
Project supported by the European Commission within Sixth Framework Programme

SPECIFIC TARGETED RESEARCH PROJECT
INFORMATION SOCIETY TECHNOLOGIES

VIsualize all moDel drivEn programming

WP 5

Project name: Visualize all model driven programming

Start date of the project: 01 July

Duration of the project: 30

Project coordinator: Polish

Leading partner: Bournemouth University

Due date of deliverable: 30 November 2007

Actual submission date 1

Status final

Document type: Report

Document acronym: DEL

Editor(s) Sheridan Jeary,

Tomek Wadziak, Piotr Habela, Keith Phalp, Jonathan Vincent

Reviewer(s) Sheridan Jeary, Andrea

Accepting Kazimierz Subieta

Location http://www.vide

Version 14

Dissemination level PU

Project supported by the European Commission within Sixth Framework Programme
© Copyright by VIDE Consortium

SPECIFIC TARGETED RESEARCH PROJECT
INFORMATION SOCIETY TECHNOLOGIES

FP6-IST-2005-033606

VIsualize all moDel drivEn programming

VIDE

Deliverable number
The visual user interface

Visualize all model driven programming

01 July 2006

30 months

Polish - Japanese Institute of Information Technology

Bournemouth University

30 November 2007

14 January 2008

final

Report

DEL

Sheridan Jeary, John Mathenge Kanyaru, Melanie Coles, Andreas Roth,

Tomek Wadziak, Piotr Habela, Keith Phalp, Jonathan Vincent

Sheridan Jeary, Andreas Roth, Piotr Habela, Keith Phalp, Jonathan Vincent

Kazimierz Subieta

http://www.vide-ist.eu

14

PU (Public)

Project supported by the European Commission within Sixth Framework Programme

SPECIFIC TARGETED RESEARCH PROJECT
INFORMATION SOCIETY TECHNOLOGIES

VIsualize all moDel drivEn programming

Deliverable number 5.1
The visual user interface

John Mathenge Kanyaru, Melanie Coles, Andreas Roth,

Tomek Wadziak, Piotr Habela, Keith Phalp, Jonathan Vincent

s Roth, Piotr Habela, Keith Phalp, Jonathan Vincent

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 2 -

Abstract:

This deliverable contains a summary of the work that has been carried out within Work Package 5. This has
involved an in depth piece of research into MDA tools to ascertain their required features and to determine
those features that could be useful within the VIDE project. Building on this work further research was carried
out into the areas of Software Visualisation, Visual Programming and finally Diagramming, concentrating on
aspects of class diagram layout to further generate requirements. Four modelling tools were then analysed using
the Cognitive Dimensions framework to facilitate discussion, and some further requirements were thus
obtained. An exploratory prototype of the CIM level user interface was then developed and feedback collected.
This resulted in the specification of the definitive prototype for the CIM level interface. The Visual Code Editor
is then specified before the Visual Expression Builder that allows for the construction of OCL expressions.
Finally the work details the VIDE approach to dealing with legacy applications.

The VIDE consortium:

Polish-Japanese Institute of Information Technology (PJIIT)

Coordinator

Poland

Rodan Systems S.A. Partner Poland
Institute for Information Systems at the German Research Center for
Artificial Intelligence

Partner Germany

Fraunhofer Partner Germany
Bournemouth University Partner United

Kingdom
SOFTEAM Partner France

TNM Software GmbH Partner Germany

SAP AG Partner Germany

ALTEC Partner Greece

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 3 -

History of changes

Date Vers

ion

Author Change description

1.11.2007 1 Sheridan Jeary, (PJIIT

Grzgorz Falda, Tomas

Wadziak)

document creation (addition of chapter from PJIIT)

5.11.2007 2 Sheridan Jeary Document update

28.11.2007 3 Sheridan Jeary, John

Mathenge Kanyaru, (SAP

Andreas Roth)

Document update and addition of chapter from SAP

10.12.2007 4 Sheridan Jeary, John

Mathenge Kanyaru, (SAP

Andreas Roth)

Document update and initial review by Piotr Habela PJIIT

19.12.2007 5 Sheridan Jeary, John

Mathenge Kanyaru,

Melanie Coles (SAP

Andreas Roth)

Document update throughout and update of SAP chapter

4.1.2008 12 Sheridan Jeary, John

Mathenge Kanyaru,

Melanie Coles (SAP

Andreas Roth PJIIT Piotr

Habela/Tomek Wadziak)

Document update throughout and update of PJIIT chapter

7.1.2008 14 Sheridan Jeary, John

Mathenge Kanyaru,

Melanie Coles (SAP

Andreas Roth PJIIT Piotr

Habela/Tomek Wadziak)

Document update throughout and update of PJIIT chapters

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 4 -

Table of contents

Abstract: .. - 2 -
History of changes .. - 3 -
Table of contents ... - 4 -
List of figures .. - 9 -
List of tables .. - 12 -
1. Introduction and Overview ... - 13 -

1.1 User groups ... - 13 -
1.2 High level requirements .. - 13 -

1.2.1 Requirements from the Description of Work .. - 13 -
1.2.2 Requirements from Work Package 1 work.. - 14 -

1.3 WP5 Summary .. - 15 -

2. Research into Model Driven Architecture tools .. - 16 -

2.1 Introduction... - 16 -
2.2 MDA Tool Requirements Review .. - 16 -

2.2.1 Introduction ... - 16 -

2.2.2 Models ... - 16 -

2.2.2.1 Meta-models .. - 16 -

2.2.2.2 Types of model: CIM, PIM, PSM, Code ... - 17 -
2.2.2.3 Model Support ... - 17 -

2.2.2.4 Traceability and model/code synchronisation .. - 17 -
2.2.2.5 Storage ... - 17 -

2.2.2.6 Levels of Abstraction ... - 18 -

2.2.3 Standards ... - 18 -

2.2.3.1 Unified Modelling Language (UML) .. - 18 -
2.2.3.2 Object Constraint Language (OCL) ... - 18 -
2.2.3.3 UML profiles ... - 18 -

2.2.3.4 Meta Object Facility (MOF) .. - 18 -
2.2.3.5 XML Metadata Interchange (XMI) ... - 18 -
2.2.3.6 Common Warehouse Metamodel (CWM) ... - 18 -
2.2.3.7 Other MDA standards .. - 19 -

2.2.4 Transformations .. - 19 -

2.2.5 Lifecycle .. - 19 -

2.2.6 Reverse engineering .. - 20 -

2.2.7 Technology support ... - 20 -

2.2.7.1 Technical Users ... - 20 -

2.2.8 Tool functionality .. - 20 -

2.2.8.1 Tool Features ... - 20 -

2.2.8.2 Vendor dependence ... - 20 -

2.2.8.3 Status of the company and the tool .. - 20 -
2.2.8.4 Tool Taxonomy ... - 20 -

2.2.9 Summary of Requirements .. - 22 -

2.3 Review of Existing MDA Tools ... - 23 -

2.3.1 Listing from the OMG Web Site ... - 24 -

2.3.2 Review Results .. - 27 -

2.3.2.1 Models ... - 27 -

2.3.2.2 Standards ... - 34 -

2.3.2.3 Transformations ... - 37 -

2.3.2.4 Methodology .. - 40 -

2.3.2.5 Technology .. - 41 -

2.3.2.6 Database Supported ... - 47 -

2.3.2.7 Tool features .. - 49 -

2.3.2.8 General Properties ... - 52 -

2.4 Summary ... - 53 -
3. Methods of Evaluation .. - 54 -

3.1 Introduction... - 54 -
3.2 Evaluation standards ... - 54 -

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 5 -

3.2.1 ISO 9241 ... - 54 -

3.2.2 ISO/IEC 9126-1 (2000) ... - 54 -

3.2.3 ISO 14915/IEC 61997 ... - 55 -

3.2.4 ISO/IEC 11581 .. - 55 -

3.2.5 ISO/IEC 10741 .. - 55 -

3.2.6 ISO/IEC 15910 .. - 55 -

3.2.7 ISO/IEC WD 18019 (2000) ... - 55 -

3.2.8 ISO 25062 or Common Industry Format (CIF) ... - 55 -
3.3 Usability evaluation methods .. - 55 -

3.3.1 Introduction ... - 55 -

3.3.2 The Usability Methods .. - 57 -

3.3.2.1 Heuristic evaluation ... - 57 -

3.3.2.2 Cognitive walkthrough .. - 59 -

3.3.2.3 Pluralistic walkthrough .. - 59 -

3.3.2.4 Focus groups .. - 59 -

3.4 The Cognitive Dimensions Framework .. - 59 -

3.4.1 Introduction ... - 59 -

3.4.2 The Cognitive Dimensions .. - 60 -

3.4.3 Cognitive dimensions trade-off ... - 60 -

3.5 Summary ... - 61 -
4. Software Visualisation, Visual Programming and Diagramming Research .. - 62 -

4.1 Introduction... - 62 -
4.2 Requirements from software visualisation research ... - 62 -

4.2.1.1 Individuality ... - 63 -

4.2.1.2 Distinctive appearance ... - 63 -

4.2.1.3 High information content ... - 63 -

4.2.1.4 Low visual complexity... - 63 -

4.2.1.5 Scalability of information content and visual complexity ... - 64 -
4.2.1.6 Flexibility for integration into visualisations ... - 64 -
4.2.1.7 Suitability for automation .. - 64 -

4.2.1.8 Simple navigation with minimum distortion ... - 64 -
4.2.1.9 Resilience to change .. - 65 -

4.2.1.10 Good use of visual metaphor ... - 65 -
4.2.1.11 Approachable user interface .. - 65 -
4.2.1.12 Integration with other information sources .. - 65 -
4.2.1.13 Good use of interaction .. - 66 -

4.3 Requirements from visual programming research .. - 66 -

4.3.1 Analysis of user characteristics ... - 67 -

4.4 Requirements from the diagramming environment .. - 68 -

4.4.1 UML class diagram layout .. - 68 -

4.4.2 An overview of UML class diagram layout guidelines ... - 69 -
4.4.3 A note on guideline support issues within MDA tools .. - 71 -
4.4.4 Requirements for class layout ... - 71 -

4.4.5 General diagramming comments ... - 74 -

4.5 Natural and code-less programming environments ... - 75 -

4.5.1 Introduction ... - 75 -

4.5.2 Examples ... - 75 -

4.5.2.1 Human-centred Advances for the Novice Development of Software (HANDS)............. - 75 -

4.5.2.2 Limnor ... - 76 -

4.5.2.3 My Desk 2.0 .. - 78 -

4.5.2.4 Scratch ... - 79 -

4.5.2.5 Denim .. - 80 -

4.6 Summary ... - 80 -
5. Exploration of graphical user interfaces .. - 81 -

5.1 Introduction... - 81 -
5.2 Modelling tools ... - 81 -

5.2.1 Use case models .. - 81 -

5.2.1.1 Use case model - Together ... - 82 -

5.2.1.2 Use case model - Eclipse ... - 83 -

5.2.1.3 Use case model – Rational Rose .. - 83 -

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 6 -

5.2.1.4 Use case model - Objecteering .. - 84 -
5.2.2 Class models .. - 85 -

5.2.2.1 Class model - Together .. - 85 -

5.2.2.2 Class model - Eclipse ... - 86 -

5.2.2.3 Class model – Rational Rose ... - 88 -
5.2.2.4 Class model - Objecteering .. - 90 -

5.2.3 Activity Models ... - 92 -

5.2.3.1 Activity model - Together.. - 93 -

5.2.3.2 Activity model - Eclipse .. - 95 -

5.2.3.3 Activity model – Rational Rose ... - 96 -
5.2.3.4 Activity model – Objecteering ... - 97 -

5.3 Discussion of requirements ... - 97 -

5.4 Summary ... - 100 -
6. Exploratory Prototype ... - 102 -

6.1 Introduction... - 102 -
6.2 Additional identified requirements ... - 102 -

6.3 VIDE GUI overview ... - 105 -

6.4 VIDE GUI Stakeholder interaction processes... - 106 -

6.4.1 Documenting and analysing the problem domain ... - 106 -
6.4.2 Activities for building CIM models .. - 106 -

6.5 The VIDE GUI ... - 107 -

6.5.1 Introduction ... - 107 -

6.5.2 User login and artefact management ... - 108 -

6.5.2.1 VIDE GUI design: Welcome ... - 108 -
6.5.2.2 VIDE GUI design: User registration .. - 109 -
6.5.2.3 VIDE GUI design: User log-in .. - 109 -
6.5.2.4 VIDE GUI design: Project selector.. - 110 -
6.5.2.5 VIDEGUI design: Project journal .. - 110 -
6.5.2.6 VIDE GUI design: Collaboration visualizer .. - 111 -

6.5.3 VIDE GUI views for business model development .. - 111 -
6.5.3.1 VIDE GUI design: Scrapbook view .. - 112 -
6.5.3.2 GUI design: Business domain view ... - 113 -
6.5.3.3 GUI design: Business process view ... - 114 -

6.5.4 GUI design: CIM-PIM early transformation views ... - 115 -
6.5.4.1 VIDE GUI design: System behaviour view ... - 115 -
6.5.4.2 GUI design: System agent view ... - 116 -

6.5.5 GUI design: CIM-PIM final transformation views ... - 117 -
6.5.5.1 GUI design: System pattern builder ... - 117 -
6.5.5.2 GUI design: PIM class prototyper ... - 118 -

6.6 Summary ... - 118 -
7. Evaluation of exploratory prototype and requirements summary ... - 119 -

7.1 Evaluation ... - 119 -
7.2 Issues .. - 119 -

7.2.1 High level summary .. - 119 -

7.2.2 Issues with the initial prototype ... - 119 -

7.2.3 Evaluation using Cognitive Dimensions ... - 120 -

7.2.3.1 The Cognitive Dimensions used for the evaluation ... - 120 -
7.2.3.2 The issues: ... - 120 -

7.3 Requirements summary .. - 121 -

7.3.1 The scrapbook ... - 121 -

7.3.2 Analysis palette ... - 122 -

7.3.3 CIM Palette ... - 123 -

7.3.4 Design Palette .. - 124 -

7.4 Requirements summary .. - 125 -

7.5 Summary ... - 126 -
8. Definitive Prototype .. - 127 -

8.1 Introduction... - 127 -
8.2 Overview .. - 127 -

8.2.1 Project Management .. - 128 -

The Scrapbook .. - 128 -

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 7 -

The Analysis Palette .. - 135 -
8.2.2 CIM Modelling .. - 140 -

8.2.2.1 First-cut design model ... - 142 -

8.2.2.2 Validating models .. - 145 -

8.3 Summary ... - 145 -
9. Visual Code Editor for State-Visualisation Syntax ... - 146 -

9.1 Requirements .. - 146 -

6.1.1 Relevant Requirements from D1.1 .. - 146 -

6.1.2 Refined User Adequateness Requirements.. - 147 -
9.2 Eclipse Concepts for VIDE ... - 147 -

9.2.1 GMF/GEF Editors ... - 147 -

9.2.1.1 EMF ... - 147 -

9.2.1.2 Graphical Editing Framework (GEF) .. - 147 -
9.2.1.3 Graphical Modelling Framework (GMF) .. - 147 -

9.2.2 GMF/GEF Graphical User Interface Components and VIDE specifics - 148 -
9.2.2.1 Eclipse Views and Perspectives ... - 148 -
9.2.2.2 Diagram Pane... - 149 -

