16, 8].

1.1.1 Literature Review of Iterative Control Methods

Optimal control problems for bilinear systems have been extensively studied over the past few

decades, which led to the development of various control methodologies based on approximating

procedures [15], direct solutions to the Hamilton-Jacobi-Bellman (HJB) equation [14] and itera-

tive methods based on the solution of the Pontryangin’s maximum principle [17, 18, 19, 20]. All

of these control procedures found in the literature differ from one another based on how the op-

timal control problems are formulated and solved. For example, the finite and infinite-horizon

free-endpoint optimal control problems for bilinear systems in [15] were solved iteratively by con-

sidering a sequence of linear problems that are then shown to uniformly converge to the desired

solution, which agreed with a direct solution to the Hamilton-Jacobi (HJ) equation. Similar to the

work presented in [15], with the main difference being the derivation of the optimal control law

based on the Pontryangin’s maximum principle, which led to coupled nonlinear equations, while

the iterative procedure in [17] required a change of variables in order to stay in close proximity

of the Riccati approach. This method increased the implementation complexity of the iterative

procedure as the plant and the penalty matrices became state-dependent. However, this iterative

procedure was shown to converge to a fixed point. Similar works were done in [18, 19, 20].
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Methods for synthesizing suboptimal controls have also been treated. For example, one approach

is to obtain the suboptimal control law based on the linear quadratic regulator (LQR) involving the

steady-state solution of the state-dependent Riccati equation (SDRE) [21]. Similarly, a suboptimal

solution to the bilinear quadratic regulator was studied in [5], where the proposed control law was

based on the steady-state solution of the SDRE. The presented power series approach of the Ric-

cati equation resulted in offline calculations of one Riccati equation and a sequence of Lyapunov

equations. The work in [22] presented a method for synthesizing suboptimal feedback control laws

for nonlinear systems. The proposed method allowed easy calculations of a second order approxi-

mation of the optimal control by obtaining approximate solutions to the HJB equation. Extending

the work of [18] on optimal regulator of control-affine nonlinear systems, techniques for solving

nonlinear-nonquadratic optimal tracking control problems were also developed [23]. It was shown

that under mild conditions on each operator being locally Lipschitz, the method converged in the

limit to the nonlinear system considered; however, a proof or conditions under which the converged

solution will indeed be the optimal one was not provided.

1.1.2 Control of Bilinear Ensemble Systems

The control of a large number of structurally similar bilinear systems is of particular important in

practical applications, e.g., NMR spectroscopy and imaging. This class of problems falls under a

challenging area in mathematical control theory called ensemble control [6], which is concerned

with the manipulation of the dynamics of a large collection of structurally identical systems in-

dexed by a parameter set, and controlled by a common open-loop input signal [24, 8, 9]. Ensemble

systems are described by a parametrized dynamical system of the form

d
dt

x(t,s) = F(t,s,x(t,s),u(t)), x(0,s) = x0(s), (1.2)

4



where x(t) ∈ Rn, u(t) ∈ Rm, s ∈ D ⊂ Rd , with F and x0(s) smooth functions of their respective

arguments [25]. The states of such an inhomogeneous population of dynamical systems (1.2)

can be steered from an initial distribution x(0,s), to a desired final distribution x(T,s), over the

corresponding function space, only if (1.2) is ensemble controllable.

Definition 1 (Ensemble controllability [6]): The family of dynamical systems (1.2) is said to be

ensemble controllable on the function space F(D) defined on some compact set D ⊂ Rd , if there

exists a control u(t) and a time T > 0 such that starting from any initial state x(0,s), the system can

be steered to within a ball of radius ε around the target state g(s)∈ F(D), i.e., ‖x(T,s)−g(s)‖< ε .

Here ‖ · ‖ denotes a desired norm, say L2 norm, on F(D).

It is important to note that ensemble controllability is defined in an approximate sense and that

the final time T may depend on ε , in other words, the desired accuracy. The controllability of

ensemble systems can be evaluated by computing the iterated Lie bracket [26, 27, 6].

1.2 Control of Large-Scale Rhythmic Systems

Large-scale rhythmic systems are ubiquitous in biology, physics and engineering. These systems

often composed of ensembles of either interacting or non-interacting nonlinear oscillating units

require a certain optimal organization of their dynamic structures for normal operation. The elec-

trical power grid is a good example of a large-scale engineered system in which synchronization of

generators is required for normal operation [28, 29, 30]. Various other examples of synchroniza-

tion can be found in biological systems, e.g., metabolic synchronization of glycolytic in yeast cells

[31, 32]. While synchronized dynamic structures might be required in some systems, in others, it is

to be avoided for normal operation to be maintained. This is the case in control of TCLs ensembles
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used to provide ancillary services in demand response programs [33, 34, 35]. Large-scale systems

can be affected by external stimuli which can perturb their dynamic behaviors, with sometimes

unintended consequences, e.g., cascading failures in the power grid [36, 37] or perturbation of in-

formation processing by neural networks [38, 39, 40]. These systems are more or less sensitive to

external disturbances depending on the underlying network structure. However, it is often possible

re-establish normal operation using an external control signal that has been carefully designed,

e.g., narrow pulses in deep brain stimulation (DBS) [41, 42].

1.2.1 Engineering Spatiotemporal Patterns in Oscillator Ensembles

A wide variety of biological and engineered rhythmic systems rely on the internal oscillators fol-

lowing a given pattern of activities that is essential for these systems to perform their intended

functions. Synchronization and desynchronization are certainly two of the most studied properties

of oscillatory systems in physics, biology, neuroscience and engineering [43, 44, 45, 46]. Fur-

thermore, some pathologies such as Parkinson’s disease and epilepsy are linked to an excessive

synchronization of neural activities [47, 48], however, the symptoms in most cases can be allevi-

ated by high frequency stimulation of the ventral intermediate nucleus and stimulation of the vagus

nerve [48, 49] that desynchronizes the neurons. Although synchronization is not desirable in these

pathologies, it is however a desired property in other applications such as synchronization of the

pacemaker in the heart [44, 50], suppression of jet-lag by re-synchronizing the circadian rhythm

[51] and stability of the power grid [28, 30].

For decades, scientists have been investigating how the central nervous system (brain) interprets

or processes information perceived from the environment through sense organs. There is sufficient

evidence indicating that stimulus information is encoded in neural networks as spatiotemporal
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spiking patterns, furthermore, it has been shown that all information about the spike pattern is lost

if only mean firing rates (temporal) or ensemble activities (spatial average) are considered [52]. In

animals, e.g., rats, it has been observed that the hippocampus uses timing in the spike activity of

place cells, in addition to rate, to encode location in space [53]. Moreover, phase code (timing of

a neuron spikes relative to the phase of the inhibitory theta rhythm) is used by the place cells to

convey information [53, 54].

Understanding of how the brain processes information, while using so little energy, will have a

tremendous impact on medical and engineering applications. For example, this could enable the

improvement of neuro-inspired devices such as the IBM’s TrueNorth [55] and the Intel’s Loihi

[56] neuromorphic chips, which are spiking neural networks tailored toward cognitive tasks such

as patterns classification and objects recognition [57]. Thus far, there has been some success in

bioengineering applications, for instance, the cochlear implant, a microelectrode array that directly

stimulates the auditory nerve in patients with profound deafness, and hence restoring audition [2].

Though restoration of audition has been effective in most cases, the restoration of vision is a more

complex task. Despite recent promising advances made in electrical retinal implants that have been

tested in animal experiments, there are still several hurdles to overcome before testing on human

subjects can be successfully undertaken [58]. In that regard, efforts have been made to develop a

model for the mammalian retina [59] from which a silicon chip has been fabricated [60]. This is

the first silicon retina to approach the spatial density of the retina, and that successfully models the

inner retina circuitry. In light of the new advances in neuromorphic chips and computing, one can

see that we are approaching fully integrated neuro-inspired systems with sensors that can perceive

the outside world and encode the information into spatiotemporal spike patterns that can directly

be used by neurocomputers for analysis or be interpreted by the central nervous system in humans.
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What role can control theory play in the development of neuro-inspired devices and computing?

This question is addressed in Chapter 3 where some key answers are provided. It is estimated that

130 million photo-receptors in the retina capture visual information that is then compressed into

electrical signals carried by 1.2 million ganglion neurons, whose axons form the optic nerve [58].

This information is transmitted to the visual cortex of the brain in the form of spatiotemporal stim-

ulation patterns of electrical impulses that can be interpreted by the brain. However, this transfer

of visual information requires the stimulation of a large ensemble of sensory neurons simultane-

ously, and in the correct sequence to enable accurate encoding of three-dimensional objects [58].

This presents a challenge for retinal implants given that numerous electrodes are required for an

accurate transmission of visual information to the visual cortex. Therefore, the development of

control algorithms for manipulating spatiotemporal spike patterns of a large collection of neuron

oscillators with a common (minimum energy) control signal is needed. This will enable accurate

transfer of information from an implant with a relatively small number of required electrodes.

The control of either a single or an ensemble of neuron oscillators has been the focus of many

research groups, which led to the development of various control techniques such as the charge-

balanced and minimum-power controls that manipulate the spiking time of a neuron [61, 62].

Concurrently, others have developed methods for designing control waveforms for asymptotic en-

trainment of neural oscillators to a desired frequency [63, 64, 65, 66], or for phase assignment [67]

as well as design of control inputs to desynchronize networks of coupled neurons [68]. The general

problem of selective spiking of neurons, where a stimulus is used to induce firing of one neuron

while inhibiting the rest of the population has also been considered [69]. Most control algorithms

and techniques, thus far, tackle individual control objectives such as synchronization [49], desyn-

chronization [70] or entrainment [71].
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1.2.2 Control of Cyclic Loads for Demand Response Applications

In recent years, considerable efforts have been made to reduce the carbon footprint of fossil-fueled

generators. In the United States, many states have been adopting or increasing their renewable en-

ergy generation portfolio standards [72]. However, the increasing penetration of renewable energy

sources (RESs) and their intermittent generation affects power quality on electric distribution sys-

tems and complicates load balancing in power systems [73]. The development of new approaches

to regulate the inherently fluctuating and uncontrollable power outputs of RESs [74, 75], is of the

foremost importance in order to maintain grid stability.

Demand response (DR) programs enable electricity users to adjust their consumption in response

to energy prices or incentive payments [76, 77], and thus provide significant capability to balance

supply and demand on the power grid. However, the response to market price fluctuations of this

approach is slow. Meanwhile, aggregated TCLs can be controlled to react faster to changes, and

this flexibility can be used to provide balancing services in real-time retail electricity markets [76].

TCLs such as heating ventilation and cooling (HVAC) systems and electric water heaters have

been shown to be suitable for providing ancillary services to the grid [78, 79], in addition, field

experiments were conducted to demonstrate the ability of TCLs (refrigerators) to provide ancillary

services [80, 33]. Furthermore, domestic refrigerators were used to quantify the flexibility of

household TCLs, as well as the computational resource constraints on the control of large TCL

populations. Certainly, one of the simplest way to control TCLs is to turn them off/on as needed.

For example, the frequency controller in [80] switches the TCLs off one by one based on the ability

of each refrigerator to stay off longer, while in [33] a delay is introduced to improve the controller

performance and reduce power overshoots. It was then noted that abruptly withdrawing a large

number of loads produced instability and caused the loads to synchronize their duty cycles.
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The synchronization of TCLs, due to the control action, creates power fluctuations and limits the

capacity of ancillary services (AS) that can be provided. So, in an effort to further the understand-

ing of the oscillatory behavior of the aggregate power consumption, the damping of oscillations

was characterized as a function of parameter heterogeneity by exploiting the similarities that ex-

ist between a population of mass-springs systems and an ensemble of TCLs [81]. Concurrently,

the dependence of the mixing rate of the population on the model parameters was characterized in

[82]. In Chapter 4, we introduce a phase model representation of TCLs that can be used to evaluate

AS capacity of a TCL population and develop novel control policies. Furthermore, the phase sen-

sitivity functions of the phase models can be used to compute the regions of entrainment (Arnold

tongues) to an external forcing signal [83, 84], which provide insights into the phenomenon of

temporary synchronization (unwanted power oscillations).

Various control schemes for modulating the aggregate power of TCLs in response to a power reg-

ulation signal have been proposed [34, 85, 78, 86]. Hence, enabling the compensation of power

fluctuations of RESs, e.g., solar panels, using TCLs [87]. However, control induced synchroniza-

tion of TCLs remains a factor that limits the time scale and capacity of AS that they can provide.

This inspired the research and development of control policies that aim to minimize unwanted

power oscillation in response to pulse-like changes of the set-point temperature [88, 89]. The con-

trol protocol proposed in [88] reduces power overshoots by allowing the TCL to stay in its current

state until the temperature hits one of the transition points, then starts following a new pair of

deadband limits. On the other hand, [89] introduces a delay of M-minutes before changing the

status of the TCL. The development of control policies that reduce such synchronization of TCLs

is therefore of fundamental important.
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1.2.3 Optimal Placement of Driver Nodes in Complex Networks

Complex systems constituted by a network of coupled nonlinear systems are prevalent in nature

and human society. In normal operations, such a complex network has a spatiotemporal pattern

optimized for its functioning. When the pattern breaks down, malfunctioning of devices or dynam-

ical diseases can develop. Under these circumstances, a control policy –intervention on dynamic

properties using exogenous inputs– can be applied to re-establish the functioning of the system.

For large networks, the application of control inputs is often limited to a single or a small number

of sites. A prominent intervention task is to stabilize the network behavior at a certain state, e.g,

the equilibrium. This can be achieved by stabilizing a single site and then propagating the control

effect through couplings between nodes to the entire network. This feedback control strategy is

referred to as pinning control and is illustrated in Figrure 1.1. One compelling application of such

a pinning control strategy is to suppress wild fluctuations in a network in order to retrieve normal

stationary behavior. Prominent examples include the use of neurostimulation to mediate epileptic

seizures [90, 39, 91], and the application of medication to the infected nodes in a high-risk contact

network to preclude the spread of disease, such as HIV [92].

S

Figure 1.1: Illustration of pinning control. The virtual leader (also called pinner) is a virtual node
S (the purple node) added to the network and which defines the desired trajectory.
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Notions of pinning control, including pinning controllability [93] and effectiveness [94], have also

been extensively introduced to analyze dynamic structures in a complex network, such as syn-

chronization [95], stabilization [96] and consensus [97, 98]. A fundamental challenge of pinning

control is to identify the most influential site for establishing stable behavior in the network and

to unlock what this site is dependent upon. In Chapter 6, we address these problems by studying

bidirectional networks consisting of n dynamical units and, without loss of generality, illustrate our

findings through networks of Stuart-Landau (SL) oscillators, that are systems of identical dynamic

units diffusively coupled, and in which each unit has an unstable fixed point.

1.3 Organization

The remainder of this dissertation is organized as follows. Chapter 2 formulates an optimal tracking

control problem for bilinear systems, which is solved iteratively. A proof of convergence of the re-

sulting algorithm and the necessary conditions for the existence of the optimal control are provided.

Chapter 3 extends the iterative control algorithm, for bilinear systems presented in Chapter 2, to

ensembles of limit-cycle oscillators by leveraging phase reduction theory. The controllability of

oscillator networks, in particular neural networks, is also examined. The rest of the chapter is

concerned with the control of phase model oscillators into forming complex spatiotemporal phase

patterns. In Chapter 4, phase reduction theory is used to reduce thermostatically controlled loads

to phase model representations that facilitate the analysis and control of TCL ensembles for de-

mand response. Then in Chapter 5, using the phase model of the TCL developed in Chapter 4, an

optimal control problem is formulated and solved using the Pontryagin’s maximum principle. In

Chapter 6, the pinning control problem of network of oscillators is examined. The conditions for

stabilization of a network of oscillators are derived and a control-theoretic approach for identifying
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the most influential control site is proposed. Furthermore, the dependence of the most influential

control site on the network topology and size is also analyzed. Finally, the concluding remarks and

future directions are given in Chapter 7.
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Chapter 2

Iterative Control of Bilinear Systems

In this chapter, we develop an iterative method for synthesizing optimal controls for bilinear

quadratic tracking problems. The developed control algorithm is easy to implement as the con-

trol law of the bilinear system is obtained iteratively by considering a sequence of linear systems.

The minimizing control law is calculated iteratively by solving a set of coupled state-dependent

differential equations derived from the Hamilton-Jacobi-Bellman equation. Furthermore, the proof

of convergence of the iterative procedure is provided, and the convergence is demonstrated by nu-

merical simulations for three example tracking problems.

To complete this chapter, we demonstrate the robustness and versatility of the control algorithm

by applying it to relevant problems on open quantum systems that arise in NMR spectroscopy of

proteins in liquids [99, 8]. Specifically, we consider coupled spin systems [100, 101, 7] and ensem-

ble control of Bloch equations motivated by practical applications that arise in nuclear magnetic

resonance (NMR) spectroscopy and imaging (MRI) [6, 7, 102, 9]. The basic Ideas of this chapter

was published in [103].
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2.1 Optimal Tracking of Bilinear Systems

Optimal control of bilinear systems has been the subject of investigations for at least six decades [3].

Since then, many control algorithms have been proposed for synthesizing optimal or suboptimal

control with various objective functions being considered [5, 20, 14, 17, 15, 104]. In this chapter,

we consider the optimal tracking problem for bilinear systems and solve for the optimal control

iteratively. As we are going to show in the following, the versatility of the resulting control algo-

rithm is a considerable advantage in the sense that one can easily use the same algorithm to solve

for the free-endpoint, regulation and tracking problems.

2.1.1 Problem Formulation

Let us consider the tracking problem of the following time-varying bilinear system, assumed ob-

servable,

ẋ(t) = A(t)x(t)+B(x)u(t),

y(t) =C(t)x(t),
(2.1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rr. Let z(t) ∈ Rr be the desired output trajectory, and

the various matrices A(t), B(t) and C(t) be of appropriate dimensions. The input matrix B(x) =

B̄+∑
n
j=1 x jN j, with B̄ and ∑

n
j=1 x jN j constant and state dependent matrices, respectively. The aim

is to control the system (2.1) such that the output y(t) tracks the desired trajectory z(t) as close as

possible in the time interval [0,T ] with minimum control effort. Let’s define the error vector as

e(t) = z(t)− y(t), (2.2)
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and the performance index as

J(u) =
1
2

e′(T )Fe(T )+
1
2

∫ T

0
e′(t)Q(t)e(t)+u′(t)R(t)u(t)dt, (2.3)

where “′” denotes the transpose operation, T is specified and x(T ) free. In this way one is dealing

with a free-final state problem. Moreover, F � 0 and Q(t) � 0 are n× n positive semidefinite

matrices, and R(t) � 0 is m×m positive definite, ∀ t ∈ [0,T ]. Furthermore, it is assumed that the

entries of the matrices A,B,C,Q,R are continuous functions over [0,T ].

2.1.2 Optimal Control Solution

Let V (t,x) be the value function associated with the optimal control problem of the bilinear system

in (2.1) with the cost functional J(u) defined in (2.3), then V (t,x) = inf
u∈U(t,x)

J(u) over all admissible

controls u : [0,T ]→ U ⊆ Rm. Furthermore, if V is differentiable with respect to (t,x), then by

minimizing the Hamiltonian of the system over all admissible controls, one obtains the Hamilton-

Jacobi-Bellman (HJB) equation [105, 106], given by

Vt +min
u∈U

{
Vx (Ax+B(x)u)+

1
2
(e′Qe+u′Ru)

}
≡ 0, (2.4)

where Vt =
∂V
∂ t and Vx =

∂V
∂x . The necessary condition of optimality gives

u(t) =−R−1B(x)′V ′x . (2.5)

Substituting for e(t) and u(t) in (2.4) gives

Vt +
1
2
(VxAx+ x′A′V ′x)−

1
2

VxEV ′x +
1
2
(x′Dx)+

1
2
(z′Qz)− 1

2
(x′Wz+ z′Wx)≡ 0, (2.6)

16



where D(t) = C′(t)Q(t)C(t), E(x) = B(x)R−1(t)B′(x), and W (t) = C′(t)Q(t). To emphasize the

state dependence of the matrix E while, at the same time, simplifying the notations, we write E(x)

rather than E(x(t)).

Suppose that a candidate solution of (2.6) is of the form

V (t,x) =
1
2

x∗′P(t)x∗− x∗′g(t)+h(t), (2.7)

where x∗ is the optimal state trajectory, P(t) ∈ Rn×n, g(t) ∈ Rn, and h(t) ∈ R. Taking the partial

derivatives of (2.7) with respect to x and t, one obtains

Vx = P(t)x∗−g(t),

Vt =
1
2

x∗′Ṗ(t)x∗− x∗′ġ(t)+ ḣ(t).
(2.8)

Substituting (2.8) into (2.6), and after some algebraic manipulations, yields

1
2

x∗′{Ṗ+PA+A′P−PEP+D}x∗+ x∗′{−ġ−A′g+PEg−Wz}+ ḣ+
1
2

z′Qz− 1
2

gEg≡ 0. (2.9)

Since (2.9) must be satisfied for all x∗(t), z(t) and t ∈ [0,T ], one obtains the following set of

coupled state-dependent equations that characterize the optimal solution of the tracking problem,

Ṗ(t) =−P(t)A−A′P(t)+P(t)E(x)P(t)−D(t), (2.10)

ġ(t) =−
[
A′−P(t)E(x)

]
g(t)−W (t)z(t), (2.11)

ḣ(t) =−1
2

z′(t)Q(t)z(t)+
1
2

g′(t)E(x)g(t), (2.12)
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with boundary conditions, P(T ) = C′(T )FC(T ), g(T ) = C′(T )Fz(T ) and h(T ) = z′(T )Fz(T ),

respectively. In addition, the optimal feedback control law is of the form

u∗(t) =−R−1B′(x∗) [P(t)x∗(t)−g(t)] , (2.13)

with the optimal trajectory given by

ẋ∗(t) = [A−E(x∗)P(t)]x∗(t)+E(x∗)g(t), (2.14)

and the optimal cost is J∗ = J(u∗) = 1
2x∗′(0)P(0,x(0))x∗(0)− x∗(0)g(0,x(0))+h(0,x(0)).

2.2 Iterative Algorithm and its Convergence

Computing the optimal solution, i.e., (u∗,x∗), for the tracking problem described in Section 2.1.2

requires solving a system of coupled equations (2.10)-(2.14), which, however, is in general analyt-

ically and numerically intractable. In this section, we introduce an iterative method to resolve the

plight and, furthermore, show the convergence of the proposed iterative procedure converging to

an optimal solution.

2.2.1 Iterative Algorithm for Optimal Bilinear Tracking Problems

Treating (2.10)-(2.14) as iteration equations (see Theorem 1) with k ∈ N denoting the iteration,

uk and xk denoting the control and the trajectory obtained at the kth iteration, respectively, the

iterative method for the synthesis of optimal bilinear tracking control is described in the following

algorithm.
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Data: A(t), B(x), C(t), Q(t), R(t), F , x(t0), z(t), T
Initialization ;
k = 0;
x0(t) = z(t), x0(0) = z(0);
while ||xk(t)− xk−1(t)||> ε do

compute Pk(t) and gk(t) using B(xk(t));
uk(t) =−R−1B′(xk(t))[Pk(t)xk+1(t)−gk(t)];
ẋk+1(t) = Axk+1(t)+B(xk(t))uk(t);
k = k+1;

end
Algorithm 1: Algorithmic description of the iterative method.

2.2.2 Convergence of the Iterative Algorithm

In this section, we show that Algorithm 1 generates convergent sequences that converge uniformly

to the optimal solution defined in (2.13) and (2.14), i.e., xk→ x∗ and uk→ u∗.

Theorem 1: Consider the iteration equations

Ṗk(t) =−Pk(t)A−A′Pk(t)+Pk(t)Ek(x)Pk(t)−D(t), (2.15)

ġk(t) =−
[
A′−Pk(t)Ek(x)

]
gk(t)−W (t)z(t), (2.16)

uk(t) =−R−1B′k(x)[Pk(t)xk+1(t)−gk(t)], (2.17)

ẋk+1(t) = [A−Ek(x)Pk(t)]xk+1 +Ek(x)gk(t), (2.18)

with the boundary conditions Pk(T ) = C′(T )FC(T ) and gk(T ) = C′(T )Fz(T ), where Ek(x) =

B(xk)R−1B′(xk), D(t) =C′(t)Q(t)C(t), and C(t) and F are defined in (2.1) and (2.3), respectively.

If R(t)� 0, D(t)� 0 for all t ∈ [0,T ] and F � 0, then the sequences {xk} and {uk} converge uni-

formly to x∗ and u∗ satisfying (2.14) and (2.13), respectively, with the initial condition xk(0)= x̂(0).
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Proof: By the variation of constants formula, the solution to (2.18) is given as

xk+1(t) = Φk(t,0)x̂(0)+
∫ t

0
Φk(t,σ)Ek(x(σ))gk(σ)dσ , (2.19)

where Φk(t, t0) is the transition matrix for the homogeneous system ẋk+1 = [A−Ek(x)Pk(t)]xk+1.

Let’s now consider the difference xk+1− xk, which satisfies

d
dt
[xk+1− xk] = [A−EkPk]xk+1− [A−Ek−1Pk−1]xk +Ekgk−Ek−1gk−1. (2.20)

Adding and subtracting [A−EkPk]xk +Ek−1gk to (2.20) yields

d
dt
[xk+1− xk] =[A−EkPk](xk+1− xk)+ [Ek−1Pk−1−EkPk]xk

+Ek−1(gk−gk−1)+ [Ek−Ek−1]gk−1,

(2.21)

and then we have the solution

xk+1− xk =
∫ t

0
Φk(t,σ){[Ek−1Pk−1−EkPk]xk

+Ek−1(gk−gk−1)+ [Ek−Ek−1]gk−1}(σ)dσ ,

(2.22)

since xk+1(0)− xk(0) = 0. It follows that

‖xk+1(t)− xk(t)‖ ≤
∫ t

0

{
β1‖Ek−Ek−1‖+β2‖Pk−Pk−1‖+β3‖gk−gk−1‖

}
(σ)dσ , (2.23)
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where

β1 = ‖Φk(t,σ)‖(‖Pk‖‖xk‖+‖gk−1‖) ,

β2 = ‖Φk(t,σ)‖‖Ek−1‖‖xk‖, (2.24)

β3 = ‖Φk(t,σ)‖‖Ek−1‖,

(see Appendix A) with the norm defined by ‖v(t)‖ = sup
t∈[0,T ]

‖v(t)‖ in which ‖v‖ = max
i
|vi| for

v ∈Rn and ‖D‖= max1≤ j≤n ∑
n
i=1 |Di j| for D ∈Rn×n. Note that the conditions R(t)� 0, D(t)� 0,

and F � 0 guarantee the boundedness of ‖Pk‖ in β1.

Now, let ξk(t) ≡ ‖xk+1(t)− xk(t)‖, it can be shown that all the norms of the differences in (2.23)

are bounded as follows (see Appendix A.0.2):

‖Ek(x)−Ek−1(x)‖ ≤ α1ξk−1(t),

‖Pk(t)−Pk−1(t)‖ ≤ α2ξk−1(t),

‖gk(t)−gk−1(t)‖ ≤ α3ξk−1(t).

(2.25)

Substituting the bounds in (2.25) into (2.23) yields ξk(t) ≤
∫ t

0 Mξk−1(σ)dσ , where M = β1α1 +

β2α2+β3α3. Since M can be chosen independently of the iteration index k, by recursion it follows

that

ξk(t)≤Mk
∫ t

0

∫
σ1

0
· · ·
∫

σk−1

0
ξ0(σk)dσk · · ·dσ1. (2.26)

Because ξ0(t) is bounded for all t ∈ [0,T ], one can choose the upper bound to be Γ, then (2.26)

becomes

ξk(t)≤
(MT )k

k!
Γ, ∀ t ∈ [0,T ]. (2.27)
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Clearly, as k → ∞, ξk(t)→ 0, which implies limk→∞ ‖xk+1(t)− xk(t)‖ = 0. Therefore, (2.18)

becomes equivalent to (2.14), and the sequence {xk} converges uniformly to the solution x∗(t).

Consequently, given (2.17) and (2.13), {uk} converges to u∗(t) as well. �

Note that the proof of convergence presented in this chapter has some similarities with the proof

in [15], where the infinite-time regulator problem was dealt with. Herein, aside from dealing with

the finite-time problem, it was required to show that the solution P(t) to the Riccati equation (2.10)

is bounded ∀ t ∈ [0,T ] and the vector-valued function g(t) introduced by the tracking command is

bounded as well ∀ t ∈ [0,T ].

2.2.3 Existence and Optimality of the Convergent Solution

In Section 2.2.2, we showed that the iterative algorithm will find a convergent solution, provided

the solution to the system of ordinary differential equations (2.10)-(2.12) exists. In this section, we

will construct the conditions under which the optimal solution for the tracking problem described in

Section 2.1.1 exists and is a global optimal. The following theorem is essential to our construction.

