
Using Formal Models to Design User Interfaces
A Case Study

Judy Bowen
Department of Computer Science

University of Waikato
Hamilton, New Zealand

+ 64 7 838 4021
jab34@cs.waikato.ac.nz

Steve Reeves
Department of Computer Science

University of Waikato
Hamilton, New Zealand

+ 64 7 838 4021
stever@cs.waikato.ac.nz

ABSTRACT
The use of formal models for user interface design can provide
a number of benefits. It can help to ensure consistency across
designs for multiple platforms, prove properties such as
reachability and completeness and, perhaps most importantly,
can help incorporate the user interface design process into a
larger, formally-based, software development process. Often,
descriptions of such models and examples are presented in
isolation from real-world practice in order to focus on particular
benefits, small focused examples or the general methodology.
This paper presents a case study of developing the user
interface to a new software application using a particular pair of
formal models, presentation models and presentation interaction
models. The aim of this study was to practically apply the use
of formal models to the design process of a UI for a new
software application. We wanted to determine how easy it
would be to integrate such models into our usual development
process and to find out what the benefits, and difficulties, of
using such models were. We will show how we used the formal
models within a user-centred design process, discuss what
effect they had on this process and explain what benefits we
perceived from their use.

Categories and Subject Descriptors
D.2.2 [Software]: Software Engineering – design tools and
techniques, user interfaces.

General Terms
Design, Human Factors, Verification.

Keywords
Formal methods, user-centred design, software design process.

1. INTRODUCTION
We approach software design with the intention of building
correct, robust, usable systems. This means that for the
functionality of our software we use formal methods, such as
developing a specification in a formal language like Z [11] or B

[1], model-based testing [24], proof of correctness [26],
refinement [8, 25] etc. This all goes towards ensuring that we
build software with the correct functionality that does the right
thing all of the time.

For the design of the user interfaces (UIs) to our software we
rely on user-centred design (UCD) techniques [15, 16]. These
may include such things as ethnographic studies [9], task
analysis methods like HTA [21] or GOMs [5], prototyping [16]
and user testing to ensure that the requirements of the user are
central to the design, and that the users remain involved at all
stages of the design process. By this we aim to ensure our UIs
are both usable and complete.

Many different approaches have been taken to formalising
aspects of UI design and a number of different methods and
models exist for this purpose. These include work based on
models such as interactors [7, 18], using formal languages such
as Z [2, 10], and techniques such as model-testing [17].
Recently an increasing number of approaches use XML-like
languages to create abstract views of the UI which allows them
to be considered independently of any implementation [12, 19].

Some of these methods are designed to replace existing ways of
developing UIs and may come with their own development
environments, such as the UsiXML based tool GrafiXML [13].
Others seek to absorb the UI design process into an existing
formal approach, perhaps by trying to formalize the
requirements of the UI along with the system [6]. For our case
study we were interested in using an approach that
complemented our existing UCD approach rather than requiring
us to change it. For this reason we decided to design our UI
using presentation models and presentation interaction models
(PIMS) [4]. These models are designed to capture information
about informal design artefacts, such as prototypes, and are then
used to check for correctness properties within the UI as well as
to help guide the design.

The original intention behind the development of these models
was to allow UI design in general, and informal design artefacts
in particular, to be incorporated into a formal design process.
As such, their use is not intended to make the task of UI design
a formal process itself, rather the aim is to look at existing UI
development methods and find ways of incorporating these into
a formal software development process. The models are used to
formally describe attributes of the sorts of artefacts produced
during a UCD process (such as storyboards, prototypes etc.) in
a manner which enables them to be incorporated into a
specification and refinement software design process (in
particular using the specification language Z [11]). While this is
an interesting and, in our opinion, worthwhile reason for using
such models, we were also interested in finding out what other

© Judy Bowen, Steve Reeves, 2007
Published by the British Computer Society
People and Computers XXI – HCI… but not as we know it:
Proceedings of HCI 2007
Linden J. Ball, M. Angela Sasse, Corina Sas, Thomas C. Ormerod, Alan
Dix, Peter Bagnall, and Tom McEwan (Editors)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29202258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

benefits their use may provide to the UI design. We were
particularly interested to find out if their use assisted with
designing better UIs (by better we mean UIs with desirable
properties such as those described by Shneiderman [22] and
which present fewer difficulties, and a better user experience, to
users during usability testing and beyond). We hoped to
discover whether the act of developing such models has any
effect upon the design (does it in some way guide the
development of the UI) and would the development of the
models highlight previously undetected problems in the design
even prior to testing the models within the formal process or
undertaking user testing?