9.2.2.2.1 Context Sensitive Buttons ... - 149 -
9.2.2.2.2 Direct Editing and Autocompletion .. - 149 -

9.2.2.3 Palette and its Entries ... - 150 -

9.2.2.4 Property View .. - 152 -

9.2.2.5 Problems View... - 152 -

9.2.2.6 Other Concepts .. - 152 -

9.2.2.7 Deviations from Standard Eclipse GMF/GEF ... - 153 -
9.3 Challenges and Approaches .. - 153 -

9.3.1 Reduction of Graphical Complexity .. - 153 -

9.3.1.1 Collapsing and Expanding Nodes .. - 153 -
9.3.1.1.1 Use Cases .. - 154 -

9.3.1.1.2 Collapsing Modes ... - 154 -
9.3.1.1.3 Automation of Collapse/Expand ... - 155 -
9.3.1.1.4 Problems ... - 155 -

9.3.1.2 Hiding/Showing Nodes .. - 156 -

9.3.1.3 Enhanced Navigation Capabilities ... - 156 -
9.3.2 Simultaneous Textual and Graphical Editing .. - 156 -

9.3.2.1 Text Input Support ... - 156 -

9.3.2.2 Need for Autolayout .. - 156 -

9.3.3 Interconnection with other Editors .. - 156 -

9.3.3.1 Navigation ... - 157 -

9.3.3.2 Drag&Drop from Other Editors ... - 157 -
9.3.4 Autolayout ... - 157 -

9.3.4.1 The need for Autolayouting ... - 157 -
9.3.4.2 Autolayouting Challenges.. - 157 -

9.3.4.2.1 Aesthetical Layout .. - 157 -

9.3.4.2.2 Domain Specifics .. - 158 -

9.3.4.2.3 Types of Layout Algorithms ... - 158 -
9.3.4.2.4 Libraries .. - 158 -

9.3.4.3 Autolayouting for VIDE .. - 159 -

9.4 Conclusions... - 159 -
10. Visual Expression Builder .. - 160 -

10.1 Rationale .. - 160 -

10.2 Interaction with other tools of VIDE.. - 160 -

10.3 Requirements ... - 161 -

10.3.1 Relevant requirements from D1.1 ... - 161 -

10.3.2 Refined requirements .. - 164 -

10.4 VEB environment overview ... - 165 -

10.4.1 Palette .. - 165 -

10.4.2 OQBE diagram .. - 165 -

10.4.3 Output tab .. - 165 -

10.4.4 Properties tab ... - 166 -

10.4.5 Toolbar .. - 166 -

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 8 -

10.4.6 VEB diagrams in current document .. - 166 -

10.4.7 VEB diagrams in current project ... - 166 -

10.5 Functional requirements ... - 166 -

10.5.1 Adding new visual expression ... - 166 -

10.5.2 Saving VEB diagram ... - 166 -

10.5.3 Generating code from visual expression ... - 167 -

10.5.4 Editing and viewing existing visual expression .. - 167 -
10.5.5 Viewing external visual expression ... - 167 -

10.5.6 Deleting visual expression... - 168 -

10.5.7 Inserting visual expression into textual code ... - 168 -

10.5.8 Importing visual expression defined in other file .. - 168 -
10.5.9 Detaching generated code from its diagram .. - 169 -
10.5.10 Adding new example on a diagram .. - 169 -
10.5.11 Setting values of attributes of an example .. - 169 -
10.5.12 Deleting example .. - 170 -

10.5.13 Linking two examples .. - 170 -

10.5.14 Unlinking two examples ... - 170 -

10.5.15 Setting query output ... - 171 -

10.5.16 Setting sort attribute and sort direction ... - 171 -

10.5.17 Adding comparator of attributes from different examples ... - 171 -
10.5.18 Deleting comparator of attributes from different examples .. - 172 -

10.6 OQBE syntax definition ... - 172 -

10.7 OQBE mappings to OCL ... - 174 -

10.8 Example ... - 175 -

10.9 Future development.. - 179 -

10.10 Glossary ... - 179 -

11. Interface to legacy applications .. - 180 -

11.1 Introduction .. - 180 -

11.1.1 Taking the value from existing applications.. - 180 -

11.1.2 Interaction with other tools of VIDE ... - 180 -

11.2 Requirements ... - 180 -

11.2.1 Relevant requirements from D1.1 ... - 180 -

11.2.2 Refined requirements .. - 181 -

11.3 Retrieving and documenting schemas of existing data sources ... - 182 -
11.3.1 The proposed solution for documenting and interacting with legacy data sources - 182 -
11.3.2 Step 1: Connection configuration .. - 183 -

11.3.2.1 The details of reading the legacy model .. - 183 -
11.3.3 Step 2: Generation of the legacy model in VIDE .. - 184 -
11.3.4 Presentation and use of the legacy schema in VIDE model .. - 185 -

11.4 Documenting interacting with existing software available through Web Services - 186 -
11.4.1 Functional aspect ... - 187 -

11.4.2 Concepts mapping ... - 187 -

11.4.2.1 WSDL definition to VIDE mapping .. - 188 -
11.4.2.2 VIDE to WSDL definition mapping .. - 188 -
11.4.2.3 Limitations ... - 189 -

11.4.3 Visual support for handling services ... - 189 -

11.4.3.1 Scenario 1: Importing remote service into the model .. - 189 -
11.4.3.2 Scenario 2: Publishing class as a Web Service .. - 194 -

12. Conclusions... - 200 -
13. References... - 201 -

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 9 -

List of figures
Figure 1: The lifecycle as described by the OMG ... - 19 -

Figure 2: System accessibility and usability (adapted from [76] and [72]) .. - 56 -

Figure 3: Cognitive Dimensions trade-offs [92] ... - 61 -

Figure 4: The HANDS programming environment [118] ... - 75 -

Figure 5. A Limnor PictureBox 'performer' showing properties [120] ... - 76 -

Figure 6. Limnor Actions and Events [120] .. - 76 -

Figure 7. Limnor program control flow .. - 77 -

Figure 8: MyDesk forms layout [121] ... - 78 -
Figure 9: Example Scratch user interface[119] ... - 79 -

Figure 10: Denim user interface [124] .. - 80 -
Figure 11: Use case model in Together 2007 .. - 82 -

Figure 12: Use case model in Eclipse ... - 83 -
Figure 13: Use case model in Rational Rose ... - 84 -

Figure 14: Use case model in Objecteering ... - 85 -

Figure 15: Class model in Together .. - 86 -
Figure 16: Class model in Eclipse ... - 87 -
Figure 17: Edited class model in Eclipse .. - 88 -
Figure 18: Class model in Rational Rose .. - 89 -

Figure 19: Amended class model in Rational Rose... - 90 -

Figure 20: Class model in Objecteering .. - 91 -
Figure 21: Edited class model in Objecteering ... - 92 -

Figure 22: Activity model in Together – components in list view .. - 93 -

Figure 23: Activity model in Together – components in column view ... - 94 -

Figure 24: Activity model in Eclipse .. - 95 -
Figure 25: Activity model in Rational Rose .. - 96 -

Figure 26: Activity model in Objecteering.. - 97 -

Figure 27: Overview of VIDE GUI ... - 105 -

Figure 28: Problem domain construction process ... - 106 -

Figure 29: Business process construction process .. - 107 -

Figure 30: Exploratory prototype process ... - 108 -

Figure 31: VIDE Welcome dialogue ... - 108 -

Figure 32: VIDE User registration dialogue ... - 109 -

Figure 33: VIDE User Log-in dialogue ... - 109 -

Figure 34: VIDE Project selector .. - 110 -
Figure 35: VIDE Project journal ... - 110 -
Figure 36: VIDE Collaboration visualizer .. - 111 -

Figure 37: VIDE GUI scrapbook view ... - 112 -

Figure 38: VIDE GUI Business domain view ... - 113 -

Figure 39: VIDE GUI business process view ... - 114 -

Figure 40: VIDE GUI System behaviour view ... - 115 -

Figure 41: VIDE GUI System agent view... - 116 -

Figure 42: VIDE GUI System pattern builder ... - 117 -

Figure 43: VIDE GUI PIM class prototyper ... - 118 -

Figure 44: Paper prototype of the scrapbook .. - 122 -

Figure 45: Paper prototype of the analysis palette .. - 123 -

Figure 46: Paper prototype of the CIM palette .. - 124 -

Figure 47: Architecture of the pre-CIM to PIM process for the Definitive prototype - 127 -

Figure 48: Creating a project using the VIDE IDE ... - 128 -

Figure 49: Scrapbook operations... - 129 -
Figure 50: Opportunity scrapbook example .. - 129 -

Figure 51: Operations for adding elements to a scrapbook ... - 130 -

Figure 52: Selecting documents or folders .. - 130 -

Figure 53: Creating a new scrap to add to the Scrapbook ... - 131 -

Figure 54: Selecting text from an existing document to populate a scrap ... - 132 -

Figure 55: Opening an existing scrap in the Scrapbook Editor ... - 132 -

Figure 56: A populated scrapbook and adding further links among scrapbook items - 133 -
Figure 57: Creating a link and annotation between scrapbook elements .. - 134 -

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 10 -

Figure 58: Example of the link between items in the Scrapbook .. - 134 -

Figure 59: Selecting elements for the analysis model ... - 135 -

Figure 60: Analysis model with bloops, activities, roles and data items ... - 136 -

Figure 61: Assigning types to Analysis Palette elements .. - 137 -

Figure 62: Linking an AP element to a scrapbook element .. - 138 -

Figure 63: Viewing more detail of a model element in the Analysis Palette .. - 139 -

Figure 64: Identifying CIM elements from the analysis model ... - 139 -

Figure 65: CIM model with elements derived from analysis model ... - 140 -

Figure 66: Creating a specification ... - 141 -
Figure 67: Partial ER model of opportunity management scenario .. - 141 -

Figure 68: Class identification from roles .. - 142 -
Figure 69: First cut class model .. - 143 -
Figure 70: Adding new methods or attributes .. - 144 -

Figure 71: Behaviour model for opportunity management ... - 144 -

Figure 72: Model validation .. - 145 -
Figure 73 : Default views .. - 148 -
Figure 74: AddStructuralFeatureAction showing name editor .. - 150 -

Figure 75: AddStructuralFeatureAction showing object structural features ... - 150 -

Figure 76: A GEF/GMF based editor showing palette .. - 151 -

Figure 77: Property View .. - 152 -
Figure 78: Example of a Property view for a UML action (Screenshot taken from Topcased) - 152 -
Figure 79:Collapsing an Expansion Region .. - 154 -

Figure 80: Expanding at the example of Expansion region... - 155 -

Figure 81: Example of incremental layout .. - 158 -

Figure 82 Overview of VEB elements .. - 165 -

Figure 83 Unnamed example .. - 173 -
Figure 84 Named example .. - 173 -
Figure 85 Filtering values ... - 173 -
Figure 86 Link ... - 173 -
Figure 87 Query output ... - 173 -
Figure 88 Attribute comparator ... - 174 -
Figure 89 Sorting .. - 174 -
Figure 90: User drags and drops Example icon from (1) Palette .. - 175 -

Figure 91: User specifies properties .. - 176 -
Figure 92: User drags and drops two example icons from (1) Palette .. - 176 -

Figure 93: User specifies further properties .. - 177 -

Figure 94: User links Item and Opportunity icons .. - 177 -

Figure 95: User drag and drops further icon ... - 178 -

Figure 96: User specifies properties of new icon .. - 178 -

Figure 97: User links Product icon .. - 179 -
Figure 98: The overall architecture of the ODRA wrapper ... - 182 -

Figure 99: Connection configuration details ... - 183 -

Figure 100: Generation of legacy data model description ... - 184 -

Figure 101: Setting the module name ... - 184 -

Figure 102 Package with «generated» stereotype ... - 185 -

Figure 103: Sample legacy model elements .. - 186 -

Figure 104 WSDL 1.1 contract diagram ... - 187 -

Figure 105: Import Web Service Option ... - 189 -

Figure 106: Import web Service Option showing port types... - 190 -

Figure 107: User provides platform specific information ... - 190 -

Figure 108: Specifying target container .. - 191 -
Figure 109: Pre-populated fill for required options ... - 191 -

Figure 110: Wizard modifies model .. - 192 -
Figure 111: User adds recently imported web service .. - 192 -

Figure 112: Diagram after addition of org.example.shop package ... - 193 -

Figure 113: User adds package and contained classes .. - 193 -

Figure 114: User creates class to be exposed ... - 194 -

Figure 115: Publish as Web Service option .. - 195 -

Figure 116: VIDE model selection screen .. - 195 -

Figure 117: VIDE Class Selection screen ... - 196 -

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 11 -

Figure 118: User specifies operations to be exposed .. - 196 -

Figure 119: Specifying protocols .. - 197 -
Figure 120: URL address .. - 198 -
Figure 121: Adding defined stereotypes ... - 198 -

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 12 -

List of tables
Table 1: Requirements from Work Package 1 .. - 15 -

Table 2: Summary of MDA Tool requirements .. - 23 -

Table 3: Summary of MDA committed tools .. - 26 -

Table 4: MDA specific models ... - 28 -
Table 5: UML Models ... - 30 -
Table 6: Other models ... - 31 -
Table 7: General model properties .. - 33 -
Table 8: MDA standards ... - 35 -
Table 9: Other standards ... - 37 -
Table 10: MDA Transformations .. - 38 -
Table 11: Other transformations ... - 39 -
Table 12: Methodology support .. - 41 -
Table 13: Technology (programming) .. - 44 -

Table 14: Technology general ... - 45 -
Table 15: Coding functionality ... - 46 -
Table 16: Database support ... - 48 -
Table 17: OMG's tool taxonomy ... - 50 -
Table 18: Other tool capabilities ... - 51 -
Table 19: General properties ... - 53 -
Table 20: Classification and descriptions of user interface evaluation methods from [77] - 57 -
Table 21: VIDE stakeholder expertise from [105] .. - 67 -

Table 22: Summary of tools assessment with cognitive dimensions .. - 101 -

Table 23: : Requirements from Work Package 1 cross referenced with WP5 low level requirements - 126 -
Table 24: Requirements for Visual expression Builder .. - 164 -

Table 25: Requirements for legacy applications ... - 181 -

Table 26 Type mapping between SQL and UML in VIDE ... - 186 -

Table 27 Naming conventions used in WSDL to VIDE mapping .. - 188 -

Table 28 Naming conventions used in VIDE to WSDL mapping .. - 189 -

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 13 -

1. Introduction and Overview
The Model Driven Software Development (MDSD) process has changed the way that software development is
approached. No longer is it expected that the user will be in possession of only programming skills. Users will
come from a number of different backgrounds and will expect to be presented with both information and an
interface that is commensurate with their ability, understanding, experience and expectation. This will involve
business users expecting to be able to store and manage documents and parts of documents, that relate to their
business and to link relevant sections together. Analysts and modellers will be expecting to add, edit, delete and
refine the information and models they have, probably in some iterative process to create models of the business
processes, and from there produce a requirements specification that will be of value to all parties. The
specification models will then be refined to produce first cut activity diagrams and class models, prior to their
modification and transformation as the next part of the process. Finally, the programmers will want to view the
generated code and be able to trace the origins of the artefacts that produced it. This traceability is important at
all steps of the process. If you are creating a model, then the source of the content is important as are the versions
of it. This process needs to be supported at the interface to add value to the users’ tasks. There has been
considerable research into the design of the user interface and the use of computers by different classes of
people, but there is no work relating to the interface and the related specific requirements for Model Driven
Software Development.