Theorem 2: If there exists a solution V (t,x) of class C2 of the HJB equation, which satisfies

the boundary condition V (T,x) = ϕ(T,x), and if Luu(t,x,u) = ∂ 2L
∂u2 � 0 for all t,x,u, where L =

e′(t)Q(t)e(t) + u′(t)R(t)u(t) is the Lagrangian of the performance index in (2.3), then V is the

optimal performance index for the bilinear tracking problem defined in Section 2.1.1 and the cor-

responding optimal control law is given by (2.13) [107].
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Theorem 3: Consider the value function V (t,x) defined in (2.7) for the optimal tracking problem

presented in Section 2.1.1. If

(i) R(t)� 0, ∀ t ∈ [0,T ],

(ii) D(t)� 0, ∀ t ∈ [0,T ],

(iii) F � 0,

(iv) E(x) is Lipschitz continuous on [0,T ],

then V (t,x) is well-defined and satisfies the HJB equation as in (2.4). Furthermore, if V ∈C2(R×

Rn), then V is the optimal performance index.

Proof: The conditions in (i)-(iii) (usually referred to as the Kalman conditions [107, 108]) guar-

antee the existence of a unique bounded solution Π(t;x,F,T ) to the Riccati equation (2.10), while

the Lipschitz condition in (iv) together with the solution Π(t;x,F,T ) guarantee the existence and

uniqueness of a solution to (2.11). The same argument applies to (2.12). Hence, P(t), g(t) and h(t)

exist, and they are unique and bounded, which implies V (t,x) exists and satisfies the HJB equation.

Moreover, if V is twice continuously differentiable, then, by Theorem 2, V (t,x) is the optimal per-

formance index for the bilinear tracking problem, since R(t)� 0, for all t ∈ [0,T ], offers convexity

for L, i.e., ∂ 2L
∂u2 � 0. �

Note that in situations where either condition (ii) or (iii) is not met, one may refer to [109] for the

sufficiency conditions for the finite escape times and to [110] on how to compute the upper bound

on the escape time. In addition, previous studies for the infinite-time regulator have shown that the

pair of system matrices, (A,B(x)) as in (2.1), needed to be point-wise stabilizable in order to obtain

a valid solution of the algebraic state-dependent Riccati equation [111]; moreover, for the existence

of a unique stabilizing solution, the point-wise detectability of the pair (A,
√

Q) is necessary [111,
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14]. For tracking problems in general, controllability of the system plays an important role. For

example, it is known that for linear systems if the plant is completely controllable, then the solution

to the algebraic Riccati equation exists [107], provided conditions (i) and (ii) hold. However, for

the LQR problems, the systems need not be controllable for an optimal control to exist [105].

By Theorem 2 and 3, one can establish the existence of an optimal control further with controlla-

bility. Moreover, by the Mangasarian sufficient condition [112] if the dynamics of (2.1) and the

Lagrangian L(t,x,u) are (strictly) jointly convex in x and u, ∀(t,x,u) ∈ [0,T ]×Rn×Rm, then the

optimal control u∗(t) is the global minimizer of the performance index in (2.3). A less restric-

tive condition is given by the Arrow sufficient condition, which only requires min
u∈U

H(t,x,u,Vx) be

convex in x (where H is the Hamiltonian). If the states that are to track a reference trajectory are

controllable and observable (if output feedback), then the optimal tracking control exists and is

unique. Note that it would not be very meaningful to talk about optimal tracking without having

controllability of the state(s) tracking a reference trajectory.

2.3 Numerical Simulations

We demonstrate the effectiveness and applicability of the iterative method through three examples.

The first one involves tracking a one-dimensional bilinear system, for which a closed-form solution

is available and is used as a benchmark for the iterative method. The second example involves a

two-dimensional bilinear system proposed in [14], which allows a comparison of our method to

the method presented in [14] using the cost data, while the third example demonstrates the tracking

capability by tracking a spin trajectory on a sphere.
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Example 1 (Tracking a Scalar Bilinear System): Consider the tracking problem for a one-dimensional

bilinear system, given by

min
u∈U

J =
1
2

F(x− z)+
1
2

∫ T

0
Q(x− z)2 +Ru2dt

s.t. ẋ =−x+(x+2)u, x(0) = 1,
(2.28)

where we wish to track a constant function z(t) ≡ 0. In this case, we have A = −1, B(x) = x+2,

Q = 1, F = 0 and R = 2, and the Kalman conditions are satisfied. Therefore, a bounded solution

P(t) of (2.10) exists for all t ∈ [0,T ]. In particular, an analytic expression of the optimal control

law can be obtained by solving (2.10) and (2.11), given by

P(t) =
√

R2 +B(x)2QR
tanh[−

√
1+B(x)2QR−1(t + c)]−R

B(x)2 , (2.29)

where

c =− tanh−1
( R+B(x)2F√

R2 +B(x)2QR

)
/
√

1+B(x)2QR−1−T, (2.30)

and

g(t) =
(

Wz
A−EP

+g(T )
)

e(A−EP)(T−t)− Wz
A−EP

. (2.31)

In this particular example, given that the desired state is zero for all t, the bilinear tracking

problem is reduced to a bilinear quadratic regulator, and the optimal control is given by u(t) =

−R−1B(x)P(t)x(t), which is plugged in (2.28) to obtain the optimal trajectory. The optimal con-

trol and trajectory obtained by the analytical expression and the iterative algorithm are displayed

in Figure 2.1, which show great agreement between the two solutions.
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Figure 2.1: Simulation results for the tracking problem in Example 1. (a) Optimal state trajectories.
(b) Optimal controls. (c) Riccati coefficient. (d) State convergence behavior.

There is a small difference in the Riccati coefficient P(t) between the analytical and iterative solu-

tions due to numerical errors. This small difference is reflected in the optimal cost values, that is,

J∗(u) = 0.1596 and 0.1597 from the analytical solution and the iterative method, respectively.

Example 2 (Tracking a Two-Dimensional Bilinear System): Consider the following bilinear sys-

tem with the cost functional taken from [14],

min
u,v∈U

J =
1
2

∫ T

0
(2x2 + y2 +u2 +2uv+4v2)dt

s.t. ẋ =−x+4y+(3+ x+ y)u+ v,

ẏ =−4x− y+(x+ y)u+(2+ x+ y)v,

(2.32)
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with initial conditions x(0) = 4 and y(0) = 0, and the desired state to track is z(t) ≡ 0. Note that

the final time is finite as opposed to the examples in [15] and [14], where the infinite time regulator

problems were considered. Since the system (2.32) reaches the zero states in approximately 2

seconds as observed in [15] and [14], a final time of T = 4 seconds was chosen for simulation

purposes. In [14] the authors compared the performance criterion per iterations obtained with their

algorithm to that obtained by the algorithm presented in [15], and came to the conclusion that the

two approaches agree once the solutions had converged.

In Figure 2.2, we provide the simulation results for this bilinear system, and in particular, Fig-

ure 2.2(c) shows a comparison of the data on performance criterion provided in [14] and the one

obtained with our algorithm. Evidently, our method performs better as it attains the lowest cost and

converges after two iterations. Figures 2.2(a)-(b) show the state trajectories xk(t) and yk(t) at the

first, second and fifth iterations. The convergence of the states measured as ‖ξk(t)‖= ‖xk+1−xk‖∞

is shown in Figure 2.2(d), which shows that the states converge logarithmically. Furthermore, we

computed the supremum norms of the HJB equation at each iteration; and as one can see from Fig-

ure 2.2(d), the norm ‖HJB‖∞ approaches zero which means that the converged solution is optimal.

Example 3 (Tracking a Spin Trajectory): In this example, we consider tracking a reference tra-

jectory on a sphere for a bilinear system described by the Bloch system [16], while minimiz-

ing the cost function in (2.3). The dynamic of the system are described by ẋ1 = −ωx2 + x3u1,

ẋ2 = ωx1− x3u2, ẋ3 =−x1u2 + x2u2.

As it can be seen from Figure 2.3, our iterative method closely track the reference trajectory while

minimizing the control effort. If one wished to reduce the tracking error, one needs to penalize

more the states by increasing the values of Q(t) matrix entries, while penalizing less the control

energy with the matrix R.
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Figure 2.2: Simulation results for the 1-D bilinear system in Example 2. (a)-(b) State trajectories
of x(t) and y, respectively. (c) Comparison of the performance index obtained by our algorithm
(blue) and the one presented in [14] (green). (d) Peak values of the HJB equation for the first five
iterations and the convergence behavior of the states.

2.4 Application to Nuclear Magnetic Resonance Spectroscopy

Experiments in nuclear magnetic resonance (NMR) spectroscopy consist of controlling quantum

systems from initial to final target states by applying appropriate pulse sequences (controls) [100].

However, in the presence of relaxation i.e., dissipation and decoherence, the performance of the

control can be diminished which can result in loss of information [101]. Hence, the design of

optimal controls that minimize the effect of relaxation and improve the sensitivity of the quantum

systems is of fundamental importance. This problem has been investigated extensively in litera-

ture [99, 100, 101, 7, 8].
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Figure 2.3: Tracking a trajectory on a Bloch sphere. (a) and (b) show the reference and simulated
trajectories from the north to the south pole. (c) shows the convergence behavior of the trajectory.
(d) Optimal control inputs.

In this section, we consider three examples optimal control problems on open quantum systems that

arise in NMR spectroscopy of proteins in liquids. These problems have been treated in literature [7,

8, 101], and analytical solutions have been provided [99, 100], which will be taken as benchmarks

for testing the performance of our control algorithm. The systems considered in the following

sections are described in details in [113, 7].
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2.4.1 Coupled Spin Pair without Cross-correlated Relaxation

Here we consider the open quantum system of large molecules in the spin-diffusion limit, where the

longitudinal relaxation rates are negligible compared to transverse [8]. In particular, we ignore the

cross-correlated relaxation and only consider the dipole-dipole (DD) and chemical shift anisotropy

(CSA) relaxation. For a pair of isolated heteronuclear spins 1/2, we then consider the optimal

control problem for designing relaxation pulses or controls [u(t),v(t)] that maximize the coherent

transfer. The dynamical system representing the time evolution of the expectations of the operators,

is given by the following differential equation [7]



ẋ1

ẋ2

ẋ3

ẋ4


=



0 −u 0 0

u −ξ −J 0

0 J −ξ −v

0 0 v 0





x1

x2

x3

x4


, (2.33)

where xi’s are the expectation values of the spin operators, and J = 1, is the scalar coupling con-

stant [114]. The aim here is to maximize the final value of x4. It was shown that the maximum

achievable value of x4, also referred to as efficiency, η1, of the transfer is a function of the param-

eter ξ , and is given by

η1 =
√

ξ 2 +1−ξ , (2.34)

and the optimal pulse that achieved this transfer was denoted ROPE [100].

Using our proposed iterative control method described in Algorithm 1, we designed the controls

u(t) and v(t) for various values of the parameter ξ ∈ [0,1] to maximize the final value of x4(T ),

i.e., at the final time T . In Figure 2.4, for comparison we plot the theoretical results computed with

(2.34) for various values of ξ , the results obtained by the INEPT (insensitive nuclei enhanced by
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polarization transfer) method [115, 99] and our method (denoted optimal), respectively. Our low

amplitude and minimum energy controls (see Figure 2.5) achieved very good performance when

compared to the theoretical results in [100] and the pseudospectral method in [7].

Figure 2.4: Transfer efficiency, η1, for the system (2.33) with ξ ∈ [0,1].

To design the controls (Figure 2.5(b)) that achieve the transfer (1,0,0,0)′ to (0,0,0,η1)
′ at time

T = π , we set the final states as (0,0,0,1)′ then the algorithm find the feasible solution that min-

imizes the energy of the controls while maximizing η1. The maximum efficiency reached was

within 2×10−3 of the theoretical value given by (2.34).

(a) (b)

Figure 2.5: Optimized trajectories and the control signals for the system (2.33). (a) State trajec-
tories for the transfer (1,0,0,0)′ to (0,0,0,η1)

′ with ξ = 1 and T = π . The maximum efficiency
achieved is η1 = 0.4122. (b) Minimum energy control inputs.
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2.4.2 Coupled Spin Pair with Cross-correlated Relaxation

We now consider the situation where DD-CSA cross-correlated relaxation is not negligible. In this

case, the system is described by the following equation for the ensemble averages [7]:



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6


=



0 −u v 0 0 0

u −ξa 0 −1 −ξc 0

−v 0 −ξa −ξc 1 0

0 1 −ξc −ξa 0 −v

0 −ξc −1 0 −ξa u

0 0 0 v −u 0





x1

x2

x3

x4

x5

x6


, (2.35)

where u(t) and v(t) are the controls. In this case, starting with the initial states x(0)= (1,0,0,0,0,0)′,

and we want to maximize the final value of x6(T ) while minimizing the control effort.

As in the previous case, this problem has been solved analytically and the control was denoted

CROP [99]. It was shown as well that the maximum achievable value of x6, i.e., the efficiency η2

of the transfer, is given by

η2 =
√

ξ 2 +1−ξ , (2.36)

where ξ =
√

(ξ 2
a −ξ 2

c )/(1+ξ 2
c ). Similar to the previous case, we consider that ξa takes values

in [0,1] and ξc = 0.75ξa. In Figure 2.6, we compare the performances of CROP, INEPT and our

method (denoted optimal). As one can see, the efficiency achieved using the optimal control is very

close to the theoretical limit obtained with CROP. The states trajectories of the system for the case

ξa = 1 are shown in Figure 2.7(a) and the corresponding controls in Figure 2.7(b). The maximum

efficiency achieved is η2 = 0.5991, which is just half a percent lower than the theoretical value.
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Figure 2.6: Transfer efficiency, η2, for the system (2.35) with ξa ∈ [0,1] and ξc = 0.75ξa.

(a) (b)

Figure 2.7: Optimized trajectories and the control signals for the system (2.35). (a) State trajec-
tories for the transfer (1,0,0,0,0,0)′ to (0,0,0,0,0,η)′ with ξa = 1 and T = 8.2. The maximized
efficiency η2 = 0.5991. (b) Minimum energy control inputs.

2.4.3 Three Spin Chain

The last open quantum system that we consider here, consists of three spin chain with equal cou-

plings between nearest neighbors. However, we neglect cross-correlated relaxation and focus our

attention on slowly tumbling molecules in the spin diffusion limit. The corresponding master

equation is given in [7], and the associated differential equation describing the time evolution of
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the expectation values of the operators participating in the transfer, is given as



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5


=



0 −u 0 0 0

u −ξ −1 0 0

0 1 −ξ −1 0

0 0 1 −ξ −u

0 0 0 u 0





x1

x2

x3

x4

x5


. (2.37)

In this case, the goal is to design a single control u(t) that, starting from x(0) = (1,0,0,0,0)′ will

maximize the final value of x5(T ) while minimizing the control energy. The theoretical upper

bound of the achievable efficiency η3, i.e., the maximum value of x5 was determined in [101], and

is given by,

η3 =
(
√

ξ 2 +2−ξ )2

2
. (2.38)

The performance of our iterative control algorithm denoted optimal, is shown in Figure 2.8. These

results are consistent with previous methods as shown in [7] for the gradient and pseudospectral

methods, respectively, or in [101] for the Gaussian pulse and the steepest descent.

Figure 2.8: Transfer efficiency, η3, for the system (2.37) with ξ ∈ [0,1].
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For the case when ξ = 1, we plot the states trajectories in Figure 2.9(a), while the minimum

energy control is given in Figure 2.9(b) together with the Gaussian control [101]. Furthermore, we

compare the power of the optimal control obtained with Algorithm 1 to the power of the Gaussian

pulse given in [101] that achieved the same transfer efficiency; our control algorithm designed a

pulse that uses 2.82% less power than the Gaussian pulse.

(a) (b)

Figure 2.9: Optimized trajectories and the control signals for the system in (2.37). (a) State tra-
jectories for the transfer (1,0,0,0,0)′ to (0,0,0,0,η3)

′ with ξ = 1 and T = 10. The maximized
efficiency is η3 = 0.2510. (b) Minimum energy control (blue) and the Gaussian control signal
(red). The powers of the two controls were Pu = 0.276 and Pg = 0.284, respectively.

2.5 Ensemble Control of Bloch Systems

In this section, we demonstrate the application of Algorithm 1 to a class of control problems, called

ensemble control, that involves the manipulation of a large number dynamical systems with param-

eters dispersion, using a common input signal [6]. Here, we consider the control of Bloch system

ensembles, which is a collection of bilinear systems evolving on SO(3) that exhibit dispersion in

their natural frequencies ω (Larmor dispersion) and rf inhomogeneity ε . It has been shown that

the Bloch system is ensemble controllable with respect to the parameters ω and ε [6, 24, 16].
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Consider the family of Bloch equations


ẋ(t,ε,ω)

ẏ(t,ε,ω)

ż(t,ε,ω)

=


0 −ω εu(t)

ω 0 −εv(t)

−εu(t) εv(t) 0




x(t,ε,ω)

y(t,ε,ω)

z(t,ε,ω)

 , (2.39)

indexed by the parameters ω ∈ K ⊂ Rd and ε ∈ D ⊂ Rq, and controlled using the same control

input vector U(t) = (u(t),v(t))′ ∈ R2. The family of systems in (2.39) is ensemble controllable

if there exists a control law U(t) that can steer the system from any initial condition X(0,ε,ω) to

neighborhood of the final target state X(T,ε,ω), in time T .

2.5.1 Broadband Compensating Control for Uniform Transfer

In practical applications, we encounter systems that have dispersions in their parameter values.

This is, for example, the case in magnetic resonance applications where the systems can experience

both Larmor dispersion and rf inhomogeneity. The latter implies that the intensity of the rf field

received by different samples depends on their spatial position, while the former simply means

samples have different natural frequencies [6]. If not properly compensated for, these phenomenon

can degrade the accuracy of measurements. It is therefore, necessary to devise algorithms that can

synthesize compensating control signals that, at the same time, minimize the control energy.
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For this application, we consider the Bloch equation in (2.39) that we rewrite in the familiar form,

ẋ = Ax+B(x)u, given in (2.1), as


ẋ(t)

ẏ(t)

ż(t)

=


0 −ω 0

ω 0 0

0 0 0




x(t)

y(t)

z(t)

+ ε


z(t) 0

0 −z(t)

−x(t) y(t)


 u(t)

v(t)

 , (2.40)

were ω ∈ [−1,1] and ε ∈ [0.9,1.1]. Here, we wish to uniformly steer the ensemble from the initial

condition, X(0,ε,ω) = (0,0,−1)′, to the final state, X(T,ε,ω) = (0,0,1)′, while compensating for

the dispersion in ε and ω . Using the control Algorithm 1 with the dynamics in (2.40), we design

the compensating controls that steer a collection of 100 Bloch systems from the initial states to the

desired final state as shown in Figure 2.10.
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Figure 2.10: Uniform π-transfer with compensation of Larmor frequency dispersion and rf inho-
mogeneity. (a) Distribution of the final states z(T,ε,ω), with T = 5π , ε ∈ [0.9,1.1] and ω ∈ [−1,1].
(b) Sample trajectories of the z-states. (c) Compensating control inputs.

2.5.2 Selective Transfer

In some NMR and magnetic resonance imaging (MRI) applications, it is desirable to design con-

trols that steer nuclear spins to different desired final states based on their parameters [116, 117, 6].

Here, we now consider the selective transfer problem of a Bloch system ensemble with ε = 1 and

the frequencies ω ∈K, where K= [−1,−0.3]∪ [0.3,1]. Starting with the initial states X(0,ω) =
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(1,0,0)′, we synthesize the control inputs (u(t),v(t)) that transfer the systems to two different final

states i.e., X(T,ω−) = (0,0,−1)′ for ω− ∈ [−1,−0.3] and X(T,ω+) = (0,0,1)′ for ω+ ∈ [0.3,1].

We then apply the designed control to an ensemble with frequencies ω ∈ [−1,1], and as it can be

seen from Figure 2.11, we achieved the desired transfer for the systems with frequencies ω ∈ K

and we observe a transition region for ω /∈ K (see Figure 2.11(b)). This transition region can be

made small, however, it will require stronger rf fields.
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Figure 2.11: Selective transfer of Bloch ensembles with Larmor frequencies ω ∈ ωd . (a) Sample
trajectories of the z-states. (b) Distribution of final states of the Bloch ensemble comprised of
50 systems with frequencies uniformly distributed ω ∈ [−1,1].(b) Control signals that transfered
the ensemble from the initial state (1,0,0)′ to (0,0,−1)′ for ω ∈ [−1,−0.3] and to (0,0,1)′ for
ω ∈ [0.3,1].
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Chapter 3

Control of Spatiotemporal Patterns in

Neural Networks

In this chapter, we present a unified control framework for engineering weak stimuli that can

dynamically steer the phases or frequencies of either interacting or non-interacting collections of

structurally identical oscillators, with variation in system parameters, to some desired target values.

Our control algorithm enables the design of open-loop, minimum energy, signals that can steer the

phase of an oscillator along a desired trajectory. By being able to steer the phases along desired

trajectories, this control algorithm hence allows us to accomplish diverse control objectives such as

synchronization, phase assignment and entrainment. We also show that for ensemble controllable

systems, complex synchronization patterns can be generated, and hence meaningful spatiotemporal

patterns can be obtained. However, when an ensemble of limit-cycle oscillators is only partially

controllable, we show that the number of different spatiotemporal patterns that can be generated is

greatly reduced, which reduces the information capacity of the network.
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3.1 Controlling Rhythmic Systems

Encoding information using a neural network would require controlling the spiking trains of neu-

ron ensembles. In order to take full advantage of the tools developed in control theory, we use

mathematical models describing the physical or biological process to be controlled. Next we in-

troduce phase reduction theory which allows us to reduce the dimensionality and complexity of

nonlinear oscillators and hence, facilitates the analysis and control design. We then proceed with a

brief presentation of controllability theory of nonlinear systems that provides us with the tools for

evaluating the controllability of phase model ensembles. We end this section with the presentation

of an innovative control technique that can manipulate complex spatiotemporal phase patterns in

oscillator networks.

3.1.1 Phase Reduction Theory

The dynamics of nonlinear oscillators such as the Hodgkin-Huxley (HH) neuron model [118] are

often described by a set of coupled ordinary differential equations (ODE) exhibiting a stable limit

cycle. Consider a time-invariant dynamical model of an oscillating system, described by

ẋ = f (x,u), x(0) = x0, (3.1)

where x(t) ∈ Rn is the states vector and u(t) ∈ R is a control input. For a system exhibiting an

attractive and non-constant limit cycle γ(t) = γ(t +T ), satisfying γ̇(t) = f (γ,0), on the periodic

orbit Γ = {y ∈ Rn : y = γ(t) for 0≤ t ≤ T} ⊂ Rn, one can reduce the system to a one-dimensional
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phase equation [119, 120, 66, 121],

θ̇ = f (θ)+Z(θ)u(t), (3.2)

where θ ∈ [0,2π) is the phase variable, f and Z are real-valued functions, and u ∈ U ⊂ R is the

external control [122, 123, 124]. The function f , also referred to as the instantaneous frequency,

represents the baseline dynamics of the oscillator in the absence of the control u, while Z describes

the response of the phase to an external stimulus, u, applied at a given phase θ and is referred to

as the phase response curve (PRC) [125, 126, 127]. For oscillating systems with known dynamical

models, the PRC can be computed numerically, and in this thesis, we employ the adjoint method

[128, 127] to efficiently compute the PRCs of nonlinear oscillating systems, namely, the Hodgkin-

Huxley and Morris-Lecar (ML) models. A comprehensive review of phase reduction theory is

given in Appendix C.2.

In this chapter, we consider various phase oscillator models with different f (θ) and Z(θ) func-

tions, to demonstrate the robustness and generality of the control method. Most systems herein

are characterized by a constant baseline dynamics, f (θ) = ω , where ω = 2π/T0 is the natural fre-

quency, however, in the case of oscillator networks, the baseline dynamics f (θ) will be a nonlinear

function due to the coupling function h(θi,θ j) with i 6= j and i = 1, · · · ,n.

3.1.2 Controllability of Oscillator Ensembles

In order to design an external stimulus that drives either a single or an ensemble of neurons to

the desired final state x(T ) in time T , it is necessary that the state x(T ) be reachable from the

initial state x(0) in time T sufficiently large. The collection of points that can be reached from

the initial state form the reachable set, which can be determined by computing the recursive Lie
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bracket adk
f g(x) = [ f ,adk−1

f g](x) of the vector fields f and g defined on an open subset Ω of Rn,

with x = (x1, · · · ,xn)
′ ∈ Ω ⊂ Rn. For k = 0, we have ad0

f g(x) = g(x). To compute the reachable

set, consider the nonlinear system of the form,

ẋ(t) = f (x(t))+u(t)g(x(t)), x(0) = x0, (3.3)

where f and g are smooth vector fields on a manifold M. Note that since the free evolution of

the phase model state is periodic, the drift term f causes no difficulty in analyzing controllability

(see theorem 5 in Appendix B.4). Thus, if { f ,adk
f g}, k ∈ Z+, spans Rn at all points x ∈ Ω, any

point in Rn can be reached from any initial condition x(0). With the assumption that the control

u(t) is unbounded, this implies that the system is controllable [129]. Ample discussions on the

reachability and controllability of nonlinear systems can be found in [27, 130].

Given that the phase model (3.2) is only valid for weak forcing [131], the amplitude of the control

signal is therefore bounded. Although theoretically the phase model (3.2) can be shown to be

controllable with an unbounded control input u(t) by computing the recursive Lie brackets, large

stimuli that steer (3.2) to the desired state will not produce the same result when applied to the

full state model or the actual physical system. As a result, arbitrary phase assignment or frequency

entrainment of a neuron oscillator is not always feasible in a short period of time (t � T ) with

weak external forcing signals, but can be achieved in time t � T as long as the desired state is

in the reachable set. With the weak forcing restriction in place, which is equivalent to a bounded

control input constraint |u(t)| ≤ A, where A is a constant, only transfers from a point θ(0) = p to

a point θ(t) = q that lies in the small-time reachable set are feasible. The small-time reachable set
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is formally defined as

RΣ,≤T (p) ={x(t) ∈ Rn : there exists a control u(·) ∈ U defined on an interval [0, t] with t ≤ T

such that (x(·),u(·)) is a controlled trajectory defined over [0, t] satisfying x(0) = p},

with the overall time T small [106].

3.1.3 Dynamic Control of Phase Patterns

When a collection of phase model descriptions of oscillating systems is controlled, the design

of external inputs that can steer the phase trajectories to any desired target states in T units of

time becomes feasible. The general problem of controlling the phase trajectories, or equivalently

the frequencies, of oscillators is formulated in a similar way as the tracking problem for bilinear

systems in Chapter 2, and it is presented in Appendix B.1.1. Given that bilinear systems and

phase models are structurally different, this results in a different solutions of the optimal control

problem for phase models as presented in Appendix B.1.2, however, the iterative algorithm given

in Appendix B.2 retains the same structure.

In this section, we present a novel and innovative approach to dynamic control of the phase re-

lationships in an ensemble of heterogeneous phase oscillators using a common input. The algo-

rithm presented here can synthesize a tracking control input that assigns a desired, non-constant,

phase relationship between oscillators. This design technique allows the formation of various syn-

chronization patterns with a single continuous control input, instead of switching between many

different input waveforms in order to achieve different patterns [83]. To demonstrate the capa-

bilities of our control algorithm, in Figure 3.1 we illustrate the problem of assigning a phase dif-

ference of ∆θi, j = π/2 rad between adjacent oscillators at the final time t = Tf , while following
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a prescribed phase difference trajectory, ∆θref(t) (black dashed-line in Figure 3.1(b)-(c)). In this

example, we considered a system of four HH neurons with natural frequencies uniformly sam-

pled in [0.98ω,1.02ω], and the neurons were ordered from the slowest (neuron 1, red circle in

Figure 3.1(a)), to the fastest (neuron 4, purple circle in Figure 3.1(a)). Tracking a phase trajectory

while minimizing the control energy is an important feature of our algorithm that makes it partic-

ularly suitable for control of spatiotemporal patterns in neuronal networks, where application of

powerful stimuli could harm neurons.

In the tracking example shown in Figure 3.1(c) we defined a linear phase reference trajectory for

the slowest neuron as θ1,ref(t) = ω1t, with t ∈ [0,Tf ]. In order to obtained the desired phase dif-

ference trajectories, we define the reference trajectories of the subsequent oscillators as θ j,ref(t) =

θi,ref(t)+∆θref(t), with i = j−1 and j ∈ [2,4]. In this case, the algorithm had to design a control

input, ug, that maintains a linear trajectory for the phase of neuron 1, while at the same time im-

posing the desired phase differences between neurons at every time t ∈ [0,Tf ]. However, when we

only wish to track or assign relative phase differences between heterogeneous oscillators, it is best

to consider the system of phase differences as follow

∆θ̇i j = ∆ fi j(θi,θ j)+∆Zi j(θi,θ j)u(t), (3.4)

where ∆θi j = θi− θ j, ∆ fi j(θi,θ j) = fi(θi)− f j(θ j) and ∆Zi j(θi,θ j) = Zi(θi)− Z j(θ j), with i =

1,2, · · · ,n−1. We may then define the vector of reference trajectories as

∆Θref(t) = (∆θ1,ref, · · · ,∆θn−1,ref)
′ ∈ Rn−1, (3.5)
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Figure 3.1: Evaluation of the control performances when tracking the phase differences ∆θi j(t) vs.
the phase trajectories θi(t). (a) Initial and final phases (inner and outer circles, respectively). (b)
Phase differences when the control algorithm is tracking a desired phase difference (black), in the
time interval t ∈ [0,40×T0], where T0 = 14.75 ms. (c) Phase differences when tracking defined
phase trajectories with the same phase differences as in (b). (d)-(e) Neurons’ spike frequencies
during the control interval, and corresponding to the trajectories in (b) and (c), respectively. Each
colored dot represents one neuron. (f)-(g) Control signals that generated the trajectories in (b) and
(c), respectively. Energy of the control u f is En = 0.98 and energy for ug is En = 4.19.

where ∆θi,ref is the reference trajectory of the phase difference between the ith and jth oscillators.