1.1 Terminology
In order to be consistent with previous work describing and
using presentation models and PIMS [2, 3], and to distinguish
between the abstractness of the UI models and actual
implementations of such models, we will use the following
terminology in this paper:

The main views of the UI will be called ‘windows’ while
temporary and modal windows will be called ‘dialogues’. All
active controls described in the UI designs will be referred to as
‘widgets’. We will describe the actions of these widgets as
‘behaviours’ and talk about widgets ‘having certain behaviours’
or ‘invoking certain behaviours’ to mean that when
implemented they cause these actions/events to occur. When we
describe the presentation model of a design we will refer to the
component parts as ‘PModels’ and within our modular
presentation interaction model we will refer to ‘component
PIMs’ to mean each of the individual parts of the model.

1.2 Paper Outline
In the next section we will describe the software application
being designed for this case study. Although our focus is on the
design of the UI we will give a brief description of the
requirements for the application as a whole before
concentrating on the user requirements for the system. We will
describe the process used to design the UI and present some of
the prototypes and other informal design artefacts developed as
part of this process. We will then show how the presentation
models and PIMs were derived from these. We will outline the
benefits we obtained from using these models, show how we
were able to identify problems within the design using them,
and describe how we subsequently fixed these problems. We
will also discuss problems we encountered when using the
models and suggest some possible solutions to these. Finally we
will present some conclusions based on our experiences of
designing a UI in this way.

2. CASE STUDY DESCRIPTION
The software being designed for this case study is somewhat
self-referential in that it is an editor for presentation models and
PIMs. The tool, called PIMed, will be used to support designers
who wish to use presentation models and PIMs in their work. In
this paper we focus on the requirements for the UI to the system
but in this introduction to the example we will briefly outline
the major requirements for the system as a whole and refer to
the system requirements within this paper only as necessary.

2.1 System Requirements
The editor is to be used to create, view, edit and print
presentation models and PIMs. Data should be preserved
between uses of the application so that we can incrementally
build up a collection of these models. Presentation models and

PIMs can either be created independently from each other, or
presentation models already in the system can be used to create
PIMs with the pair then becoming linked.

Information stored in the application should reflect the
hierarchical and component-based nature of the models. It
should, therefore, allow for declarations to be entered and
stored independently from completed models and used as
required. Similarly, the described presentation models should
exist as both detailed, complete models in their own right as
well as components within conjunctions to build up other
models. It should, in this manner and also all other respects,
follow the syntax and semantics given in [3].

2.2 User Requirements
We began by discussing these requirements with potential users
of the system. Typically in a UCD process we may have several
such “brain-storming” sessions with different groups of users,
using such things as post-it notes and whiteboards to ensure a
collaborative and interactive discussion process. Following this
we then identified the key user requirements and started to
consider how the functional requirements of the system should
be represented as user requirements within the UI.

Once this initial consultation was completed we were able to
create a set of top-level user requirements for the UI, which are:

o Create new presentation model
o View existing presentation model
o Print presentation model
o Edit presentation model
o Create new PIM from presentation model
o Create new PIM from scratch
o View existing PIM
o Print PIM
o Edit PIM

Each of these represents a key task identified by the users. The
next step was to break these down further into hierarchical
tasks, so, for example, the requirement to create a new
presentation model is broken into the following task hierarchy:

• Create new presentation model
o Add declarations

 Add model names
 Add widget names
 Add behaviour names

o Add widget
 Select widget name
 Set category
 Add behaviours

o Compose presentation models
 Select presentation models
 Link models

This hierarchical view allowed us to start to consider what the
different parts of the UI may be (in terms of windows and
dialogues) and what sort of actions the users will perform with
the UI in order to perform these sub-tasks (e.g. entering text,
selecting options etc.) Each of the initial requirements we
presented was expanded into its own task hierarchy and these
were then used as the basis to begin the design of the UI.