1.1 User groups
In Deliverable 1 [1] the consortium examined the user groups that would be likely to use the VIDE environment
and a number of different groups were defined. The following different users were found to have different views
of the model and its related code that are relevant to Work Package 5.

• Domain users usually have either no or very little knowledge about business modelling but they will be
able to produce requirements for a software application either alone or with assistance from the business
or requirements analyst. It will be possible to produce CIM level models if the user is a Business
Consultant. The language, the interface and the graphical representation should be easy to understand so
that domain users can validate the correctness of the models.

• Business/Requirements Analysts are one of the main user groups of the VIDE environment. They hold
interviews with domain users and analyse and model the proposed solution on the CIM level. They have
knowledge of modelling of business processes as well as technical architectures and need to be
comfortable with the process of refining the model. They need to have models that are understandable
for the stage of the process they are at. There should be context friendly assistance with both the
interface and the model they are using. All actions should be traceable and different versions should be
stored.

• Analyst/Designers are likely to have a strong background in conceptual modelling and UML models
that are applicable to different levels/stages of the development process. For reusing or composing new
applications with or without the existence of pre-existing components the analyst/designer is likely to
use the UML to understand the business logic that is implemented by a component or to define how
multiple components may be composed. They are responsible for the conceptual Platform Independent
Model (PIM) that is based on the Computational Independent Model (CIM) produced by the business
analyst.

• Analyst/VIDE Programmers will have a strong background in behavioural modelling and will need
tools to assist in that task. The Analyst is likely to use the graphical notation but may use textual
notation if it is necessary, but the VIDE Programmer will use textual or graphical notation depending on
which is most efficient for the task in hand. They will also implement components designed by software
designers.

1.2 High level requirements
The high level requirements for the VIDE graphical user interface have come from a number of sources. Firstly
the description of Work provided a useful starting point. Secondly, the research that underpinned Deliverable D1
was important.

1.2.1 Requirements from the Description of Work
1. A fully visual toolset to be used by both IT specialists and individuals with little or no IT experience

such as specific domain experts, users and testers.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 14 -

2. Make programming more user friendly
3. Create visual tools for prototyping, programming, debugging and testing. Make all stages of application

development more accessible to non-IT professionals
4. VIDE will be an open and interoperable platform

1.2.2 Requirements from Work Package 1 work

Requirement Name Priority
REQ – NonFunc1 Accessibility at the CIM level - the VIDE environment should provide

non-technical, business domain descriptions. Non-technical users
working at the CIM level should be able to input, retrieve and understand
their business domain descriptions in a notation that is non-technical and
accessible.

SHOULD

REQ – NonFunc 2 CIM level collaboration - the VIDE environment MAY offer
collaboration mechanisms. It may be possible for CIM or PIM users to
collaboratively work on a shared CIM view through a communication
mechanism (such as shared notes or links to shared views between
stakeholders).

MAY

REQ – NonFunc 3 On-line support for CIM/PIM users - Users working at the CIM/PIM
level should have immediate access to online/in-system, context sensitive
help that describes how transformations between CIM, PIM and PSM
levels are specified and used in the modelling activities supported by
VIDE. Help should be expressed in non-technical terms wherever
possible

SHOULD

REQ – NonFunc 4 Clear and unambiguous notation - the VIDE environment should use
notation that has clear, comprehensible and unambiguous semantics
suited for the user working at the CIM, PIM or PSM level.

SHOULD

REQ – NonFunc 5 Model view saliency - VIDE models views must be user-oriented. Views
on CIM, PIM and PSM must be controllable depending on specific user
interactions with the VIDE environment. It should be possible for users
to dynamically control the scope and technical content of these views
depending on their specification/comprehension needs.

SHOULD

REQ – NonFunc 6 Appropriate textual/graphical fidelity - VIDE must provide appropriate
textual and graphical modalities for its users. They should be able to
work with textual or graphical notations that offer the most effective
expressiveness for CIM, PIM and PSM concerns.

SHOULD

REQ – NonFunc 7 Timely feedback and constraints - the VIDE environment should provide
feedback on user actions at all modelling levels. Multiple users working
on the same VIDE project should receive rapid feedback on their
attempted actions within the VIDE environment. Such feedback should
indicate their success or failure to complete an action or task; its impact
on their local modelling level; its potential impact on other modelling
levels; and any constraints that may impact on the success of their
intended action.

SHOULD

REQ – NonFunc 8 Runnable and testable VIDE prototypes - the VIDE environment should
allow execution of runnable models. VIDE users should be able to
validate at any time (where possible) the models that can be
automatically transformed into an executable form.

SHOULD

REQ – User 1 Flexibility and interoperability of VIDE language and tools - the VIDE
language and tools should have flexibility and be interoperable with
existing tools

SHOULD

REQ – User 2 Reuse of UML Standard - the VIDE tools for certain user groups
SHOULD be informed by existing tools for the user groups. End users
are very sensitive to using standards.

SHOULD

REQ – Tool 7 Meta-modelling Framework - VIDE SHOULD use GMF as it’s
graphical modelling framework

SHOULD

REQ – Tool 9 CIM modelling standards - VIDE may support CIM level modelling
with BPMN; where there is inadequate or no support for BMPN, VIDE

MAY

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 15 -

may provide CIM modelling capability with UML activity diagrams
REQ – Tool 12 VIDE extensibility - the VIDE tools should be extensible via a plug-in

mechanism.
SHOULD

REQ – Tool 14 Model driven approach - the VIDE tool must strictly follow a model
driven approach.

MUST

Table 1: Requirements from Work Package 1

1.3 WP5 Summary
The objective of this Work Package is to provide a full set of requirements for the VIDE Graphical User
Interface at the CIM and PIM levels. This deliverable shows how the requirements were obtained starting with
research into the existing MDA tools that are covered in Chapter 2. The methods of evaluation are covered in
Chapter 3. These will allow discussion of the requirements and evaluation of a prototype. Chapter 4 explores the
rich research areas of Software Visualisation, Visual programming and Diagramming Research and shows the
requirements that resulted from that work. Four major modelling toolsets were explored in Chapter 5 to see what
functionality they had and to see which of their design features would be useful. In addition the work allowed
discussion of general modelling tool functionality. The initial exploratory CIM level prototype is specified and
evaluated in Chapter 6 before a fully detailed requirements summary is explained in Chapter 7 and the definitive
CIM level prototype is specified in Chapter 8. Chapter 9 details the specification of the Visual Code Editor for
State Visualisation and Chapter 10 the associated Visual Expression Builder which allows definition of Object
Constraint language (OCL) expressions. Chapter 11 details the interface to legacy applications using Web
services. The final chapter summaries this report and gives details of proposed future work.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 16 -

2. Research into Model Driven Architecture tools

2.1 Introduction
What should a Model Driven Architecture (MDA) tool contain to meet the Object Management Group’s (OMG)
requirements for MDA tools? The OMG’s MDA has been developed since 2000, so the tools to support this
complex question are still in their infancy. Some tools pre-dated MDA and have been re-classified by the
vendors/developers as MDA compliant tools (Objecteering [2] PathMATE [3]), whilst others have been
developed since the inception of MDA (BoldExpress Studio [4]). Some tools have been developed as part of a
research program (Generative Model Transformer project [5]) others are commercial tools (Rational Software
Architect [6], Select Component Factory [7]). Some tools attempt to support the entire lifecycle (ArcStyler [8],
Model-In-Action [9], XDE [10], OptimalJ [11]) and others focus upon a small section of the stages
(CASSANDRA [12], Codagen [13], Tau [14]). Whilst some use all the standards and open source tools that are
available to them (Together 2006 [15]); others develop their tool based on a proprietary approach (modelscope
[16], Codeless [17]). Clearly, there is no tacit agreement about what features an MDA tool should contain. This
issue has been recognised by OMG and an MDA Tool Capabilities Request For Information (RFI) [18] has been
issued and also an MDA Tool Component Request For Proposal (RFP) [19].

The first stage of this review will explore the literature to develop a list of features that an MDA tool could
potentially contain. This list of features will then be applied to the MDA products listed on OMG’s website [20].
This will be an investigation of the literature available on each product from both datasheets and from vendors’
websites.

2.2 MDA Tool Requirements Review

2.2.1 Introduction
The often cited primary goals of MDA are portability, interoperability and reusability [19, 21-24], therefore the
MDA tools, at the very least, should support these three objectives.

Metadata is critical to the concept of interoperability, it is the primary means by which interoperability is
achieved, and therefore an MDA tool must be able to store, manage and publish both application and system
metadata [25]. Metadata management and integration is supported by the core MDA standards [25].. Platform
Independent Models (PIMS) facilitate the creation of different Platform Specific Models (PSMs) corresponding
to the same set of PIMs, which result in implementations that are easily (if not automatically) integrated [21] and
therefore interoperability is achieved. Consequently the ability to integrate various components of an application
on different platforms should result from the basic principles of MDA.

PIMs also play an important part in re-use of legacy applications; the integration can be carried out at the
platform independent level, using reverse engineered PIMs that represent the legacy application [26].

2.2.2 Models
The OMG defines a model as “a formal specification of the function, structure and/or behaviour of a system”
[27] and it is these models that are the primary artefact of an MDA [22], so an MDA tool has to, at the very least,
be able to support model generation and manipulation. Also central to MDA is that many models can be created
at different levels of abstraction, these models can be linked together and can be transformed and, ultimately,
implemented [28].

2.2.2.1 Meta-models
Meta-models are used to support the definition of syntax and semantics of models; they are usually
accompanied by natural language descriptions of concepts that correspond to elements of the meta-model,
defining informally the semantics of the modelling elements [26]. Meta-models and meta-data are critical to
interoperability, users need to be able to define their own meta-models for backwards compatibility and for
integration to legacy systems to be achieved.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 17 -

2.2.2.2 Types of model: CIM, PIM, PSM, Code
The models used in MDA tools as principally specified by the OMG are mainly the Platform Independent
Model (PIM) and the Platform Specific Model (PSM). Other models that are discussed, although not as
ubiquitously, are the Computational Independent Model (CIM) and the code itself.

The CIM, or Business Model or sometimes even the base PIM [22] is the most infrequently mentioned
model although it is said to play an important role in bridging the gap between domain experts and system
designers and developers [21]. Thus the CIM aids not only in understanding the problem and but also as a
source of shared vocabulary for the other models [21]. However, the automatic transformation from CIM to
PIM is considered not feasible as human intervention is always required in specifying the system [28]. It
may be that CIM development is seen as problematic and complex so is frequently omitted from MDA
tools.

There appears to be no clear definition of what a CIM, PIM, and PSM actually are, where the line is
between each. There seem to be ‘degrees’ of CIMness and PIMness and it depends upon the user’s point of
view as to what sort of model it is [29] and many notions are still loosely defined [30]. This is obviously
problematic, for vendors developing tools and for the variety of users using the tool. How can one tool be
compared against another tool, if both sets of vendor documentation talk about PIMs, but in reality mean
different levels of model?

2.2.2.3 Model Support
PIMs are seen as having two uses: by distilling the fundamental structure and meaning they make it easier to
validate the correctness of the model and they make it easier to produce implementations on different
platforms [27]. Consequently, MDA tools should have facilities for validating models and also allow
development of a range of implementations.

The main standard for model development in MDA is the Unified Modelling Language. Most tools could
therefore be expected to support model development using a full set, or subset, of the defined UML
diagrams. They should also be expected to provide support for model import and export so that existing
models may be imported into the tool and models may be exported to other tools. Elements of model
merging and differencing, if you have multiple views of the same system, could reasonably be expected to
support modelling tasks.

2.2.2.4 Traceability and model/code synchronisation
Traceability management is seen as being essential in an MDA-based approach. If not automated, models
and implementation will become inconsistent, losing the majority of the benefit of MDA [26]. Information
needs to be kept about which elements are related to which by transformation, i.e. tracing information or
what has been termed a ‘persistent transformation’ [31]. Such information needs to not only be stored, but
also acted upon, thus changes in one model should be propagated to alter the referencing models, whether
they are upstream or downstream of the changes. However, such bi-directionality and reverse engineering
is seen as one of the ultimate goals of MDA tools, whether they are currently capable of supporting such
fluidity remains to be seen.

2.2.2.5 Storage
Alongside model transformation is the fundamental functionality of model storage, the former depending
heavily on the latter [32]. The OMG standard for model definition is via Meta-object facility (MOF) and the
standard for exchanging models is XML Model Interchange (XMI). How the models are stored is not
necessarily important for the tool user that the models can be stored and the transformations can be stored is
what is important. However, that models can be exported and imported between tools is important,
therefore an MDA tool should employ the current standards to support maximum interoperability of tools.

A set of consistent models means the models must be stored in a repository. Ideally such a repository should
be accessible to multiple users, and must be coupled with version management tools. It must also have a
centralized access point and administration tools [33]. It means that the repository will become the
backbone of an MDA tool, supporting the range of functionality that could naturally be expected from a
professional development tool.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 18 -

2.2.2.6 Levels of Abstraction
The models used in MDA do appear to have contradictory requirements, on the one hand they must be
abstract enough to help the designer model the domain and communicate with the user, but also detailed and
semantically rich enough to specify business rules and to be used in code generation [29]. The MDA tool
must be able to support these conflicting ideas, enabling models of high level abstraction to allow creativity
and communication and then also the refinement or transformation of these models into models that are
more detailed and semantically rich.

2.2.3 Standards
MDA represents a positive effort to make the OMG standards “churn-proof”[34], however for the MDA tools to
support this they themselves need to be “churn-proof”. The use of a specific tool should not tie the users to that
vendor, thus the implementation of standards across all tools, and the non-modification of these standards is
essential. At the core of MDA are a number of OMG standards: UML, MOF, XMI and the Common Warehouse
Meta-Model (CWM) [25]. It is this foundation of developed and developing standards that gives MDA its
coherence in model development and management. Thus MDA tools could reasonably be expected to support
these standards.

2.2.3.1 Unified Modelling Language (UML)
UML is OMG’s standard modelling tool for MDA, however the developer’s fluency with UML can have an
impact on the successful use of an MDA tool [35], and thus a developer has to acquire more skills before
MDA tools can be applied. Support for UML modelling and the validation of such models to support
developers therefore must be a consideration of MDA tools.