Figure 3.1(b) shows an example where we defined identical reference phase difference trajecto-

ries for all the adjacent oscillators as ∆θi,ref(t) = ∆θref(t). The initial and final conditions are

∆Θref(0) = 0 ·1 and ∆Θref(Tf ) = π/2 ·1, respectively, where 1 ∈ Rn−1 is a vector of ones. With
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the desired trajectory defined, we then use the control algorithm in Appendix B.2 with the dynam-

ics in (3.4) to design the control input u f shown in Figure 3.1(f).

The formulation of the tracking problem using the phase difference (3.4) is advantageous in terms

of minimizing the control energy and improving the tracking accuracy. Indeed, as shown in Fig-

ures 3.1(f) and (g), the control u f that was designed using (3.4) has lower amplitude than the

control ug. Furthermore, the energy expanded by ug was 4.28 times higher than the energy of u f .

The control u f steered the phases to within 5×10−3 of the final target phase difference ∆θi j = π/2,

whereas ug achieved this goal to within 16× 10−3. These two control inputs were applied to the

full-states Hodgkin-Huxley neuron models, from which we measured the instantaneous frequen-

cies of the membrane voltages shown in Figures 3.1(d) and (e).

In order to fully understand why one control expanded more energy than the other while accom-

plishing the same phase pattern, one has to start by observing the instantaneous frequencies of the

membrane voltages in Figures 3.1(d) and (e). Note that since we defined a linear reference phase

trajectory θ1,ref(t) for the slow neuron and that dθ/dt = ω , this implies that the frequency of this

neuron should remain constant during the controlled period. Indeed, this can be seen from the red

dots in Figure 3.1(e), whereas in Figure 3.1(d) one can see that the frequency of the slow neuron

(in red), first decreased before increasing and settling around the mean frequency of the four neu-

rons considered. Given that in Figure 3.1(e) we kept the frequency of the first neuron constant, the

remaining neurons had to speed up much more than in Figure 3.1(d) in order to get into the right

phase configuration in the allocated time Tf = 590 ms. As it turns out, for the HH model increasing

the spiking frequency requires more control energy than reducing the frequency. This is because

the PRCs of the HH neurons are not symmetric with respect to the zero axis (see Figure B.1(a) in

Appendix B.3.1); this makes it more difficult to increase the spiking rate. As the control examples

in Figure B.1(b) show, the control amplitude for reducing the spiking period from 14.6 ms to 13.8
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ms is almost double of the control amplitude that increased the period from 14.6 ms to 15.6 ms.

So, when only the relative phase difference between oscillators is relevant, it is best to use (3.4)

and let the algorithm find the optimal phase trajectories, θi’s, that minimize the control energy.

However, this approach is limited to heterogeneous phase model ensembles.

3.2 Information Processing and Neural Coding

It is rather a general consensus that neuronal networks encode information about the environment

into firing patterns [132, 133], e.g., the scent cues processed by the olfactory system are encoded

in complex spatiotemporal patterns [134] or the speech evoked spatiotemporal response which has

a distribution of the relative phases of the synchronized activity that reflects the stimulus spectral

parameters [135]. Certainly, sequential patterns play a role in brain functions such as memory and

information processing [136, 71]. It has been argued that synchrony determines the form of the

neural code, and its regulation through control of microcircuits is critical in writing the neural code

[137]. Hence, control algorithms that can synthesize stimuli (see Figure 3.1, for example) capable

of creating arbitrary spatiotemporal firing patterns will play a crucial role in neural coding and

information processing, and neuromorphic systems [138] can be used for testing the neural code.

Computation with spikes has gain traction in recent years [139, 140], especially with neuromorphic

chips that consume order of magnitude less energy than traditional silicon chips [138, 141]. To

maintain this advantage, the development of algorithms minimizing the control energy for these

chips will play an important role. Using the Kuramoto model, it was shown that a neurocomputer

with dynamic connectivity has oscillatory associative properties [142]. The main function of these

types of computers, however, is pattern recognition via associative memory, where the memorized

patterns correspond to synchronized states [142, 143].
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The prospect of controlling spatiotemporal patterns of spiking neuron populations has implications

beyond neuromorphic computing, with potential applications in the medical and entertainment

industries. Envision being able to stimulate the neurons in the olfactory system to mimic scents,

in the era of 3D videography, this addition could provide a full entertainment experience. The

perception of scents accompanying the visualization of 3D scenes will definitely enrich the virtual

experience. In medical applications on the other hand, pattern recognition can play a crucial role

for people with severe vision impairment. A sensor implant can capture the image and in turn, the

neurons associated with vision can be stimulated accordingly to transfer visual information to the

brain [58, 60]. However, the success of these types of applications rely on a better understanding

of how the brain process information received from the sensory neurons, and on the technology

that will allow transduce this information into electrical signal or spiking patterns that the brain

can interpret. In that optic, we have developed a control algorithm that can synthesize a global

control input, i.e., a single signal that can control an ensemble of neurons or structurally similar

oscillators in desired coherent fashion.

Being able control spatiotemporal firing patterns of neurons implies that we could also control

them to encode or transfer information. In Figure 3.2, we portray two different ways information

could hypothetically be encoded into firing patterns of a neuronal network. Observe for example

the encoding presented in the second panel of Figure 3.2, which resembles a colored barcode. This

type of encoding can be used to encrypt information as patterns of different colors corresponding

to different relative phases of the oscillators. Given the large number of distinct phase difference

patterns that can be achieved in neuronal network, this encoding scheme could provide an efficient

way of encoding information, furthermore, the encoding or storage capacity of such network could

be huge, even with a small number of neurons as in Figure 3.2. The encoding patterns in the second

and third panels of Figure 3.2 were generated by a common broadcast control that stimulated all

the oscillators simultaneously.
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Such global inputs that can generate complex spatiotemporal patterns are of particular importance

for bioengineering applications such as retinal implants. This can, for example, lead to a significant

reduction of the number of electrodes necessary for a retinal implant to transmit visual information

to the visual cortex. It will then be possible to use one electrode to control a large number of

neurons in its region of influence. However, such arbitrary control of spiking patterns is only

feasible if the neural population is controllable as we are going to show next.

Figure 3.2: Spiking patterns for information coding. Top left plot: phase difference trajectories.
Top right plot: phase distribution of the twelve sinusoidal PRC oscillators on the network. Second
panel: encoding information as a colored barcode representing the relative phase between oscil-
lators. Third panel: encoding information into firing patterns. The labels c1,c2 and c3 delineate
the oscillators in the same cluster. Bottom panel: global control that generated the spiking pattern.
The twelve oscillators network was simulated with the following parameters: ωi ∈ [0.99,1.01],
zi ∈ [1.82,2] and σ = 0.0035.
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3.2.1 Controllable Oscillator Networks

The information encoding capacity of a neuronal network, using either of the schemes in Fig-

ure 3.2, greatly depends on the ability to control all the ensemble of oscillators, and to some extent,

on the number of neurons. In order to generate a large number of distinct spike patterns using

a broadcast control, the neuronal system must be controllable. In this section, we consider three

neuron models, namely, the SNIPER and sinusoidal PRC models as well as the Hodgkin-Huxley

model that we use to demonstrate how one can verify the controllability of such phase models by

computing the Lie brackets. In the next section, we will present a case of a partially controllable

network and show how the information capacity is affected.

The phase models considered here have constant baseline dynamics f (θ) = ω , but different phase

response functions, e.g., Z = z(1−cosθ) for the SNIPER PRC, and Z = zsin(θ) for the sinusoidal

PRC, respectively, where the constant parameter z is model-dependent [144]. The SNIPER PRC

describes neurons near a SNIPER bifurcation –a saddle-node bifurcation on a periodic orbit– which

characterize the type I neurons like the Hindmarsh-Rose model [129]. The sinusoidal PRC model

has a phase sensitivity function with both positive and negative parts due to proximity to a Hopf or

a Bautin bifurcation [123].

The controllability analysis of the SNIPER and sinusoidal PRC phase models has been previously

treated in [129]. Here, we reproduce the computed Lie brackets for a finite collection of SNIPER

neurons with f (Θ) = (ω1, · · · ,ωn)
′ and Z(Θ) = (z1(1− cosθ1), · · · ,zn(1− cosθn))

′. The iterated

brackets for k = 1, · · · ,n are given by

ad2k−1
f Z = (−1)k−1

(
z1ω

2k−1
1 sinθ1, · · · ,znω

2k−1
n sinθn

)′
, (3.6)

ad2k
f Z = (−1)k−1

(
z1ω

2k
1 cosθ1, · · · ,znω

2k
n cosθn

)′
, (3.7)
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with ωi 6= ω j, for i 6= j. Thus M= { f ,adk
f g} spans Rn, and therefore, the collection of uncoupled

SNIPER neurons is controllable. One can verify by computing the Lie bracket in the same manner

that the case of weakly coupled networks of SNIPER neurons remains controllable. However, in

this case f (Θ) = (ω1, · · · ,ωn)
′+(h1(Θ), · · · ,hn(Θ))′ and the calculations can be more involved.

For the sinusoidal PRC model, the iterated brackets for k = 1, · · · ,n are given by

ad2k−1
f Z = (−1)k−1

(
z1ω

2k−1
1 cosθ1, · · · ,znω

2k−1
n cosθn

)′
, (3.8)

ad2k
f Z = (−1)k

(
z1ω

2k
1 sinθ1, · · · ,znω

2k
n sinθn

)′
, (3.9)

and for ωi 6= ω j, i 6= j, M= { f ,adk
f g} spans Rn. Thus this population neurons is controllable.

Given that the collection of sinusoidal PRC phase models is controllable, it is then possible to

design a control input that can steer the phases into any desired cluster configuration, and that

without requiring any particular ordering of oscillators a priori. This is demonstrated by creating

six clusters non-uniformly distributed as shown in Figure 3.3. In this illustration, we consider a

collection of 12 weakly coupled oscillators with sinusoidal PRCs (and with sinusoidal coupling as

in (3.12)), the frequencies ωi ∈ [0.99,1.01] and the parameters zi ∈ [1.82,2], for i = 1,2, · · · ,12.

The following clusters {1,7},{2,8},{3,9},{4,10},{5,11} and {6,12} were formed with phases

between consecutive clusters in the following order: π/4, π/4, π/2, π/4, and π/2. The first

cluster {1,7} is shown in Figure 3.3, on the unit circle at zero.

The SNIPER and sinusoidal PRC phase models have PRCs that are represented with just one

cosine or sine term, which facilitates the computation of Lie brackets. However, in practice we

found rhythmic systems with highly nonlinear PRCs that are often obtained experimentally. In

order to check their controllability properties, one could fit the PRC with Fourier coefficients, for

example, and then compute the iterated Lie brackets as shown for the two previous models. A
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Figure 3.3: Nonuniform phase assignment with sinusoidal PRC oscillators. Top plots: oscillator’s
phase distributions, on the unit circle and the network. The left panel shows the initial phases
(inner circle) and the final phases (outer circle). The right panel shows the phases on the network
where each cluster of two oscillators is identified with the same color (phase). The slowest and
the fastest oscillators are labeled ‘1’ and ‘12’, respectively. Second panel: time evolution of the
oscillator’s phase patterns. Third panel: phase differences between oscillators (the dash lines show
the desired phase differences). Bottom panel: control signal.

good choice of the fitting method could significantly simplify the computation of the Lie Brackets.

To fix the idea, consider the PRCs of the HH neurons shown in Figure B.1(a). A good fit of the

PRC using Fourier, Z(θ) = a0
2 +∑

m
j=1[a j cos( jωθ)+ b j sin( jωθ)] requires at least four sine and

cosine terms, i.e., m = 4. However, this PRC can also be accurately fitted with only the sum of

four sine terms, Z(θ) = ∑
m
j=1 a j sin(b jθ +c j), which is more compact and increase the readability
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of the Lie brackets shown here,

ad2k−1
f Z =



(−1)k−1ω
2k−1
1 ∑

m
j a j,1b2k−1

j,1 cos(b j,1θ1 + c j,1)

(−1)k−1ω
2k−1
2 ∑

m
j a j,2b2k−1

j,2 cos(b j,2θ2 + c j,2)

...

(−1)k−1ω2k−1
n ∑

m
j a j,nb2k−1

j,n cos(b j,nθn + c j,n)


, (3.10)

ad2k
f Z =



(−1)kω2k
1 ∑

m
j a j,1b2k

j,1 sin(b j,1θ1 + c j,1)

(−1)kω2k
1 ∑

m
j a j,2b2k

j,2 sin(b j,2θ1 + c j,2)

...

(−1)kω2k
n ∑

m
j a j,nb2k

j,n sin(b j,nθn + c j,n)


. (3.11)

Similar to the other two cases, for ωi 6= ω j, i 6= j, the population of HH neurons is controllable.

We then demonstrate the control of an ensemble of 100 heterogeneous neurons, with frequencies

ωi ∈ [0.42605,0.432831] rad/ms. In Figure 3.4, we present uniform desynchronization where the

phase difference between two adjacent neurons is 2π/100 rad. The control input was designed

to track a ramping phase difference between adjacent neuron for 400 ms, then maintain the phase

difference constant for 190 ms. This explains why the frequencies of each neurons in the third

panel of Figure 3.4 remains nearly constant during those two time intervals. Figure 3.5 on the

other hand shows a more challenging application, that is, clustering neurons with nearly identical

frequencies in three different clusters. In this example, we designed a control signal that, starting

with the oscillators uniformly distributed as in Figure 3.4, steers the neurons into three clusters

based on their natural frequencies. The first, second and third clusters contained neurons with the

following frequencies (ω1l,ω1h) = (0.42605,0.42825) rad/ms, (ω2l,ω2h) = (0.42831,0.43011)

rad/ms and (ω3l,ω3h) = (0.43017,0.43258) rad/ms, respectively.
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Figure 3.4: Uniform phase distribution of 100 HH neurons. Top left panel: membrane voltages.
Top right panel: initial and final phase distributions of the membrane voltage phases. The inner
circle shows the initial phases and the outer circle shows the final phases. Second panel: spiking
patterns of the neurons. Third panel: instantaneous measured frequencies of each neurons during
the control interval. Each colored dot represents one neuron. Fourth panel: control signal.

The ability to control oscillators into forming complex clustering patterns will facilitate informa-

tion processing or encoding using networks of oscillators or neurons. We demonstrate this in

Figure 3.6, where starting from slightly different phases, a weakly coupled network of 25 het-

erogeneous SNIPER oscillators is controlled with the input uw(t) to form the patterns “W” (Fig-

ure 3.6(b)), then starting with “W” as initial condition, another control signal uu(t) is applied to

form the pattern “U” (these two letters are the initials for Washington University). The phases

and frequency differences between adjacent oscillators are shown in Figure 3.6. The letter patterns

were obtained by assigning the same phase, e.g., 0 rad, to all the oscillators forming the letter

pattern and the remaining oscillators were assigned a phase equal to π rad. The phase difference
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Figure 3.5: Clusters formation with 100 HH neurons. Top left panel: membrane voltages. Top
right panel: initial and final phase distributions of the membrane voltage phases. The inner cir-
cle shows the initial phases and the outer circle shows the final phases. Second panel: spiking
patterns of the neurons. Third panel: instantaneous measured frequencies of each neurons dur-
ing the control interval. Each colored dot represents one neuron. Bottom panel: control signal.
The three clusters contain neurons with frequencies in (ω1l,ω1h) = (0.42605,0.42825) rad/ms,
(ω2l,ω2h) = (0.42831,0.43011) rad/ms and (ω3l,ω3h) = (0.43017,0.43258) rad/ms, respectively.

trajectories in the middle right panel of Figure 3.6(a) show how the π phase difference between

different oscillators was assigned following a linear reference trajectory for 23 seconds, then once

the oscillators in the right configuration, the phase differences were maintained for 8 seconds.

The proposed control algorithm can be used to design stimuli that generate complex spatiotemporal

phase or spike patterns that encode the information. This control technique could, for example, be

integrated in retinal implants to stimulate the optic nerves according to the image captured by the

implant. It is however, important that the oscillator system be controllable for the algorithm to be

able to synthesis controls capable of generating diverse spatiotemporal patterns. In the case where
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the system is not fully controllable, only limited phase patterns can be generated as we show in

the next section, and this limited controllability reduces the information capacity of a neuronal

network and impair information processing in neuronal networks.

(a) (b)

Figure 3.6: Pattern formation in a globally coupled network of SNIPER PRC oscillators. (a)
Oscillators phase distributions on the unit circle (top plots). From left to write: initial phases, final
phases for the uncontrolled network, final phases of the pattern “W” and final phases of the pattern
“U”. Middle panels: trajectories of the phase differences and bottom panels: frequency differences
trajectories during the formation of the letter “W”. (b) Formation of letter patterns on a 5×5 grid
of oscillators. Starting with oscillators phases, θi ∈ [0,π/4] rad, the pattern of the letter “W” was
formed by applying the control uw(t), then starting with the letter “W” as initial states the control
uu(t) was applied to form the letter “U”. The parameters of the oscillators are ωi ∈ [0.8,1.2] and
zi ∈ [1,2] and the coupling σ = 0.3.

3.2.2 Partially Controllable Networks

In Section 3.2.1, we have shown that when an ensemble of neural oscillators is controllable, by

applying an appropriate control signal, complex spatiotemporal patterns can be created. It is then

possible to encode a significant amount of information using different phase patterns or precise

firing pattern of neurons. However, what happens when a network loses controllability, or it is

only partially controllable, is an interesting question worth exploring. In this section, we discuss
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the control of coupled oscillators with constant PRCs, furthermore, we analyze the controllability

of such networks and show that they are only partially controllable which limits the number of spa-

tiotemporal patterns that can be achieved. In this thesis, a system is said to be partially controllable

when only a small subset of points in the state-space are reachable from the initial states.

To fix the idea, we consider a network of coupled limit-cycle oscillators described by the Kuramoto

model, as follows
dθi

dt
= ωi +

σ

n

n

∑
j=1

sin(θ j−θi)+biu(t), i = 1 · · ·n, (3.12)

where θi is the phase of the ith oscillator and ωi its natural frequency. We consider uniform coupling

strength σ and u(t) is an external control applied to all the oscillators through an input vector

B = (b1, · · · ,bn)
′, with bi 6= b j constant values. The design of the control input in this section

is carried out using the same iterative algorithm as in previous examples, however, the baseline

dynamic is now a nonlinear function of the form

f (θi) = ωi +
σ

n

n

∑
j=1

sin(θ j−θi), (3.13)

due to the coupling function h(Θ) = (h1, · · · ,hn)
′, where hi(Θ) = σ

n ∑
n
j=1 sin(θ j−θi) [122].

We first consider a globally coupled network of ten oscillators with coupling strength σ = 0.7>σc,

where σc is the critical coupling of the network. In Figure 3.7 we show both the controlled and

uncontrolled network. By selecting a coupling σ > σc, the uncontrolled network synchronizes

in the absence of any external forcing inputs (see the left panels in Figure 3.7(a)). The phase of

each oscillator in the network are shown on the graph in Figure 3.7(a). We then designed a control

input u(t) to track a desired phase difference of ∆θ = 2π/5 between adjacent oscillators i and j

( j = i+ 1) in the time interval [0,T ]. Applying the designed forcing input u(t) (bottom right in

Figure 3.7(b)) to the network generates five distinct clusters (see the right panel of Figure 3.7(a)),
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and it prevents synchronization (see Figure 3.7(b)) by overcoming the influence of coupling. How-

ever, the clustering is not perfect due to the interaction forces that tend to pull the oscillators to a

synchronized state.

(a)

0 5 10

0

0.1

0.2

0 5 10

0

0.1

0.2

0.3

0 5 10

-1

0

1

0 5 10

5

10

15

20

(b)

Figure 3.7: Phase clustering in a globally coupled network of Kuramoto oscillators. (a) Phase
distributions on shown on the networks and the unit circles. The top and bottom figures on the
left panel show the phase of the uncontrolled network (phase lock), whereas in the right panel a
control signal was applied (phase clustering). (b) The left panel shows the frequency differences
between oscillators with no control is applied, u(t) = 0. The top right figure shows the frequency
differences when the control signal in the bottom right is applied.

Even though the proposed algorithm can synthesize control inputs to create an arbitrary number

of clusters in a network of n oscillators governed by (3.12), there are some phase assignments that

are not feasible. In the following, we analyze the controllability properties of (3.12) and give the

set of points that can be reached in T unit of time. To fix the idea, we consider a chain network of

three Kuramoto oscillators. The dynamics are described by

θ̇1 = ω1 +σ [sin(θ2−θ1)]+b1u(t),

θ̇2 = ω2 +σ [sin(θ1−θ2)+ sin(θ3−θ2)]+b2u(t),

θ̇3 = ω3 +σ [sin(θ2−θ3)]+b3u(t),

(3.14)
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where σ represents the coupling strength and u(t) is the control input. If the input gains b1, b2 and

b3 are equal, and furthermore, the natural frequencies ω1, ω2 and ω3 are equal, this network is not

controllable. Therefore, we will consider the case where these parameters are not equal and assign

them numerical values to simplify and increase the readability of the Lie brackets.

Let, for example, b1 = 0.8, b2 = 1, b3 = 1.2 and ω1 = 1, ω2 = 1.1, ω3 = 1.2. We can show by

computing the Lie brackets of the vector fields f (Θ) and g = (b1,b2,b3)
′ that there exist some

points, Θ = (θ1,θ2,θ3)
′ ∈ R3, at which M = { f ,adk

f g}, k ∈ Z+, does not span R3. In fact, for

every point Θ∗ = (θ1,θ2,θ3)
′, such that θ2 = θ1 + qkπ and θ3 = θ2 + qkπ , q ∈ Q, the rank of M

is 2 < n = 3. In other words, rank(M) = 2 for every Θ ∈ S = {Θ = (θ1,θ2,θ3)
′ : (θ2− θ1) =

(θ3−θ2), mod 2π}. On the other hand, the rank of M is 3 at every points Θ /∈ S. To illustrate

this calculation, here we compute the first and second Lie brackets, where the first one is defined

as ad1
f g(Θ) = [ f ,g](Θ) = ∂g

∂x f − ∂ f
∂x g. With the vector field f and g given in (3.14), we obtain

ad1
f g =

σ

5


−cos(θ1−θ2)

cos(θ1−θ2)− cos(θ2−θ3)

cos(θ2−θ3)

 , (3.15)

and

ad2
f g =


σ2 cos(θ1−2θ2+θ3)

5 − 2σ2

5 −
σ sin(θ1−θ2)

50

σ(sin(θ1−θ2)−sin(θ2−θ3))
50

2σ2

5 −
σ2 cos(θ1−2θ2+θ3)

5 + σ sin(θ2−θ3)
50

 . (3.16)
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Let M= { f , [ f ,g], [ f , [ f ,g]]} and take the coupling σ = 1. Evaluating this matrix at Θ∗= (θ1,θ1+

π,θ1)
′, where θ1 = 2kπ , k ∈ N, yields

M=


1.0 0.2 −0.2

1.1 0 0

1.2 −0.2 0.2

 , (3.17)

which is a matrix with rank = 2, hence the point Θ∗ is not reachable from every initial condition

Θ(0) = Θ0 in arbitrarily small time T > 0. A similar calculation for the point Θ0 = (θ1,θ2,θ3)
′,

where θ1 = θ2 = θ3, results in a matrix M0 that has rank = 2 as well. Given that the Lie brackets

generated by the vector fields f and g do not span R3 at generic points, we cannot conclude that

this network is controllable. We did not show the higher order brackets here given that they do not

generate new directions in which the solution can move. Despite the drift term f (Θ) being recur-

rent, and rank(M) = 3 at points Θ /∈ S, this system is not even locally exact time controllable [145]

at every point satisfying the Lie algebra rank condition [26].

Indeed, we can further show that for the system in (3.14), when the coupling strength σ = 0, any

solution Θ(t) = (θ1(t),θ2(t),θ3(t)) of the differential equation system must satisfy

ψ32(T )−
β32

β21
ψ21(T ) = ψ32(0)−

β32

β21
ψ21(0)+

(
Ω32−

β32

β21
Ω21

)
T, (3.18)

where ψ ji = θ j−θi, Ω ji = ω j−ωi and β ji = b j− bi. Considering the same numerical values as

before, this equation further simplifies to

ψ32(T )−ψ21(T ) = ψ32(0)−ψ21(0). (3.19)
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Equation (3.19) implies that there are points that cannot be reached in exactly time T , whether

or not these points satisfy the Lie algebra rank condition. As a matter of fact, starting from the

initial condition Θ(0) = (0,0,0)′ only phase assignments corresponding to equal phase differences

(ψ32 = ψ21) can be achieved. Hence, only points in S are reachable from the origin. For any other

desired phase difference, the initial and final states need to satisfy (3.19). The condition given by

(3.19) also holds for the weakly coupled networks i.e., 0 < σ � σc.

The Kuramoto phase model network with a constant input matrix B = (b1, · · · ,bn)
′ is not fully

controllable with a common control u(t), as a result only a few phase patterns can be realized.

Furthermore, these patterns have to satisfy (3.19), which reduces the encoding capacity of the

network. Given the limited number of feasible phase patterns, a large number of oscillators will be

required in order to increase the network encoding capacity or information processing capability.

The loss of controllability in real networks could potentially have detrimental consequences, e.g.,

in the brain neural network, this could lead to a loss of brain functions due to the inability of the

neural network to reproduce the precise spiking pattern that contains the necessary information.

During seizure episodes, for example, patterns of synchronized neurons appear and normal brain

functions are strongly perturbed.
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Chapter 4

Phase Modeling of Thermostatically

Controlled Loads for Demand Response

With the advent of smart grid technologies and the integration of RESs in distribution systems

around the world, system operators will now have to rely on demand response (DR) and ancillary

services (AS) to balance supply and demand of energy more than ever before. It is therefore imper-

ative to develop technologies that can exploit the resources available for DR to the fullest extent.

Indeed, a significant portion of electricity consumed worldwide is used to power thermostatically

controlled loads (TCLs) such as air conditioners, refrigerators, and water heaters. Because the

short-term timing of operation of such systems is inconsequential as long as their long-run average

power consumption is maintained, they are increasingly used in DR programs to balance supply

and demand on the power grid [80, 33, 78, 79].

In this chapter, we present an ab initio phase model for general TCLs, and use the concept to

develop a continuous oscillator model of a TCL and compute its phase response to changes in

temperature and applied power. This yields a simple control system model that can be used to

evaluate control policies for modulating the power consumption of aggregated loads with param-

eter heterogeneity and stochastic drift. We demonstrate this concept by comparing simulations
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of ensembles of heterogeneous loads using the continuous state model and an established hybrid

state model. The developed phase model approach is a novel means of evaluating DR provision

using TCLs, and is instrumental in estimating the capacity of ancillary services or DR on different

time scales. As a proof of concept, we propose a novel phase response based open-loop control

policy that effectively modulates the aggregate power of a heterogeneous TCL population while

maintaining load diversity and minimizing power overshoots. Control policies that can maintain a

uniform distribution of power consumption by aggregated heterogeneous loads will enable distri-

bution system management (DSM) approaches that maintain stability as well as power quality, and

further allow more integration of renewable energy sources. The main ideas of this chapter were

initially developed in [35].

4.1 Thermostatically Controlled Load Models

In this section, we introduce a novel application of phase modeling to TCLs that will facilitate the

analysis of the behavior of heterogeneous TCL populations as well as the design and evaluation

of control policies for providing effective demand response (DR) services. As we have seen in

Chapter 3, phase reduction theory allows one to reduce a high-dimensional oscillating system to a

simple one-dimensional phase equation that simplifies the design of control policies and facilitates

the analysis of the system. Starting with a one-dimensional hybrid state model of the TCL in

Section 4.1.1, our first step is to develop the two-dimensional continuous state model given in

section 4.1.3. This is necessary because the computation of phase model parameters, namely,

the natural frequency and phase response curve (PRC), using the adjoint method [128] requires

a continuous dynamical system. The resulting phase model will be particularly important for
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studying temporary synchronization of TCLs that often affects the quality and capacity of ancillary

services provided by a Balancing Authority (BA) [33, 34].