3. UI PROTOTYPES
With the information we had gathered from the previous steps
we now had enough information to begin developing paper
prototypes for each part of the UI. From the task analysis we
had identified the need for three main parts to the UI: the
‘Main’ navigation window; a ‘View Presentation Model’
window; and a ‘View PIM’ window. The prototypes for the
‘Main’ window and ‘View PIM’ window are shown in Figures
1 and 2.

Figure 1. Design for Main window.

Figure 2. Design for ViewPIM window.

In addition to these three main windows, there are also a
number of sub-windows and dialogues (mostly modal). In total,
the UI consists of 27 different windows and dialogues. For each
of these we developed a prototype with various levels of
annotation.

The prototypes give an idea of what the UI may look like by
suggesting possible widgets and layouts. More importantly,
they also give an idea of how the UI can be used. So, for
example, with the prototype given in Figure 1, we can discuss
with a user what happens when they interact with the different
widgets and they can see how they would perform different
tasks using the widgets provided. Figure 3 shows some of the
prototypes that were developed for the UI spread out in order to
facilitate a more complete view of the UI for the users. When
we discuss the prototypes with users we can also show them
how we get from one part of the UI to another by moving
between the different designs and sliding the prototypes around
the table (we could also achieve this by developing interaction

storyboards). As we will discuss in the next section, this
information about interactive behaviour and navigation around
the UI, which typically forms part of the discussions between
designers and users and drives the design process, is precisely
the information that is described by the formal models.

Figure 3. A selection of the paper prototypes.

Typically at this stage of the design process we would begin to
show the prototypes to the users and discuss the designs to
gather feedback, and we would then use this to update and
refine the prototypes. We might also begin to develop
computer-based prototypes of the designs that could be
incrementally updated and which would form the basis of the
implemented UI. This work would take place independently
from the system design team (responsible for the underlying
system functionality) who would be working on the formal
specification of the system to ensure correctness and
completeness of the specified system prior to undertaking a
refinement process that would lead to the development of the
system.

Rather than continue to follow our usual design process
however, our next step was to start to develop the formal
models of the prototypes. We describe this in detail in the next
section.

4. FORMAL MODELS
4.1 Building the Presentation Model
The first part of formalising the designs was the development of
a presentation model of the PIMed UI prototypes. This was
done by creating component models (PModels) for each of the
windows and dialogues in the design and then combining these
to create a description of the overall UI.

A presentation model is a formal description of a UI design
which is intended to describe the controls of that UI (in an
abstract manner which includes their name and category) and
their behaviour. The behaviours of the widgets of the UI may
either be UI behaviours (i.e., things that control the UI’s
appearance or navigation such as window resizing or opening a
new window) or system behaviours (things that interact with
the underlying system functionality such as saving or retrieving
information). As such, a presentation model reflects the way
UIs may be designed or built by describing the UI in terms of
the widgets which are used in UI development toolkits and
which may form the basis of either a computer-based design or
a prototype.

For example, the PModel for the ‘View PIM’ window design
shown in Figure 2 is as follows:

ViewPIM is (MaxWin, ActCtrl, (UI_MaxWindow))
(MinWin, ActCtrl, (UI_MinWindow))
(CloseWin, ActCtrl, (UI_CloseViewPIM)
(PIMFrame, MulValResp, (EditState, EditTrans,
 EditStart, EditFinal, EditR))
(PrintButt, ActCtrl, (Print))
(CloseButt, ActCtrl, (UI_CloseViewPIM))
(StateList, StatusDisplay, ())
(RList, StatusDisplay, ())
(SState, StatusDisplay, ())
(FSList, StatusDisplay, ())
(ILabelList, StatusDisplay, ())
(TransList, StatusDisplay, ())
(EdStateButt, ActCtrl, (UI_OpenEdStateWin))