2.2.3.2 Object Constraint Language (OCL)
UML defines a formal assertion language, OCL, which facilitates the specification of constraints [27]
which can be used to define pre- and post-conditions on operations [26].

2.2.3.3 UML profiles
A UML profile is a set of extensions to UML, using primarily stereotypes and tagged values that enrich a
model’s semantics [27]. Therefore UML profiles are useful for adding detail to models and also facilitating
the transformation to a specific platform.

2.2.3.4 Meta Object Facility (MOF)
The MOF provides an abstract language and framework for describing and representing meta-information, it
also defines a framework for implementing repositories to store the models [26]. Thus the MOF is integral
to the model storage mentioned in Section 2.2.2.5.

The MOF is the unique meta-meta-model for all IT-related purposes, containing all the universal features
that are not specific to a particular domain language [30]. It allows users to configure and customise the
tool.

It is the MOF alignment with UML that means any tool intended to create UML models can easily be
adapted to create MOF meta-models and thus be classified (or re-classified) as an MDA tool [30]. Tools in
existence before the MDA standard was defined can use MOF to align the tool with the OMG standard.

2.2.3.5 XML Metadata Interchange (XMI)
XMI is the standard interchange mechanism used between various tools, repositories and middleware [27],
and will support the import and export of models discussed in 2.2.2.3. With the implementation and use of a
standard for such functionality vendor tie-in can be avoided.

2.2.3.6 Common Warehouse Metamodel (CWM)
CWM is the data warehouse standard, covering the full lifecycle of designing, building and managing data
warehouse applications [27].

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 19 -

2.2.3.7 Other MDA standards
There are other models that are part of the OMG’s MDA standard such as the Object Constraint Language
(OCL) and Queries/Views/Transformations (QVT) in addition to Executable UML (xUML) and Action
Semantic Language (ASL). These standards are less ubiquitous in the MDA tools available and are still under
development.

2.2.4 Transformations
Four levels of transformations have been defined by the OMG: manual transformations, using a profile, patterns
and marking, and automatic transformations [21]. The ultimate goal of MDA tools is to maximise the automatic
transformation of models, however it is recognised that this depends upon the maturity of the tools and the users’
and tool builders’ experience [23].

It is difficult to see how manual transformation differs from ‘traditional’ development and how it can be classed
as an MDA approach. However Seidewitz [36] argues that using MDA and manual transformations gives two
benefits; the explicit distinction between models and a record of the transformations. Another advantage of the
manual transformations is that there is no need to purchase or to learn transformation tools [36]. Manual
transformation, whilst having some value, has no need for the support of a tool, therefore this form of
transformation is outside the scope of this paper.

To be able to automatically transform a model it needs to be written in a well defined language [37]. An MDA
model must have a formally defined syntax and semantics or it is not considered to be a model, just an informal
diagram [19, 24, 27]. To totally automate transformations is complex and requires significant detail to be added
by the user for example how would you add non-functional requirements, so that they can be transformed in the
PIM-to-PSM transformation? [29]. Consequently there needs to be a mechanism by which users can enrich the
models and add more detail about both functional and non-functional requirements. It has been accepted by
OMG and practitioners that whilst complete automatic transformations are the goal, it will probably not be
realised for the foreseeable future and transformations will have to be enhanced by humans [27]. MDA tools will
have to support this ‘human intervention’, allowing users to manipulate the models at various stages and
maintaining these changes in addition to retaining the added information when reverse engineering or
propagating model change.

Transformations are about altering one model to another model; a CIM should be transformable to a PIM, a PIM
to a PSM and a PSM to code. Therefore MDA tools that allow a user to model a PIM level model should support
the transformation of that model to the next level, i.e. PSM. Also if an MDA tool is to support reverse
engineering it should support code transformation to a PSM.

2.2.5 Lifecycle
Another key aspect of OMG’s defined MDA is that a tool should support the complete lifecycle [24, 27] so
analysis and design, programming (testing, component build or component assembly), deployment and
management should be covered by the tool. As MDA covers the whole software development lifecycle of an
application a tool should either cover the entire lifecycle, or position itself explicitly within the lifecycle giving
information about imports and exports to make it part of a tool chain.

The typical lifecycle as described by OMG [27] and others [22] is shown in Figure 1.

Figure 1: The lifecycle as described by the OMG

A tool’s application to these stages needs to be explored. The OMGs’ RFI on MDA Tools [18] has developed a
taxonomy of the various types of tool many which could apply to the lifecycle stages, including a modelling tool,
an analysis tool, a transformation tool, a test tool and a requirement tool. Clearly the lifecycle is an important
issue in the development of a tool to support the MDA process. Related to the issue of lifecycle coverage, and
with the rise in popularity of agile methods is the tool’s support for methodologies. , Does a tool support agile
development or are does it support a more ‘traditional approach’.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 20 -

2.2.6 Reverse engineering
If everything in MDA is about models, models generated by domain experts, refined by systems experts, and
transformed into code, then it should be possible to take any model and transform it into any other – ie both
backwards and forwards.

2.2.7 Technology support
There is a vast range of architectures, platforms and technologies that could be supported by MDA tools;
however the majority support a few major ones. The most popular development languages are the most likely to
be supported by the tools, Java and C are likely to be the main programming languages. Other technical support
is likely to be for CORBA, J2EE, .NET and Web Services. The most likely databases to be supported are Oracle
and MS SQLServer.

Generated code has, amongst programmers, generally had a poor reputation. It is seen as clumsy, long-winded
and less efficient [29]and most developers believe they can develop better code than a code generator [35]. The
OMG should consider emphasising additional features such as code debuggers, code configuration and
regeneration of code that would give additional support to the programmers for MDA to ensure its take up in the
wider market.

2.2.7.1 Technical Users
One of the often cited reasons for MDA development and MDA tool support is because the available
technologies have multiplied and have become increasingly complex, it has become harder and harder for
the ‘technologists’ to keep up. However, the MDA literature acknowledges that complete automatic
transformation is, whilst the ultimate goal of MDA, still some way off. As a result the requirements are for
programmers to actually have to know more, rather than less. They have to learn to use the MDA tool, to
understand the patterns and profiles it applies and be able to look at, understand and modify the generated
code. Thus they may need to know, Java, J2EE, struts, UML and MDA [29].

2.2.8 Tool functionality

2.2.8.1 Tool Features
A range of tool requirements could be specified, the most common set include business modelling, model
transformation, artefact generation, integration of legacy applications and tool integration [22, 23, 26]. There
are a range of other features that tool developers could provide such as; scalability and multi-user tools,
version control, document generation, change management, re-usable components, model
integrity/consistency checking.

2.2.8.2 Vendor dependence
One problem of using MDA tools is the potential for becoming dependent upon the vendor of that tool [29].
However, as long as the tool uses the available standards and allows for import and export some of this
over-reliance can be ameliorated. This of course increases the importance of tools adhering to and applying
the relevant standards. However many tools tend to operate on models that conform to their own internal
standards, thus the models are not easily exportable. Users are therefore often locked into using their tool
throughout the entire lifecycle [31]. It is the model transformations which are seen as the key to unlocking
this vendor lock-in issue and allow the transfer of models from one tool to another [31].

2.2.8.3 Status of the company and the tool
Another issue surrounding the tool itself is its status. Is it a commercial application being sold to users with
support and training? Is it a research application that is being used to explore the concept and application of
MDA? Is it an Open Source tool? Also of interest is the Company’s relationship to the OMG. Companies
that are members of, or affiliated with, the OMG will be much more likely to reflect the language and
principles of MDA as expressed in the OMG documentation, thus it is more likely that their MDA tools will
be found to be ‘more MDA’ than tools developed by companies that are not OMG members.

2.2.8.4 Tool Taxonomy
In the OMG’s Request for Information about MDA Tool Capabilities [18] they develop a ten point
taxonomy to classify the various types of MDA tools: Modelling Tool, Analysis Tool, Transformation Tool,

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 21 -

Composition Tool, Test Tool, Simulation Tool, Metadata Management Tool, Reverse Engineering Tool,
Requirements Tool and Version Control Tool. Whilst this list is indicative and intended as a guide for the
respondents it is not clear how a tool that meets a subset of these criteria could be labelled an MDA tool. If
for example; a product is a Test Tool and has no other functionality can it be an MDA tool? Does a tool
have to meet more than one of the criteria? Can a tool be ‘more’ MDA than another tool by ticking more of
the criteria? The OMG RFI does define an MDA tool as “a tool used to develop, interpret, and/or transform
models”, but this would also imply that an MDA tool has to do nothing more than model. This leaves the
question of whether a modelling tool alone can be an MDA tool?

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 22 -

2.2.9 Summary of Requirements

Interoperability

Portability

Reusability

Models
MDA Specific Models
� Meta-models
� CIM
� PIM
� PSM
� Code (generated)
� Executable UML

Type of Model - UML
� Class
� Object
� Composite
� Package
� Component
� Deployment
� Use Case
� Communication
� Sequence
� Interaction
� Activity
� State
� Timing

Other Models
� BPMN
� BPEL
� ER Models
� Informal diagrams
� Dataflow diagrams
� Structure charts
� Architecture
� Logical model
� Physical model
� Business logic/rules
� Interface diagram

General model properties
� Model differencing and merging
� Model import and export
� Model consistency/integrity/testable
� Model navigation/browse
� Traceability
� Storage
� Model/code synchronisation
� Executable models

Standards
MDA Standards:
� UML (2.0)
� UML Profiles
� MOF
� XMI
� CWM
� OCL
� MDA
� OMG
� QVT
� xUML
� ASL

Transformations
MDA transformations
� CIM -> PIM
� PIM -> PSM
� PSM -> Code

General transformations
� Model -> model
� Model -> code
� Logical -> physical
� code -> model
� code generation

Lifecycle support
� SDLC Support
� Agile
� RAD
� Iterative development

Technology support
� List of technologies
� Component based development
� Pattern based development
� Template based development

Database Supported
� List of databases

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 23 -

Tool features
� Scalable
� Multi-user
� Document generation
� Change management
� Regenerate code
� User interface
� Round-trip-engineering
� Status of the tool
� Status of the company

OMG’s Tool Taxonomy
� Modelling
� Analysis
� Transformation
� Composition
� Test
� Simulation
� Metadata Management
� Reverse Engineering
� Requirements
� Version Control

Table 2: Summary of MDA Tool requirements

2.3 Review of Existing MDA Tools
The review has taken the form of exploring the data on the OMG website and of investigating the companies’
websites and their publicity material for the MDA tools. Therefore this review cannot claim to be exhaustive or
wholly objective; it is just an overview of the various ‘publicised’ capacities of the tools based on the
companies’ opinions. This will generate a reference point as to what companies’ think are the important and
‘sellable’ components of an MDA tool and therefore help to gauge the perceived significant components of an
MDA tool. It should also show areas of weakness, that is areas that have been largely ignored by the tool
vendors and thus potential areas for development.

The OMG webpage containing the list of tools [38] and all the companies listed web sites (see Table 3) were
accessed over a several months up to January 2008. The 57 ‘Committed Companies and Their Products’ listed
have been reviewed and compared iteratively against the summary of requirements listed above. In other words,
one has informed the other and vice-versa. Listings have been removed where there is no MDA tool developed
by the company, or the company appears to have ceased trading or there is too little information to properly
assess the tools functionality, so only 46 tools remain to be reviewed.

This is a review more of the data sheets and the web sites than it is of the tools themselves consequently it will
reflect the features mentioned and the language used by the respective companies not necessarily the
functionality of the MDA tool itself.

Project supported by the European Commission within Sixth Framework Programme
© Copyright by VIDE Consortium

2.3.1 Listing from the OMG Web Site

 Tool Company url

 1 Adaptations [39] Adaptive Inc http://www.adaptive.com

 2 Ameos [40] Aonix http://www.aonix.com

 3 Real Time Studio [41] ARTiSAN http://www.artisansw.com

 4 b+m ArchitectureWare http://www2.architectureware.de/

 5 smartGenerator [42] BITPlan http://www.bitplan.com

 6 Together 2006 [15] Borland http://www.borland.com

 7 Caboom [43] Calkey Technologies http://www.calkey.com/caboom.htm

 8 SIMplicity [44] Calytrix http://www.calytrix.com

 9 Codagen Architect [13] Codagen Technologies http://www.manyeta.com

 10 Codeless [17] Codeless Technology http:www.codeless.com

 11 No Tool Consortium for Business Object Promotion

 12 REP ++ Studio [45] Consyst http://www.consyst-sql.com/a/WWW/Accueil/Accueil.html

 13 OptimalJ [11] Compuware http://www.compuware.com

 14 Component-X [46] Data Access Technologies - Model Driven http://www.enterprise-component.com
 Solutions

 15 No Tool David Frankel Consulting http://www.davidfrankelconsulting.com

 16 CodeGenie [47] Domain Solutions http://www.ooagenerator.com/codegenie.htm or

 http://www.domsols.com

 17 Constructor/MDRAD [48] Dot Net Builders http://www.dotnetbuilders.com

 18 TET EDCubed http://www.edcubed.com reloads to

 http://www.abovo.com/en/home

 19 Bridge [49] E2E http://www.e2ebridge.com

 20 e-GEN [50] Gentastic http://www.gentastic.com/e_GEN/e_GenApproach.html

 21 MDE - DEFUNCT M1 Global Solutions http://www.m1global.org/index.html or http://www.m1global.com./

 22 No Tool Hendryx & Associates http://www.hendryxassoc.com/index.html

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 25 -

 Tool Company url

 23 No Tool Herzum Software http://www.herzumsoftware.com/

 24 Rational Software Architect [6] IBM http://www-306.ibm.com/software/awdtools/architect/swarchitect/

 25 Medini product family(was m2c) [51] IKV++ http://www.ikv.de/

 26 Rhapsody [52] Telelogic (was I-Logix) http://modeling.telelogic.com/

 27 iQgen [53] innoQ http://www.innoq.com/iqgen/

 28 ArcStyler [8] Interactive Objects Software http://www.interactive-objects.com/products

 29 Kabira Transaction Platform and Kabira Technologies, Inc http://www.kabira.com/
 Kabira Accelerator [54]

 30 CASSANDRA/xUML [12] KnowGravity http://www.knowgravity.com/eng/index.htm

 31 iUML [55] Kennedy Carter Ltd http://www.kc.com/

 31 iCCG [56] Kennedy Carter Ltd http://www.kc.com/

 32 Xcoder [57] LIANTIS http://www.liantis.com/

 33 No Tool M2VP's MDA Consulting Services http://www.m2vp.com/

 34 No Tool MASTER Project http://www.esi.es/Master

 35 BridgePoint/xtUML or EDGE UML Mentor Graphics http://www.mentor.com/
 Suite [58]

 36 MetaMatrix Data Services Platform [59] JBoss (MetaMatrix Commitment) bought April http://www.redhat.com/metamatrix/
 2007