4.1.1 One-Dimensional Hybrid Model

The dynamics of the internal temperature ϑ(t) of a house equipped with an air-conditioning (AC)

system is often described using a simple hybrid-state model [146]. The model describes how

an AC unit regulates the average temperature by means of a thermostat and a relay with state

s(t) ∈ {0,1} [147]. The hybrid state model describing the evolution of the internal temperature

ϑ(t) is given by

ϑ̇(t) =− 1
RC

(ϑ(t)−ϑa + s(t)PR) , (4.1)

s(t) =


0 if ϑ(t)< ϑmin

1 if ϑ(t)> ϑmax

s(t) otherwise,

(4.2)

where ϑa represents the ambient temperature (ϑa will be considered constant here), P is the average

energy transfer rate of the TCL in the on state, C and R are the thermal capacitance and resistance

of the building, respectively. The allowed minimum and maximum temperature of the TCL are

ϑmin = ϑs−δb/2 and ϑmax = ϑs+δb/2, respectively, with ϑs the thermostat temperature set-point

and δb the deadband. For a population of n TCLs, with temperature states ϑi(t) for i ∈ {1, · · · ,n}

that evolve according to (4.1), the aggregate power Pagg(t) drawn by all n TCLs is [148]

Pagg(t) =
n

∑
i=1

1
ηi

si(t)Pi, (4.3)

where ηi is the coefficient of performance of each TCL unit.
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4.1.2 Ab Initio Deterministic TCL Phase Model

We formulate a basic model of a TCL as a deterministic switched oscillating system, whose state

is given by the temperature ϑ ∈ [ϑmin,ϑmax] and the switching function s ∈ {off,on}. Suppose

without loss of generality that the system is an air conditioner that cycles through a duty cycle to

maintain a temperature ϑs = (ϑmax−ϑmin)/2 while remaining within the deadband δb = ϑmax−

ϑmin. We denote the beginning of the cycle as the point (ϑ ,s) = (ϑmax,on) just after the unit has

turned on. The state of the unit changes according to ϑ̇ = r− < 0 when the unit is at s = on, then

it switches to s = off when the state reaches ϑ = ϑmin. Subsequently, the state of the unit changes

according to ϑ̇ = r+ > 0 until it reaches ϑ = ϑmax, and the unit turns on again. Let Ton and Toff

be the lengths of time when the unit is on and off, respectively, so that the period of oscillation is

T = Ton +Toff.

Our goal is to map this behavior to a phase model, as illustrated in Figure 4.1. Such models are

desirable because the homogeneous dynamics are linear and scalar. The state is represented by a

scalar phase φ , which advances linearly with time according to a frequency ω = 2π/T . For an

unforced system, this yields a simple solution φ = ωt (mod2π). Thus, we map the state point

(ϑmax,on) where the unit turns on to the phase point φ = φon ≡ 0, and the state point (ϑmin,off)

where the unit turns off to the phase point φ = φoff. This yields a continuous representation of the

switched system.

To complete the picture, we first determine the phase φoff ∈ [0,2π) when the unit switches off. If

r+ = r−, then it is straightforward to show that φoff = π . However, most units will have different

values of r+ and r−, which will also depend on other factors such as the ambient temperature.
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Figure 4.1: Phase model of a switched oscillating system.

Suppose then that r+ 6= r−, and let us denote the rate ratio, which is equivalent to the duty ratio, by

γ =−r−
r+

=
Toff

Ton
. (4.4)

It is straightforward to show that these ratios are equivalent. Integrating the s = on dynamics

ϑ̇ = r− from t = 0 to t = Ton yields

r−Ton = θmin−ϑmax =−δb, (4.5)

and integrating the s = off dynamics ϑ̇ = r+ from t = Ton to t = T = Ton +Toff yields

r+Toff = ϑmax−ϑmin = δb. (4.6)

Then, equation (4.4) follows directly from (4.5) and (4.6), and we then have γ > 0, and Toff = γTon.

We can then compute Ton and Toff according to

Ton = T −Toff = T − γTon =
1

1+ γ
T =

r+
r+− r−

T,

Toff = T −Ton = T − 1
1+ γ

T =
γ

1+ γ
T =

−r−
r+− r−

T.
(4.7)
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It follows that the switch-off phase is given by

φoff =
2π

T
Ton = 2π

r+
r+− r−

= 2π
Ton

Ton +Toff
. (4.8)

It is straightforward to show that the parameters in the hybrid-state model given in equations (4.1)-

(4.2) are related to the phase model parameters [149] by

Toff = RC ln
(

ϑa−ϑmin

ϑa−ϑmax

)
(4.9)

and

Ton = RC ln
(

ϑmax−ϑa +PR
ϑmin−ϑa +PR

)
, (4.10)

with the period given by

T = RC ln
(
(ϑa−ϑmin)(ϑmax−ϑa +PR)
(ϑa−ϑmax)(ϑmin−ϑa +PR)

)
. (4.11)

Hence, we can express the switch-off phase by

φoff = 2π

ln
(

ϑmax−ϑa+PR
ϑmin−ϑa+PR

)
ln
(
(ϑa−ϑmin)(ϑmax−ϑa+PR)
(ϑa−ϑmax)(ϑmin−ϑa+PR)

) . (4.12)

Note that to control the average power of a TCL, one needs to modulate the duty cycle of the

power utilization. This is equivalent to controlling the phase φoff of the phase model illustrated in

Figure 4.1, assuming for instance that φon = 0 is the reference phase.
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4.1.3 Continuous Representation of Switching Dynamics

We now present a two-dimensional continuous state-space model that approximates the dynamics

of the internal temperature of a TCL unit and the thermostat switching. This is an important step

that precedes the derivation of the complete phase model, which will require the computation of

the phase response curve (PRC) of the continuous oscillator model. Subsequently, we will examine

the phase response of the temperature dynamics to control action applied to the TCL.

Consider the evolution of the temperature ϑ(t) (see Figure 4.2(a)) described by (4.1), and the corre-

sponding phase portrait in Figure 4.2(c), simulated with the parameters provided in Table 4.1 [87].

Observe that the unperturbed behavior of a TCL is similar to that of an oscillator with a stable limit

cycle.
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Figure 4.2: Simulation of the hybrid model (4.1)-(4.2) with the parameters in Table 4.1 and the
deadband δb = 1.0◦C. (a) Evolution of the temperature ϑ(t) around the set-point ϑs = 20◦C. (b)
Thermostat switching function s(t). (c) Phase portrait of ϑ(t) vs. s(t).

The hybrid-state nature of the system described by (4.1) and (4.2) is due to the thermostat switching

function s(t) that transitions between 0 and 1 states. Therefore, modeling the behavior of a TCL

using continuous states requires a continuous approximation of the switching function s(t) and its

dynamics. Ideally, the evolution of the temperature and the continuous switching function could

be represented using a system of two coupled differential equations that has a stable limit cycle

similar to the one shown in Figure 4.2(c). Our motivation for the proposed model is the Van der
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Table 4.1: Nominal TCLs parameter values

Parameter Meaning Value

ϑs temperature set-point 20◦C

ϑa ambient temperature 32◦C

δb thermostat deadband 0.5◦C

R thermal resistance 2◦C/kW

C thermal capacitance 10 kWh/◦C

P energy transfer rate 14 kW

η coefficient of performance 2.5

Pol oscillator, which is a simple model of the limit cycle observed in circuits with vacuum tubes.

More so, a similar phase portrait is observed in the FitzHugh-Nagumo model, which is a simple

mathematical description of the firing dynamics of a neuron [128]. Inspired by these examples, we

propose the continuous-state TCL model given by

ẋ(t) = µ

(
(
δb

2
+ ε)x− x3

3
+ϑ −ϑs

)
,

ϑ̇(t) =− 1
RC

(ϑ −ϑa + s̄(t)PR) ,

(4.13)

where x(t) is the state variable of the switching function, ϑ(t) the internal temperature, and s̄(t) is

an approximation of the ideal switching function s(t). The parameter ε was introduced to compen-

sate for the reduction of the effective deadband in (4.13). The constant µ is a damping parameter

that controls the oscillation frequency for a fixed time constant τ = RC as well as the shape of the

phase portrait. Similar to the Van der Pol oscillator, limit cycles with circular and rectangular-like

shapes are observed at small and larger values of µ , respectively. Hence, in order for (4.13) to have

a limit cycle similar to the one shown in Figure 4.2(c) while oscillating approximately at the same

frequency as (4.1), we chose µ = 100.
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Once the value of µ is fixed, the small difference in the deadband that translates into frequency

deviation can be compensated for by the parameter ε < δb. The parameter ε can quickly be de-

termined through numerical simulations as follows. Knowing that ε ∈ [0,δb), one can sample n

values of ε over this interval, simulate the dynamics (4.13) for each value of ε , and then compare

the oscillation frequencies at each value to the nominal frequency of the hybrid state model in (4.1)

to determine the most appropriate value of ε . This is only done once using the TCL with a natural

frequency corresponding to the average frequency of the population of TCLs considered. For the

parameters in the Table 4.1, ε = 0.1454.

Finally, the continuous switching function s̄(t), that is similar to the switching function s(t), is

obtained from the variable x(t) by using of a continuous approximation of the Heaviside step

function. Similar usage of the continuous step function is found in the Morris-Lecar model, whose

behavior is similar to the Hodgkin-Huxley spiking neuron model [125]. The resulting switching

function approximation is given by

s̄(t) =
1
2
(1+ tanh(kx)) , (4.14)

where the parameter k ∈ [5,10] controls the sharpness of the switching action. As shown in Fig-

ure 4.3(d), the phase portrait is similar to that of the hybrid-state model shown in Figure 4.2(c).

The model given in (4.13) reproduces the dynamical behavior of the hybrid-state model in (4.1).

However, our goal is to design an ensemble control of a TCL population such that the aggregate

power closely tracks a given reference power. Therefore, we modify the model in (4.13) by substi-

tuting for the state variable x(t) with the instantaneous power variable y(t). The derivation of this
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Figure 4.3: Simulation of the system in (4.13). (a) Evolution of temperature ϑ(t) around the set-
point ϑs = 25◦C. (b) The switching state variable x(t), and the switching function s̄(t). (c, d) Limit
cycles for both ϑ(t) vs. x(t) in (c) and ϑ(t) vs. s̄(t) for the new switching function (4.14) in (d).
The parameters used are in Table 4.1, but with C = 2 kWh/◦C and δb = 1.0◦C.

model is provided in Appendix C.1. The resulting model is given by

ẏ(t) = µk
(
(
δb

2
+ ε)ȳ− 1

3
ȳ3 +ϑ −ϑs

)
(1− η

P
y)y,

ϑ̇(t) =− 1
CR

(ϑ −ϑa +ηy(t)R) ,
(4.15)

where ȳ(t) = −1
k ln( P

ηy − 1). For a population of n TCLs, the aggregate power is Pagg(t) =

∑
n
i=1 yi(t). Note that the actual electric power consumed by a TCL is the average energy trans-

fer rate P (in Table 4.1) divided by the coefficient of performance η . The evolution of the TCL’s

temperature in (4.15), its instantaneous power and the limit cycle are shown in Figure 4.4.
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Figure 4.4: Simulation of the continuous TCL system in (4.15). (a) Evolution of the temperature
ϑ(t) around the set-point ϑs = 20◦C. (b) Evolution of the electric power y(t) drawn by the TCL.
(c) TCL phase portrait. The parameters used are given in Table 4.1.

4.1.4 TCL Phase Model

In Section 4.1.2, we have shown that the unforced cycling dynamics of a TCL can be represented

by a phase model φ̇ = ω , where ω is the natural frequency. However, in the presence of an external

control input u(t), the phase model takes the form

dφ

dt
(t) = ω +Z(φ)u(t), (4.16)

where Z(φ) is the phase sensitivity function, also known as phase response curve (PRC), which

quantifies the changes in the phase variable in response to an impulse I(t), and u(t) is the ex-

ternal forcing input [128]. For both continuous models (4.13) and (4.15), the PRCs are vectors

Z(φ) = (Zs(φ),Zϑ (φ)) and Z(φ) = (Zy(φ),Zϑ (φ)), respectively, where Zs(φ), Zy(φ) and Zϑ (φ)

are phase sensitivity functions of the switching variable x(t), the instantaneous power y(t), and the

temperature ϑ(t), respectively (see Figure 4.5). Because we are only interested in controlling one

state variable of the TCL e.g., the switching s(t) or the power P(t), the PRC in (4.16) will be taken

as one of the scalar functions Z(φ) = Zs(t) or Z(φ) = Zy(t), and the scalar control input will be

a temperature signal to offset the set-point. If on the other hand, we were to consider the phase

model of the temperature ϑ(t), the PRC will be Z(φ) = Zϑ (t) and the corresponding control will

be the input power.
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The natural frequency is computed as ω = 2π/T using the period T in (4.11) and it is the same for

all three variables s(t), P(t) and ϑ(t). The PRC itself must be computed numerically, using for

example the method of the adjoint which requires the computation of the Jacobian of the dynamics

of the system described by a continuous function. This method consists of linearizing the system

around its periodic orbit Γ(t) and solving the adjoint equations with a backward integration [128,

125]. A standard software package used for the computation of the PRC is the XPPAUT [150].

The ability to compute the PRC using the method of the adjoint was one of the reasons for the

derivation of the continuous models described in Section 4.1.3. Another important reason for such

modeling is the ability to access the switching variable x(t) in (4.13) or the power variable y(t) in

(4.15) in order to characterize their dependence on a stimulus u(t). In Appendix C.2, we review

some basics of the phase reduction theory as well as different techniques for determining the PRC.

The application of a control input to the phase model (4.16) will either advance or delay the oscil-

lator depending on the phase at which the input is applied. Consequently, the TCL turn-on/off time

can be advanced or delayed by ∆T , and therefore, the duty cycle of the TCL power can be modu-

lated. For a heterogeneous TCL population, a common control signal have difference impacts on

the TCL phases given that their PRCs are different as shown in Figure 4.5. Note that the PRC of

(4.13) looks similar to that of (4.15) except for the amplitude of Zs(φ) which is smaller than Zy(φ).

4.1.5 Simulation Comparison of TCL Models

In this section, we provide simulation results that are intended to show how well the continuous

model (4.15) proposed in Section 4.1.3 approximates the hybrid model dynamics in (4.1)-(4.2).

We first compare the phase model in (4.16) to the hybrid-state model in (4.1)-(4.2) by plotting the
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Figure 4.5: Phase response curves of the power and temperature variables for a range of thermal
resistance R ∈ [1.8,2.2]. (a) and (b) show the power and temperature as a function of the phase
φ . (c) and (d) show their PRCs Zy(φ) and Zϑ (φ), respectively, for the dynamics in (4.15). The
parameters used are shown in Table 4.1.

time evolutions of the phase φ and the temperature together in Figure 4.6(a). The phase φoff given

by (4.12), indicates where the TCL turns off after being on for a time Ton. The input powers for

both models are shown Figure 4.6(b), with the control u(t) = 0.

Second, using the data in Table 4.1, we simulate the aggregate power of 1,000 heterogeneous TCLs

for a period of 30 hours. The initial values of temperature and the parameters C, R and P were

randomly distributed uniformly within ±5% of their nominal values. The results in Figure 4.6(c)

show good agreement between the transient oscillations of both the hybrid and continuous models,

and the stationary variation about the long-run mean which occurs after 10 hours appears similar

as well.
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Figure 4.6: Comparison between the Hybrid model and its derived phase model representation. (a)
Time evolution of the temperature (blue, solid) and the phase evolution (red, dashed). (b) Time
evolution of the power consumed by the TCL for both models. Note that the TCL turns off exactly
after being on for time t = Ton and the switching phase is φoff. (c) Aggregate power of 1000
heterogeneous TCLs described by the hybrid and continuous models (4.1) and (4.15), respectively.
Simulated with the parameters in Table 4.1.

Now that we have shown that the phase model (4.16) captures the cycling dynamics of a TCL

with sufficient accuracy, in the next section we derive a PRC-based control policy and analyze the

synchronization properties of TCLs’ phase model representations.

4.2 PRC-Based Control Policy

Direct control of TCLs by the Balancing Authority can enable regulation of power consumed by

such loads on a distribution subsystem over faster time scales than the price response approach

allows [151]. In this section, we proposed an open-loop PRC-based control architecture that can

regulate the aggregate power of an ensemble of TCLs without the need to establish two-way com-

munication channels between the loads and the BA. Furthermore, using the phase model of TCLs

and the concept of Arnold tongues we analyze the synchronization properties of a given popula-

tion. This analysis allows us to evaluate the capacity of ancillary services that can be provided by

the TCLs and more importantly the appropriate time scale. We then demonstrate the tracking of a

power regulation signal that has been decomposed in different frequency bands.
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4.2.1 Control of a Single TCL

Phase reduction theory has been used in various scientific areas including physics, neural engineer-

ing and biology. This powerful technique has enabled the analysis of synchronization properties

of limit cycle oscillators [128]. One can find various applications in the literature such as entrain-

ment of chemical oscillator [66, 67], optimal entrainment of neural oscillator ensembles [64, 120]

and phase advance or delay in circadian oscillators where light is used as a control input [121].

Most applications of the phase reduction theory consist of either controlling the phase or the fre-

quency of oscillators [152] e.g., controlling the spiking time of neurons [153], and different control

techniques have been developed for that purpose [64, 121].

In this section, we introduce a new application of phase model-based control techniques to TCLs.

Unlike previous developed control methods that can only control either the phase or the frequency

of an oscillator, the approach presented here must appropriately control both the phase and fre-

quency of a TCL in order to modulate the duty cycle of the input power. Hence, this approach

will enable the modulation of the TCL average power consumption, during a period of time T , in

response to a regulation signal ξ (t). By appropriately switching the TCLs on and off as illustrated

in Figure 4.7, one can modulate the aggregate power of an ensemble over a short time scale with-

out impacting the average temperature of the individual units over the long run. The controls used

to produce the results in Figure 4.7 are of the forms u(t) = Z+(φ)ξ (t) and u(t) = −Z−(φ)ξ (t)

for increasing and decreasing the power consumption, respectively, where Z+ and Z− represent

the positive and negative parts of the switching PRC (Zs(φ)). Furthermore, the regulation signal

ξ (t) = ∓0.1◦C was used to increase and decrease the power by forcing the TCL to switch either

on (Figure 4.7(b)) or off (Figure 4.7(c)) early.
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Figure 4.7: Illustration of the phase advances induced by the control input u(t). (a) Unperturbed
system u(t) = 0. (b) and (c) show the controlled systems. In (b), the control switches the TCL on
before its normal turn-on time by temporarily decreasing the set-point. The opposite happens in
(c). The first and second rows of plots show the temperatures and their corresponding phases. The
third and fourth rows show the corresponding power and control waveforms.

The phase advances induced by ξ (t) in the phase model (4.16) are depicted in the second row of

Figure 4.7(b) and (c). By switching a large number of TCLs on, the aggregate power given by

(4.3) will instantaneously increase, and conversely switching them off will decrease the aggregate

power. It is equally possible to delay the phase which would result in the TCL staying on or off

longer than it would have naturally (see Figure 4.8).

4.2.2 Control of an Ensemble of TCLs

One of the main challenges encountered when designing an open-loop control policy for a large

population of TCLs is the temporary synchronization that is caused by a sudden change of the
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Figure 4.8: Illustration of a phase delay induced by the control u(t). (a) Evolution of the phase
φ(t) showing a slow down (delay) due to the application of the control u(t) = −Z−ξ (t), where
ξ (t) =−0.1◦C. (b) Evolution of the temperature showing that the TCL stays on longer, hence the
temperature went below the lower limit of 19.75◦C. (c) and (d) show the control input (shift of the
set-point temperature) and the TCL power during one period, respectively.

set-point. Although the changes can be small (0.1-0.5◦C) and barely noticeable by occupants, they

can induce large power fluctuations [87, 154]. Alternatively, such policies can track the aggregate

power reference closely when it is relatively slow varying and smooth. The thermostat in this case

is assumed to be adjustable with infinitesimally fine precision, although this requirement may be

relaxed in practice.

Here, we propose the open-loop control architecture depicted in Figure 4.9, where the local control

signal u(t) is generated by a PRC-based controller. The choice of this control architecture is

motivated by the needs to suppress two-way communication channels and more importantly, to

track a power regulation signal while avoiding or minimizing TCLs synchronization that causes

power overshoots. TCLs synchronization is prevented by letting the phase sensitivity functions
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dictate the response of each unit to a fast changing regulation signal ξ (t). Note that because of

the heterogeneity of the TCLs, the PRCs of all the units in a given population are different. It is

assumed that each TCL can measure its state variables (i.e., temperature and switching status) and

has knowledge of its own phase sensitivity function Z(φ). Hence the controller can generate the

corresponding control u(t) in response to a global regulation signal ξ (t) from the BA.

Aggregate power

ξ(t)

.

.

.

TCL 1Local Control 1

Balancing Authority Power Grid

TCL NLocal Control N

u(t)

Local feedback loop

P(t)

P(t)

Local feedback loop

u(t)

Figure 4.9: Block diagram of the control architecture. The BA regulation signal ξ (t) is sent to all
the TCLs in the population. This signal requests that each TCLs changes its power consumption
by a given fraction that, if aggregated, will compensate for demand on the power grid. The local
controller receives ξ (t) as well as the states of the TCL, then determines the appropriate control
input u(t).

The proposed control architecture presents several practical advantages. First, it considerably

limits the information complexity required at the Balancing Authority level in the sense that no

feedback is required to form the reference signal ξ (t). This also limits the computation and com-

munication costs that would have occurred if feedback was needed. By suppressing the need for

a two-way communication, this control policy also addresses privacy concerns [88]. The assump-

tions that we make on capabilities of the TCL and communication with the BA can be summarized

as I) the BA has knowledge of the power utilization of the TCL ensemble and its capacity to ser-

vice demand response, II) in some instances the BA can totally or partially estimate the aggregate

power of the ensemble being controlled, II) each TCL has knowledge of its own PRC and can
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measure its internal states, and IV) each TCL is equipped with a control unit and a thermostat that

has fine resolution on the deadband.

As a proof of concept, we propose a PRC-based integral controller, and evaluate its performance

against a traditional integral controller and the direct control. By direct control, we refer to situa-

tions with no feedback and no local controller, in which the signal ξ (t) directly controls the TCL

ensemble. We further show its efficacy by tracking a real Area Control Error (ACE) signal taken

from the Bonneville Power Administration (BPA) website [155]. The proposed controller is of the

form

u̇(t) = I1
[
I2sgn

(1
2 − s(t)

)
Z(φ)ξ (t)−u(t)

]
, (4.17)

where sgn is the signum function that extracts the sign of 1/2− s(t), I1 and I2 are control gains.

Discretizing the differential form of the control in (4.17), we arrive at u(t) = uk for t ∈ [tk, tk+1]

where

uk+1 = uk + I1h
[
I2sgn

(1
2 − sk

)
Z(φk)ξk−uk

]
, (4.18)

where h = tk+1− tk is the time step, and we have substituted the dependence on the discrete time tk

by the subscript k for simplicity. The control equation (4.18) describes what each local controller

in Figure 4.9 is doing when the regulation signal ξ (t) is received. To understand how this control

policy is able to track a regulation signal without excessive synchronization of TCL dynamics,

observe that ξ (t) enters the control signal through a product with the PRC (Z(φ) = Zy), which

is different from one TCL to another (see Figure 4.5). This implies that each TCL will respond

differently according to its own parameters, and more importantly, this response depends on the

current phase of the TCL. Without loss of generality, we may assume that at time t = tk, uk = 0 and

ξk > 0, requesting that the TCLs reduce their power consumptions by increasing their set-points by

a small fraction of the nominal value. Given the shape of each PRC, the requested change will not

be instantaneous for all TCLs. Depending on where the TCLs are on their limit-cycles, some will
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switch their status right away while others will do so with a delay that is function of the PRC. The

gains I1 and I2 control the response time of the controller and the steady state error, respectively.

The choice of an integral controller of the form (4.18) was motivated by the desire to minimize

higher order harmonics present in the PRCs.

4.2.3 Analysis of Temporary Synchronization in TCL Ensembles

The potential demand response (DR) service that an ensemble of TCLs could provide to a power

grid is limited by many factors such as the specified limits for maintaining customer quality of

service, the number n of TCLs in the population (the power capacity of a TCL ensemble increases

with n), and crucially the frequency bandwidth in which DR can be extracted. Temporary synchro-

nization that causes undesirable fluctuation of the aggregate power is a consequence of the limited

bandwidth.

In this section, we provide some useful tools that elucidate the synchronization behavior of TCL

ensembles. To fix ideas, observe what happens when a population of TCLs is forced to track a step

change in the reference power as shown in Figure 4.10(a). Before the step change is applied at

time t = 5h, the initial conditions and the finite number of TCLs in the ensemble cause relatively

low amplitude oscillations of the aggregate power with a frequency ω0 ≈ 1/n∑
n
i=1 ωi, where the

ωi’s are the natural frequencies of the TCLs in the population. Using the wavelet transform, we

compute the power spectrum of the aggregate power as a function of time. It appears that the TCL

ensemble naturally has damped oscillations with a mean frequency ω0 = 5.69 rad/h and that a step

change at t = 5h amplifies these oscillations (Figure 4.10(c)). Observe that by superimposing a

decaying sinusoidal signal whose sign is opposed to the step change, the power or amplitude of

the oscillations greatly decreases (see Figures 4.10(b) and (d)), which implies that it is possible to
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design a control that can change the power usage of the ensemble over a short time scale while

minimizing the unwanted oscillations.

(a) (b)

(c) (d)

Figure 4.10: Response of a heterogeneous TCL ensemble to a step change in the reference power.
(a)-(c) Aggregate power response to a step change and its wavelet transform magnitude scalogram.
(b)-(d) Aggregate power response to a step change with an opposing decaying sinusoidal of the
same frequency as the induced oscillations. Comparing (c) and (d) reveals that the introduction
of a decaying sinusoid with sign opposite the induced oscillation reduces the power content of the
undesired oscillations considerably.

It is crucial to note that the step at t = 5h behaves like an impulse stimulus whose power content

extends over all the frequencies and the population is strongly excited by the frequency closer

to its natural mean frequency. It appears as if all the TCLs are now oscillating with the same

frequency ω0 and their phases reset to the same value. This phenomenon is known in the study

of rhythmic systems as frequency entrainment [65, 66, 67]. The phase model representation of

nonlinear oscillators becomes highly valuable in this case because the phase sensitivity function
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Z(φ) can be used to provide the theoretical linear limits of the entrainment region, commonly

referred to as Arnold tongue [156, 157, 158]. For more details see Appendix C.3. An example of

Arnold tongues for the TCLs systems considered in this thesis is shown in Figure 4.11.

Figure 4.11: Theoretical Arnold tongues of a TCL with frequency ω obtained by driving the system
with a sinusoidal input v(Ω). Theoretical Arnold tongues for a sinusoidal input with frequency Ω

applied to one TCL with natural frequency ω . The entrainment ratios are indicated as N : M, with
Ω = N/Mω . For this example, the TCL natural frequency is ω = 7.95 rad/h, the parameters in
Table 4.1 were used, but with different thermal capacitance C = 1.8 kWh/◦C and the deadband
δb = 1.5◦C, respectively.

The shape and width of Arnold tongues depend on the PRC and the control input waveform. For

entrainment purposes, the control input waveform can be designed to increase the width of the

Arnold tongue resulting in a maximum entrainment range [158] or fast entrainment [83]. While

maximizing the width of the Arnold tongue is good for entrainment, for control of TCL ensembles

it is to be avoided. In Figure 4.12 we have generated Arnold tongues for three different sets of TCL

ensembles with different mean frequencies ω0 by measuring the Root Mean Square Error (RMSE)

of the aggregate power tracking with respect to a sinusoidal reference signal with frequency Ω and

amplitude A. The tracking error was measured at different power level A and frequency Ω.
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(a) (b) (c)

Figure 4.12: Arnold tongues of three different TCL ensembles of 10,000 units obtained by numer-
ical simulations without a controller. The contour maps represent the RMS errors in tracking a
sinusoidal input with frequency Ω. (a) The average frequency of the ensemble was ω0 = 4.3 rad/s
with the thermal capacitance C = 10 kWh/◦C and deadband δb = 0.5◦C. (b) The average frequency
of the ensemble was ω0 = 17.1 rad/s with the thermal capacitance C = 2.5 kWh/◦C and deadband
δb = 0.5◦C. (c) The average frequency of the ensemble was ω0 = 7.9 rad/s with the thermal ca-
pacitance C = 1.8 kWh/◦C and deadband δb = 1.5◦C. The white dashed-lines correspond to the
theoretical Arnold tongues with whole number ratios in Figure 4.11. The power is normalized to 1
MW. The actual peak power was 15 MW.

In Figure 4.12(c), we also drew the theoretical Arnold tongues (white dashed-lines) with whole

number ratios that are shown in Figure 4.11; this hence shows that the Arnold tongue correspond-

ing to the 1:1 entrainment region results in the highest tracking error. The 2:1, 3:1 and 4:1 entrain-

ment regions also have relatively high tracking errors. This is because temporary synchronization

happens and there are more TCLs turning on or off at the same time than it is needed for tracking

a reference. Hence by computing the Arnold tongues one can determine the regions in the power

vs. frequency (P,Ω) space where the TCLs can provide ancillary services with minimal oscillatory

response or better accuracy. Unlike the theoretical bound provided in [159], which suggests that

the tracking capacity decreases linearly with frequency, the results presented in this thesis show

that this is not entirely the case. Figure 4.12(c) for instance shows that indeed the tracking capacity

decreases linearly with the input frequency and reaches its minimum at Ω = ω0 but, it increases

and decreases again forming bell shapes in the intervals [ω0,2ω0], [2ω0,3ω0] and [3ω0,4ω0]. This

implies that it is possible to extract responsive regulation from a TCL ensemble at time-scales

well beyond the average of natural frequencies of the TCLs by applying an appropriate control
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policy that minimizes the area of the Arnold tongue. Example of Arnold tongues of a TCL ensem-

ble controlled with the proportional and integral (PI) controller, and the PRC-based controller are

shown in Figure 4.13(a) and Figure 4.13(b). The PI controller reduces the width of the 1:1 Arnold

tongue, and the PRC-based controller further reduces it and significantly minimizes its intensity,

but the Arnold tongue corresponding to the 1:2 entrainment becomes apparent. This once more

confirms that it is possible to obtain significantly more demand response capacity from a given

TCL population by using an appropriate controller (or control waveform).