 (EdRButt, ActCtrl, (UI_OpenEdRWin))
(EdSSButt, ActCtrl, (UI_OpenEdSSWin))

 (EdFSButt, ActCtrl, (UI_OpenEdFSWin))
(EdTransButt, ActCtrl, (UI_OpenEdTransWin))
(AddTransButt, ActCtrl, (UI_OpenEdTransWin))

All of the widget and behaviour names used were declared first
at the start of the presentation model (following the syntax
given in [3]). Each of the 27 window and dialogue prototypes
are described in their own component presentation models and
then the UI for the entire system is described as the
concatenation of these. This is done in a modular fashion, so at
the top level we have a description of the overall UI as:

PIMed is Main : ViewPIM : ViewPModel
and then each of these is subsequently built up of component
presentation models, as in:

Main is MainWin : AddPMDecs : AddPIM
AddPMDecs is AddPMDecsWin : AddPMNExst :
AddWNExst : AddBExst

with each individual window described in full in its own
PModel as in the ‘View PIM’ example above.

While we were creating the presentation models we found
several things within our designs which required clarification or
changes. The presentation model captures the ‘narrative’ of the
design, that is, it describes the behaviour of the UI based on
interaction with the widgets provided by that UI. On returning
to the designs to create the presentation models we found that
there were some examples where we were not entirely clear
what the behaviour should be for a particular widget.

For example, in our design of the ‘View Presentation Model’
window we had annotated one of the controls, the list of
PModel names, with ‘double click to edit’, but when we came
to explain this in the presentation model we were not sure if this
behaviour should be ‘EditPModel’ or ‘EditPModelName’, that
is, we hadn’t fully thought through the behaviour of this widget
during the design stage. This is analogous to describing the
design to a user and not being able to explain what would
happen if they interacted with a particular widget as we haven’t
thought it through fully. Having to be explicit about the
behaviour in the presentation model meant that we had to
consider this properly before we could continue. This was also
true of the widget name list and behaviour name list in the same
window, which were similarly annotated and which similarly
we hadn’t fully considered.

We also found that several of the windows were unnecessarily
complicated when we came to model them. The act of
describing them formally made this clear and it also enabled us

to simplify them. This led to the removal of three of the
dialogues totally (as we found the behaviour was either fully
duplicated elsewhere or did not require a separate dialogue) and
the simplification of several others. The amended designs had
all the functionality of the originals but were less complicated.

4.2 Using the Presentation Models
The main purpose given for developing presentation models is
to allow informal UI designs to be considered as part of a
formal software design process. However, it is also possible to
use the models to test designs for certain desirable properties,
such as consistency and responsiveness. Before using the
models to check for correctness in respect of the formal
description of the system as a whole we therefore decided to
use them to test for these UI properties.

To check for consistency within the UI design we analysed the
behaviours and controls described. Generally, we would
consider that the model represents a consistent UI if controls
with the same name exhibit the same behaviour, and conversely
if behaviours which are the same are exhibited by controls with
the same name. This suggests a UI where a user knows what
common widgets will do because they have seen similarly
labelled widgets previously (such as Print, Save, etc.) and are
not surprised by their behaviour.

One thing we did discover during this analysis was that there
was a difference in the way the ‘View Presentation Model’ and
the ‘View PIM’ windows could be closed. The ‘View
Presentation Model’ window has a button called ‘Close’
located at the bottom of the window, whereas the ‘View PIM’
window has both a ‘Close’ button and an icon button which
also performs the ‘Close’ behaviour. As these two windows
(along with the ‘Main’ window) are the main windows of the
UI (the user will spend most time viewing these windows and
moving between them) it is likely that they would expect them
to work in similar ways. Being able to close one of the windows
in one way but not the other is an example of an inconsistency
likely to prove annoying: a user gets used to using the icon
button to close the window but finds it is not always available
so becomes frustrated with the UI. We fixed this problem by the
addition of an icon button to the ‘View Presentation Model’
window. As we were examining the prototypes for these two
designs in light of this problem we also realised that both the
‘Close’ and ‘Print’ buttons were in different places on these two
windows, we therefore also updated the designs so that these
buttons were in the same place so that they would be quicker
and easier for a user to find.

