1,623 research outputs found

    Using formal models to design user interfaces a case study

    Get PDF
    The use of formal models for user interface design can provide a number of benefits. It can help to ensure consistency across designs for multiple platforms, prove properties such as reachability and completeness and, perhaps most importantly, can help incorporate the user interface design process into a larger, formally-based, software development process. Often, descriptions of such models and examples are presented in isolation from real-world practice in order to focus on particular benefits, small focused examples or the general methodology. This paper presents a case study of developing the user interface to a new software application using a particular pair of formal models, presentation models and presentation interaction models. The aim of this study was to practically apply the use of formal models to the design process of a UI for a new software application. We wanted to determine how easy it would be to integrate such models into our usual development process and to find out what the benefits, and difficulties, of using such models were. We will show how we used the formal models within a user-centred design process, discuss what effect they had on this process and explain what benefits we perceived from their use

    UI-Design driven model-based testing

    Get PDF
    Testing interactive systems is notoriously difficult. Not only do we need to ensure that the functionality of the developed system is correct with respect to the requirements and specifications, we also need to ensure that the user interface to the system is correct (enables a user to access the functionality correctly) and is usable. These different requirements of interactive system testing are not easily combined within a single testing strategy. We investigate the use of models of interactive systems, which have been derived from design artefacts, as the basis for generating tests for an implemented system. We give a model-based method for testing interactive systems which has low overhead in terms of the models required and which enables testing of UI and system functionality from the perspective of user interaction

    Refinement for user interface designs

    Get PDF
    Formal approaches to software development require that we correctly describe (or specify) systems in order to prove properties about our proposed solution prior to building it. We must then follow a rigorous process to transform our specification into an implementation to ensure that the properties we have proved are retained. Different transformation, or refinement, methods exist for different formal methods, but they all seek to ensure that we can guide the transformation in a way which preserves the desired properties of the system. Refinement methods also allow us to subsequently compare two systems to see if a refinement relation exists between the two. When we design and build the user interfaces of our systems we are similarly keen to ensure that they have certain properties before we build them. For example, do they satisfy the requirements of the user? Are they designed with known good design principles and usability considerations in mind? Are they correct in terms of the overall system specification? However, when we come to implement our interface designs we do not have a defined process to follow which ensures that we maintain these properties as we transform the design into code. Instead, we rely on our judgement and belief that we are doing the right thing and subsequent user testing to ensure that our final solution remains useable and satisfactory. We suggest an alternative approach, which is to define a refinement process for user interfaces which will allow us to maintain the same rigorous standards we apply to the rest of the system when we implement our user interface designs

    Formal Models and Refinement for Graphical User Interface Design

    Get PDF
    Formal approaches to software development require that we correctly describe (or specify) systems in order to prove properties about our proposed solution prior to building it. We must then follow a rigorous process to transform our specification into an implementation to ensure that the properties we have proved are retained. When we design and build the user interfaces of our systems we are similarly keen to ensure that they have certain properties before we build them. For example, do they satisfy the requirements of the user? Are they designed with known good design principles and usability considerations in mind? User-centred design approaches, which incorporate many different techniques which we may consider as informal, seek to consider these issues so that the UIs we build are designed around the needs and capabilities of real users. Both formal methods and user-centred design are important and beneficial in the development of underlying system functionality and user interfaces respectively. Given this we would like to be able to use both approaches in one integrated software development process. Their differences, however, make this a challenging objective. In this thesis we present a solution this problem by describing models and techniques which provide a bridge between the existing work of user-centred design practitioners and formal methods practitioners enabling us to incorporate (representations of) informal design artefacts into a formal software development process. We then use these models as the basis for a refinement theory for user interfaces which allows interface designers to retain their informal design methods whilst providing an underlying theory grounded in the trace refinement theory of the Microcharts language

    Capture and Maintenance of Constraints in Engineering Design

    Get PDF
    The thesis investigates two domains, initially the kite domain and then part of a more demanding Rolls-Royce domain (jet engine design). Four main types of refinement rules that use the associated application conditions and domain ontology to support the maintenance of constraints are proposed. The refinement rules have been implemented in ConEditor and the extended system is known as ConEditor+. With the help of ConEditor+, the thesis demonstrates that an explicit representation of application conditions together with the corresponding constraints and the domain ontology can be used to detect inconsistencies, redundancy, subsumption and fusion, reduce the number of spurious inconsistencies and prevent the identification of inappropriate refinements of redundancy, subsumption and fusion between pairs of constraints.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Combining models for interactive system modelling

    Get PDF
    Our approach for modelling interactive systems has been to develop models for the interface and interaction which are lightweight but with an underlying formal semantics. Combined with traditional formal methods to describe functional behaviour, this provides the ability to create a single formal model of interactive systems and consider all parts (functionality, user interface and interaction) with the same rigorous level of formality. The ability to convert the different models we use from one notation to another has given us a set of models which describe an interactive system (or parts of that system) at different levels of abstraction in ways most suitable for the domain but which can be combined into a single model for model checking, theorem proving, etc. There are, however, many benefits to using the individual models for different purposes throughout the development process. In this chapter, we provide examples of this using the nuclear power plant control system as an example

    Recommending audio mixing workflows

    Get PDF
    This paper describes our work on Audio Advisor, a workflow recommender for audio mixing. We examine the process of eliciting, formalising and modelling the domain knowledge and expertā€™s experience. We are also describing the effects and problems associated with the knowledge formalisation processes. We decided to employ structured case-based reasoning using the myCBR 3 to capture the vagueness encountered in the audio domain. We detail on how we used extensive similarity measure modelling to counter the vagueness associated with the attempt to formalise knowledge about and descriptors of emotions. To improve usability we added GATE to process natural language queries within Audio Advisor. We demonstrate the use of the Audio Advisor software prototype and provide a first evaluation of the performance and quality of recommendations of Audio Advisor
    • ā€¦
    corecore