(a) (b)

Figure 4.13: Arnold tongues of a TCL ensemble of 10,000 units with controllers. (a) With PI
controller. (b) With PRC-based controller. The parameters in Table 4.1 were used with the thermal
capacitance C = 1.8 kWh/◦C and the deadband δb = 1.5◦C. The power is normalized to 1 MW.
The actual peak power corresponds to 15 MW.

4.2.4 Tracking of a Regulation Signal Based on Spectral Decomposition

In this section we demonstrate the tracking of an Area control error signal by using the Arnold

tongues in Figure 4.12 to determine the appropriate spectral decomposition to apply to the ACE

signal. We identify each TCL ensemble by its mean natural frequency ω0. The ACE signal to track

is shown in Figure 4.14(a) and its wavelet transform is shown in Figure 4.14(b), in which we can

see that the dominant frequency is ω = 0.59 rad/h and the second dominant frequency is around

ω = 2π rad/h.
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Figure 4.14: Area control error (ACE) signal and its power spectrum. The power spectrum was
computed using wavelet transform. (a) ACE signal with its lowpass filtered content. The cutoff
frequency was 4 rad/h. (b) ACE frequency content vs. time.

The ACE signal contains different frequency components (low and high frequencies) that can be

decomposed into different bands so that a certain population of TCLs with a given mean natural

frequency is able to accurately track the reference power. In Figure 4.15, we show different groups

of TCLs tracking the ACE signal that has been filtered in specific frequency bands identified by

their bandwidths (Bw) and scaled such that it can be tracked by the ensemble. Each TCL group is

composed of 10,000 heterogeneous units. For the TCLs with ω0 = 17.1 rad/h, we show that this

group can track low and high frequencies that are contained in the ACE signal (Figures 4.15(d),

4.15(e) and 4.15(f)). In Figure 4.15(g), we show that it is possible to nearly recover the full

spectrum of the ACE signal by summing the powers that were tracked in different bands (e.g., the

power in Figures 4.15(a), 4.15(b), 4.15(e) and 4.15(f)). Hence, by partitioning a large population

of TCLs in different groups based of their capacity to track specific frequency bands, it is possible

to provide ancillary services in different time scales.

In Figure 4.16 we show the relative percent error of each group tracking different frequency bands.

The relative error is computed as err(t) = (Pref(t)−Pagg(t))/Pref(t)× 100% around the baseline

power Pbase, which is the average power consumption of 10,000 TCLs. The tracking RMSE (nor-

malized by the average aggregate power) for each case in Figure 4.15 are given in Table 4.2 where
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Figure 4.15: Tracking of the ACE by three different groups of TCL populations with 10,000 units
each. The groups are identified by their mean natural frequencies ω0 corresponding to specific sets
of parameters C and δb. The rest of the parameters are the same as in Table 4.1. Figures (a) to (f):
Power tracking by different TCL populations with the ACE signal filtered in different frequency
bands (Bw). (a) TCLs with ω0 = 4.3 rad/h. (b) TCLs with ω0 = 7.9 rad/h. (c) TCLs with ω0 = 7.9
rad/h. (d) TCLs with ω0 = 17.1 rad/h. (e) TCLs with ω0 = 17.1 rad/h. (f) TCLs with ω0 = 17.1
rad/h. (g) The total power Pagg is obtained as a sum of the power in (a), (b), (e) and (f). The ACEref
signal is the sum of the filtered ACE signal used in (a), (b), (e) and (f) which almost recovers all
the power content of the scaled down original signal in Figure 4.14.

the labeling of TCL groups (a) to (g) corresponds to the labeling used in Figures 4.15 and 4.16.

The RMSE is computed as

RMSE % =

√
1
T

∫ T
0 (Pref(t)−Pagg(t))2dt

P2
base

×100.
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Figure 4.16: Relative tracking errors and sample TCL control inputs. (a) to (g) relative tracking
errors corresponding powers in Figure 4.15(a) to Figure 4.15(g). The red line in (g) represents
the moving average computed using a sliding window of one hour. This shows that on an hourly
average the relative error is less than 10%. (h) Shows the global reference signal ξ (t) sent by the
BPA that requests of each TCL to change their power consumptions such that the ACE signal can
be tracked. After going through the local controllers (see Figure 4.9), the TCLs control signals
ui(t) are generated.

Table 4.2: Results on the tracking of the ACE regulation signal

TCL groups (a) (b) (c) (d) (e) (f) (g)

Pmax [MW] 10.3 11.2 10.5 9.85 16.5 8.72 39.5

RMSE % 2.31 1.92 3.09 1.38 2.92 3.39 5.89

The results of the numerical experiments that are presented in Figure 4.15, Figure 4.16 and Ta-

ble 4.2, show that the PRC-based controller performs well in tracking a reference power regulation

signal. Before we further discuss these results and assess the tracking errors against previous re-

sults in the literature, it is important to note that these numerical experiments confirm the prediction
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of the Arnorld tongues in Figure 4.12 that, it is possible to provide DR on a faster time scale than

the mean time constant of the TCL population (see Figure 4.15(f)). This has allowed us to pro-

vide DR on different time scales and hence, nearly recovering the original ACE signal as shown

in Figure 4.15(g), therefore, affirming that the concept of Arnold tongues is a powerful and more

accurate tool for evaluating DR than the proposed linear bandwidth limit in [159].

It is remarkable that our controller, which is open-loop (i.e., there is only a one-way communication

channel from the BA to the TCLs), achieves good tracking performances, with low tracking errors

on the same order of magnitude as the feedback controllers in [87, 160], and actually performs

much better than the open-loop controller in [161]. Indeed, the minimum variance control law

(MVC) in [87] achieved a tracking relative error of less than 5% with RMSE < 1%. There, the

author used 60,000 TCLs (with the same power as in Table 4.1) to track the output of a wind

farm with a peak power of approximately 45 MW, which is roughly equivalent to 7.5 MW per

10,000 TCLs, which is less than the peak power considered in Figure 4.15(d) for example, for

which we had the lowest RMSE of 1.38%. If we were to consider the same number of TCLs

and equivalent power capacity, the performance of our controller would certainly improve. The

feedback controller in [160] also achieved an RMSE of ≤ 2.27%, whereas, only one of the two

feedback controllers in [161] performed slightly better than our controller, with an RMSE of 1.18%

while the other controller had an RMSE of 8.7% with a high relative error of 30%. As for the open-

loop controllers in [161], they performed poorly with relative errors of up to 50% compared to our

PRC-based controller.

Despite not having a feedback loop, our controller achieved good tracking of the ACE signal with

reasonably low errors. It is however, possible to increase the performance of our controller with

feedback and by optimizing the gains I1 and I2 but, this solution is more costly as measurement and

transmission equipments will be required to transmit feedback information to the central controller.
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Using a feedback control of the form

uk+1 = uk + I1h
[
I2sgn

(1
2 − sk

)
Z(φk)

(
ξk−ξ

Pagg
k

)
−uk

]
, (4.19)

where ξ
Pagg
k is an appropriately scaled regulation signal that depends on the aggregate power, this

controller can reduce the error by nearly 50%. For example, the RMSE for the case in Fig-

ure 4.15(c) is reduced to 1.8% from 3.1% and its peak relative error is reduced from approximately

8% to 4%.

The comparison above shows that our control policy compares well to several feedback control

laws proposed in the literature in terms of reference tracking as well as minimal effect on customer

comfort as can be seen from the controls in Figure 4.16(h), where the signals ui(t) represent the

temperature offsets applied to the TCLs set-point temperatures. As one can see in this case the

variations of the ui(t)’s are small (< 0.5◦C), therefore, the TCLs temperature will not significantly

deviate from the set-points. With this tracking example, we have demonstrated that it is possible to

use TCL ensembles to provide ancillary services at different time scales by tracking low and high

frequencies contained in the ACE signal. More interestingly, we arrive at the same observation

as in [87], namely, that load populations with smaller thermal time constants are better candidates

for providing ancillary services. We confirm this in numerical experiments and, more importantly,

by computing the Arnold tongues in Figure 4.12, which demonstrate that the loads with high

natural frequency have larger power spectrum bands in which they can provide ancillary services.

Considering the tracking errors in Table 4.2, one can see that the TCL population group (d) with

the largest ω0 has the lowest error and that as ω0 decreases, the error also increases as it can be

seen for group (b) and group (a), respectively. Furthermore, for a given TCL population one can

see that the tracking error increases as the frequency of the signal to track increases (see groups (d),
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(e) and (f), for instance), this is because the signal frequency is getting closer to the entrainment

regions (Arnold tongues) that cause synchronization.

The phase modeling approach introduced in this chapter, and in particular the application of Arnold

tongues for synchronization analysis, adds new tools to the existing body of work on TCLs and

enables a more accurate evaluation of DR capacities on different time scales than previously possi-

ble. It will then be possible to a priori determine the specific time scales on which TCLs with given

characteristics can be used to provide DR, and the DR capacity that they are able to provide. The

impact of these new tools is significant and yet to be explored in depth. In the next chapter, using

TCL phase models, we develop a minimum energy control law that can provide accurate demand

response while minimizing temperature variations in order to maintain a suitable comfort level

inside the building. Finally, by using an open-loop control architecture, we eliminate the need for

measuring the states of the TCLs. This has the desirable benefits of addressing customers’ privacy

concerns, and avoiding the investment cost and technical complications inherent with two-way

communication channels.
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Chapter 5

A Phase Model-Based Control of Cyclic

Loads in Demand Response Programs

In Chapter 4, we introduced the phase model for the general thermostatically controlled load,

furthermore, we proposed a novel control paradigm that exploits the TCL phase model. This mod-

eling and control paradigm is also applicable to other periodic or cyclic deferrable loads such as

agricultural pumps and swimming pool pumps that can be utilized to provide demand response

services [162, 75]. This chapter, without loss of generality, is concerned with the control of hetero-

geneous TCL populations participating in a DR program. In particular, we present a novel control

approach that uses TCL phase models and applies the Pontryagin’s maximum [163, 106] to synthe-

size input signals that can modulate the power consumptions of TCLs to provide DR with minimal

impact on consumers’ comfort level.
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5.1 Control Problem Formulation for TCLs

The phase model is a one-dimensional system with scalar state, and its simplicity has made it

one of the most popular models for studying oscillatory systems, including power grids [28] and

neural oscillators [125], with particular advantages for control design in the presence of parameter

uncertainty [64]. In this section, we use the TCL phase model developed in Chapter 4 to formulate

the control problem for regulating the TCL power usage. Thus, we consider the equation describing

the evolution of the phase variable, φ(t) ∈ [0,2π), subject to an external control input, u(t), that is

dφ

dt
(t) = ω +Z(φ)u(t), (5.1)

where ω = 2π/T is the natural oscillation frequency and Z(φ) is the phase response curve (PRC)

[84, 128, 125]. The frequency ω , or alternatively, the oscillation period T is computed using the

TCL parameters in Table 4.1. However, the phase sensitivity function Z(φ) (see Figure 5.1) is com-

puted numerically, using for example the method of the adjoint, which requires the computation of

the Jacobian of the dynamics of the system described by a continuous function, e.g, (4.13).
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Figure 5.1: TCL phase response curves. (a) PRC of the switching function s(t). (b) PRC of the
temperature ϑ(t) variable.
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5.1.1 Problem Description

We consider the problem of modulating the power consumption of TCLs. This can be achieved

by modulating the duty cycle of the switching function, s(t), which is equivalent to controlling the

phase φoff at which the TCL turns off while maintaining the period, T , constant. The turn-on phase

is taken as φon = 2nπ , where n = 0,1,2, · · · .

Consider the following optimal control problem:

min
u

∫ T1

T0

u2(t)dt

s.t. φ̇ = ω +Z(φ)u(t),

φ(T0) = φ0, φ(T1) = φT1,

|u(t)| ≤ A, ∀t ∈ [T0,T1],

(5.2)

where A > 0 is the bound on the amplitude of the control input u(t). Note that if T0 = 0, φ0 = 0,

φT1 = 2π , and T1 6= T , where T is the free running period, the optimal control, u(t), will change

the oscillation period by ∆T = T1−T [153]. We previously employed this problem formulation

to synthesis controls that effectively change the oscillation frequency in experiments with electro-

chemical oscillators [152].

However, the problem as formulated in (5.2) cannot be used to modulate the duty cycle (D=Ton/T )

of the TCL. Hence, in the next section we reformulate the optimal control problem such that duty

cycle modulation is now possible.
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5.1.2 Minimum Energy Control Problem

In order to modulate the duty cycle, we reformulate the optimal control problem in (5.2) to incor-

porate another boundary condition as

min
u

∫ T1

T0

u2(t)dt +
∫ T

T1

u2(t)dt

s.t. φ̇ = ω +Z(φ)u(t),

φ(T0) = φ0, φ(T1) = φoff, φ(T ) = 2π,

|u(t)| ≤ A, ∀t ∈ [T0,T1].

(5.3)

We will then derive a piece-wise continuous control, u(t), satisfying the boundary conditions

φ(T0) = φ0, φ(T1) = φoff for t ∈ [0,T1) and φ(T1) = φoff, φ(T ) = 2π for t ∈ [T1,T ). The opti-

mal control law is derived using the Pontryagin’s maximum principle [106, 164].

Considering the optimal control problem defined in (5.2), we form the control Hamiltonian

H = u2 +λ (ω +Z(φ)u) , (5.4)

where λ is the Lagrange multiplier, which is a solution to the adjoint equation

λ̇ =−λ
∂Z(φ)

∂φ
u(t). (5.5)

The optimality condition from the Pontryagin’s maximum principle requires that ∂H/∂u= 0 along

the optimal solution. Therefore, we have

u(t) =−1
2

λZ(φ). (5.6)
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Substituting (5.6) for u(t) in (5.5), we obtain

λ̇ =
λ 2Z(φ)

2
∂Z(φ)

∂φ
. (5.7)

Given that the Hamiltonian is not explicitly dependent on the time t, H is a constant along the

optimal trajectory [165]. Hence, we let H = c, ∀t ∈ [0,T ]. The Lagrange multiplier λ associated

with the optimal solution can then be obtained from (5.4) by substituting (5.6) for u(t) as

λ =
2ω±2

√
ω2− cZ2(φ)

Z2(φ)
. (5.8)

Note that in the following, we will consider the positive sign in (5.8), which corresponds to for-

ward phase evolution [153]. The optimal phase trajectory can then be obtained from (4.16) after

substituting (5.6) for u and (5.8) for λ , as

φ̇ =
√

ω2− cZ2(φ). (5.9)

Moreover, the optimal control is given by

u(t) =
−ω +

√
ω2− cZ2(φ)

Z(φ)
. (5.10)

In addition, by integrating (5.9), we find the target time T1 in terms of the boundary conditions

T1 =
∫

φT1

φ0

1√
ω2− cZ2(φ)

dφ . (5.11)

Therefore, knowing the target time T1, the initial phase φ0 and final phase φT1 , the constant c in the

control law (5.10) can be computed. This control can effectively alter the oscillation frequency to

a new target value.
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However, for the control of TCL ensembles we require the modulation of the switching duty cycles

while maintaining the frequencies constant. This led to the formulation of the optimal control

problem in (5.3), where the integration interval [0,T ] of the objective function has been divided

into two parts and new boundary conditions imposed. It then follows that the optimal control is

piece-wise continuous and is given by

u(t) =


−ω+
√

ω2−c1Z2(φ)
Z(φ) for 0≤ φ(t)< φoff,

−ω+
√

ω2−c2Z2(φ)
Z(φ) for φoff ≤ φ(t)< 2π,

(5.12)

where the constants c1 and c2 are solutions to the integral equations

T1 =
∫

φoff

0

1√
ω2− c1Z2(φ)

dφ , (5.13)

and

T −T1 =
∫ 2π

φoff

1√
ω2− c2Z2(φ)

dφ , (5.14)

where T1 = Ton−δT , with Ton = φoffT/2π is the time when the unperturbed TCL turns off naturally

and δT is the desired change to Ton. For the parameter values in Table 4.1, the unperturbed duty

cycle is D = Ton/T = 0.428, where T = 0.790 h (approximately 47 minutes) and Ton = 0.338

h. For example, if one wishes to reduce the duty cycle to D1 = 0.418, Ton has to be reduced by

δT = (D1T )−Ton = −0.008, hence T1 = 0.330 h. Using the new desired T1 value, we designed

the corresponding control, with c1 =−54.177 and c2 = 37.669. The simulation results are shown

in Figure 5.2.

Note that the designed control law is periodic, hence it can be repeated periodically to maintain the

desired duty cycle. The design of a control law that increases the duty cycle is similar, therefore

we do not show it here. In the next section, we are going to apply this control technique to TCL
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Figure 5.2: Application of the control law to the phase model. (a) Phase trajectories for both the
controlled and uncontrolled systems. (b) Phase difference between the two trajectories in (a). (c)
Switching functions, s(t). The controlled system turns off at 0.330 h as desired. (d) Control input.

ensembles to control their aggregated power consumptions while maintaining load diversity, in

other words avoid TCLs synchronization.

5.2 Optimal Control of TCL Ensembles

The illustration in Figure 5.2 shows the modulation of one TCL’s duty cycle by a control designed

using the PRC, Zs(φ), of the switching function shown in Figure 5.1(a). However, our goal is

to control a large collection of heterogeneous TCLs, therefore, we adopt a hierarchical control

architecture in which the balancing authority (BA) sends a common control signal ξ (t) to all the

units in the population. The BA signal requests of each TCL to alter their energy consumptions by

a few percents. This is then interpreted by the local control as a request to modulate the duty cycle.
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In this chapter, we adopt a model reference control architecture for the local controller as shown in

Figure 5.3. With this configuration, we also opt for the PRC, Zϑ (φ), of the temperature variable,

ϑ(t), to design the control signal, u(t), given by (5.12). However, this control input is in the form

of thermal energy and therefore cannot be applied directly to the actual system. Thus, we first apply

this control to a reference model as an input u(t) in the dynamic of the temperature, as follows

ẋ(t) = µ

(
(
δb

2
+ ε)x− x3

3
+ϑ −ϑs

)
,

ϑ̇(t) =− 1
RC

(ϑ −ϑa + s̄(t)PR)+u(t).

(5.15)

In the rest of this chapter, given that (5.15) is the continuous equivalent of the hybrid-state TCL

model, the later will be used as reference model and the actual control input to the plant will be

a temperature signal us(t) = ϑr(t)−ϑ(t), where ϑr(t) and ϑ(t) are the temperatures from the

reference model and the plant, respectively.

Phase Model
Conntroller

Reference Model
Hybrid-States TCL

Plant
Hybrid-States TCL

+

-

Local Controller

+
Set point

+

+
-

Figure 5.3: Local control architecture. The control signal ξ (t) emitted by the balancing authority is
received by each TCLs, which requests from each TCL to reduce or increase its power consumption
by a few percents.The phase model controller receives ξ (t) and generates a control signal u(t)
which is fed to the reference model as v(t) in (5.15). The actual signal that controls the TCL is
us(t)◦C.
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5.2.1 Control of Heterogeneous TCL Populations

Control induced temporary synchronization of TCLs represents one of the main challenges for

designing open-loop control policies for modulating the power consumption of a large population

[147, 87]. Indeed, even small sudden changes of the set temperature (0.1-0.5◦C) can induce large

power fluctuations [166, 87], due to a large number of TCLs synchronizing. In Chapter 4, we

examined this phenomenon using the concept Arnold tongues which, at the same time, allows

us to evaluate DR capacity and bandwidth of a given TCL population. The Arnold tongues in

Figure 4.11 and Figure 4.12, for example, were determined using a periodic forcing input v(Ωt),

and the main observation is that, for a sufficiently strong forcing input, when its frequency Ω is

close or equal to the TCL population mean frequency ω0, synchronization occurs. Therefore, with

a periodic sinusoidal control input, the capacity of ancillary services that a given population of

TCLs can provide to support grid stability is limited to the regions outside the Arnold tongues in

the power vs. frequency space [35].

The control law proposed in this chapter is designed to modulate the power consumption of a

TCL without changing its natural oscillation frequency, ω . As one can see from the temperature

trajectories in Figure 5.4(a), the frequency of oscillation is the same, before, during and after

control. However, in Figure 5.4(b) one can see that the duty cycle is only changed when the control

is applied, and immediately goes back to its natural value once the control is turned off. Such a

control policy can help system operators modulate power consumption of TCLs while maintaining

load diversity which in turn will reduce unwanted power oscillations.

The property of the control law in (5.12) to maintain constant the oscillation frequencies of the

controlled TCLs, while modulating their duty cycles, enables fast control of the aggregate power,

e.g., step changes of the aggregate power as shown in Figure 5.5(a). In order to achieve a steady
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Figure 5.4: Modulation of the power duty cycle by a control applied for one period. (a) Tempera-
ture variables of the reference system, ϑr(t) and the plant ϑ(t). (b) Normalized TCL power and the
duty cycle. (c) Controls applied to the reference system (u(t)) and to the plant (us(t)), respectively.

state power of ±10 MW, step changes of ∓1.7◦C are applied (see Figure 5.5(b)), however, with-

out using a dedicated controller these changes induced strong power oscillations that could last a

couple of hours as shown in Figure 5.5(a). On the other hand, when we use the control in (5.12),

unwanted power overshoots are significantly reduced.

(a) (b)

Figure 5.5: Aggregate power responses to step-like power commands. (a) From 0 to 10 h, the
power command is u(t) = 0. A command to reduce the power by 10 MW is received by the TCLs
between 10 h and 25 h before being set back to zero for 3 h. A command to increase the power by
10 MW is then applied at time 28 h. (b) Optimal control inputs and the step-like input.

Ideally, when controlling TCLs it is desirable to maintain the temperatures as close as possible to

their initial set-points such that consumers’ comfort level is maintained within acceptable limits.

Hence, to evaluate the performance of our control policy, in Figure 5.6 we plot the hourly average

temperature of each TCL in the population. The first panel in Figure 5.6 shows that the control

law in (5.12) slowly affects the mean temperature of the TCLs, which will be a more comfortable

situation for the consumers (building occupants), while in the second panel of Figure 5.6, one can

see that the step control abruptly changes the temperature which will be felt immediately by the
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occupants. The overall behavior exhibited by the control law (5.12), that is, instantaneously chang-

ing the TCLs power consumption while minimizing the power overshoots and slowly affecting the

TCLs temperatures in the population is a desirable property that TCL controllers ought to possess.

Figure 5.6: The temperature evolution of the TCLs during the controlled period. (First panel) and
(second panel): one-hour moving average of the temperature of each TCL with application of the
control u(t) in (5.12) and the step-like control, respectively. (Third panel) Sample temperature
of one TCL in the population. The parameters of the TCLs are uniformly distributed about the
nominal values in Table 4.1 by ±5%.

5.2.2 Tracking of an Area Control Error (ACE) Signal

In general, to compensate for the intermittent generation of renewable energy sources, power grid

operators emit an ACE signal to all available ancillary services (AS) providers. The provided AS

helps balance supply and demand to support grid stability and maintain good quality of service.

In this section, we demonstrate provision of ancillary services by a heterogeneous population of
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10,000 TCLs. We used the control law in (5.12) to track a real ACE signal taken from the Bon-

neville Power Administration (BPA) website [155]. This signal was filtered in the frequency band

[0,4] rad/h (see Figure 5.7 (first panel)) and scaled down to a level that can be tracked with 10,000

TCLs. Figure 5.7 (third panel) shows that the aggregate power of the population closely follows

the reference ACE signal, with a root mean square error of 2.7%. The average temperature of each

TCL during the controlled period remains within±1◦C of the set temperature (see second panel in

Figure 5.7 ), which will have minimal adverse impact on the comfort level of consumers.
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Figure 5.7: Tracking of the Area Control Error (ACE) signal low-pass filtered in the band [0,4]
rad/h. (First panel) Original ACE power signal for a three days period. (Second panel) One hour
moving average of the TCLs temperatures. (Third panel) Scaled down ACE signal that can be
tracked by a population of 10,000 TCLs. (Fourth panel) Sample control signals to the reference
system (u(t)) and to the plant (us(t)), respectively.

103



Chapter 6

A Control Theoretic Approach to Optimal

Placement of Driver Nodes in Complex

Oscillator Networks

In Chapter 3, we presented a unified control framework for the design of a broadcast or global

control that can manipulate the phases or frequencies of either an interacting or a non-interacting

collection of oscillators. However, in some real-world applications it is neither feasible nor prac-

tical to control all the oscillators simultaneously with a common control signal. In this chapter,

we focus on the pinning control problem, which is a feedback strategy that consists on controlling

a small subset of nodes in a given network [95, 167, 168, 96]. Specifically, we look at pinning

a network of oscillators to its equilibrium and derive analytic conditions under which this can be

achieved with a single controlled node. A fundamental challenge of pinning control is to identify

the most influential site for establishing stable behavior in the network and to unlock what this

site is dependent upon. We address these problems by studying bidirectional networks consisting

of n dynamical units and, without loss of generality, illustrate our findings through a network of
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Stuart-Landau (SL) oscillators, that is a system of identical dynamic units coupled via a Laplacian

matrix and in which each unit has an unstable fixed point.

6.1 Dynamics of Stuart-Landau Oscillator Networks

The Stuart-Landau (SL) oscillator, which is the normal form of the supercritical Hopf bifurca-

tion [128, 169] has been widely used as a model for studying nonlinear phenomena in fluids,

lasers, and Josephson junctions [170], and as an associative memory in neural networks [171]. It

describes nonlinear dynamics evolving close to a bifurcation point, and the simplicity of this model

makes it particularly appealing for theoretical analysis. The dynamics of a single SL oscillator is

described by the coupled ordinary differential equations of two state variables, x and y, given by

ẋ = αx−ωy− (x2 + y2)x,

ẏ = ωx+αy− (x2 + y2)y,
(6.1)

where α and ω are real parameters. Then, a network of n coupled SL oscillators with coupling in

both x and y state variables stimulated by external inputs can be modeled by

ẋk = αxk−ωyk− (x2
k + y2

k)xk +σ

n

∑
l=1

ak,l(xl− xk)+uk(t),

ẏk = ωxk +αyk− (x2
k + y2

k)yk +σ

n

∑
l=1

ak,l(yl− yk)+ vk(t),
(6.2)

where σ is the coupling strength, ak,l is the coupling function connecting the oscillators k and l,

and uk(t) and vk(t) are the external inputs applied to the oscillator k. In particular, we consider the

feedback control of the form uk(t) = s(t)−Kxk(t) and vk = s(t)−Kyk(t), where s(t)≡ 0 represents

the desired dynamic behavior dictated by the pinner system. The coupling topology of the network
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is described by the adjacency matrix Aadj with entries ak,l for k, l = 1, · · · ,n. If the elements k

and l are coupled, then ak,l = 1; otherwise ak,l = 0. For the most part in chapter, we focus on

undirected unweighted networks with symmetric couplings, i.e., ak,l = al,k, and self couplings are

not considered, i.e., ak,k = 0 for k = 1, · · · ,n.

6.2 Network Stabilization by Pinning Control

6.2.1 Equilibria and Stability

In order to analyze the stability properties of the networked system in (6.2), it is essential to identify

the equilibrium points. For the SL oscillator in (6.1), it is easy to verify, using the polar coordinate

transformation, that Xeq1 = (0,0)′ is the unique equilibrium point, where ‘′’ denotes the transpose

operation. The linearized dynamics around this equilibrium point is characterized by the Jacobian

matrix, that is,

J0 =
∂ f (x,y)

∂X

∣∣∣
X=Xeq1

=

 α −ω

ω α

 , (6.3)

where X = (x,y)′ and f (x,y) = (αx−ωy− (x2 + y2)x,ωx+αy− (x2 + y2)y)′. The eigenvalues of

J0 are λ1 = α + iω and λ2 = α− iω , which imply that Xeq1 is unstable since α > 0.

6.2.2 Amplitude and Oscillation Death

When the SL oscillators are interconnected in a network as in (6.2), the origin Xeq1 may no longer

be the unique equilibrium state, depending on the coupling and control structure. In this case, the

network can be stabilized at the nonzero equilibria. However, for amplitude death (AD) [172],
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i.e., stabilization of the origin, to occur in such an oscillatory system, it is required that the origin

Xeq1 be a unique attractive equilibrium point, otherwise, only oscillation death (OD) [173], i.e.,

stabilization onto a nonzero equilibrium, can be achieved. In the following, we adopt the pinning

control strategy as a means of inducing AD in a coupled oscillator network and, for that purpose we

consider the coupling and feedback configuration in Section 6.1 which guarantees that the origin

is the unique equilibrium point for SL oscillators. Later in Section 6.4, the boundary values of the

coupling strength and the feedback gain beyond which stabilization at the origin can occur will be

determined. We refer to these values as the critical coupling σc and critical gain Kc.