The reactivity of a UI design can be determined by looking at
the categories of the widgets used. The categories of a
presentation model come from the widget category hierarchy
derived in [2]. There are three top-level categories: Display,
Event Generator and Event Responder. These are then further
broken down into sub-categories as shown in Figure 4.

Figure 4. Part of widget category hierarchy.

Actual implementable widgets, such as radio buttons or value
sliders, can be found at the leaf nodes in the hierarchy tree and
the intention is that any widget (including custom made widgets
or new widgets) can be easily positioned within the hierarchy.

Widgets which come under the Action Control or Event
Generator categories are those which the user uses to initiate
actions upon the UI and the system, whereas Event Responders
and Status Displays are those which respond to events from the
underlying system. The higher the percentage of widgets which
allows the user to initiate actions, the more responsive we
consider the UI to be, and we consider responsiveness to be a
desirable UI property.

Analysis of the presentation model for our designs showed us
that 70% of the widgets allowed the user to initiate actions
while 30% were reactive to the system. This indicates a UI with
a high level of user responsiveness.

The final stage of testing using the presentation models
involved returning to the system specification to ensure that the
behaviours described in the models are correct with respect to
the specification. That is, does the UI correctly describe all of
the required behaviours and so represent the same system as
that given in the formal specification? This is the point at which
we are able to integrate our formal and informal processes. We
now have models of the designs that can be used in conjunction
with the specification of the system.

There are different ways to determine whether a UI is correct
with respect to the system specification. In [3] an example is
given of converting the presentation model into a Z description
(giving a specification of the design) and then using standard
refinement simulation techniques to show that the UI design
refines the specification. For smaller, less safety-critical,
systems it is also possible to manually inspect the system
specification and extract the operations which are to be made
available to the user via the UI (using the information from
gathering user requirements and task analysis in conjunction
with the system requirements). We can then develop a relation
between UI operations of the specification and behaviours of
the presentation model to ensure that all requirements are met.
For our case study we followed the latter procedure.

As an example of this, the specification for our system relating
to the PIM editing functionality contains the following Z
schemas:

We then include in our relation a mapping between this system
operation and the corresponding UI behaviour:

 UpdateStartState → EditStart

We extend the relation to include all system operation and UI
behaviour pairs.

We found two problems during this process. First, we
discovered that one of the dialogues we had included in our

initial design list (developed from the task analysis) had
somehow been overlooked during the design stage and there
was no prototype for it, and therefore no presentation model.
This was discovered because there were a number of operations
in the specification which had no related behaviour in the
presentation model. Second, we discovered a problem with the
‘Print’ operations. The system specification described two print
operations, one which allowed for the printing of a viewed
presentation model and one which allowed for the printing of a
viewed PIM. The presentation model however has a single
behaviour relating to printing which is called just ‘Print’. We
could see from this that the designs were not precise enough in
this respect and the ‘Print’ behaviour should in fact be split into
two separate behaviours, ‘Print presentation model’ and ‘Print
PIM’.

This completed the testing of the presentation model. We
amended the designs based on our discoveries and updated the
presentation model accordingly. We were then able to move on
to the development of the next formal model, the PIM.

4.3 Building the PIM
A PIM consists of a 6 tuple (Q, ∑, δ, q_0, F, R) where Q is a set
of states, ∑ is a set of input labels, δ is a transition function, q_0
is the start state, F is a set of accepting states and R is a relation
between states and presentation models. A PIM is used to show
the dynamic behaviour of the UI which allows the user to
switch between different views, windows and dialogues. In the
PIM each component PModel within the presentation model is
represented by at least one state and transitions between states
are labelled with the behaviour which causes that transition.