 37 modelscope [16] Metamaxim http://www.metamaxim.com/

 38 Model-In-Action [9] Mia-Software http://www.mia-software.com

 39 Innovator [60] MID http://www.mid.de/

 40 No Tool The MOD Group http://www.themodgroup.com/

 41 BoldExpress Studio [4] Neosight Technologies http://www.neosight.com./

 42 Blu Age [61] Netfective http://www.bluage.com/

 43 No Tool OCI's MDA Services http://www.ociweb.com/consulting/mda.html

 44 FrontierSuite [62] ObjectFrontier http://www.objectfrontier.com/

 45 PowerRAD [63] Outline Systems Inc. http://www.outlinesys.com/

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Final

© Copyright by VIDE Consortium

- 26 -

 Tool Company url

 46 PathMATE [3] Pathfinder Solutions http://www.pathfindermda.com/

 47 Agora Plastic 2005 [64] Plastic Software http://www.plasticsoftware.com/

 48 Framework [65] realMethods http://www.realmethods.com/index.html

 49 Select Component Factory or Select Select Business Solutions http://www.selectbs.com/
 Solution for MDA [7]

 50 MetaBoss [66] Softaris Pty. Ltd. www.metaboss.com

 51 Generative Model Transformer SoftMetaWare http://www.softmetaware.com/
 project [5]

 52 Objecteering [2] Softeam http://www.objecteering.com/

 53 OlivaNova Model Execution Sys [67] CARE Technologies S.A. / SOSY Inc's http://www.sosyinc.com

 54 Enterprise Architect [68] Sparx Systems http://www.sparxsystems.com

 55 MasterCraft [69] Tata Consultancy Services http://www.tatamastercraft.com/index.htm /

 http://www.tata.com/index.htm

 56 TAU Generation2 [14] Telelogic http://www.telelogic.com/

 57 ACE [70] TechOne http://www.techone.com/

Table 3: Summary of MDA committed tools

Project supported by the European Commission within Sixth Framework Programme
© Copyright by VIDE Consortium

2.3.2 Review Results

2.3.2.1 Models

MDA Specific Models

 M
et

a-
m

od
el

s

C
IM

P
IM

P
SM

C
od

e
(g

en
er

at
ed

)

xU
M

L

1 Adaptations � � � � 4

2 Ameos � � � � 4

3 Real Time Studio � � � 3

5 smartGenerator � � � 3

6 Together 2006 � � � 3

7 Caboom � 1

8 SIMplicity � � � 3

9 Codagen Architect � � � 3

10 Codeless � 1

12 REP ++ Studio � � � � 4

13 OptimalJ � � � 3

14 Component-X � 1

16 CodeGenie � � � � 4

17 Constructor/MDRAD � � � � 4

19 Bridge 0

20 e-GEN � � � � 4

24 Rational Software Architect � 1

25 Medini product family(was m2c) � � 2

26 Rhapsody � � 2

27 iQgen � � � � 4

28 ArcStyler � 1

29 Kabira Transaction Platform and 0

30 CASSANDRA/xUML � � � � 4

31 iUML � � � � � 5

31 iCCG � � 2

32 Xcoder � � 2

35 BridgePoint/xtUML or EDGE UML Suite � � � � � 5

36 MetaMatrix Data Services Platform � 1

37 modelscope 0

38 Model-In-Action 0

39 Innovator � 1

41 BoldExpress Studio � 1

42 Blu Age � 1

44 FrontierSuite � 1

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 28 -

45 PowerRAD � � � � 4

46 PathMATE � � � � 4

47 Agora Plastic 2005 � � � � 4

48 Framework � � � 3

49 Select Component Factory or Select � � � � 4

50 MetaBoss � � 2

51 Generative Model Transformer � � 2

52 Objecteering � 1

53 OlivaNova Model Execution System � 1

54 Enterprise Architect � � � 3

55 MasterCraft � � 2

56 TAU Generation2 � 1

57 ACE � � 2

47 12 3 27 23 41 5

Table 4: MDA specific models

As can be seen in Table 4 one of the most interesting of these results is the very low number of tools that
mention a CIM model, this reflects the problem both with the modelling and the transformation of CIM to PIM
models, such that most tools avoid the concept altogether. Another interesting result is that very few tools use
meta-models. These are seen by MDA as the foundation of transformations and of interoperability. Also very
few tools use executable UML.

Pre-CIM Users: All MUST

GUI REQ ID 1 Development of an informal Pre-CIM model should be supported

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

CIM Users: All MUST

GUI REQ ID 2 Development of a CIM model should be supported

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

PIM Users: All MUST

GUI REQ ID 3 Development of a PIM model should be supported

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 29 -

UML Models

 U
M

L

C
la

ss

O
bj

ec
t

C
om

po
si

te

P
ac

ka
ge

C
om

po
ne

nt

D
ep

lo
ym

en
t

U
se

 C
as

e

C
om

m
un

ic
at

io
n

Se
qu

en
ce

In
te

ra
ct

io
n

A
ct

iv
ity

St
at

e

T
im

in
g

1 Adaptations � 1

2 Ameos � 1
3 Real Time Studio � � 2
5 smartGenerator � 1
6 Together 2006 � 1
7 Caboom � � � � � 5
8 SIMplicity � � � � 4
9 Codagen Architect � � � � � � 6

10 Codeless � � � 3
12 REP ++ Studio � 1
13 OptimalJ � 1
14 Component-X � 1
16 CodeGenie � � � 3
17 Constructor/MDRAD � � � 3
19 Bridge � � � � � � � 7
20 e-GEN � 1

24
Rational Software
Architect � � � � � � � 7

25
Medini product
family(was m2c) � 1

26 Rhapsody � � � � 4
27 iQgen � 1
28 ArcStyler � � � 3

29
Kabira Transaction
Platform and � � � � 4

30 CASSANDRA/xUML � � � � � 5
31 iUML � 1
31 iCCG � 1
32 Xcoder � 1

35
BridgePoint/xtUML or
EDGE UML Suite � � � � � 5

36
MetaMatrix Data
Services Platform � 1

37 modelscope � � 2
38 Model-In-Action � � � � � � � � � 9
39 Innovator � � � � � � � � � � 10
41 BoldExpress Studio � 1
42 Blu Age � 1
44 FrontierSuite � 1
45 PowerRAD � � 2
46 PathMATE � 1
47 Agora Plastic 2005 � 1
48 Framework � 1

49
Select Component
Factory � � � � � � � � � � 10

50 MetaBoss � � 2

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 30 -

51
Generative Model
Transformer 0

52 Objecteering � � � 3

53
OlivaNova Model
Execution System � � � 3

54 Enterprise Architect � � � � � � � � � � � 11
55 MasterCraft � 1
56 TAU Generation2 � 1
57 ACE � 1

 46 14 10 5 3 5 6 11 0 11 1 11 13 0

Table 5: UML Models

All tools use some UML models as can be seen in Table 5, however, the ‘Generative Model Transformer’ has
very little information available and it is not clear if the tool has actually been developed yet. Some tools do state
that all UML models are supported; Enterprise Architect, Select and Innovator cite the most comprehensive list.
Class and State diagrams are the most often mentioned models used in the tools.

Any MDA tool should support UML, this is the foundation of the OMG’s MDA Standards and it would be
expected that an MDA tool was UML based. Whether a tool supported all 13 of the UML models and also if
UML is the only notation used is a different matter. Class diagrams are the most popular and typically the most
often used by developers.

CIM | PIM | PSM Users: All MUST

GUI REQ ID 4 UML must be supported.

Related requirement IDs: 4, 5, 11

CIM | PIM | PSM Users: All MUST

GUI REQ ID 5 Class Diagram modelling, creation, amendment and deletion.

Related requirement IDs: 4, 5, 11

Other Models

 B
P

M
N

B
P

E
L

E
R

 M
od

el
s

In
fo

rm
al

 d
ia

gr
am

s

D
at

af
lo

w
 d

ia
gr

am
s

St
ru

ct
ur

e
ch

ar
ts

A
rc

hi
te

ct
ur

e

L
og

ic
al

 m
od

el

P
hy

si
ca

l m
od

el

B
us

in
es

s
lo

gi
c/

ru
le

s

in
te

rf
ac

e
di

ag
ra

m

1 Adaptations 0

2 Ameos 0
3 Real Time Studio � 1
5 smartGenerator 0
6 Together 2006 � � � � 4
7 Caboom � 1
8 SIMplicity 0
9 Codagen Architect 0

10 Codeless 0
12 REP ++ Studio 0
13 OptimalJ � 1

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 31 -

14 Component-X � 1
16 CodeGenie 0
17 Constructor/MDRAD � 1
19 Bridge 0
20 e-GEN 0

24

Rational Software
Architect � � 2

25

Medini product
family(was m2c) 0

26 Rhapsody 0
27 iQgen 0
28 ArcStyler � 1

29

Kabira Transaction
Platform and � 0

30 CASSANDRA/xUML 0
31 iUML 0
31 iCCG 0
32 Xcoder 0

35

BridgePoint/xtUML
or EDGE UML Suite � 1

36

MetaMatrix Data
Services Platform 0

37 modelscope � 1
38 Model-In-Action 0
39 Innovator � � � � 4
41 BoldExpress Studio 0
42 Blu Age 0
44 FrontierSuite � 1
45 PowerRAD � 1
46 PathMATE 0
47 Agora Plastic 2005 0
48 Framework 0

49

Select Component
Factory � 1

50 MetaBoss � 1

51

Generative Model
Transformer 0

52 Objecteering � 1

53

OlivaNova Model
Execution System � 1

54 Enterprise Architect � 1
55 MasterCraft � 1
56 TAU Generation2 0
57 ACE 0

 4 2 4 2 1 1 1 1 1 9 1

Table 6: Other models

Some tools do support other models although there is no clear trend as can be seen in Table 6. Business rules
and logic, although how expressed is not always clear, are the most cited ‘other model’ supported by the tools.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 32 -

General Model Properties

 M
od

el
 d

if
fe

re
nc

in
g

M
od

el
 m

er
gi

ng

M
od

el
 im

po
rt

 a
nd

 e
xp

or
t

M
od

el
 c

on
si

st
en

cy
/in

te
gr

ity
/te

st
ab

le

M
od

el
 N

av
ig

at
io

n/
tr

av
er

sa
bl

e

T
ra

ce
ab

ili
ty

M
od

el
 R

ep
os

ito
ry

M
od

el
/c

od
e

sy
nc

hr
on

is
at

io
n

E
xe

cu
ta

bl
e

m
od

el
s

1 Adaptations � � 2
2 Ameos � 1
3 Real Time Studio � � � 3
5 smartGenerator 0
6 Together 2006 � � � 3
7 Caboom � 1
8 SIMplicity 0
9 Codagen Architect 0

10 Codeless � 1
12 REP ++ Studio � � � 3
13 OptimalJ 0
14 Component-X 0
16 CodeGenie � � � 3
17 Constructor/MDRAD � 1
19 Bridge � � � 3
20 e-GEN � 1
24 Rational Software Architect � � � 3
25 Medini product family(was m2c) � � 2
26 Rhapsody � � 2
27 iQgen � � 2
28 ArcStyler � � � � 4
29 Kabira Transaction Platform and 0
30 CASSANDRA/xUML � � � 3
31 iUML � � 2
31 iCCG 0
32 Xcoder � 1
35 BridgePoint/xtUML or EDGE UML Suite � 1
36 MetaMatrix Data Services Platform � � 2
37 modelscope � � 2
38 Model-In-Action � 1
39 Innovator � � 2
41 BoldExpress Studio 0
42 Blu Age � 1
44 FrontierSuite � � 2
45 PowerRAD � 1
46 PathMATE � � � 3
47 Agora Plastic 2005 � � � 3
48 Framework � 1

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 33 -

49 Select Component Factory or Select � � 2
50 MetaBoss � � 2
51 Generative Model Transformer 0
52 Objecteering � � � � � � � 7
53 OlivaNova Model Execution System 0
54 Enterprise Architect � � � � � � 6
55 MasterCraft � � 2
56 TAU Generation2 � � � 3
57 ACE 0

 3 4 19 21 12 9 7 6

Table 7: General model properties

During the review carried out in Table 7 very few products mention tool differencing or merging although
clearly a useful feature. Model import and export is obviously important, for tools to be fully useful they should
allow at least models to be exported so that the models can be used in other tools and thus users are not tied into
the product. Many tools support model import so that other modelling software (such as Rational Rose,
Together, ARIS etc) can be used and the models then imported. This reflects the concept of tool chaining that
many MDA products aim at, not necessarily to offer the full functionality of an MDA tool, but of a section of it.

Not quite half the tools mention model consistency, integrity or testing, this is surprisingly low given the
importance MDA places upon the modelling process. It could be that the literature does necessarily cover
enough detail to discuss this type of functionality; however this has to be a critical feature for an MDA tool to
support the MDA process.

It is also surprising how few tools mention traceability of models, that is the ability to trace ideas through the
multiple abstractions (CIM, PIM, PSM, Code). Related to this is the idea of model/code synchronisation, clearly
if changes are made to the PIM or to the code, these changes should be propagated through the multiple
abstractions to maintain consistency. Also how few mention any kind of model storage, although again many
more of the tools must be storing the models it is just not clear from the documentation.

CIM | PIM | PSM Users: All MUST

GUI REQ ID 6 Import and export of models.

Related requirement IDs: 6, 68, 84

CIM | PIM | PSM Users: All MUST

GUI REQ ID 7 Model integrity, verification, testing.

Related requirement IDs: 7, 52, 53, 54, 55, 56

CIM | PIM | PSM Users: All MUST

GUI REQ ID 8 Traceability of requirements through multiple abstractions.

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 34 -

CIM | PIM | PSM Users: All MUST

GUI REQ ID 9 Propagation of changes to all levels of abstraction

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

CIM | PIM | PSM Users: All MUST

GUI REQ ID 10 Model repository.