6.3 Identification of Network Structure Influence on the Stabi-

lizability Property

Experimental work with networked oscillatory chemical processes has provided evidence that syn-

chronization patterns are strongly affected by the architecture of the network [174]. In order to

understand how the structure, i.e., the size and topology of a network, and further the location of

the control site affect the stability properties of the networked system in (6.2), it is essential to have

an analytic expression of the eigenvalues of the controlled network such that a sensitivity analysis

can be conducted to determine the influence of such network parameters. In this section, we derive

such analytical expressions for the chain and ring networks.

The Laplacian matrix associated with a chain network of n oscillators has a tridiagonal structure

that allows for the analytical derivation and thus effective computation of its eigenvalues. Here,

we consider pinning control of one oscillator in a chain by introducing the feedback gain K. For

example, consider a chain of three (n = 3) SL oscillators with identical frequency and the pinner
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is connected to the first oscillator. In this case, we have u1(t) = −Kx1(t), v1(t) = −Ky1(t), and

uk(t) = vk(t) = 0 for k = 2,3, · · · ,n, and the Jacobian of this networked system evaluated at the

origin is given by

A =



α−σ −K −ω σ 0 0 0

ω α−σ −K 0 σ 0 0

σ 0 α−2σ −ω σ 0

0 σ ω α−2σ 0 σ

0 0 σ 0 α−σ −ω

0 0 0 σ ω α−σ


. (6.4)

Eigenvalues of a Kronecker Sum of Matrices: The matrix A can be written as a Kronecker sum

of two simple matrices as A = In⊗ J0 +G1⊗ I2, where J0 is defined in (6.3), I2 and In are 2× 2

and n× n identity matrices, respectively; the matrix G1 = −σL−K× diag(δ1,δ1,δ2,δ2,δ3,δ3)

with δ1 = 1 and δ2 = δ3 = 0, in which L is the Laplacian of the network. This decomposition as a

Kronecker sum facilitates the computation of the eigenvalues of A through that of J0 and G1 using

the following theorem.

Theorem 1 (Eigenvalues of a Kronecker sum of two matrices): Let B be an m×m matrix with

eigenvalues λ , and C be an n× n matrix with an eigenvalue µ . Then λ + µ is an eigenvalue of

the Kronecker sum (Im⊗B)+ (C⊗ In) and any eigenvalue of A = B⊕C arises as such a sum of

eigenvalues of B and C, and Im⊗B commutes with C⊗ In [175].

By Theorem 1, we may compute the eigenvalues of A in (6.4) by using the eigenvalues of J and G

through

λ (A) = λ (J)+λ (G), (6.5)
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where J = In⊗ J0, G = G1⊗ I2, and

G1 = σ


−1 1 0

1 −2 1

0 1 −1

−K


1 0 0

0 0 0

0 0 0

=


−(σ +K) σ 0

σ −2σ σ

0 σ −σ

 . (6.6)

The ability to compute the eigenvalues of the networked system using (6.5) allows us to shift

our focus on the computation of the eigenvalues of A to that of G1 (or equivalently of G), which

depends on the network size, topology, and the placement of the feedback.

Adopting the notion proposed above for the computation of eigenvalues of a chain of SL oscillators,

we consider the following matrix

Gn =



b c 0 · · · 0 · · · 0 0 0

a 2b c · · · 0 · · · 0 0 0
...

...
... . . . ... · · · ...

...
...

0 0 0 · · · 2b− γ · · · 0 0 0
...

...
... · · · ... . . . ...

...
...

0 0 0 · · · 0 · · · a 2b c

0 0 0 · · · 0 · · · 0 a b



, (6.7)

where the feedback γ is applied to the mth oscillator in the network. Let λ be an eigenvalue of Gn

and v = (v1, . . . ,vn)
′ be the corresponding eigenvector. Then, we have Gnv = λv, and this gives,
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together with the dummy variables v0 = 0 and vn+1 = 0, a system of equations,

av0 +2bv1 + cv2 = λv1 +bv1,

av1 +2bv2 + cv3 = λv2 +0,

...

avm−1 +2bvm + cvm+1 = λvm + γvm,

...

avn−1 +2bvn + cvn+1 = λvn +bvn,

(6.8)

that can then be put into a recursive form,

avk−1 +βvk + cvk+1 = λvk + fk, k = 1,2, · · · , (6.9)

with f1 = bv1, fm = γvm, fn = bvn, and fk = 0 for all k 6= 1,m,n, where β = 2b. Consider the

infinite sequence v̄ = {vk}∞
k=0 with v1 6= 0, since from (6.9) if v1 = 0 then cv2 = 0 and inductively

v3 = v4 = · · ·= vn = 0 which contradicts the definition of eigenvector that is a non-zero vector, and

f = { fk}∞
k=0 with f j as defined above, it follows from (6.9) that

a{vk}∞
k=0 +β{vk+1}∞

k=0 + c{vk+2}∞
k=0 = λ{vk+1}∞

k=0 +{ fk+1}∞
k=0. (6.10)

After some calculations omitted here, we arrive at the following equations characterizing the eigen-

values and the eigenvectors,

λ = β +2
√

accos(θ), θ 6= kπ, k ∈ Z, (6.11)

v =
2i√
ω
{ρ j+1 sin[( j+1)θ ]}( f + cv̄1)h̄,
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where i =
√
−1, h̄ = {0,1,0, · · ·}, and v̄1 = {v1,0,0, · · ·}. The interested reader can refer to [176]

for more technical details; this reference derived the eigenvalues of tridiagonal matrices without

the feedback perturbation γ . We can then evaluate for each j ≥ 1 to obtain

v j =
2i√
ω
{cv1ρ

j sin( jθ)+bv1ρ
j−1 sin[( j−1)θ ]+H( j−m−1)γvmρ

j−m sin[( j−m)θ ]

+H( j−n−1)bvnρ
j−n sin[( j−n)θ ]},

(6.12)

where H is a unit step function with H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0. Furthermore, we

have

√
ω

2i
vn+1 =cv1ρ

n+1 sin[(n+1)θ ]+bv1ρ
n sin(nθ)+ γvmρ

n−m+1 sin[(n−m+1)θ ] (6.13)

+bvnρ sin(θ),

vn =
2i√
ω
{cv1ρ

n sin(nθ)+bv1ρ
n−1 sin[(n−1)θ ]+ γvmρ

n−m sin[(n−m)θ ]}, (6.14)

with

vm =
2i√
ω
{cv1ρ

m sin(mθ)+bv1ρ
m−1 sin[(m−1)θ ]}. (6.15)

Let ρ =
√

a/c (with a = c for undirected unweighted networks) and
√

ω = 2i
√

acsin(θ), substi-

tuting (6.14) and (6.15) into (6.13) yields, after some algebraic manipulations,

0 = asin[(n+1)θ ]+2bsin(nθ)+
b2

a
sin[(n−1)θ ]

+
γ

a
asin(mθ)+bsin(m−1)θ

sin(θ)
{sin[(n−m+1)θ ]+

b
a

sin(n−m)θ},
(6.16)

where we used the fact that vn+1 = 0. Taking a = σ , b = −σ , and γ = K in (6.16), where σ

and K represent the coupling strength among oscillators and the feedback gain applied to the mth
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oscillator, respectively, we arrive, after further simplification, at

σ{sin[(n+1)θ ]−2sin(nθ)+ sin[(n−1)θ ]}

+K{sin(mθ)− sin[(m−1)θ ]}{sin[(n−m+1)θ ]− sin(n−m)θ}= 0.
(6.17)

Using the substitution a = σ , b =−σ , and γ = K, the eigenvalue expression in (6.11) can then be

written as

λk(Gn) =−2σ (1− cos(θk)) , (6.18)

where the θk’s, k = 1, · · · ,n, are the solutions to (6.17). The eigenvalues of G = Gn⊗ I2 and

J = In⊗J0 satisfy λ (G) = {λk(Gn)} for k = 1, · · · ,n, and λ (J) = {α± iω} repeating n times. The

eigenvalues of A can then be calculated using (6.5), which gives

λk(A) = α−2σ(1− cos(θk))± iω, k = 1, · · · ,2n. (6.19)

Similarly, for a ring network the eigenvalues of the Jacobian matrix evaluated at an equilibrium

point can be calculated using (6.18). But in this case, one needs to solve for θk satisfying the

following equation

{sin [(n+1)θ ]+
K
σ

sin [nθ ]− sin [θ ]}×

{sin [θ ]+ sin [(n−1)θ ]}− sin2[nθ ]− K
σ

sin [nθ ]sin [(n−1)θ ] = 0,
(6.20)

which was derived using the same procedure as for the chain network.

The two network topologies (chain and ring) considered in this section have the same eigenvalue

expression (6.18) with the corresponding angles (θk) defined by two different equations, (6.17) and

(6.20), respectively. This is a clear indication that the eigenvalues are affected by the structure or

topology of the network. Furthermore, we observe that the position m of the feedback appears in
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(6.17) but not in (6.20), which stipulates that the pinning site has an effect on the eigenvalues of

the chain network but not the ring network. However, we can see that the size of the network has

an influence on the eigenvalues of both network topologies. The derivations in this section tells

us that there networks in which the location of the control site has an impact on the eigenvalues

of the network, and in others, this impact is minimal or nonexistent. Hence, in networks where

the location of the control site matters, it is important to carefully select its location such as to

maximize the influence on the control on the entire network.

6.4 Critical Coupling and Critical Gain of Pinned Networks

6.4.1 Critical Coupling

In the context of this chapter, the critical coupling σc refers to the boundary value of the coupling

strength such that for any σ > σc, there exists a feedback gain K that can stabilize the network. The

analytical expression of the eigenvalues of chain networks derived in Section 6.3 played a crucial

role in understanding how the critical coupling is related to the dominant (the smallest) eigenvalue

of the matrix Ḡn =−Gn, with λk(Gn) as defined in (6.18). From (6.19), we have that the real part

of the dominant eigenvalue of A is given by

Re(λ1) = α−2σ(1− cos(θ1)), (6.21)

and it requires α < 2σ(1− cos(θ1)) for the chain network to be stable. The critical coupling is

then defined as the value of σ for which Re(λ1) = 0 as K→ ∞, and for a chain or a ring network,
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is given by

σc =
α

2(1− cos(θ1))
. (6.22)

However, in general for any network topology we have

σc =
α

µ1
, (6.23)

where µ1 is the smallest eigenvalue of Ḡn = L+K× diag(δ1, · · · ,δN) with δi = 1 for the pinned

node and δ = 0, otherwise, and the gain is considered very large. As we can see from (6.23), the

critical coupling is inversely proportional to the smallest eigenvalue of Ḡn, which depends on the

network topology, size and the location of the feedback.

6.4.2 Critical Feedback Gain

Dual to the notion of critical coupling σc, the critical gain Kc refers to the boundary value of

the feedback gain such that for any K > Kc, there exists a coupling strength σ that can stabilize

the network. To determine the critical feedback gain, we assume that the coupling strength is

sufficiently large such that all the oscillators are in perfect synchrony. Indeed, one can show that

the time evolution of the norm of the difference between the states of any two coupled oscillators

is approximated by ‖x j−xi‖(t)≈ e−σt‖x j−xi‖(t0). With an exponential decay, the difference will

approach zero as time t approaches infinity. For very large coupling, this difference will approach

zero very fast, and hence the oscillators will be synchronized.

Proposition 2: The critical feedback gain Kc of a network with only one pinned node is propor-

tional to the size of the network n, i.e., the number of nodes, given by

Kc = nα, (6.24)
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where α denotes the real part of the eigenvalue of the Stuart-Landau oscillator as modeled in

Section 6.2.

Proof: Suppose that the coupling strength is sufficiently strong so that all of the oscillators in the

network are synchronized. Pinning the first oscillator results in the system of differential equations

for the states xi and yi,

ẋ1 = αx1−ωy1− (x2
1 + y2

1)x1−Kx1,

ẋ2 = αx2−ωy2− (x2
2 + y2

2)x2,

...

ẋn = αxn−ωyn− (x2
n + y2

n)xn,

(6.25)

ẏ1 = ωx1 +αy1− (x2
1 + y2

1)y1−Ky1,

ẏ2 = ωx2 +αy2− (x2
2 + y2

2)y2,

...

ẏn = ωxn +αyn− (x2
n + y2

n)yn,

(6.26)

where the coupling term σ(xi−x j) for i, j = 1, · · · ,n can be neglected for large σ , according to the

analysis provided above. Summing over the xi and yi equations yields

∑ ẋi = nαx1−nωy1−n(x2
1 + y2

1)x1−Kx1,

∑ ẏi = nωx1 +nαy1−n(x2
1 + y2

1)y1−Ky1.

(6.27)

Linearizing (6.27) around the origin and computing the eigenvalues of the Jacobian, we find that a

gain K > nα is necessary for the stabilization of the origin. Here we used the fact that in synchrony

x1 = x2 = · · ·= xn and y1 = y2 = · · ·= yn. �
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In a similar fashion, one can show that for q pinned nodes, the critical gain is given by

Kc =
n
q

α. (6.28)

Hence, applying feedback to multiple nodes reduces the magnitude of the required gain for stabi-

lization regardless of their locations in the network.

6.4.3 Critical Coupling of k-regular Graph Networks

Regular graphs have nodes with the same degree k [177], e.g., ring (k = 2) and complete graph

(k = n−1) networks. In this type of networks, the critical coupling is independent of the location

of the pinning site. Furthermore, it can be shown that the critical coupling (σc)k of a k-regular

network of size n> 3, is always greater or equal to the critical coupling (σc)c of a complete graph,

but less or equal to the critical coupling (σc)r of a ring network.

Let’s first consider a ring network of size n, where we have µ1 = 2(1− cos(π/n)). Note that

for n = 3, the ring is also a complete graph and µ1 = 1 is the maximum value that the smallest

eigenvalue of G can take for a single pinning site configuration (0 < µ1 < 1 for n> 3 in k-regular

graph networks). One can further verify that for any complete graph network of size n > 3, µ1 = 1

independently of n (it is assumed that the feedback gain K→ ∞).
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As an example, consider a complete graph of 7 nodes (6-regular graph). The matrix G7 of such a

network is given by

G7 =



6+K −1 −1 −1 −1 −1 −1

−1 6 −1 −1 −1 −1 −1

−1 −1 6 −1 −1 −1 −1

−1 −1 −1 6 −1 −1 −1

−1 −1 −1 −1 6 −1 −1

−1 −1 −1 −1 −1 6 −1

−1 −1 −1 −1 −1 −1 6



. (6.29)

The eigenvalues of G7 are 1,7 and K, with multiplicity 1,5 and 1, respectively. In fact, for any

complete graph network of size n, regardless of the pinning site the eigenvalues of Gn are 1 and

K with multiplicity 1 each, and n with multiplicity n− 2. Hence, by (6.23) the critical coupling

of a complete graph is less or equal to that of a ring network, since (σc)c = α/µ1 = α ≤ (σc)r =

α/(2−2cos(π/n)). Moreover, the critical coupling (σc)k of any k-regular graph network satisfies

(σc)c 6 (σc)k 6 (σc)r for all n> 3.

6.4.4 Stability Hyperbola

The critical coupling and feedback gain define the extreme operating points, (K → ∞,σc) and

(Kc,σ → ∞), while normal operating points require finite values of the coupling strength and

feedback gain. It would then be convenient to characterize the stability boundary knowing Kc and

σc such that the choice of a stabilizing finite pair (K,σ) for the networked system is facilitated.
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We refer to the curve separating the regions Re(λ ) < 0 and Re(λ ) > 0 in Figure 6.1(a) as the

stability hyperbola since it can be described by the equation of a rectangular hyperbola [178],

given by

y =
a

x−Kc
+σc, (6.30)

where y = σ (coupling) and x = K (feedback gain). The asymptotes of the hyperbola are given by

Kc and σc, and thus it suffices to determine the hyperbola using (6.30) if an additional point, say

(K′,σ ′), on the hyperbola is known. However, this point (K′,σ ′) (see Figure 6.1(a)) is in general

arduous to compute, hence alternatively we find the point (K∗,σ∗) on the line K = σ . Once this

point is known, we can compute a in (6.30) as a = (σ∗−σc)(K∗−Kc), and then rewrite (6.30) as

σ =
(σ∗−σc)(K∗−Kc)

K−Kc
+σc. (6.31)

Equation (6.31) is a direct consequence of a mathematical linear stability analysis that was ini-

tially conducted on the chain network. Indeed, from (6.21), when Re(λ1) = 0, we can derive the

expression for σ as a function of the angle θ , i.e., σ = α/(2− 2cosθ), which is a hyperbola for

θ ∈ [0,π) with the asymptotes given by the critical gain K = Kc and coupling σ = σc. From cal-

culus we know that a hyperbola is the only conic with asymptotes, therefore, if our assumption

that the stability curve is a hyperbola is correct, then the inscribed angle theorem for hyperbolas

must be satisfied. Namely, taking any four points, P1, . . . ,P4, as shown in Figure 6.1(b), the angles

∠P1P3P2 and ∠P1P4P2 are equal [179], or, equivalently

(y4− y1)(x4− x2)

(x4− x1)(y4− y2)
=

(y3− y1)(x3− x2)

(x3− x1)(y3− y2)
. (6.32)
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A straightforward calculation by choosing any four points satisfying Re(λ1) = 0 shows that our

assumption is correct and that indeed the stability curve is a hyperbola. Note that (6.31) is general

and applies to any undirected network topology.
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Figure 6.1: Stability hyperbolas. (a) Analytic stability hyperbola of a chain network depicting the
stability boundary. The asymptotes are defined by the critical coupling σc and gain Kc. The white
and green areas represent the stable and unstable regions, respectively. (b) Hyperbola’s inscribed
angles.

In the previous sections, we have shown that the critical gain and coupling are dependent on the

network structure, i.e., size and topology. Furthermore, we have shown that except for a few

particular network topologies (k-regular graphs), the critical coupling is also dependent on the

location of the control site. To illustrate how the stability hyperbola is affected by the network size,

we consider the case of a chain network where pinning control is applied to the first oscillator. In

this particular case, we can derive an analytic expression for determining the third point (K∗,σ∗) on

the stability hyperbola. First, we set Re(λ1) = 0 in (6.21) and then solve for σ∗ = α/2(1−cosθ1).

Using the relation σ∗ = K∗ in (6.17), we obtain θ1 = π/(2n+1) (valid for pinning control applied
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to the first oscillator only), which leads to

σ
∗ =

α

2−2cos( π

2n+1)
. (6.33)

As it can be seen from (6.33), the coupling strength σ∗ increases as n increases, which implies that

the third point (K∗,σ∗) moves upward, which means the stability hyperbolas are shifted both ver-

tically and horizontally as shown in Figure 6.2(a). It is then clear that larger network are harder to

stabilize than smaller ones, furthermore, they require large feedback gains and coupling strengths.

Note that for this pinning configuration, we have an analytic expression describing the third, how-

ever, it is not always easy to find such analytic expression. In general, for other pinning control

scenarios, one needs to start by numerically solving for the angle θ , and then compute the coupling

σ∗ and gain K∗.

When the network topology and size are fixed, the location of the control site has no influence on

the critical gain, however, its impact on the critical coupling can be significant. In Figure 6.2(b),

we show how the stability hyperbolas are affected by the location of the control site in a chain

network of nine oscillators.

From this example, we see that controlling the network through node 1 requires a much higher

coupling strength than controlling through node 5. For small networks and simple topologies such

as the chain, a quick computation of the critical coupling σc using (6.23), for every node, could

suffice to determine the optimal control site, which minimizes the control effort. However, for large

complex networks this approach is not efficient. In the next section, we present a computational

efficient and accurate method for determining the optimal control site.
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Figure 6.2: Stability hyperbolas for stabilization of network dynamics. (a) Illustration of the shift-
ing of hyperbolas as a function of the network sizes, n = 3,4,5. (b) Hyperbolas corresponding to
different pinned nodes in a chain network of nine oscillators. The hyperbolas move upward due to
an increase of σc, for control sites other than the center (5th node), which minimizes σc. Stronger
coupling is required for stabilization with a given feedback gain K > Kc, for any pinned node other
than node 5.

6.5 Optimal Placement of Control Sites

Determining the best set of nodes to receive pinning controls in networked systems is a complex

combinatorial problem. In this section, we propose an effective algebraic technique to identify

one such node to receive pinning control without resorting to an exhaustive search algorithm or

heuristic methods based on various centrality measures, such as degree, betweenness, closeness,

and the eigenratio [180, 168].

Optimal Pinning Problem: The optimal pinning control problem is concerned with the selection

of the best control site(s). That is, given a network of n oscillators, find the node j to pin such

that the control effort is minimized, i.e., for a fixed coupling strength σ , the feedback gain K is

minimized; or for a fixed feedback gain K, the coupling strength is minimized.
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The problem at hand is the stabilization of the origin through pinning control, which can be treated

as pole assignment in control theory [181]. And as we have shown in Section 6.4, the critical

coupling is inversely proportional to the dominant eigenvalue of the matrix Ḡn. Suppose that the

eigenvalues of Ḡn are ordered as λ1 < λ2 6 · · ·6 λn (for a connected graph), then in the absence of

feedback, i.e., K = 0, the smallest eigenvalue λ1 = 0 given by (6.18) (for a chain or a ring network)

is independent of the coupling strength σ , while λ2, · · · ,λn are proportional to σ . Therefore, in

order to stabilize a network of coupled (SL) oscillators, we need to move the dominant eigenvalue

λ1 away from zero to a value greater than the constant α in the SL oscillator model by applying

the feedback gain K. As a result, the problem of finding the optimal control site is reduced to

identifying the node j at which the feedback gain K will be the most effective (in the sense that

for a given fixed coupling and gain (σ ,K), the feedback at the optimal control site will have the

most stabilizing impact on the networked system than at any other location) in placing λ1 at a

desired location in the complex plane. This problem can be tackled using the notion of geometric

measure of modal controllability [182], which allows one to quantify the influence of each input

on a particular eigenvalue. However, extra care must be taken when this method is applied to

systems with repeated eigenvalues [183], and it requires the computation of eigenvalues at least n

times, corresponding to each possible control site in the network, which is not very practical when

dealing with large complex networks. A comprehensive description of this approach as it applies

to networks of oscillators is given in Appendix D.1.

To circumvent the computational burden of the modal controllability method, we propose a method-

ology based on Lyapunov’s direct method [181, 184], where a Lyapunov function V (x) is es-

tablished to determine stability of a dynamical system. We would refer to this approach as the

Lyapunov-based method (LBM).
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Theorem 3: Consider the time-invariant linear autonomous system

ẋ = Ax, (6.34)

with the origin as an equilibrium point, where x ∈ Rn and A ∈ Rn×n. The system described by

(6.34) has the origin as a globally asymptotically stable equilibrium point if a Lyapunov function

V (x) can be found such that (i) V (x)> 0 for all x 6= 0 and V (0) = 0, (ii) V̇ (x)< 0 for all x 6= 0, and

(iii) V (x)→ ∞ as ‖x‖→ ∞ [184].

A canonical Lyapunov function is V (x) = x′Px, with P� 0 a real symmetric, positive definite (PD)

matrix. Taking the time derivative of the Lyapunov function and substituting for the dynamics in

(6.34) lead to V̇ (x) = x′[A′P+PA+ Ṗ]x. If the system matrix A is Hurwitz, then V̇ must be negative

definite (ND), and for any positive definite (PD) matrix Q ∈ Rn×n, there exists a matrix P(t) such

that the matrix differential equation,

A′P+PA+ Ṗ =−Q (6.35)

is satisfied. Furthermore, for a given constant matrix A, a constant matrix P will suffice for (6.35),

which implies Ṗ = 0 and then (6.35) becomes

A′P+PA =−Q. (6.36)

The main idea of our method is to consider a control system described by the Laplacian dynamics

associated with a network of n nodes, given by

ẋ =−σLx+Bu, (6.37)
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where L ∈Rn×n is the graph’s Laplacian matrix of the given network, B∈Rn×m is an input matrix,

and u = u(x) = −Kx ∈ Rm is a feedback control law. It is well known that the linear quadratic

regulator (LQR) control of the form u = −Kx = −B′Px, where P is the solution to the algebraic

Riccati equation (ARE) as in (6.36) with A = −σL, is a stabilizing feedback control, namely,

the closed loop matrix Acl = A−BB′P is Hurwitz [181]. Observe that if we substitute A by Acl

in the Lyapunov equation (6.36) we would obtain an ARE and the computed P matrix will be

PD. However, solving the ARE associated with a large network system would be computationally

expensive. In the following, we would then derive simpler solutions.

To apply the Lyapunov formalism, we will shift the real part of the eigenvalues of A and consider

the Lyapunov equation [A− 1
n I]′P+P[A− 1

n I] =−Q, which gives

P =−1
2
[A− 1

n
I]−1Q� 0, (6.38)

where Q is taken as the identity matrix I. Note that the Laplacian dynamics in (6.37) is stable in the

sense of Lyapunov [181], in other words, it is marginally stable. Hence, we can relax the condition

for P and allow it to be positive semidefinite (PSD) without destabilizing the system. Note that by

doing so, the Lyapunov function V (x) = x′Px no longer satisfies condition (i) in Theorem 3 and

V (x) > 0,∀x 6= 0. Nonetheless, we obtain the same information about the relative importance of

each control site as if (6.38) was used. By considering this relaxed condition and taking advantage

of the symmetry of A, P, and Q, we obtain a simple solution to the Lyapunov equation (6.36),

P =−1
2

A†Q, (6.39)

where Q = I and A† is the Moore-Penrose pseudoinverse of the matrix A. It is important to note

that any feedback gain K > 0 is sufficient to stabilize the dynamical system in (6.37), and that our
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aim thus far is not to compute the stabilizing gain, but rather to find some measure that will allow

for the determination of the best control site. We refer to this measure as the control centrality.

Once the optimal control site is known, then the appropriate stabilizing gain K can be computed

taking into consideration the dynamics of the oscillators in the network.

Let us now define the vector of control centrality measures, vc =(1/d1, · · · ,1/dn)
′, as the reciprocal

of the diagonal entries of the matrix P, where d = diag(P) = (d1, . . . ,dn)
′, and the control centrality

index ic (with ic = 1, · · · ,n) as the index of the ith entry of vc, respectively. To compute the control

centralities, we consider that n feedback controls are applied, and thus the input matrix B = I and

the gain matrix K = P.

It is known that modes (eigenvalues of the A matrix) that are less controllable from a given input

require higher gains to stabilize them [185]. Therefore, by computing the gain as proposed, the

most influential node in the network will require the least amount of feedback gain. This is the

intuition behind the proposed method. Therefore, pinned nodes that have less control (or influence)

over the dominant eigenvalue of the network will have low control centrality values, while pinned

nodes that have more control over the dominant eigenvalue of the network will have higher values

of control centrality. Hence, the node with the highest control centrality is the optimal control site,

and its index indicates the location in the network.

Remark 1: The concept of control centrality has been introduced before to quantify the ability of

each node to control a directed network [186], however, in this thesis we use it as a measure to

quantify the ability of each node to stabilize a network through pinning.
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6.6 Evaluation and Analysis of the Lyapunov-Based Method

The evaluation of the LBM presented is Section 6.5 was primarily done using thousands of numer-

ically generated networks. In order to cover diverse network structures one could encounter, we

used four different graph topologies, namely, the Barabási-Albert (BA) scale free [187, 188], the

Erdős-Rényi (ER) random network [189], the Watt-Strogatz (WS) small world [190] and tree net-

works [191]. The scale free networks were generated using the preferential attachment algorithm

of Barabási and Albert [188]. The initial seed was a small connected graph with the average node

degree γ0 = 2. The ER random networks were generated by the random graph model G(n, p) with

n nodes and probability of existence p = ln(n)/n for each possible edge. The WS small-world net-

works were generated per the Watts and Strogatz model [190] with a rewiring probability β = 0.15

and an expected degree 〈γ〉 = 20 for networks of size n ≥ 25. The tree networks were generated

using a fixed maximum number of generations and node degree (fixed maximum number of chil-

dren for each non-pendant vertex) and the tree-like networks were spanning trees of ER random

networks with a desired number of nodes.

The performance of LBM (denoted M1) is shown in Table 6.1 for different network topologies,

where the percentages indicate how many times each method selected the control site with the

lowest critical coupling σc. From these results, we see that there are networks (for each topology)

for which our method did not select the control node with the lowest σc. A closer look at these

networks lead to the discovery of what we call degenerate networks.