There are several different ways of visualizing PIMs. For our
case study we decided to use the visual representation based on
the µCharts language [20]. This provided us with a visual
representation that was modular and easy to view, and which
made the modality of windows and dialogues explicit. The
syntax of µCharts allows us to embed multiple states within a
single state (called decomposition) creating an abstraction of
the model which is small and easy to view by itself, and which
enables us to examine the decomposed states in more detail as
required.

Using our updated presentation model we developed the PIM
by creating the visual representation first, based on what we
knew about the UI behaviour and modality of the design from
both the presentation model and the designs themselves.

Figure 5 shows the top level view of the PIM for our
application, and Figure 6 shows the detail of the ViewPIM
state.

Figure 5. Top-level PIM.

Figure 6. PIM detail for ViewPIM.

Once again we found that the process of creating the formal
model exposed some problems in the design. The completed
PIM contained a state (representing the EditPModelName
PModel) which was not linked to any other state in the PIM.
This indicated that this dialogue (and therefore all behaviours
within the dialogue) was unreachable within the design. This is
an example of why the PIM is required as this sort of problem
cannot be detected by the presentation model alone. To fix the
problem we added another widget to the ‘View Presentation
Model’ window to open this dialogue and updated our models
accordingly. The new PIM contained no unlinked states.

Another problem we discovered was that our initial PIM was
nondeterministic. The model of the ‘View Presentation Model’
window contained two transitions with the same label, as shown
in Figure 7.

Figure 7. Non determinism in PIM.

This suggests that in the ‘View Presentation Model’ the same
behaviour can lead to two different resulting states, that is, it is
nondeterministic. When the user interacts with the widget that
invokes this behaviour they cannot predict what will happen.
This was not the intention of the design. In fact what should
happen is that the type of PModel being accessed (either a
composite presentation model or non-composite model) is
determined, and then one of the two possible dialogues opens
depending on that type. The behaviour of the widget should
actually be to invoke a system behaviour which checks the type,
and the system behaviour then invokes the correct UI
behaviour. In this instance we can see that our design is
underspecified

We updated the presentation model, so that the widget
description changed from:

(PMNameList, SValSel, (UI_OpenEditPModel,

 UI_OpenEditCompPModel))

to:

((PMNameList, SValSel, (CheckPMType))

However, once this change was made and we updated the PIM,
we were then faced with a different problem as this part of the
PIM now contained unlinked states as we show in Figure 8.

Figure 8. PIM with unreachable states.

Because the behaviour which opens this dialogue is now hidden
within the system behaviour (i.e. is no longer a part of the
presentation model) it appears that the states representing this
dialogue are now unreachable. In fact what we really need is a
combination of the system and UI behaviours, such that the
presentation model description becomes:

((PMNameList, SValSel, (CheckPMType:UI_OpenEditPModel,

 CheckPMType:UI_OpenEditCompPModel))

which gives us the PIM of Figure 9.

Figure 9. Corrected PIM.

The syntax and semantics of presentation models [4] do not
provide for composition of behaviours in this way. However,
from this is example it is clear that there is a requirement for the
language to support this either by joining behaviours, as we
have done, or by making explicit system driven UI behaviour in
some other way. We suggest that one way to achieve this is by
extending the composition operator (:) defined for joining
composite PModels, to include (:) for composition of
behaviours.

4.4 Testing the PIM
Once the PIM was complete we were able to test for total
reachability and deadlock within the modelled UI (total
reachability means that we can get to any state in the PIM from
any other state, it is therefore a stronger requirement than just

ensuring all states can be reached from the start). We performed
the deadlock test using a manual walk-through procedure to
check that in each of the individually modelled component
PIMs we could either reach a designated final state, or (in the
case of a decomposition) could return to the parent part of the
PIM (the model containing the decomposed state). We found
two states where deadlock occurred. Both of these states
represented modal dialogues where widgets exhibiting ‘close’
behaviour had been omitted, so there was no way to return to
the parent state and they were not themselves final states.

Once these errors had been fixed and the designs, presentation
model and PIM updated, we found the design to be deadlock
free. Using a manual walkthrough again we were then able to
test for total reachability and found that the design was indeed
totally reachable.

This concluded our testing of the UI designs using the formal
models.