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

2.3.2.2 Standards

MDA Standards

 U
M

L

U
M

L
 (

2.
0)

 U
M

L
 P

ro
fi

le
s

M
O

F

X
M

I

C
W

M

O
C

L

Q
V

T

xU
M

L

A
SL

M
D

A

O
M

G

1 Adaptations � � � � � � 5

2 Ameos � � � � � 5

3 Real Time Studio � � � � � � 6

5 smartGenerator � � � � 4

6 Together 2006 � � � � � � � � 8

7 Caboom � � 2

8 SIMplicity � � 2

9 Codagen Architect � � � � 4

10 Codeless � � 2

12 REP ++ Studio � 1

13 OptimalJ � � � � � � 6

14 Component-X � � � 3

16 CodeGenie � � 2

17 Constructor/MDRAD � � � � 4

19 Bridge � � � � 4

20 e-GEN � � � � 4

24 Rational Software Architect � � � � 4

25 Medini product family(was m2c) � � � � 4

26 Rhapsody � � � � 4

27 iQgen � � � � � 5

28 ArcStyler � � � � � � 6

29 Kabira Transaction Platform and � 1

30 CASSANDRA/xUML � � 2

31 iUML � � � 3

31 iCCG � 1

32 Xcoder � � 2

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 35 -

35
BridgePoint/xtUML or EDGE
UML Suite � � � � 4

36
MetaMatrix Data Services
Platform � � � � � 5

37 modelscope � 1

38 Model-In-Action � � � � � 5

39 Innovator � � � � � � � 7

41 BoldExpress Studio � � � 3

42 Blu Age � � � � � 5

44 FrontierSuite � � 2

45 PowerRAD � � � 3

46 PathMATE � � � � � 5

47 Agora Plastic 2005 � � � � � 5

48 Framework � � 2

49 Select Component Factory � 1

50 MetaBoss � 1

51 Generative Model Transformer � � � 3

52 Objecteering � � � � 4

53
OlivaNova Model Execution
System � � 2

54 Enterprise Architect � � � � � 5

55 MasterCraft � � 2

56 TAU Generation2 � � � 3

57 ACE � � � 3

 47 13 19 12 25 5 4 2 3 2 23 11

Table 8: MDA standards

All tools’ documentation mentions the UML standard (see Table 8), which is to be expected, given that the
modelling support is in all cases UML. Some mention UML 2 (both 2.0 and 2.1) and many rely on UML
Profiles to tailor and annotate the models. The MOF standard is only mentioned in 12 of the tools, this matches
with the few (7) tools that mention the repository given that the two are closely linked. XMI is more widespread
(25), often because tools are importing models from other modelling software and XMI is the standard for
exchanging such UML models and it corresponds to the 19 tools that can import models. The other standards of
CWM, OCL, QVT, xUML, ASL are not well supported. The most notable of this list is CWM, which is sited as
the other core MDA standard for data warehouse modelling, is hardly supported at all.

The MDA and OMG standards were added simply to see how many tools claimed to support the ‘MDA
standard’ or the ‘OMG standard’ and it was interesting to note that not all tools claimed to. Virtually all
documentation mentioned MDA (but they would as many of the data sheets were prepared for the OMG MDA
page), but not necessarily making the claim to meeting the ‘standard’.

CIM Users: All MUST

GUI REQ ID 11
An open and interoperable platform that meets as many standards as possible

Related requirement IDs: 11

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 36 -

Other Standards

 E
D

O
C

R
A

S

SY
SM

L

JM
I

1 Adaptations � � 2

2 Ameos 0

3 Real Time Studio � 1

5 smartGenerator 0

6 Together 2006 0

7 Caboom 0

8 SIMplicity 0

9 Codagen Architect 0

10 Codeless 0

12 REP ++ Studio 0

13 OptimalJ 0

14 Component-X � 1

16 CodeGenie 0

17 Constructor/MDRAD 0

19 Bridge 0

20 e-GEN 0

24 Rational Software Architect � 1

25 Medini product family(was m2c) 0

26 Rhapsody � 1

27 iQgen 0

28 ArcStyler � 1

29 Kabira Transaction Platform and 0

30 CASSANDRA/xUML 0

31 iUML 0

31 iCCG 0

32 Xcoder 0

35
BridgePoint/xtUML or EDGE UML
Suite 0

36 MetaMatrix Data Services Platform 0

37 modelscope 0

38 Model-In-Action 0

39 Innovator 0

41 BoldExpress Studio 0

42 Blu Age 0

44 FrontierSuite 0

45 PowerRAD 0

46 PathMATE 0

47 Agora Plastic 2005 0

48 Framework 0

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 37 -

49 Select Component Factory or Select 0

50 MetaBoss 0

51 Generative Model Transformer 0

52 Objecteering 0

53 OlivaNova Model Execution System 0

54 Enterprise Architect 0

55 MasterCraft 0

56 TAU Generation2 0

57 ACE 0

 2 2 2 1

 Table 9: Other standards

Other standards were mentioned in tools, but there were none of any significance (see Table 9).

2.3.2.3 Transformations

MDA Transformations

 C
IM

 -
>

P
IM

P
IM

 -
>

P
SM

P
SM

 -
>

C
od

e

1 Adaptations 0
2 Ameos 0
3 Real Time Studio � 1
5 smartGenerator � 1
6 Together 2006 � 1
7 Caboom � 1
8 SIMplicity � 1
9 Codagen Architect � 1

10 Codeless 0
12 REP ++ Studio 0
13 OptimalJ � � 2
14 Component-X 0
16 CodeGenie 0
17 Constructor/MDRAD � � 2
19 Bridge 0
20 e-GEN � � 2
24 Rational Software Architect 0
25 Medini product family(was m2c) 0
26 Rhapsody 0
27 iQgen 0
28 ArcStyler 0
29 Kabira Transaction Platform and 0
30 CASSANDRA/xUML 0
31 iUML 0
31 iCCG � 1
32 Xcoder 0

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 38 -

35
BridgePoint/xtUML or EDGE UML
Suite � � 2

36 MetaMatrix Data Services Platform 0
37 modelscope 0
38 Model-In-Action 0
39 Innovator 0
41 BoldExpress Studio 0
42 Blu Age 0
44 FrontierSuite 0
45 PowerRAD 0
46 PathMATE � � 2
47 Agora Plastic 2005 � � 2
48 Framework � � 2
49 Select Component Factory � � � 3
50 MetaBoss 0
51 Generative Model Transformer 0
52 Objecteering 0
53 OlivaNova Model Execution System 0
54 Enterprise Architect � � 2
55 MasterCraft � 1
56 TAU Generation2 0
57 ACE � � 2

 1 17 11

 Table 10: MDA Transformations

 Table 10 shows that the number of tools that stated they had CIMs, PIMs and PSMs
transformation was quite low in number. However, it is interesting to note that of the 3 tools that reported the
use of a CIM model only 1 tool explicitly mentions the transformation of CIM to PIM. 27 tools stated they used
PIMs, however only 17 transform these PIMs to PSMs and 23 tools mention PSM, but only 11 transform PSMs
to code. Clearly there is not a one to one relationship of using a model and transforming the model to the next
level of abstraction. Although as stated previously this could be a restriction of the data sheets and web site
information more than of the tool itself.

Of those tools that do perform MDA transformations a high number also support meta-modelling, however there
are some tools that apparently transform PIMs to PSMs and PSMs to code without the support of meta-models.

Other Transformations

 M
od

el
 -

>
m

od
el

M
od

el
 -

>
co

de

L
og

ic
al

 -
>

ph
ys

ic
al

co
de

 -
>

m
od

el

co
de

 g
en

er
at

io
n

1 Adaptations 0
2 Ameos � 1
3 Real Time Studio � 1
5 smartGenerator 0
6 Together 2006 � 1
7 Caboom � 1
8 SIMplicity 0
9 Codagen Architect � � 2

10 Codeless 0
12 REP ++ Studio 0

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 39 -

13 OptimalJ 0
14 Component-X 0
16 CodeGenie � � 2
17 Constructor/MDRAD 0
19 Bridge � 1
20 e-GEN 0
24 Rational Software Architect � � � 3
25 Medini product family(was m2c) � � � 3
26 Rhapsody � 1
27 iQgen � 1
28 ArcStyler � � 2
29 Kabira Transaction Platform and � 1
30 CASSANDRA/xUML 0
31 iUML 0
31 iCCG 0
32 Xcoder � 1

35
BridgePoint/xtUML or EDGE UML
Suite � 1

36 MetaMatrix Data Services Platform � 1
37 modelscope � 1
38 Model-In-Action � � � 3
39 Innovator � 1
41 BoldExpress Studio � 1
42 Blu Age � 1
44 FrontierSuite � � 2
45 PowerRAD � 1
46 PathMATE � 1
47 Agora Plastic 2005 � 1
48 Framework 0
49 Select Component Factory or Select 0
50 MetaBoss � 1
51 Generative Model Transformer 0
52 Objecteering � � 2
53 OlivaNova Model Execution System � 1
54 Enterprise Architect 0
55 MasterCraft � 1
56 TAU Generation2 � 1
57 ACE 0

47 7 26 2 3 3

 Table 11: Other transformations

Of course it could be a matter of how companies report the transformations, i.e. not using the phrasing ‘PSM to
code’ but a more generic ‘model to code’ transformation. Many tools are reported as doing model to code
transformations, in some there are duplications (i.e. tools mention both PSM to code and model to code),
however many state either one or the other, thus most tools do claim to generate code from models. Although
some make a feature of not generating code e.g. CodeLess which “Unlike the others, it chooses not to generate
code at all.” [17]

What is still surprisingly low is the model to model transformations. Only 7 tools claim to do this, so it is not
clear how each level of abstraction is realised if there is no model transformation, i.e. how do you get from CIM
to PIM or from PIM to PSM?

Pre-CIM | CIM | Users: All MUST

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 40 -

GUI REQ ID 12 Transformation of the Pre-CIM to CIM model

Related requirement IDs: 12, 12a, 25

CIM | PIM | Users: All MUST

GUI REQ ID 12a Transformation of the CIM to PIM model

Related requirement IDs: 12, 12a, 25

2.3.2.4 Methodology

Methodology Support

 SD
L

C
 S

up
po

rt

A
gi

le

It
er

at
iv

e
de

ve
lo

pm
en

t

1 Adaptations 0

2 Ameos 0

3 Real Time Studio 0

5 smartGenerator 0

6 Together 2006 0

7 Caboom 0

8 SIMplicity 0

9 Codagen Architect 0

10 Codeless 0

12 REP ++ Studio 0

13 OptimalJ � 1

14 Component-X 0

16 CodeGenie 0

17 Constructor/MDRAD � 1

19 Bridge 0

20 e-GEN � 1

24 Rational Software Architect � 1

25 Medini product family(was m2c) 0

26 Rhapsody � � 2

27 iQgen 0

28 ArcStyler 0

29 Kabira Transaction Platform and 0

30 CASSANDRA/xUML � 1

31 iUML 0

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 41 -

31 iCCG 0

32 Xcoder 0

35
BridgePoint/xtUML or EDGE UML
Suite 0

36 MetaMatrix Data Services Platform 0

37 modelscope � 1

38 Model-In-Action � 1

39 Innovator 0

41 BoldExpress Studio 0

42 Blu Age 0

44 FrontierSuite � 1

45 PowerRAD � � 2

46 PathMATE 0

47 Agora Plastic 2005 0

48 Framework 0

49 Select Component Factory or Select 0

50 MetaBoss � 1

51 Generative Model Transformer 0

52 Objecteering � 1

53 OlivaNova Model Execution System 0

54 Enterprise Architect � 1

55 MasterCraft � 1

56 TAU Generation2 � 1

57 ACE 0

47 11 5 1

 Table 12: Methodology support

As can be seen in Table 12 the majority of tools don’t mention methodology support or process support at all.
The most mentioned, at only 11, is the general SDLC support, and most tools that do mention it are not
suggesting a process to be followed, just that the tool covers a range of steps in the development process. This is
to be expected the MDA approach does not specify a method and users are left to follow their own chosen
process. Whether tools expect, suggest or work best with a specific methodology is not clear from the
documentation and beyond the scope of this paper.

2.3.2.5 Technology

Technology – programming (Part 1)

 Ja

va

J2
E

E

E
JB

St
ru

ts

JS
P

Ja
va

 D
at

a
O

bj
ec

ts
 (

JD
O

)
Ja

va
 T

ra
ns

pa
re

nt

P
er

si
st

en
ce

 F
ra

m
ew

or
k

Ja
va

 S
er

ve
r

F
ac

es

JD
B

C

C

C
+

+

V
is

ua
lB

as
ic

/V
B

C
O

B
O

L

D
el

ph
i-

P
as

ca
l

F
or

tr
an

A
da

/S
pa

rk
 A

da

1 Adaptations � � � �

2 Ameos � � � � �

3 Real Time Studio � � � �

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 42 -

5 smartGenerator � � � � � � �

6 Together 2006 � �

7 Caboom � � � � � �

8 SIMplicity � �

9 Codagen Architect � � � � � � � � �

10 Codeless

12 REP ++ Studio � � � � �

13 OptimalJ � � �

14 Component-X � � �

16 CodeGenie � � �

17
Constructor/MDR
AD �

19 Bridge �

20 e-GEN �

24
Rational Software
Architect � � � � � �

25
Medini product
family(was m2c) � �

26 Rhapsody � � � �

27 iQgen � � � � � �

28 ArcStyler � � �

29
Kabira Transaction
Platform and �

30
CASSANDRA/xU
ML

31 iCCG/iUML �

32 Xcoder � � � �

35

BridgePoint/xtUM
L or EDGE UML
Suite � �

36
MetaMatrix Data
Services Platform � �

37 modelscope

38 Model-In-Action � � � � � � � �

39 Innovator � � � �

41
BoldExpress
Studio �

42 Blu Age �

44 FrontierSuite � � � �

45 PowerRAD �

46 PathMATE � � �

47 Agora Plastic 2005 � � �

48 Framework � �

49
Select Component
Factory or Select � � �

50 MetaBoss

51
Generative Model
Transformer

52 Objecteering � � �

53
OlivaNova Model
Execution System � � � �

54
Enterprise
Architect � � � �

55 MasterCraft � � � �

56 TAU Generation2 � � �

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 43 -

57 ACE � � �

 28 21 16 6 9 2 1 2 2 10 20 10 4 2 1 4

Technology – programming (Part 2)

 .N
E

T

C

A
SP

/A
SP

+

P
H

P

W
eb

 S
er

vi
ce

s

H
T

M
L

SO
A

P

U
D

D
I

X
M

L

eb
X

M
L

C
ol

d
F

us
io

n

1 Adaptations � � 6
2 Ameos � 6
3 Real Time Studio � 5
5 smartGenerator � � 9
6 Together 2006 � 3
7 Caboom � � � � � � 12
8 SIMplicity 2
9 Codagen Architect � � 11

10 Codeless � 1
12 REP ++ Studio � � � � 9
13 OptimalJ 3
14 Component-X � � � � 7
16 CodeGenie 3
17 Constructor/MDRAD � � 3
19 Bridge � 2
20 e-GEN � � 3
24 Rational Software Architect � � 8
25 Medini product family(was m2c) 2
26 Rhapsody 4
27 iQgen � � � 9
28 ArcStyler � � � 6
29 Kabira Transaction Platform and � 2
30 CASSANDRA/xUML � 1
31 iCCG/iUML � � 3
32 Xcoder � � 6

35
BridgePoint/xtUML or EDGE
UML Suite 2

36 MetaMatrix Data Services Platform � � � 5
37 modelscope 0
38 Model-In-Action � � � � � � 14
39 Innovator 4
41 BoldExpress Studio � � � � 5
42 Blu Age � 2
44 FrontierSuite 4
45 PowerRAD � 2
46 PathMATE 3
47 Agora Plastic 2005 � � 5
48 Framework 2
49 Select Component Factory or Select � � � 6
50 MetaBoss 0

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 44 -

51 Generative Model Transformer 0
52 Objecteering � 4

53
OlivaNova Model Execution
System � � � 7

54 Enterprise Architect � � � 7
55 MasterCraft 4
56 TAU Generation2 3
57 ACE � � 5

46 20 13 3 2 8 3 7 1 13 1 1

Table 13: Technology (programming)

The most supported technology is Java, which includes a range of features such as J2EE which is the most often
used platform, which includes EJB and others. .NET and C++ are the second most often mentioned
technologies. The results in Table 13 conform to general industry trends about the popularity and usage of
languages and platforms so it is not surprising these technologies are popular with the MDA tools.