The descriptions of different control centralities used in Table 6.1 are provided in Table 6.2, where

the optimal control site is located using the index corresponding to the largest value of the control

centrality. We use 〈dk〉 to denote the average distance measured at node k, that has degree γk, and

vk is the kth entry of the Fiedler vector v f = (v1, · · · ,vn)
′ i.e., the characteristic valuations [191].
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Table 6.1: Accuracy of the methods for different topologies over 1000 runs

Methods/Topologies M1 M2 M3 M4 M5

BA scale free 98.8% 91.8% 94.0% 2.20% 17.7%

ER random graph 99.8% 83.5% 90.8% 1.80% 3.30%

WS small world 99.9% 72.0% 82.1% 1.50% 2.20%

Tree 43.5% 22.6% 24.8% 96.3% 96.5%

Table 6.2: Methods descriptions

Methods Control centrality measures

M1 Computed by Lyapunov-based method using equation (6.39)

M2 Obtained using the node’s degree γk

M3 Computed using 1/〈dk〉 for acyclic graphs and γk/〈dk〉 for cyclic graphs

M4 Obtained using the characteristic valuations 1/vk

M5 Computed using the equation 1/(vk ∗ 〈dk〉)

6.6.1 Degeneracy and Suboptimality of the Control Site

Definition 2 (Degenerate network): A degenerate network is a network that has at least two sta-

bility hyperbolas corresponding to two distinct pinning sites that intersect in the (K,σ)-plane at a

point (K1,σ1), with K1 < ∞ and σ1 < ∞.

Remark 2: The control site obtained by (6.39), which minimizes the feedback gain, yields a global

optimal control site if the network is not degenerate, and a suboptimal control site if the network

is degenerate (i.e., optimal in the strong coupling regime). This is evident when the network is not

degenerate because in this case the stability hyperbolas do not intersect, and the stability regions

become smaller as the pinning site moves away from the optimal site as in Figure 6.2(b). However,

when a network is degenerate, the stability hyperbolas intersect as in Figure 6.3. One can then see

that the pinning site that minimizes the stabilizing feedback gain in the strong coupling and weak

feedback gain region (R1), no longer minimizes the gain in the weak coupling and strong feedback
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gain region (R2). Recall that LBM is based on the principle that modes that are less controllable

from a given input will require stronger feedback gains for stabilization, therefore, this method

always selects the node that minimizes the gain as the optimal node. So, in case of degenerate

networks, the optimality is limited to the weak feedback gain region (R1).

Figure 6.3: Intersecting stability boundaries of degenerate tree networks. Intersecting stability
hyperbolas in a 55-node degenerate tree network. The hyperbola (red) corresponding to the node
with the lowest σc intersects with the hyperbola in brown at the point O’ with a finite coupling σ .
The blue hyperbola is associated with the optimal pinning site obtained with the Lyapunov method
which is optimal in region R1 (a high and low K region, on the left of a line passing through the
origin and the point O’) and suboptimal in region R2.

This counterintuitive phenomenon which induces a switch of the most influential node in a net-

work, from one node to another, as the coupling strength gets stronger is prominent in tree networks

(56.5% in our experiments) while relatively rare in scale free networks (1.2% occurrence). In Fig-

ure 6.4, we evaluate LBM against other heuristic approaches described in Table 6.2, in terms of the

quotient of the critical couplings σc/σc−min. When we separate nondegenerate from degenerate

networks, we can see from Figure 6.4(a) that our method always select the node with the lowest

σc, whereas in Figure 6.4(b) we observe significant differences, especially for tree networks.

Thus far, the Lyapunov-based method has been tested on synthetic networks (i.e., computer gener-

ated) but its main advantage is to efficiently find the optimal control site in large complex networks.
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Figure 6.4: Numerical results on degenerate and nondegenerate networks. (a-b) Quotients
σc/σc−min for nondegenerate and degenerate networks, respectively (plot of average values and
their confidence intervals).

To that end, we tested LBM on real-world networks, and furthermore, we observed degenerate cen-

tral nodes, for example, in power and social networks.

Specifically, we considered the Western States power grid of the United States (which is a network

of 4,941 nodes with 6,594 edges) [190] and the Ego-Facebook network (which is a network of

2,888 nodes with 2,981 edges) [192, 193] that are shown in Figure 6.5(a) and Figure 6.5(b), re-

spectively. The color bar denotes the calculated control centrality for each node. For the power

network, LBM identified the optimal site N427 in the weak coupling region and the steepness anal-

ysis revealed that this network has 3 degenerate control sites (N1244, N427 and N394) that created

2 hyperbola intersections (N1244 with N427 and N1244 with N394), shown in Figure 6.5(c). As

a result, either node N427 or N1244 can be the optimal site in the high gain region, depending

on the coupling strength. In addition, this example shows that when the degree centrality fails to

select the optimal site, the resulting control node can be far from optimal. Indeed, in the power grid

node N2554 has the highest node degree γmax = 19, with a critical coupling σc = 5,390, whereas
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the two best control sites N427 and N1244 have lower nodes’ degree γ = 6 with the correspond-

ing σc = 3,792 and σc = 4,001, that are 29.65% and 25.77% lower than the critical coupling of

N2554.

As for the social network, we found two degenerate control sites, N288 (node degree γ = 481)

and N603 (γ = 769), with σc = 459.07 and σc = 457.84, respectively. The optimal pinning site

switches from node N288 in the low feedback region to N603 in the high feedback region (see

Figure 6.5(d)). The switching of the optimal sites due to the degeneracy in the network has practical

implications, e.g., change of the social relationship. For example, the Facebook user N603 could

be the pivot in this social network when the other users were not acquainted (with weak coupling

strength σ ) and lose his role to N288 when the friendship among other users was strengthened (in

the strong coupling region).

To corroborate the theoretical findings, experiments were performed on networks of coupled chem-

ical reactions. The nodes of the network are corroding nickel wires in sulfuric acid, and without an

external control, the corrosion rate (current) is oscillatory. The perturbation of the circuit potential

through feedback can stabilize the chemical reaction, hence suppressing oscillations. The coupling

between nodes is established by cross-resistances whose currents affect the reaction rate [174] (See

Appendix D.2).

The validation of the developed Lyapunov-based method for selecting the optimal control site

is carried out using an 8-node nondegenerate network shown in Figure 6.6(a). Using LBM, we

theoretically predicted that node 1 is the optimal control site. In experiment, we first determined

a stabilizing feedback gain K in weak coupling regime by pinning node 1, and then measured the

mean oscillation amplitudes A of the oscillations for different control sites with the same K, (see

Figure 6.6(b)). The results show that as the control site moves away from node 1, the control

becomes less effective resulting in higher mean amplitude of oscillations. In Figure 6.6(c), we
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(a) Power grid (b) Ego-Facebook network

(c) Stability hyperbolas for (a) (d) Stability hyperbolas for (b)

Figure 6.5: Real-world degenerate networks. (a) Western States power grid of the United States.
(b) Ego-Facebook networks, respectively. The colormap represents the normalized control cen-
trality of each node from zero to one (red, highest centrality value). (c) and (d) Intersecting hy-
perbolas for the power grid and Ego-Facebook networks, respectively. The hyperbolas in (c) were
normalized by σc−min = 3,792 (N427, red hyperbola) and Kc = 4941. The other hyperbolas have
σc = 3,865 (N394, black), σc = 4,001 (N1244, blue) and σc = 4,086 (N1309, green). The op-
timal site (N1244) selected with our method and node N427 have the same degree γ = 6, while
the other two suboptimal nodes have γ = 5. The network maximum degree is γmax = 19 (N2554
with σc = 5,390). The hyperbolas in (f) were also normalized by the network σc−min and Kc. The
tangent lines show the steepness of the hyperbolas.

show the trend of the critical couplings as the quotient σc/σ1
c (σ1

c is the critical coupling for node

1) which agrees with experimental variations of the amplitudes.
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Likewise, degeneracy was theoretically predicted (using the procedure in Section 6.6.2) and exper-

imentally observed in the 10-node network in Figure 6.6(d-e), which was obtained by adding a star

motif to the end of a chain network. Using LBM node 3 was predicted as the optimal control site

in the strong coupling (weak gain) regime, whereas node 1 was found to be optimal in the weak

coupling (strong gain) regime. This is experimentally confirmed by measuring the mean oscillation

amplitudes of the network for both control sites, in the weak and strong coupling regimes, respec-

tively (see Figure 6.6(f)). The results thus show that the distance of a node to the peripheries of the

network becomes more important as the coupling strength is weakened, while at strong coupling

more weight is placed on the degree of nodes causing the shift in the optimal control site. These

experimental observations support the stability hyperbola-based selection of the optimal control

site.

6.6.2 Identification of Degenerate Undirected Networks

This test determines whether or not the hyperbola corresponding to the optimal site selected with

our proposed method intersects with any other hyperbolas, in which case, the network is degen-

erate. Hence, the selected node is only a suboptimal solution in the (K,σ) space. One strong

indication of degenerate networks is when the critical coupling σ k
c associated with the optimal

pinning node k selected by the Lyapunov method is greater than the critical coupling associated

with some other node i, denoted σ i
c, in the network. A natural approach to determine intersecting

points among hyperbolas is to check the existence of the solution (K,σ) satisfying the equations

defining the hyperbolas. However, this approach, though accurate, is computationally costly and

time consuming for large networks. To give an idea, the computation of σc at each node in the

power grid shown in Figure 6.5 took approximately 8 hours on a standard desktop computer, and,

furthermore, the computation for finding the point (K∗,σ∗), where K∗ = σ∗ on the hyperbola (see
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Figure 6.6: Experiments: pinning control of large networks; Rind = 1 kΩ. (a) Eight-electrode tree
network, with node 1 as the optimal site. The color represents the mean percent of the natural
amplitude; V = 1110 mV, σ = 1 mS, K = 5.4 A/V. (b) Mean amplitude for various control nodes
at K sufficient to control the network by the optimal control node. (c) The quotient σc/σ1

c for
each control site, where σ1

c = σc−min. (d) Ten-electrode degenerate tree network in the limit of
Kc (strong σ ); V = 1090 mV, σ = 2 mS, K = 2.4 V/A. The square indicates the pinned node. (e)
Ten-electrode degenerate tree network in the limit of σc (strong K); V = 1090 mV, σ = 0.50 mS,
K = 5.5 V/A. The square indicates the pinned node. (f) The mean percent amplitudes in the strong
coupling (left) and weak coupling (right).

Figure 6.1), requires an iterative scheme. Here, we propose a systematic and tractable computa-

tional procedure:
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• Step 1. Obtain the diagonal entries pii of the matrix P and compute the vector

p̄ =
1

mini(Pii)
(p11, · · · , pnn)

′ (6.40)

• Step 2. Compute the weights c j = ‖p j‖2
2 for j = 1, · · · ,n, where p j is the jth row of P, then

rescale p̄ to get

w̄ =
1

mini(ci p̄i)
(c1 p̄1, · · · ,cn p̄n)

′ (6.41)

• Step 3. Compute the difference of the two vectors z = w̄− p̄ = (z1, · · · ,zn)
′

• Step 4. Assume k is the index of the optimal pinning site selected by the Lyapunov method

with σ k
c denoting the corresponding critical coupling, then for any zi < zk, i = 1, · · · ,n, com-

pute σ i
c. If σ i

c < σ k
c then the stability hyperbolas of nodes i and k intersect. Hence, the

network is degenerate

The number of nodes satisfying zi < zm is much less than the size of the network n, which makes

this procedure computational more tractable than computing the critical coupling for all n nodes in

the network.

6.6.3 Degeneracy in Directed Networks

Thus far, we have shown that the developed Lyapunov technique for identifying the most influential

site in undirected networks works perfectly when the network is not degenerate. The existence of

degeneracy in undirected networks is a counterintuitive phenomenon, especially since the coupling

is homogeneous and, more importantly, every pinning site has exactly the same critical gain Kc.

Intrigued by degeneracy in undirected networks, we then decided to investigate both unweighted
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and weighted directed networks, and indeed we found degeneracy in these types of networks as

well.

Here, for illustrative purposes we present a 10-node weighted directed network (see Figure 6.7(a)).

The adjacency matrix of this network was generated using the following Matlab code,

>> A = magic(n)-diag(diag(magic(n)));

>> A(A>45) = 0;

>> Aadj = A./10;

Note that for both weighted undirected and directed networks, the critical coupling might have to

be redefined, and furthermore, the Laplacian matrix is not symmetric. However, here we consider

that the Laplacian dynamics is of the form ẋ = −σLix+Bu, where Li is the Laplacian matrix of

the weighted directed network, such that the definitions of the critical coupling and gain, given in

Supplementary Note 4, remain valid. The Laplacian matrix is computed as Li = Di−Aadj, where

Di is a diagonal matrix of indegrees.

In order to determine whether this network was degenerate or not, we started by plotting the stabil-

ity hyperbolas for all the nodes, as depicted in Figure 6.7(b). In addition, we numerically computed

the critical coupling σc and critical gain Kc for each node. These values are stored in the following

two vectors:

ςc = (1.52,1.23,2.60,2.28,1.91,0.94,1.02,1.02,0.85,0.44),

and

κc = (10.53,8.83,14.8,10.21,10.73,9.12,10.32,8.19,9.53,10.19),

where ςc,i and κc,i are the critical coupling and gain of the ith node, for i = 1, · · · ,10. From the

hyperbolas, one can clearly see that node 10 is the most influential when the coupling σ is weak

and the feedback gain K is strong. However, as the coupling σ gets stronger and the gain K gets
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weaker, node 10 progressively loses its position of influence and ends up in 5th position behind

nodes 8,2,6 and 9.

To demonstrate the impact that the switching of control sites has on the dynamical response, we

proceed with simulations of this network, with Stuart-Landau oscillators (Figure 6.7(c)-(d)). We

started by controlling the network using node 8 as the pinning site, and fixed the values of the gain

K = 10 and coupling σ = 100 (strong coupling regime). With K and σ fixed, we then proceeded

with node 10 as the control site; and for both control sites (i.e., node 8 and node 10), we show

the mean oscillation amplitude in Figure 6.7(c). We repeated the simulation, but this time with

K = 100 and σ = 1.5 (weak coupling regime) and the results are shown in Figure 6.7(d). These

simulation results show that node 8 performs better when the coupling σ is strong (as predicted by

the hyperbolas in Figure 6.7(b)), whereas, node 10 performance is poor. However, once the values

of K and σ switched, the performance of node 10 becomes better than the performance of node 8.

This example shows the importance of knowing whether a network is degenerate and how to select

the optimal control site depending of the strength of the coupling.

6.6.4 Degeneracy in Undirected Networks with Two Pinning Sites

We have discovered the existence of degenerate directed and undirected networks with a single

control site, however, degeneracy is not a property exclusive to single site controlled networks.

Here, we present two networks that are controlled using two pinning sites and for which we have

observed the switching of optimal control site pairs. We first present a 55-node tree network shown

in Figure 6.8. In this network, using a search algorithm, we found that the optimal control sites

in the weak coupling regime are given by the pair of nodes (1,45), and the corresponding critical

coupling is σc = 20.42 with the critical gain Kc = 27.5, given by (6.28). In the strong coupling
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(d) Weak coupling simulations

Figure 6.7: Illustration of a degenerate directed network. (a) Directed graph with ten nodes. (b)
Stability hyperbolas. (c) and (d) Mean oscillation amplitudes of the network in high coupling
(σ = 100, K = 10) and low coupling (σ = 1.5, K = 100) regimes, respectively. For strong σ , node
8 is the most influential, whereas for weak σ , node 10 is the most influential.

regime, on the other hand, we found that the pair (2,45) (with σc = 28.67 ) becomes the optimal

control pair. We notice a shift of the first control site from node 1 (with node degree γ = 7) to node

2 (with γ = 18).

The second example in Figure 6.9(a) shows a 35-nodes ER network that also has control pairs

with intersecting hyperbolas (see Figure 6.9(b)). Similar to the previous example, we found the

optimal pair in the weak coupling regime, given by (25,32) (with σc = 3.87) and in strong coupling
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Figure 6.8: Illustration of degeneracy in an undirected Tree network with two pinned nodes. (a)
Graph of the 55-nodes network. (b) Stability hyperbolas. The hyperbola in red corresponds to the
control pair (25,32), whereas the blue one corresponds to the pair (3,25).

regime, given by (3,25) (with σc = 4.09). Once again, we observe a switch of one of the control

sites, specifically, from node 32 (with γ = 5) to node 3 (with γ = 7) as the coupling strengthens.

Figure 6.9: Illustration of degeneracy in an Erdős-Rényi undirected network with two pinned
nodes. (a) Graph of the 35-nodes ER random network. (b) Stability hyperbolas. The hyperbola in
red corresponds to the control pair (25,32), whereas the blue one corresponds to the pair (3,25).

An important observation from these two examples is that, in strong coupling regimes, the node

degree γ becomes more influential. Before giving a plausible explanation for this phenomenon,
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first, we observe that the control site with the lower node degree has the shortest maximum path or

distance (see the inset in Figure 6.8, for example). Referring to the same figure for clarity, observe

that the distance of node 1 to the farthest nodes (14,19,20 and 23) is 5, while it is 6 for node 2. So,

in the weak coupling regime (where the node dynamics are not necessarily synchronized) the con-

trol influence from node 1 has to travel a shorter distance before reaching all the nodes. The control

influence from node 2, on the other hand, can immediately reach 18 nodes directly connected to

node 2, however, it has to travel longer distances, passing through node 1, before reaching the rest

of the network. It is also important to note that there is an inherent delay in the propagation of

the control influence from one node to another because the node dynamics are not synchronized

due to weak coupling. Hence, in this case we can see that the node with the shortest path has

the most influence. However, when the coupling strength is strong, the node dynamics quickly

synchronize, and hence reducing or eliminating the propagation delay observed in weak σ . This

is advantageous for node 2 which has already 18 nodes that easily and quickly synchronize to it;

therefore, the control influence is also transmitted to the rest of the network without difficulties. To

conclude, the control site with high node degree influences more nodes rapidly without requiring

a large amount of feedback gain.
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Chapter 7

Conclusion

7.1 Iterative Control Methods

In Chapter 2, a convergent iterative method for solving optimal tracking control problems, for

bilinear systems, with quadratic cost functional is proposed. The developed control algorithm is

versatile, and allows for the design of optimal tracking control as well as minimum energy con-

trol laws. In addition, with minor modifications, it can be used for the design of bounded control

inputs. Furthermore, we prove the convergence of the iterative control algorithm and provide suf-

ficient conditions for a local or global optimal control to exists. The effectiveness of the proposed

method is demonstrated through numerous examples, using different bilinear systems, that show

fast convergence and better performance than some algorithms in the literature. This simple to

implement algorithm, that also applies to ensemble bilinear systems, can find many practical ap-

plications, for example, for synthesizing optimal pulse sequences in nuclear magnetic resonance

spectroscopy and imaging.

The work in Chapter 3 extends the iterative control algorithm, for bilinear systems, presented in

Chapter 2 to oscillating systems that can be reduced to phase model descriptions. In particular, we
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leverage phase reduction theory to reduce the complexity of the control problem by reducing the

dimensions of the dynamical system, e.g., the Hodgkin-Huxley neuron model. Furthermore, we

showed by computing the iterated Lie brackets that, for ensemble controllable neuron or oscillator

systems, the developed control algorithm can be used to synthesize control inputs that manipulate

the phases or frequencies of the oscillators such that coherent and meaningful complex spatiotem-

poral phase patterns can be formed.

This control algorithm has potentially a wide range of applications, from treatment of neural

pathologies such as Parkinson’s disease and epilepsy [194, 195] to design of neurocomputers

[143, 196]. The robustness of the open-loop control will allow us to overcome some of the practi-

cal challenges of experimental implementation, namely, the difficulty to collect states information

necessary to form a feedback control law. Furthermore, the control of a large number of neural

oscillators with a single global control will have a significant impact in application such the reti-

nal implants by reducing the number of required electrodes transmitting visual information to the

visual cortex through optic neurons. Although the core of this work considered neuron oscillator

models, the methods and analysis presented in Chapter 3 are applicable to any limit-cycle oscil-

lator, e.g., pulsating cardiac cells that generate the heartbeats and which are often modeled by

reaction-diffusion systems [126]. As future directions, we would like to investigate the robustness

of the iterative control algorithm in experiments, and in presence of uncertainty and parameter

dispersions.

7.2 Novel Modeling and Control Paradigms of Cyclic Loads

The Chapters 4 and 5 present a new modeling and control paradigm for thermostatically controlled

loads (TCLs) using neuroscience-inspired oscillator modeling and phase model reduction theory.
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The simplicity of the TCL phase model opens the door to a rich variety of analysis tools and control

strategies that could improve the way in which TCLs are operated to provide demand response

(DR) on a power distribution system. Indeed, one of the main challenges in control of TCLs,

that limit the capacity and time scale of ancillary services (AS), is synchronization which leads to

unwanted power fluctuations. In Chapter 4 we show that the concept of Arnold tongues, which

is a tool of choice for analyzing synchronization of oscillators, can be used to, more accurately,

estimate AS capacity and time scale that a given TCL population can provide to support power grid

stability. Furthermore, we use Arnold tongues to characterize the performance of control policies

tracking sinusoidal reference power signals.

In Chapter 4, as a proof of concept, we propose a PRC-based open-loop controller that is used

to track a reference power signal. Open-loop control of TCLs is appealing given that, by not

requiring feedback, it eliminates the need to establish two-way communication channels (reducing

the cost) and privacy concerns that have been raised. However, the proposed PRC-based controller

was not optimized. Therefore, taking advantage of the simplification introduced by phase models,

which allows the formulation of optimal control problems, in Chapter 5 we develop a minimum

energy phase model-based controller for modulating the power consumption of TCLs. This control

policy provides demand response on time-scales of interest while satisfying the TCLs operating

constraints. Specifically, by keeping constant the frequency at which a load is made to switch on

and off in a given time period, this controller will help avoid excessive wear on the equipments.

In addition, we show that the response of this controller to a step input slowly affects the mean

temperature of the TCLs, which is a more comfortable scenario for the consumers, while keeping

power overshoots to a minimum.

As a future directions, we would like to determine the maximum ancillary service capacity that the

minimum energy controller can provide and on the appropriate time scales. Furthermore, we would
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like to explore the impact of user defined constraints such as bounds on the allowable temperature

deviations, and also formulate optimization problems to maximize AS capacity and bandwidth.

The application of phase models to evaluate the ability of random on/off switching policies to

provide demand response on different time-scales is also promising. Lastly, the use of pinning

control strategy in large building with multiple TCLs is also worth investigating.

7.3 Identification of Influential Nodes in Complex Networks

Chapter 6 investigates a significant problem in pinning control of oscillator networks, that is, to

identify the most influential site for establishing stable behavior in the network and to unlock

what this site is dependent upon i.e., elucidate its dependence on the network structure. We start

by establishing the conditions under which stabilization with a single pinning site is achievable.

Specifically, our analysis, based on the derivation of the analytical eigenvalue structure of the

controlled network and linear stability analysis, reveals that for any complex undirected network,

the stable and unstable states are separated by a hyperbolic curve in a phase diagram of K vs. σ ,

which we refer to as the stability hyperbola. In general, each possible control site in a network is

associated with a stability hyperbola that characterizes the stable region, and the most influential

control site (optimal) often has the large stable region. For some network topologies such the chain

network, the stability hyperbolas associated with the control sites never intersect, which means that

the node with the large stability region, defined by the hyperbola, is the global optimal control site.

However, the work in Chapter 6 has led to the discovery of degenerate networks, i.e., the most in-

fluential node switches from one node to another according to the strength of the coupling between

nodes. This counterintuitive phenomenon is observed in both computer generated and real-world

networks, such as social and power grid networks. We further show that in a degenerate network, a
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node that is most influential and which can stabilize the network dynamics when the coupling be-

tween different units is strong, may no longer be the most influential when the coupling weakens.

We use dynamic simulations of a directed network of ten Stuart-Landau oscillators to demonstrate

this phenomena. Moreover, a computationally efficient method (called LBM) was developed to

identify the global optimal and the candidate optimal pinning sites for stabilization of a nondegen-

erate and a degenerate complex undirected network, respectively. The theoretical development was

confirmed in experiments with networks of chemical reactions, where oscillations in the networks

were effectively suppressed through pinning of a single reaction site determined by the computa-

tional method.

The developed methods are directly applicable to identify and control the so-called influential

spreader [197], for instance, to determine the foci and dosage required for immunization in an

epidemic network [198] or locate optimal pacemaker position for synchronization [199, 200]. The

relocation of influent network nodes due to the change in coupling strengths could be of particular

importance for tree-like networks, which are often used for efficient distribution of resources, e.g.,

in the nephrons of kidney [201]. The development of an efficient computational method for deter-

mining, simultaneously, multiple control sites in pinned networks is left for future investigation.
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Appendix A

Proofs of Bounded Solutions

The proof of convergence in Section 2.2.2 rely on the fact that one can find finite bounds for αi

and βi with i ∈ N. In appendix A.0.1, we show that all the norms of matrix and vector valued
functions that define the βi coefficients are bounded, and in appendix A.0.2, we show how the αi

are obtained.

A.0.1 β -Coefficients

Since, we are dealing with a finite-time optimal control problem, it can be shown that for a finite
time horizon T the following norms are bounded, ‖Φ(t,σ)‖,‖xk(t)‖,‖Ek(x)‖,‖gk(t)‖, and ‖Pk(t)‖.
Indeed, a bound on the transition matrix as shown in [107] is given by

‖Φ(t,σ)‖ ≤ α0(|t−σ |) = γ1, ∀ t,σ ∈ [0,T ], (A.1)

where α0 ∈ R. Suppose that xk(t) is in the reachable set R(t; x̂(t0), t0,U), there exists a control
u(t) ∈ U such that

xk(t) = Φ(t, t0){x̂(t0)+
∫ t

t0
Φ(t0,σ)B(σ)u(σ)dσ}. (A.2)

Since all the entries in Φ and B are continuous on [t0,T ], it follows that there exists numbers L1

and L2 such that ‖Φ(t, t0)v1‖ ≤ L1‖v1‖ and ‖Φ(t,σ)B(σ)v2‖ ≤ L2‖v2‖ for all v1 ∈ Rn, v2 ∈ Rm,
and t,σ ∈ [t0,T ]. It then follows that

‖xk‖ ≤ L{‖xk(0)‖+(t− t0)MN}= γ2, (A.3)
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where M = supσ∈[t0,T ]‖u(σ)‖. Consider Ek(x) = (B̄+{xN}k)R−1 (B̄+{xN}k)
′, where {xN}k =

(∑n
j=1 x jN j)k. It follows that

Ek(x) = B̄R−1B̄′+ B̄R−1{xN}′k +{xN}kR−1B̄′+{xN}kR−1{xN}′k. (A.4)

Given that B̄ and N j are constant matrices, and R is positive definite while ‖xk‖ is bounded, by the
triangle inequality it follows that

‖Ek(x)‖ ≤ ‖B̄R−1B̄′‖+‖B̄R−1{xN}′k‖+‖{xN}kR−1B̄′‖+‖{xN}kR−1{xN}′k‖ ≤ γ3. (A.5)

Similar arguments as used to show that ‖xk‖ < γ2 can be used to show that ‖gk(t)‖ < γ4 for all
t ∈ [t0,T ], since (2.11) is the adjoint to the system dynamics in (2.14).

The Kalman conditions (i)-(iii) in Theorem 3 guarantee the existence of a bounded solution P(t) to
the Riccati equation in (2.10) ∀ t ≤ T . Hence, one can find an upper bound such that ‖Pk(t)‖ ≤ γ5.

A.0.2 α-Coefficients

The norm of the difference

‖Ek(x)−Ek−1(x)‖= ‖B̄R−1{xN}′k− B̄R−1{xN}′k−1 +{xN}kR−1B̄′−{xN}k−1R−1B̄′

+{xN}kR−1{xN}′k−{xN}k−1R−1{xN}′k−1‖

≤ α1ξk−1(t), (A.6)

is bounded, where α1 =
[

∑
n
j,k=1 ‖N jR−1N′k‖2]1/2

(‖xk−1‖+‖xk−2‖)+
[

∑
n
k=1 ‖B̄R−1N′i +N−1

R B̄′‖2]1/2

and ξk−1(t) = ‖xk−1− xk−2‖. To obtain the bound on ‖Pk−Pk−1‖, let’s write

d
dt
(Pk−Pk−1)+(Pk−Pk−1)(A−EkPk)+(A−EkPk)

′(Pk−Pk−1)+Pk−1(Ek−1−Ek)Pk = 0. (A.7)

Then, integrating (A.7) backward in time gives

Pk−Pk−1 =
∫ T

t
Φ(σ , t)[Pk−1(Ek−1−Ek)Pk]Φ(σ , t)dσ . (A.8)
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After taking the norm on both sides, it follows

‖Pk−Pk−1‖ ≤
∫ T

t
γ6‖Ek−Ek−1‖dσ , (A.9)

where γ6 = ‖Φ′(σ , t)‖‖Pk−1‖‖Pk‖‖Φ(σ , t)‖.
Substituting (A.6) into (A.9) yields

‖Pk−Pk−1‖ ≤
∫ T

t
α1γ6‖xk−1− xk−2‖dσ = α2ξk−1, (A.10)

where α2 =
∫ T

t α1γ6dσ .
Finally, to obtain the bound on ‖gk−gk−1‖, let’s write

d
dt
(gk−gk−1) =−(A−EkPk)

′gk−Wz+(A−Ek−1Pk−1)gk−1 +Wz. (A.11)

Adding and subtracting [A−EkPk]
′gk−1 to (A.11), one obtain

d
dt
[gk−gk−1] =−[A−EkPk]

′gk+[A−Ek−1Pk−1]gk−1+[A−EkPk]
′gk−1− [A−EkPk]

′gk−1. (A.12)

After some algebraic manipulation, one obtains

[ġk− ġk−1] = [A−EkPk]
′[gk−gk−1]− [Ek−1Pk−1−EkPk]

′gk−1. (A.13)

Integrating backward in time with gk(T )−gk−1(T ) = 0, gives

gk−gk−1 =
∫ T

t
Φ
′
k(t,σ)[EkPk−Ek−1Pk−1](σ)gk−1dσ , (A.14)

then, after taking the norm on both sides and knowing that ‖EkPk − Ek−1Pk−1‖ ≤ γ7ξk−1(t), it
follows that

‖gk−gk−1‖ ≤
∫ T

t
γ7‖Φ′k(t,σ)‖‖gk(σ)‖ξk−1dσ = α3ξk−1, (A.15)

where α3 =
∫ T

t γ7‖Φ′k(t,σ)‖‖gk(σ)‖dσ .
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Appendix B

Control of Spatiotemporal Patterns
Supplement

B.1 Iterative Control of Phase Models

Consider the phase model (3.2) or equivalently the nonlinear system (3.3). These two equations
are both affine in the control input u(t), but for the phase model (3.2), f (θ) can either be a constant
f = ω or a nonlinear function of the phase variable θ , i.e., f = f (θ). We previously developed
an iterative method for designing optimal tracking control inputs for bilinear systems [103] of the
form ẋ = f (x)+u(t)g(x), where f (x) = A(t)x(t) is linear. Here, we extend the control algorithm
to accommodate ensemble phase models, with constant and nonlinear baseline dynamics f (θ).