5. COMPLETING THE DESIGN
5.1 Finalising the UI and System
We had now reached a stage where we were sure that the
designs we had created for the UI were both correct in terms of
the system and user requirements as well as holding certain
properties of both design and behaviour.

In order to complete the designs and move on to the
implementation stage we now returned to our more traditional
UCD design process involving user feedback and iterative
updating of the designs. At the same time, the work on the
underlying system specification continued so that an
implementable system could be derived via the refinement
process. Both of these activities are currently still ongoing.

Research describing presentation models and PIMs provides
ways of ensuring (via different types of equivalences) that
updates to the UI designs preserve the correctness properties
previously determined [3] and it is our intention to follow these
procedures so that our final application has been designed in
accordance with the described process for these models.

5.2 Future Work
Once the UI design and system design processes are complete
we will be ready to implement the final system. The system will
then undergo usability and functionality testing to ensure that it
is correct, robust and usable.

In terms of the formal development process we follow there is
much more to be said about how we move forward to actually
implement the designs described. Composing the system and UI
and the concept of refinement and its application to UI
development is an area which we are very interested in. We are
currently pursuing several ideas in this area.

6. CONCLUSIONS
Our experience of using these two particular formal models for
UI design (namely presentation models and PIMs) has shown
us that not only is it possible to incorporate such models into
our UCD development process for UIs, but that we can do so
with little time/effort overhead and gain a number of benefits
from doing so.

Although the intention behind the development of these models
was to allow the UI design to be incorporated into a formal
software development process in a way which did not change
the nature of user-driven, user-centred design, we were more

interested to find out what, if any, benefits they might give to
the actual UI design process itself.

We found that the act of modelling our designs made us
consider certain aspects more carefully than we had when using
just paper prototyping methods and we were able to pick up
problems earlier in the design process than we would have
otherwise. This proved to be one of the major benefits of using
the models within our work. Early detection of errors means
that when we reach the stage of usability testing we have
already removed some potential problems, making it easier for
testers to interact more fully with the system and find more
deep-rooted problems than they would otherwise. Nielsen
describes this as users being able to delve more deeply into
applications if they are not overwhelmed by small problems
[14]. In addition, fixing problems at the paper design stage is
both quicker and cheaper than changing implemented, or
partially-implemented, systems and we can immediately ensure
that such changes do not introduce new problems.

From the perspective of the underlying system development,
being able to consider UI aspects (by way of the models) at an
early stage meant that we thought more carefully about how we
specified operations that were required by the user so as to
produce less overhead in the UI. For example, when describing
operations to change data within representations of the models
we gave more consideration to how we would integrate this
with the UI functionality. While this can be seen as a benefit of
any method which considers the UI within the formal process,
in this case it does so without requiring the UI designers to
follow the formal process, but rather considers the existing
designs by way of the models.

In conclusion, we found that using the models was helpful and
provided a benefit to the design process which justified their
use. We did discover some problems with the models which
required us to extend the original syntax, but this did not unduly
hinder the process. It is clear that such models cannot (and
should not) replace any of the tasks we generally undertake
within a UCD process (nor is it intended they do so), but we are
satisfied that they can provide a benefit over and above the
stated aim of integrating a formal specification and refinement
based approach to system development with a user-centred UI
design approach.

7. REFERENCES
[1] Abrial, J. The B-Book: Assigning Programs to Meanings.

Cambridge University Press, New York, 1996.
[2] Bowen, J. Formal Specification of User Interface Design

Guidelines. MSc. Thesis, University of Waikato,
Hamilton, NZ, 2005.

[3] Bowen, J., and Reeves, S. Formal refinement of informal
GUI design artefacts. In Proceedings of the Australian
Software engineering conference (ASWEC 2006). (Sydney,
2006). 2006.

[4] Bowen, J., and Reeves, S. Formal models for informal
GUI designs. In First international workshop on Formal
methods for interactive systems (FMIS 2006). (Macau
SAR China, 31 October 2006). Electronic Notes in
Theoretical Computer Science, Elsevier, Amsterdam,
2006.