What is interesting is the relatively high number of tools that support very few languages (3 or less). Given that
one of the most often cited advantages of MDA is that you can build the models and then transform them into
multiple languages, this low number constrains this advantage.

Technology - general

 C
O

R
B

A

Jb
os

s

E
cl

ip
se

Sp

ri
ng

H
ib

er
na

te

SQ
L

-D
D

L

A
D

O
/A

D
O

+

D
at

a
A

cc
es

s
O

bj
ec

ts
 (

D
A

O
)

M
V

C

P
at

te
rn

-b
as

ed
 c

od
e

ge
ne

ra
tio

n

te
m

pl
at

e
ba

se
d

co
de

 g
en

er
at

io
n

St
at

e
M

ac
hi

ne
 g

en
er

at
io

n
M

ai
nf

ra
m

e

P
al

m
 O

S
L

in
ux

W

in
do

w
s

w
in

32

V
xW

or
ks

C

O
M

+

C
om

po
ne

nt
 b

as
ed

 d
ev

el
op

m
en

t

1 Adaptations 0
2 Ameos � � 2
3 Real Time Studio � � � � � 5
5 smartGenerator � � � � � 5
6 Together 2006 � � � 3
7 Caboom � � � 3
8 SIMplicity � � � � 4
9 Codagen Architect � � 3

10 Codeless 0
12 REP ++ Studio � � 2
13 OptimalJ � � � 3
14 Component-X � 1
16 CodeGenie � � 2
17 Constructor/MDRAD 0
19 Bridge 0
20 e-GEN � � 3

24
Rational Software
Architect � � 2

25
Medini product
family(was m2c) � � 2

26 Rhapsody � � � 3
27 iQgen � � � 3

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 45 -

28 ArcStyler � � 2

29
Kabira Transaction
Platform and 0

30 CASSANDRA/xUML 0
31 iUML/iCCG � � 2
32 Xcoder � � 2

35
BridgePoint/xtUML or
EDGE UML Suite � � 2

36
MetaMatrix Data
Services Platform � 1

37 modelscope 0
38 Model-In-Action � � � � 4
39 Innovator � � � 3
41 BoldExpress Studio 0
42 Blu Age � 1
44 FrontierSuite � � 2
45 PowerRAD 0
46 PathMATE � � � � 4
47 Agora Plastic 2005 � 1
48 Framework � � � � 4

49
Select Component
Factory or Select � 1

50 MetaBoss � 1

51
Generative Model
Transformer 0

52 Objecteering � � � � 4

53
OlivaNova Model
Execution System � � 2

54 Enterprise Architect � � � � � 5
55 MasterCraft � 1
56 TAU Generation2 � � 2
57 ACE � � � � 4

 14 3 10 1 2 6 1 2 2 21 12 2 1 1 0 0 1 1 5 7

Table 14: Technology general

CORBA is the most often quoted middleware standard, this is not surprising as it is also an OMG standard (see
Table 14. Also the use of patterns and templates for code development are often used in MDA tools, which
reflects the second and third levels of transformations as discussed earlier.

Coding functionality

 co
de

:
qu

al
ity

co
de

:
 c

on
fi

gu
ra

bl
e

co
de

:
 d

eb
ug

ge
r

co
de

:
 r

eg
en

er
at

io
n

co
de

:
 c

us
to

m
is

ab
le

ite
ra

tiv
e

de
ve

lo
pm

en
t

R
eu

sa
bl

e
C

om
po

ne
nt

 L
ib

ra
ry

1 Adaptations 0
2 Ameos 0
3 Real Time Studio 0
5 smartGenerator 0

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 46 -

6 Together 2006 0
7 Caboom 0
8 SIMplicity � � 2
9 Codagen Architect � 1

10 Codeless 0
12 REP ++ Studio 1
13 OptimalJ � 1
14 Component-X 0
16 CodeGenie � 1
17 Constructor/MDRAD 0
19 Bridge � 1
20 e-GEN � � 3
24 Rational Software Architect � 1
25 Medini product family(was m2c) � 1
26 Rhapsody 0
27 iQgen 0
28 ArcStyler � 1
29 Kabira Transaction Platform and 0
30 CASSANDRA/xUML 0
31 iUML/iCCG � 1
32 Xcoder 0
35 BridgePoint/xtUML or EDGE UML Suite � 1
36 MetaMatrix Data Services Platform � 1
37 modelscope 0
38 Model-In-Action � � 2
39 Innovator 0
41 BoldExpress Studio 0
42 Blu Age 0
44 FrontierSuite � � 2
45 PowerRAD 0
46 PathMATE � � � 3
47 Agora Plastic 2005 � 1
48 Framework � � 2
49 Select Component Factory or Select � 1
50 MetaBoss � � 2
51 Generative Model Transformer 0
52 Objecteering � 1
53 OlivaNova Model Execution System 0
54 Enterprise Architect 1
55 MasterCraft � � 2
56 TAU Generation2 0
57 ACE 0
 3 7 1 5 3 1 10

Table 15: Coding functionality

Of the code features there is little functionality mentioned (see Table 15), possibly because this is too low a
level for many of tool descriptions to consider, but also because the main focus of MDA is on the modelling
aspects. The most often cited coding feature is a reusable component library.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 47 -

2.3.2.6 Database Supported

Database Technology

 M
S

SQ
L

 S
er

ve
r

O
ra

cl
e

D
B

2

Sy
ba

se

M
yS

Q
L

M
S

A
cc

es
s

In
fo

rm
ix

C
lo

ud
sc

ap
e

P
oi

nt
B

as
e

JD
B

C
 c

om
pl

ia
nt

 R
D

B
M

S

O
bj

ec
t-

B
as

ed
 d

at
ab

as
e

O
bj

ec
t-

re
la

tio
na

l m
ap

pi
ng

1 Adaptations 0
2 Ameos 0
3 Real Time Studio � 1
5 smartGenerator 0
6 Together 2006 � � � � 4
7 Caboom � � � � � 5
8 SIMplicity 0
9 Codagen Architect 0

10 Codeless 0
12 REP ++ Studio � 1
13 OptimalJ 0
14 Component-X 0
16 CodeGenie � � � 3
17 Constructor/MDRAD � 1
19 Bridge 0
20 e-GEN 0
24 Rational Software Architect � 1

25
Medini product family(was
m2c) 0

26 Rhapsody 0
27 iQgen 0
28 ArcStyler � � 2

29
Kabira Transaction Platform
and 0

30 CASSANDRA/xUML 0
31 iUML/iCCG 0
32 Xcoder 0

35
BridgePoint/xtUML or EDGE
UML Suite 0

36
MetaMatrix Data Services
Platform � � � � � 5

37 modelscope 0
38 Model-In-Action 0
39 Innovator � � � � 4
41 BoldExpress Studio 0
42 Blu Age 0
44 FrontierSuite � � � � � � � 7
45 PowerRAD 0
46 PathMATE 0
47 Agora Plastic 2005 0

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 48 -

48 Framework 0

49
Select Component Factory or
Select 0

50 MetaBoss 0
51 Generative Model Transformer 0
52 Objecteering 0

53
OlivaNova Model Execution
System � � � 3

54 Enterprise Architect � � � 3
55 MasterCraft � 1
56 TAU Generation2 0
57 ACE � 1

 9 12 7 4 3 1 1 1 1 1 1 1

Table 16: Database support

The results in Table 16 show that database support does not feature too highly in MDA tool requirements and
functionality literature, again this could be to do with the level of detail data sheets and web sites work at. Most
developed applications must have some form of persistent storage, thus the majority probably use a database.
Some tools such as MetaMatrix [59] refer to being database focused ; it “provides uniform access to disparate,
heterogeneous data sources.”, therefore they cite a number of potential databases.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 49 -

2.3.2.7 Tool features

OMG’s Tool Taxonomy

 M
od

el
lin

g

A
na

ly
si

s

T
ra

ns
fo

rm
at

io
n

C
om

po
si

tio
n

T
es

t

Si
m

ul
at

io
n

M
et

ad
at

a
M

an
ag

em
en

t

R
ev

er
se

 E
ng

in
ee

ri
ng

 (
L

eg
ac

y)

R
eq

ui
re

m
en

ts

V
er

si
on

 C
on

tr
ol

1 Adaptations � � � � � 5
2 Ameos � � � � 4
3 Real Time Studio � � � 3
5 smartGenerator � � 2
6 Together 2006 � � � � 4

7 Caboom � 1
8 SIMplicity � � 2
9 Codagen Architect � � � 3

10 Codeless � � 2
12 REP ++ Studio � � 2
13 OptimalJ � � � 3
14 Component-X � � � 3
16 CodeGenie � � � 3
17 Constructor/MDRAD � � 2
19 Bridge � � � 3
20 e-GEN � � 2
24 Rational Software Architect � � � � � 5
25 Medini product family(was m2c) � � � � � � 6
26 Rhapsody � � � � � 5
27 iQgen � � 2
28 ArcStyler � � � � � � 6
29 Kabira Transaction Platform and � � 2
30 CASSANDRA/xUML � � 2
31 iUML/iCCG � � � 3
32 Xcoder � � 2

35
BridgePoint/xtUML or EDGE UML
Suite � � � � 4

36 MetaMatrix Data Services Platform � � � 3
37 modelscope � � 2
38 Model-In-Action � � � � 4
39 Innovator � � � � � � 6
41 BoldExpress Studio � � 2
42 Blu Age � � 2
44 FrontierSuite � � � 3
45 PowerRAD � � � � 4
46 PathMATE � � � � 4
47 Agora Plastic 2005 � � � � � 5
48 Framework � � � � 4

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 50 -

49 Select Component Factory or Select � � � � � 5
50 MetaBoss � � 2
51 Generative Model Transformer 0
52 Objecteering � � � � � 5
53 OlivaNova Model Execution System � � 2
54 Enterprise Architect � � � � � � 6
55 MasterCraft � � � � 4
56 TAU Generation2 � � � � � � 6
57 ACE � � 2

 41 7 31 0 19 7 12 15 7 13

Table 17: OMG's tool taxonomy

Unsurprisingly as can be seen in Table 20 the majority of tools label themselves as having modelling
functionality, which is not surprising given the focus on UML and models in MDA. What is more surprising is
that 5 don’t list modelling as part of their functionality, maybe because they take it as a given assumption. Also
with the focus in MDA on the transformation of models, many data sheets list transformations as part of the tool
functionality. The other elements of the OMG’s taxonomy are sometimes mentioned, but not in very high
numbers. The most interesting feature is the Composition element – which no tool claimed.

Other tool capabilities

 So
ft

w
ar

e
D

es
ig

n

C
on

fi
gu

ra
tio

n
M

an
ag

em
en

t

D
ep

lo
y

A
pp

lic
at

io
ns

Sc
al

ab
le

M
ul

ti-
us

er

D
oc

um
en

t g
en

er
at

io
n

C
ha

ng
e

m
an

ag
em

en
t

R
eg

en
er

at
e

co
de

us
er

 in
te

rf
ac

e

ro
un

d-
tr

ip
-e

ng
in

ee
ri

ng

T
ra

ce
ab

ili
ty

op
en

 in
te

gr
at

io
n

1 Adaptations � � � � 4

2 Ameos � � 2

3 Real Time Studio � � � 3

5 smartGenerator � 1

6 Together 2006 � 1

7 Caboom � � � 3

8 SIMplicity � 1

9 Codagen Architect � � � 3

10 Codeless � � 2

12 REP ++ Studio � � � � 4

13 OptimalJ � � 2

14 Component-X � 1

16 CodeGenie 0

17 Constructor/MDRAD � 1

19 Bridge � � 2

20 e-GEN � � � 3

24 Rational Software Architect � � � � 4

25
Medini product family(was
m2c) � � 2

26 Rhapsody � � � 4

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 51 -

27 iQgen 1

28 ArcStyler � � � � 5

29
Kabira Transaction Platform
and � 2

30 CASSANDRA/xUML � 1

31 iUML/iCCG 0

32 Xcoder � 1

35
BridgePoint/xtUML or EDGE
UML Suite 0

36
MetaMatrix Data Services
Platform � � � 5

37 modelscope � 2

38 Model-In-Action � � � � 5

39 Innovator � � � 4

41 BoldExpress Studio � � 3

42 Blu Age � � 3

44 FrontierSuite � � � 4

45 PowerRAD � � � � 4

46 PathMATE 0

47 Agora Plastic 2005 � 2

48 Framework � � 3

49
Select Component Factory or
Select � � � 4

50 MetaBoss 0

51 Generative Model Transformer 0

52 Objecteering � � � � � 6

53
OlivaNova Model Execution
System � � 2

54 Enterprise Architect � � � � 5

55 MasterCraft � � � 4

56 TAU Generation2 � � � � � � 6

57 ACE 1

 4 3 7 6 17 17 6 5 15 4 9 4

Table 18: Other tool capabilities

A number of other general tool features were explored (see Table 18), and none of these were reported in high
numbers. Multi-user tool support and document generation were the most popular at 17. Although as far as
document generation support goes it is surprising that more tools do not report supporting this feature, as it
seems so essential to the design and development process.

CIM | PIM | PSM Users: All MUST

GUI REQ ID 14 Document generation

Related requirement IDs: 12, 14, 26, 27, 28, 29, 32, 33, 58, 59, 62, 63, 66, 75, 76

Also the reported support for traceability is very low, it is difficult to see how an MDA tool can be fully utilised
and support development if requirements cannot be traced both backwards and forwards through the levels of
abstraction.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 52 -

CIM | PIM | PSM Users: All MUST

GUI REQ ID 15 Traceability of requirements through all models and levels of abstraction.