B.1.1 Optimal Tracking Control Problem for Phase Model Systems

Consider the tracking problem of the following phase model ensemble,

Θ̇(t) = f (Θ)+Z(Θ)u(t), (B.1)

where Θ(t) = (θ1,θ2, · · · ,θn)
′ ∈ Ω ⊂ Rn, f ,Z : Ω→ Rn and u(t) ∈ U ⊂ R. Let Θd(t) ∈ Rn be

the desired phase trajectory vector. The aim is to control the system in (B.1) such that the phase
variables, θi’s, track the desired phase trajectories, θi,d(t), as close as possible in the time interval
[0,T ], with minimum control effort. Let’s define the error vector as e(t) =Θd(t)−Θ(t), the control
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law is then obtained by solving the optimization problem

min
u∈U

J = ϕ(T,e(T ))+
∫ T

0
L(e(t),u(t))dt,

s.t. Θ̇(t) = f (Θ)+Z(Θ)u(t),

Θ(0) = Θ0, Θ(T ) is free,

(B.2)

where ϕ : R×Rn→R, denoting the terminal cost, and L : R×Rn→R, denoting the running cost.
The terminal and running costs are ϕ(T,e(T ))= 1

2e′(T )Fe(T ) and L(e(t),u(t))= 1
2e′(t)Q(t)e(t)+

u′(t)R(t)u(t), where the matrices F � 0 and Q(t)� 0 are n×n positive semidefinite, and R(t) ∈R
is positive definite, ∀ t ∈ [0,T ].

B.1.2 Optimal Control Solution

Let V (t,θ) be the value function associated with the optimal control problem of the system in (B.1)
with the cost functional J(u) in (B.2), then V (t,θ) = inf

u∈U(t,θ)

J(u) over all admissible controls u :

[0,T ]→ U⊆ Rm. If V is differentiable with respect to (t,θ), then by minimizing the Hamiltonian
of the system over all admissible controls, one obtains the HJB equation [106, 202], given by

Vt +min
u∈U

{
Vθ ( f (Θ)+Z(Θ)u)+

1
2
(e′Qe+u′Ru)

}
≡ 0, (B.3)

where Vt =
∂V
∂ t ∈ R and Vθ = ∂V

∂θ
∈ R1×n. The necessary condition of optimality gives

u(t) =−R−1Z(Θ)′V ′θ . (B.4)

Substituting for e(t) and u(t) in (B.3) yields

Vt +
1
2
{
(
Vθ f (Θ)+ f (Θ)′V ′θ

)
−Vθ EV ′θ +(Θ′QΘ)+(Θ′dQΘd)− (Θ′QΘd +Θ

′
dWΘ)} ≡ 0, (B.5)

where E(Θ) = Z(Θ)R−1(t)Z′(Θ). Suppose that a candidate solution of (B.5) is of the form

V (t,Θ) =
1
2

Θ
∗′(t)P(t)Θ∗(t)−Θ

∗′(t)g(t)+h(t), (B.6)

149



where Θ∗(t) is the optimal state trajectory, P(t)∈Rn×n, g(t)∈Rn, and h(t)∈R. Taking the partial
derivatives of (B.6) with respect to Θ and t, one obtains

Vθ (t) = P(t)Θ∗(t)−g(t),

Vt(t) =
1
2

Θ
∗′(t)Ṗ(t)Θ∗(t)−Θ

∗′ġ(t)+ ḣ(t).
(B.7)

Substituting (B.7) into (B.5) yields after some algebraic manipulations

1
2

Θ
∗{Ṗ−PEP+Q}Θ∗+ ḣ+

1
2

Θ
′
dQΘd−

1
2

gEg+Θ
∗′{−ġ+PEg−QΘd +P f (Θ)}−g′ f (Θ)≡ 0,

(B.8)
where, for simplicity, we dropped the time dependence (t) on the phase variable Θ∗(t). Now, (B.8)
must be satisfied for all Θ∗(t), Θd(t) and t ∈ [0,T ]. Hence, one obtains the following set of coupled
differential equations that characterize the optimal solution of the tracking problem,

Ṗ(t) = P(t)E(Θ)P(t)−Q(t), (B.9)

ġ(t) = P(t)E(Θ)g(t)+P(t) f (Θ)−Q(t)Θd(t), (B.10)

ḣ(t) = g′ f (Θ)+
1
2
(g′E(Θ)g−Θ

′
d(t)Q(t)Θd(t)), (B.11)

with the respective boundary conditions, P(T ) = F , g(T ) = FΘd(T ), and h(T ) = Θ′d(T )FΘd(T ).
In addition, the optimal feedback control law is of the form

u∗(t) =−R−1Z′(Θ∗) [P(t)Θ∗(t)−g(t)] , (B.12)

and the optimal trajectory is given by

Θ̇
∗(t) = f (Θ)−E(Θ∗) [P(t)Θ∗(t)−g(t)] . (B.13)

The set of differential equations (B.9), (B.10), (B.12) and (B.13) are then used in Algorithm 2 (see
Appendix B.2) to iteratively solve for the optimal solution.

One should note that although the solution presented here is for designing tracking controls, it is
also possible to design minimum energy controls as well when tracking a particular state trajectory
is not required. To accomplish this, one needs to set the penalty matrix Q = 0, and then penalize
the control energy and the final state through the matrices R and F , respectively.
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B.2 Iterative Algorithm for Optimal Tracking Problems

The optimal control problem formulated in (B.2) is solved iteratively using algorithm 2.

Data: f (Θ), Z(Θ), Q(t), R(t), F , Θ(t0), Θd(t), T
Initialization ;
k = 0;
Θ0(t) = Θd(t), Θ0(0) = Θd(0);
while ||Θk(t)−Θk−1(t)||> ε do

compute Pk(t) and gk(t) using Z(Θk(t));
uk(t) =−R−1Z′(Θk(t))[Pk(t)Θk+1(t)−gk(t)];
Θ̇k+1(t) = f (Θk+1(t))+Z(Θk(t))uk(t);
k = k+1;

end
Algorithm 2: Algorithmic description of the iterative method

B.3 Control of Uncoupled Oscillators

The control algorithm 2 has a wide range of applications besides the ones mentioned in Chapter 3.
It can be used to design stimuli that synchronize or desynchronize an ensemble of oscillators,
and even change their oscillation frequencies. Here, we present a few canonical examples using
some popular neuron models in neuroscience and neuroengineering, namely, the Hodgkin-Huxley
(HH) and the Morris-Lecar (ML) Neuron Model. The control inputs in this section were computed
using (B.12), then applied as an open-loop control to the full state model, e.g., the HH and ML
differential equations, which demonstrate the robustness of the control algorithm.

B.3.1 Spiking Time Control of a Single Neuron

For this application we use the HH model, a four dimensional system of differential equations (see
Appendix B.6) that models the propagation and initiation of action potential in squid axon [118].
Phase reduction theory makes it possible to reduce such complex system of differential equations
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to a simple scalar phase model with baseline dynamics f = ω . The PRCs of the HH model and the
voltages as a function of the phase for different parameter values are shown in Figure B.1(a).
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Figure B.1: Hodgkin-Huxley neuron model simulations. (a) Phase sensitivity functions Z(θ) and
membrane voltages as function of the phase V (θ). The parameters of the ensemble of HH neurons
were distributed within 2% of the nominal values. (b) Controlled spiking train of Hodgkin-Huxley
model. The voltage of the uncontrolled neuron spikes every T0 = 14.6 ms, and the three controlled
neurons spike every T = 13.8 ms, T = 15.6 ms and T = 16.3 ms, respectively. The corresponding
controls are shown in the bottom plot.

The controlled and uncontrolled spiking trains of one neuron are shown in Figure B.1(b). The
amplitudes and shape of the controls obtained with our method are consistent with the charge-
balanced minimum-power controls in [61], which is an indication of the optimally of the converged
solution.

B.3.2 Synchronization and Desynchronization of Neuron Ensembles

The control of neuron ensembles have therapeutic applications such as in Parkinson’s disease,
where electrical deep brain stimulation is used to mitigate pathological synchronization of a neuron
population [47]. Here, we study synchronization and desynchronization of neuron ensembles in
finite time T � ∞.
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Synchronization of a neuron population can be achieved by applying a T -periodic control input
that forces the phases of the neurons to be the same at the end of each cycle, corresponding to
the time t = kTu, where k = 1,2,3, · · · , and Tu is the period of the forcing input. The design
of the synchronizing control input can be carried out simply by considering a system of three
neurons with natural frequencies corresponding to the minimum, maximum and mean value of the
population frequencies. This reduced order design approach is guaranteed to synchronize all the
neurons with frequencies within the range of the three nominal values considered as long as the
trajectories of these neurons have no crossings when stimulated by a common control input [129].
By designing a control that steers the phases of the three neurons from arbitrary nonzero (but close
to zero) initial phases to a common final phase value θ(Tu) = 2π at time t = Tu, this will ensure
synchronization of the ensemble. The synchronizing control input in Figure B.2(c) was design over
one period and then applied repeatedly with period Tu for three cycles.

Similar to the synchronization control design, one can consider three neurons with natural fre-
quencies chosen as previously, and then design a control input that assigns different phases to each
neuron at time t = Tu as shown in Figure B.2(a). This control is sufficient for desynchronizing a
population of uncoupled neurons. In Figure B.2(c) we applied a synchronizing control for three
periods then turn it off for three cycles before applying the desynchronizing control for two peri-
ods. One can see that the desynchronizing control greatly speeds up the desynchronization process
which was slow during the period of zero input.

This numerical experiment was carried out using the Morris-Lecar neuron model [203], which is
a simplified version of the HH neuron model that describes the oscillating voltage of the giant
barnacle muscle fiber. The ML system of differential equations is given in Appendix B.5. This is
a model that has been extensively used to represent real neurons that are experimentally observ-
able [204]. For the parameter values in Appendix B.5, the neuron fires periodically with a natural
frequency ω = 0.255 rad/ms.

B.4 Theorems

Theorem 4: (Versions of Chow’s Theorem) Let { f1(θ), f2(θ), · · · , fm(θ)} be a collection of vec-
tor fields such that { f1(θ), f2(θ), · · · , fm(θ)}LA is
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Figure B.2: Synchronization and desynchronization of neurons. (a) Phase trajectories of the ML
phase model undergoing desynchronization (top) and the phases distribution after one period (bot-
tom). The blue circles indicate the target phases and the red crosses indicate the actual final phases.
(b) Voltages of three neurons (top) with the desynchronizing control (bottom) applied to the full
states ML models. (c) Synchronization and desynchronization of neuron voltages (top) by appli-
cation a synchronizing control followed by a desynchronizing control (bottom).

a) analytic on an analytic manifold M. Then given any point θ0 ∈ M, there exists a maximal
submanifold N ⊂M containing θ0 such that {exp{θi}}Gθ0 = {exp{θi}LA}Gθ0 = N.

b) C∞ on a C∞ manifold M with dim(span{ fi(θ)}LA) constant on M. Then given any point
θ0 ∈M, there exists a maximal submanifold N ⊂M containing θ0 = N.

Theorem 5: Suppose that f and g are vector fields on a manifold M. Suppose that { f ,g} meet ei-
ther of the conditions of Chow’s theorem and suppose that for each initial condition θ0 the solution
of

θ̇(t) = f [θ(t)]

is periodic with a least period T (θ0)< M. Then the reachable set from θ0 for θ̇ = f (θ)+u(t)g(θ)

is {exp{ f ,g}}Gθ0.

For more details on these two theorems, the reader can refer to [129, 27] and references therein.
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B.5 Morris-Lecar Model

The Morris-Lecar neuron equations representing the voltage-gated calcium channel model with a
delayed-rectifier potassium channel is described by two coupled dynamical equations,

V̇ =
1
C
[(Ib + I)+gCam∞(VCa−V )+gkw(Vk−V )

+gL(VL−V )],

ẇ = φ(ω∞−w)/τw(V ),

m∞ = 0.5[1+ tanh((V −V1)/V2)],

ω∞ = 0.5[1+ tanh((V −V3)/V4)],

τw = 1/cosh[(V −V3)/(2V4)].

(B.14)

The variable V is the voltage across the axon membrane, Ib is the base current and I is the control
input. The nominal parameter values considered in this dissertation are as follow, V1 =−0.01 mV,
V2 = 0.15 mV, V3 = 0.1 mV, V4 = 0.145 mV, Vk =−0.7 mV, VL =−0.5 mV, VCa = 1 mV, gCa = 1
mS/cm2, gk = 2 mS/cm2, gL = 0.5 mS/c2, Ib = 0.09 µ A/cm2, φ = 0.5, C = 1 µF/cm2.

B.6 Hodgkin-Huxley Model

The Hodgkin-Huxley model describing the action potentials in the squid giant axon is described
by

cV̇ = Ib + I(t)− ḡNah(V −VNa)m3− ḡK(V −Vk)n4− ḡL(V −VL),

ṁ = am(V )(1−m)−bm(V )m,

ḣ = ah(v)(1−h)−bh(V )h,

ṅ = an(v)(1−n)−bn(V )n.

(B.15)

The axon membrane voltage is represented by the variable V , while the ion gating variables are
given by m, n and h. The baseline current and control input are given by Ib and I, respectively. The
nominal parameters used in this dissertation are VNa = 50 mV, VK = −77 mV, VL = −54.4 mV,
Ib = 10 µA/cm2, ḡNa = 120 mS/cm2 , ḡK = 36 mS/cm2, ḡL = 0.3 mS/cm2 and c = 1 µF/cm2.
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Appendix C

Thermostatically Controlled Loads
Supplement

C.1 TCL Model with Power and Temperature as Variables

Consider the model in (4.13) with the switching function defined in (4.14) together with the ag-
gregate power equation (4.3). Let y(t) = 1/ηs(t)P be the instantaneous power drawn by a single
TCL. The time derivative of the instantaneous power is given by ẏ(t) = 1/η ṡ(t)P. The switching
function in (4.14) can also be written using an exponential function as s(t) = (1+ exp(−kx))−1.
We can then write x(t) in terms of the switching function as

x(t) =−1
k

ln
(

1− s
s

)
. (C.1)

Taking the time derivative of x(t) yields

−k
dx
dt

=
d
dt

(ln(1− s)− ln(s)) . (C.2)

Let u = 1− s, and by applying the chain rule, we obtain

−k
dx
dt

=
d
dt

ln(u)− d
dt

ln(s),

=
d

du
ln(u)

du
dt
− d

ds
ln(s)

ds
dt

,

=
1
u

du
dt
− 1

s
ds
dt

.

(C.3)
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After substituting for u and
du
dt

=−ds
dt

in (C.3), we obtain

ẋ =
ṡ

ks(1− s)
. (C.4)

We may now write (C.4) in terms of the instantaneous power, y(t), as follows

ẋ =
ẏ

k
(
1− η

P y
) . (C.5)

Substituting for (C.5) and (C.1) in (4.13), with s(t) = η

P y, we obtain

ẏ(t) = µk
(

δb

2
ȳ− 1

3
ȳ3 +ϑ −ϑs

)(
1− η

P
y
)

y,

ϑ̇(t) =− 1
CR

(ϑ −ϑa +ηRy) ,
(C.6)

where ȳ(t) =−1
k ln
(

P
ηy −1

)
.

C.2 Phase Model and Phase Response Curve

Phase reduction theory is a powerful tool for studying multi-dimensional rhythmic systems that
are reduced to a scalar differential equation that is much easier to analyze and control. The au-
tonomous oscillatory system is then described by its phase variable φ rotating on a circle S1. This
is represented by the phase equation φ̇(t) = ω . In neuroscience the origin of the phase φ is de-
fined as the time since the last spike of a neuron [84], and in our work we define it as the phase
corresponding to the time the TCL turns ON. When an oscillator receives a pulse of strength A and
duration ∆T , the magnitude of the induced phase shift is given by PRC(φ) = φnew−φ [84, 128].

For completeness, we summarize the derivation of the phase model here. More details can be
found in [84, 121]. Consider a smooth dynamical system described by

ẋ = f (x,u), (C.7)
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where the state variable x(t) ∈ Rn and the input u(t) ∈ U⊆ Rm. Suppose that the unforced system
ẋ = f (x,0) evolves on an attractive periodic orbit Γ ⊂ Rn with period T . The limit cycle is then
described by a non-constant periodic trajectory γ(t) = γ(t+T ) ∈ χ, ∀t ≥ 0. The linearized system
along the limit cycle is given by

δ ẋ = A(t)δx(t)+B(t)u(t), (C.8)

where A(t) = ∂ f
∂x (γ(t),0) and B(t) = ∂ f

∂u (γ(t),0) are T -periodic. Given that the limit cycle Γ is a
one-dimensional closed curve [84], the position of any point x0 ∈ Γ can be uniquely described by a
scalar phase φ0 ∈ S1 = [0,2π) [128]. Let’s introduce the phase function Θ(x) that maps each point
x0 on the limit cycle to its phase φ0 = Θ(x0). The phase variable φ : R≥0→ S1 is defined for each
trajectory on the limit cycle as φ(t) = γ(t +ω−1φ0), and is periodic due to the periodicity of γ(t).

From the linearized model and the asymptotic phase variable, one can derive the phase-reduced
model in a neighborhood of the limit cycle, Γ, for sufficiently small inputs [84, 121]. By differen-
tiating φ(t) with respect to time in the neighborhood of γ(t) using the chain rule, one obtains

dΘ(x)
dt

=
∂Θ

∂x
(γ(t)) · d

dt
x(t)+

∂Θ

∂x
(γ(t)) ·B(t)u(t),

=
∂Θ

∂x
(γ(t)) · f (x)+

∂Θ

∂x
(γ(t)) ·B(t)u(t),

= ω +Z(φ) ·B(t)u(t),

(C.9)

where we have used to the fact that ∂Θ

∂x (γ(t)) · f (x) = ω and Z(φ) = ∂Θ

∂x (γ(t)) is the phase sensi-
tivity function also referred to as infinitesimal PRC. The input matrix function B(t) depends of the
differential equations describing the system, for example B(t) = (−µ,0) for the system in (4.13)
where the control is a perturbation of the set-point temperature ϑs(t).

In the following we review the main three methods that are commonly used to compute the phase
sensitivity function. These techniques are explained with great details and illustrations in [84].

• Winfree’s Approach
In a sufficiently small neighborhood of the limit cycle, the PRC scales linearly with respect
to the strength of the pulse. Hence one can write

PRC(φ ,A)≈ Z(φ)A, (C.10)
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where Z(φ) = ∂PRC(φ ,A)/∂A at A = 0 is the linear response or sensitivity function that
quantifies the small change in the instantaneous frequency caused by the weak stimulus
that was applied. Now assume that we apply a sufficiently small stimulus ε p(t) and that
the perturbed trajectory remains near the limit cycle attractor at all time. Replacing the
continuous input function ε p(t) with the equivalent pulse train of strength A = ε p(tn)h,
where h is the time between two consecutive pulses, and tn is the timing of the nth pulse, one
can write the Poincaré phase map as φ(tn+1) = {φ(tn)+Z(φ(tn))ε p(tn)+h}mod T, in the
form

φ(tn +h)−φ(tn)
h

= 1+Z(φ(tn)ε p(tn), (C.11)

which is a discrete version of
φ̇ = 1+ εZ(φ) · p(t), (C.12)

in the limit h→ 0. Note that the phase model (C.12) is valid for any arbitrary input function
p(t). To summarize, Winfree’s approach consists of measuring the phase shift induced by a
pulse train to determine the PRC.

• Kuramoto Approach
Kuramoto considered the unperturbed oscillator with φ(x) denoting the phases of points near
its limit cycle attractor. Differentiating φ(x) using the chain rule yields

dφ(x)
dt

= grad φ · dx
dt

= grad φ · f (x),

where grad φ is the gradient of φ(x) with respect to the state vector of the oscillator x ∈ Rn.
However, given that on the limit cycle the flow of the vector field, f (x), is exactly in the
direction of the periodic orbit so that dφ(x)

dt = 1, we obtain the important equality

grad φ · f (x) = 1. (C.13)

By applying the chain rule to the perturbed system

dφ(x)
dt

= grad φ · dx
dt

,

= grad φ · { f (x)+ ε p(t)},

= grad φ · f (x)+ εgrad φ · p(t),

(C.14)
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and using (C.13), the phase model is obtained as

φ̇ = 1+ εgrad φ · p(t). (C.15)

Kuramoto phase model (C.15) and Winfree’s model (C.12) are equivalent. Hence we have
Z(φ) = grad φ .

• Malkin’s Approach
Here we formally state Malkin’s theorem as in [84]. Suppose the unperturbed oscillator has
an exponentially stable limit cycle of period T . Its phase evolution is described by

φ̇ = 1+ εQ(φ) · p(t), (C.16)

where Q is a T -periodic function that is the solution to the linear “adjoint” equation

Q̇ =−{D f (x(t))′}Q, with Q(0) · f (x(0)) = 1, (C.17)

where D f (x(t))′ is the transposed Jacobian of the flow f at the point x(t) on the limit cycle,
and the normalization condition can be replaced by Q(t) · f (x(t)) = 1,∀t.

The phase models (C.16) and (C.15) or (C.12) are equivalent, hence one can see that

Z(φ) = grad φ(x) = Q(φ). (C.18)

The method of the adjoint was used in this dissertation to numerically compute the phase sensitivity
function Z(φ). Examples of computer codes for this method can be found in [84, 128].

C.3 Entrainment Region

The PRC defines the synchronization properties of an oscillator and the synchronized states as
fixed points of the corresponding Poincaré phase map [84]. The phenomenon of entrainment by
weak forcing of limit-cycle oscillators can be modeled by

φ̇ = ω +AZ(φ)v(Ωt), (C.19)
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where ω and Ω are the natural frequencies of the oscillator, respectively, and the forcing input
is u(t) = Av(Ωt), where v is 2π-periodic with unit energy [65]. The region of existence of a
synchronized state is called Arnold tongue [48, 157]. This region of phase-locked states on (Ω,A)-
plane shrinks as the intensity A of the stimulus approaches 0, with Ω the frequency of the stimulus.
In general, m : n entrainment occurs when ω/Ω≈ m/n with positive relative prime integers n and
m. This implies that the oscillator rotates exactly m times while the external forcing oscillates n

times. Let ∆ = ω− m
n Ω and by formal averaging we can write (C.19) as

dψ

dt
= ∆+AΓm/n(ψ), (C.20)

where ψ = φ − m
n Ωt is a slow varying phase variable, and Γm/n(ψ) is the interaction function

determined by Z and v as

Γm/n(ψ) =
1

Text

∫ Text

0
Z
(

ψ +
m
n

Ωt
)

v(Ωt)dt,

=
1

2π

∫ 2π

0
Z (ψ +mθ)v(nθ)dψ,

=
1

2π
〈Z (ψ +mθ) ,v(nθ)〉,

(C.21)

where Text =
2π

Ω
is the period of the external forcing and θ = Ωt

n ∈ [0,2π). Without loss of general-
ity, let A = 1 and consider the 1 : 1 entrainment i.e., n = m = 1 and write Γm/n(ψ) as simply Γ(ψ).
It can be shown that when the condition

min Γ(ψ)<−∆ < max Γ(ψ), (C.22)

is satisfied, (C.20) has at least two fixed points at which dψ(t)/dt = 0 holds, and one of them is
stable [128, 65]. The interval ∆ of phase locking for a fixed input strength A decreases as A→ 0.
So, for different values of A and entrainment ratios m/n one obtains the Arnold tongues as shown
in Figure 4.11.
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Appendix D

Optimal Placement of Control Sites
Supplement

D.1 Geometric Measure of Modal Controllability

In degenerate networks, the optimal control site relocates depending on the strength of the coupling
σ between agents. Once we have identified that a network is degenerate, we can use the notion
of modal controllability, as described in this section, in conjunction with our proposed Lyapunov
method to precisely locate the optimal control site for any given coupling regime.

Proposition 4: The controllability of the ith mode of the dynamical system in (6.37) from the jth

input, is proportional to

cos[θ(vi,b j)] =
|vT

i b j|
‖vi‖‖b j‖

, (D.1)

where vi is the left-eigenvector associated with λi and b j is the jth column vector of the input
matrix B [182].

Clearly, if vi and bk are orthogonal the measure is zero, meaning that the ith mode is not controllable
from the jth input. This is also a measure of coupling between the mode and the input [182]. Let
cd j = cos[θ(vi,b j)] be the controllability degree, with 06 cd j 6 1. The closer cd j is to 1, the more
controllable the ith mode is from the jth input. Hence, the optimal control site can be located by
identifying the input that has the highest controllability degree over the first mode (λ1). Thus, if one
wishes to accurately find the optimal pinning site in any coupling regime (from weak to strong) for
any type of networks (degenerate or nondegenerate), (D.1) can be applied. However, this method, if
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used alone, is computationally expensive because it requires computing the controllability degree
for each possible control position in order to determine the optimal site. Hence, for degenerate
networks, we propose using this method in conjunction with the Lyapunov method. The latter
method will provide a reduced set of nodes from which the most influential one will be identified
by using either a search algorithm or the degree of controllability, instead of computing the degree
of controllability of all the possible control sites.

The degree of controllability cannot be applied directly to the system in (6.37), because the eigen-
vector corresponding to the zero eigenvalue has identical components. In order to use the degree
of controllability measure on the Laplacian system (6.37), we need to rewrite it in the following
form

dx
dt

=−Ḡx− B̄u(t), (D.2)

where Ḡ= σL+diag(δ1, · · · ,δn) and B̄= (K−1)×diag(δ1, · · · ,δn). Basically, (D.2) has the same
form as the LTI system in (6.37), and the degree of controllability measure in Proposition 4 can be
computed.

D.2 Experimental Setup

To validate the theory developed in Chapter 6, we conducted several experiments using networks of
electrochemical oscillators. The experimental schematic is depicted in Figure D.1. The networks
of oscillators were built using an electrochemical cell with a platinum coated titanium rod counter
electrode, Hg/Hg2SO4/saturated K2SO4 reference electrode, a working electrode array of 1 mm
diameter nickel wires and 3 M sulfuric acid at a constant temperature of 10◦C. The electrodes are
connected to a Gill-IK64 multichannel potentiostat through individual resistances (Rind = 1 kΩ),
and the potential V of each electrode can be set individually. The electrodes are polarized with a
constant overpotential (V0) and the electrodissolution reaction provides an oscillatory current via a
Hopf bifurcation due to a negative differential resistance process (Figure D.1). The oscillating cur-
rents from the electrode array are then collected by a Real-time LabVIEW interface at a sampling
rate of 1 KHz. To form different network topologies, additional cross resistances (Rc) are placed
between electrodes, thus creating the coupling of strength σ = 1/Rc. Furthermore, the oscillatory
reactions of the electrodes can be suppressed through a feedback potential, control signal, that is
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generated from the measured currents as shown in Figure D.1, given by

Vj(t) =V0 +K[I j(t)− Ī j], (D.3)

where Vj(t) is the potential applied to the jth electrode, I j(t) is the current, Ī j is a time averaged
current, and K is the feedback gain. These experiments are designed such that a variety of network
topologies can be constructed by reconfiguring the cross resistances connections, and to allow the
control of any node in the network through feedback.

Potentiostat

CE

Ni-array

Ref
Rind

Rc

(a) (b) (c)

Figure D.1: Schematic of experimental setup and control of a single electrochemical oscillator.
(a) Experimental setup where CE is the counter electrode, Ref is the reference electrode and Ni-
array is the working electrode array. The individual resistances are denoted (Rind) and coupling
resistances (Rc). (b) Current oscillations of a single electrode; V = 1105 mV, Rind = 1 kΩ. (c)
Current of a single electrode when feedback is applied with K = 1.4 V/A.
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