[5] Card, S., Moran, P., and Newell, A. The Psychology of
Human Computer Interaction. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1983.

[6] Courtney, A. Functionally modeled user interfaces. In
Proceedings of Design, specification and verification of

interactive systems (DSV-IS 2003). Springer-Verlag,
Berlin, 2003, 107-123.

[7] Duke, D., Fields, B., and Harrison, M. A case study in the
specification and analysis of design alternatives for a user
interface. Formal Aspects of Computing, 2, 11 (1999),
107-131.

[8] Henson, M., and Reeves, S. Investigating Z. Journal of
Logic and Computation 10, 1 (2000), 1-30.

[9] Hughes, J., King, V., Rodden, T., and Anderson, H.
Moving out from the control room: Ethnography in
system design. In Proceedings of the 1994 ACM
Conference on Computer Supported Cooperative Work.
(CSCW 1994). ACM Press, New York, NY, 1994, 429-
439.

[10] Hussey, M., MacColl, I., and Carrington, D. Assessing
Usability from Formal User-Interface Designs, Technical
TR00-15, University of Queensland, 2000.

[11] ISO/IEC 13568. Information Technology - Z Formal
Specification Notation - Syntax, Type System and
Semantics. Prentice-Hall, 2002.

[12] Lepreux, S., Vanderdonckt, J., and Michotte, B. Visual
design of user interfaces by (de)composition. In
Proceedings of Design, specification, and verification of
interactive systems (DSV-IS 2006). Springer-Verlag,
Berlin, 2006, 150-170.

[13] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon,
L., and Lòpez-Jaquero, V. USIXML: A language
supporting multi-path development of user interfaces. In
Proceedings of EHCI/DS-VIS 2004. Kluwer Academic,
2004, 200-220.

[14] Nielsen, J., and Landauer, T. A mathematical model of the
finding of usability problems. In Proceedings of the
SIGCHI conference on Human factors in computing
systems (CHI 1993). ACM Press, New York, NY, 1993,
206-213.

[15] Norman, D., and Draper, S. (eds). User Centered System
Design: New Perspectives on Human-Computer

Interaction. Hillsdale, NJ, Lawrence Erlbaum Associates,
1986.

[16] Norman, D. The Psychology of Everyday Things. Basic
Books, New York, 1988.

[17] Paiva, A., Tillmann, N., Faria, J., and Vidal, R. Modeling
and testing hierarchical GUIs. In Proceedings of ASM
2005. (Universite de Paris, Paris, 2005). 2005.

[18] Paternò, F., Sciacchitano, M., and Lowgren, J. A user
interface evaluation mapping physical user actions to task-
driven formal specification. In Proceedings of Design,
specification and verification of interactive systems (DSV-
IS 1995). Springer-Verlag, Berlin, 1995, 155-173.

[19] Puerta, A., and Eisenstein, J. XIML: A common
representation for interaction data. In Proceedings of the
7th international conference on Intelligent user interfaces
(IUI 2002). ACM Press, New York, NY, 2002, 214-215.

[20] Reeve, G. A Refinement Theory for µCharts. Ph.D Thesis,
University of Waikato, New Zealand, 2005.

[21] Shepherd, A. Analysis and training in information
technology tasks. In D. Diaper (ed.), Task analysis for
human-computer interaction. Ellis Horwood, Chichester,
1989, 15-55.

[22] Shneiderman, B. Designing the User Interface: Strategies
for Effective Human-Computer Interaction (3rd edition).
Addison Wesley Longman Inc, 1998.

[23] Snyder, C. Paper Prototyping: The Fast and Easy Way to
Design and Refine User Interfaces. Morgan Kaufmann,
2003.

[24] Utting, M., and Legeard, B. Practical Model-Based
Testing: A Tools Approach. Morgan-Kaufmann, 2007.

[25] Wirth, N. Program development by stepwise refinement.
Communications of the ACM, 14, 4 (1971), 221-227.

[26] Woodcock, J., and Davies, J. Using Z: Specification,
Refinement and Proof. Prentice Hall, New York, 1996.