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

2.3.2.8 General Properties

General

 in
te

ro
pe

ra
bl

e

L
eg

ac
y

T
ri

al
 S

of
tw

ar
e

av
ai

la
bl

e

St
at

us
 o

f
th

e
co

m
pa

ny

1 Adaptations � � 2
2 Ameos � 1
3 Real Time Studio � � � 3
5 smartGenerator 0
6 Together 2006 � � 2
7 Caboom 0
8 SIMplicity � 1
9 Codagen Architect 0

10 Codeless � 1
12 REP ++ Studio � 1
13 OptimalJ � � � 3
14 Component-X � � � 3
16 CodeGenie � � 2
17 Constructor/MDRAD 0
19 Bridge � 1
20 e-GEN 0
24 Rational Software Architect � � 2
25 Medini product family(was m2c) 0
26 Rhapsody � 1
27 iQgen � 1
28 ArcStyler � � � 3
29 Kabira Transaction Platform and 0
30 CASSANDRA/xUML � 1
31 iUML/iCCG � 1
32 Xcoder � 1
35 BridgePoint/xtUML or EDGE UML Suite � 1
36 MetaMatrix Data Services Platform � 1
37 modelscope � 1
38 Model-In-Action � 1
39 Innovator � 1
41 BoldExpress Studio � 1
42 Blu Age � 1

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 53 -

44 FrontierSuite 0
45 PowerRAD � 1
46 PathMATE � 1
47 Agora Plastic 2005 0
48 Framework � 1
49 Select Component Factory or Select � � 2
50 MetaBoss 0
51 Generative Model Transformer 0
52 Objecteering � � 2
53 OlivaNova Model Execution System � 1
54 Enterprise Architect � � 2
55 MasterCraft 0
56 TAU Generation2 � 1
57 ACE 0

 3 4 24 17

 Table 19: General properties

From the research it is interesting to note how few tools mention legacy systems and integrating them into new
developments in their data sheets. Many of the tools have 30 or 15 day trial software that can be downloaded and
some have online tutorials and demos .As can be seen in Table 19 seventeen of the tool vendors have some kind
of link with the OMG, such as they are members that can be defined as contributing, domain, platform or
influencing. This may well have implications for some of the results found, for instance a large proportion of the
tools that support a high number of MDA models, support the highest number of UML models and the most
MDA standards are developed by OMG members.

2.4 Summary
This Chapter explored the research into MDA tools with the aim of producing a list of features that an MDA tool
should contain. These features were then applied to the OMG listed MDA tools and the results published. A
number of requirements were outlined for the VIDE project additional to those discussed in D1.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 54 -

3. Methods of Evaluation

3.1 Introduction
Evaluation is reported in [71] as being goal oriented, with the primary goal of checking results of actions or
interventions in order to improve the quality of those actions. Or, it could be to choose the best alternative action,
which would be dependent on the current knowledge of science and standards. One of the most important
aspects of the work in Work Package 5 is identifying the requirements for the VIDE Graphical User Interface
and evaluation of existing Graphical User Interfaces and various other modelling environments. These interface
evaluations, in addition to those of the Work Package prototype will inform the requirements for the
specification of the final system. There are a number of different views of the way to evaluate a User Interface
and these will be explored in this chapter and a method will be selected which will give the greatest value to the
package design team.

The evaluation of a software application may be focussed in a number of different areas, for example system
performance, usability, re-use, security, personalisation attributes, accessibility etc. However, the issue at the
User Interface is likely to be concerned with the way the user interacts with the system and the value that they
get from that interaction.

This chapter will first, in Section 3.2, summarise the evaluation standards that are available that impinge on the
general area. It will then investigate a number of evaluation methods in Section 3.3. An evaluation method
determines the frame of the evaluation by choosing techniques appropriate for the life cycle and setting the focus
of the study and the measurement criteria. [71]. The Cognitive Dimensions Framework will be explored in
Section 3.4 and finally Section 3.5 discusses the selection of an evaluation paradigm for the Work Package.

3.2 Evaluation standards
Standards are concerned with prescribing the way an activity is done to achieve consistency across a group of
products [72]. There are a number of standards relating to the users interaction with a computer, usability and the
ease of use with computers, starting with ISO 9241 which is currently being updated.

3.2.1 ISO 9241
ISO 9241 was originally produced in 1999 and entitled ‘Ergonomic requirements for office work with visual
display terminals’. A number of the sections were found to be outdated and have been or are being remodelled to
take into account the move of technology toward the web and mobile services. The new standard title is
‘Ergonomics of Human System Interaction’ and a number of the sections are being renumbered and retitled. The
original Section 11 relates to Usability and defines it
 ‘as the extent to which a computer system enables users, in a given context of use, to achieve specified goals
effectively and efficiently while promoting feelings of satisfaction’.
ISO 9241 has had a number of criticisms levelled at it because there are 82 pages of guidelines in a number of
different sections and designers need to be able to understand not only the goals and benefits of each guideline,
but also when the guideline should be applied. In addition there is not always clear information on how to apply
each guideline.[73]

3.2.2 ISO/IEC 9126-1 (2000)
Other standards that have some bearing in the area include ISO/IEC FDIS 9126-1 entitled Software Engineering
Product Quality. Part one defines a quality model and has a slightly different definition of usability
‘ the capability of the software product to be understood, learned, used and attractive to the user, when used
under specified conditions’.
The model reflects a quality model that defines three views, the internal view which is measured by the static
properties of the code and is done by inspection. The external view which is measured by the dynamic properties
of the code when it is executed and the third view relates to quality in use, which is measured by the extent to
which the software meets the needs of the user in the working environment (such as productivity). Quality in use
is defined as ‘the capability of the software product to enable specified users to achieve specified goals with
effectiveness, productivity, safety and satisfaction in specified contexts of use’.[74]
ISO 9126 states that a product has six categories of software quality that are applicable to software development:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 55 -

• functionality: the capability of the software to provide functions which meet stated and implied needs
when the software is used under specified conditions.

• reliability: the capability of the software to maintain its level of performance when used under specified
conditions.

• usability: the capability of the software to be understood, learned, used and liked by the user, when used
under specified conditions.

• efficiency: the capability of the software to provide the required performance, relative to the amount of
resources used, under stated conditions.

• maintainability: the capability of the software to be modified. Modifications may include corrections,
improvements or adaptation of the software to changes in environment, and in requirements and
functional specifications.

• portability: the capability of software to be transferred from one environment to another. [75]
Parts two and three provide metrics for evaluation of these criteria.

3.2.3 ISO 14915/IEC 61997
This standard contains details of the expected behaviour and appearance of multimedia user interfaces. It
provides guidelines for multimedia control and navigation and media selection and combination, including a
section on domain specific multimedia interfaces such as kiosk applications and computer aided co-operative
work.

3.2.4 ISO/IEC 11581
This standard contains detail relating to icons. The first part relates to the design and development of an icon set
and gives generic information relating to icon design. The subsequent five parts relate to specific types of icons –
object, pointer, control, tool and action.

3.2.5 ISO/IEC 10741
This standard relates to how the cursor should move across the screen in response to the use of cursor control
keys.

3.2.6 ISO/IEC 15910
This standard provides a guide to the process for development of both paper and online user documentation and
is particularly for software that has a user interface, including printed documentation (e.g. user manuals and
quick-reference cards), on-line documentation, help text and on-line documentation systems.

3.2.7 ISO/IEC WD 18019 (2000)
This standard describes how to establish what information users need, how to determine the way in which that
information should be presented to the users, and how then to prepare the information and make it available. It
covers both on-line and printed documentation .[74]

3.2.8 ISO 25062 or Common Industry Format (CIF)
This ISO describes the Common Industry Format for Usability Test Reports and is a standard for reporting
Usability test findings. It is specifically targeted at usability professionals and stakeholders in organisations that
are responsible for software procurement. It is intended to show that good practice in usability evaluation has
been followed, there is sufficient information for a usability expert to judge the results, the results may be
replicated and it assumes that effectiveness and efficiency metrics are used as well as performance and
satisfaction. It is based on the definitions of usability found in ISO 9241:11 as detailed in 3.2.1.The CIF is
primarily designed for summative testing rather than formative testing, and is thus considered useful for
comparative testing where formal usability testing results in quantitative measurements.

3.3 Usability evaluation methods

3.3.1 Introduction
Neilsen [76] considers usability as part of system acceptability and believes it relates to how well users can use
the functionality or utility of a system. System acceptability is determined by both social and practical
acceptability. Usability however, is not a one dimensional problem and is associated with five attributes:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 56 -

• Learnability – a system should be easy to learn so that users can quickly start to use it.
• Efficiency – the system should support a high level of productivity
• Memorability – if a user returns to the system after a period away from it, it should be intuitive and

should not have to be re-learned
• Errors – the system should be as error free as possible, make it possible to recover form errors and

prevent errors from occurring.
• Satisfaction – users should find the system subjectively pleasant to use

This is illustrated in Figure 2.

Figure 2: System accessibility and usability (adapted from [76] and [72])

Ivory and Hearst [77] classify methods in terms of their class, type, automation and effort level where the
method class describes the evaluation at a high level for example usability or simulation. The method type
describes how the evaluation is carried out within the method class such as question-asking protocol which is
part of the usability testing class, or Petri-net modelling which is part of the simulation class. Their class and
type taxonomy is detailed in Table 20. Their survey relating to the automation of usability evaluation of user
interfaces surveyed 132 different evaluation methods, and interested readers are referred to their work.

Method class Method type Description
Testing Thinking aloud protocol User provides commentary during test
 Question-asking protocol Tester asks user questions
 Shadowing method Expert explains user actions to tester
 Coaching method User can ask an expert questions
 Teaching method Expert user teaches novice user
 Co-discovery Learning Two users collaborate
 Performance measurement Tester records usage data during test
 Log file analysis Tester analyses usage data
 Retrospective testing Tester reviews video with user
 Remote testing Tester and user are not co-located during testing
Inspection
 Guideline review Expert checks guideline conformance
 Cognitive walkthrough Expert simulates user’s problem solving
 Pluralistic walkthrough Multiple people conduct cognitive walkthrough
 Heuristic evaluation Expert identifies heuristic violation
 Perspective-based Inspection Expert conducts narrowly focussed heuristic evaluation
 Feature Inspection Expert evaluates product features
 Formal Usability Inspection Expert conducts formal heuristic evaluation
 Consistency Inspection Experts checks consistency across products
 Standards Inspection Expert checks for standard compliance
Inquiry
 Contextual Inquiry Interviewer questions users in their environment
 Field Observation Interviewer observes system use in users environment

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 57 -

 Focus Groups Multiple users participate in a discussion session
 Interviews One user participates in a discussion session
 Surveys Interviewer asks user specific questions
 Questionnaires User provides answers to specific questions
 Self-reporting logs User records user-interface operations
 Screen snapshots User captures user interface screens
 User feedback User submits comments
Analytical modelling
 GOMS Analysis Predict execution and learning time
 UIDE Analysis Conduct GOMS analysis in a UIDE
 Cognitive Task Analysis Predict usability problems
 Task-environment Analysis Assess mapping of user goals into UI tasks
 Knowledge Analysis Predicts learnability
 Design Analysis Assess design complexity
 Programmable User Models Write program that acts like a user
Simulation
 Information process modelling Mimic user interaction
 Petri-net modelling Mimic user interaction from usage data
 Genetic algorithm modelling Mimic novice user interaction
 Information Scent modelling Mimic web site navigation

Table 20: Classification and descriptions of user interface evaluation methods from [77]

3.3.2 The Usability Methods
This section will focus solely on some of the more commonly used methods [72] in an effort to identify which
would be more suitable for assisting in the development of the VIDE system.

3.3.2.1 Heuristic evaluation
Heuristic evaluation is a method of finding usability problems in an interface design so that the problems can be
dealt with as part of an iterative design process. It has been identified as one of the most widely adopted usability
evaluation approaches in practice[72]. It is successful because of the advantages it has, which include that it is
easy to administer and learn; it has a low cost; it can be applied in the early phases of the development life cycle
and does not need professional evaluators [72, 78, 79]. Heuristic evaluation takes place when a group of
evaluators investigate the system with a set of accepted guidelines and evaluate whether the system meets those
guidelines. There have been a number of guidelines published, for example [78, 80, 81] but the Usability Body
of Knowledge has taken many of the heuristic guidelines and created the following guidelines [82]:

• Usefulness
o Value: The system should provide necessary utilities and address the real needs of users.
o Relevance: The information and functions provided to the user should be relevant to the user's

task and context.
• Consistency

o Consistency and standards: Follow appropriate standards/conventions for the platform and the
suite of products. Within an application (or a suite of applications), make sure that actions,
terminology, and commands are used consistently.

o Real-world conventions: Use commonly understood concepts, terms and metaphors, follow
real-world conventions (when appropriate), and present information in a natural and logical
order.

• Simplicity
o Simplicity: Reduce clutter and eliminate any unnecessary or irrelevant elements.
o Visibility: Keep the most commonly used options for a task visible (and the other options

easily accessible).
o Self-evidency: Design a system to be usable without instruction by the appropriate target user

of the system: if appropriate, by a member of the general public or by a user who has the
appropriate subject-matter knowledge but no prior experience with the system. Display data in
a manner that is clear and obvious to the appropriate user.

• Communication

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 58 -

o Feedback: Provide appropriate, clear, and timely feedback to the user so that he sees the results
of his actions and knows what is going on with the system.

o Structure: Use organization to reinforce meaning. Put related things together, and keep
unrelated things separate.

o Sequencing: Organize groups of actions with a beginning, middle, and end, so that users know
where they are, when they are done, and have the satisfaction of accomplishment.

o Help and documentation: Ensure that any instructions are concise and focused on supporting
the user's task.

• Error Prevention and Handling
o Forgiveness: Allow reasonable variations in input. Prevent the user from making serious errors

whenever possible, and ask for user confirmation before allowing a potentially destructive
action.

o Error recovery: Provide clear, plain-language messages to describe the problem and suggest a
solution to help users recover from any errors.

o Undo and redo: Provide "emergency exits" to allow users to abandon an unwanted action. The
ability to reverse actions relieves anxiety and encourages user exploration of unfamiliar
options.

• Efficiency
o Efficacy: (For frequent use) Accommodate a user’s continuous advancement in knowledge and

skill. Do not impede efficient use by a skilled, experienced user.
o Shortcuts: (For frequent use) Allow experienced users to work more quickly by providing

abbreviations, function keys, macros, or other accelerators, and allowing customization or
tailoring of frequent actions.

o User control: (For experienced users) Make users the initiators of actions rather than the
responders to increase the users’ sense that they are in charge of the system.

• Workload Reduction
o Supportive automation: Make the user’s work easier, simpler, faster, or more fun. Automate

unwanted workload.
o Reduce memory load: Keep displays brief and simple, consolidate and summarize data, and

present new information with meaningful aids to interpretation. Do not require the user to
remember information. Allow recognition rather than recall.

o Free cognitive resources for high-level tasks: Eliminate mental calculations, estimations,
comparisons, and unnecessary thinking. Reduce uncertainty.

• Usability Judgment
o It depends: There will often be tradeoffs involved in design, and the situation, sound judgment,

experience should guide how those tradeoffs are weighed.
o A foolish consistency...: There are times when it makes sense to bend or violate some of the

principles or guidelines, but make sure that the violation is intentional and appropriate.

In general, heuristic evaluation is difficult to do as a sole evaluator. Different people find different usability
problems; therefore it is possible to improve the effectiveness of heuristic evaluation by using multiple
evaluators. Nielsen [78] has conducted considerable research into heuristic evaluation and recommends the use
of three to five evaluators. These can be experts, developers or even novices trained to complete evaluation [72].
The process has three stages:

a. the briefing session when the evaluators are told what to do
b. The evaluation period when the evaluator spends 1-2 hours inspects the interface

independently using the heuristics as guidelines. They should take two passes, firstly to
get a feel of the produce and its’ scope. The second pass allows for specific elements to be
investigated and to identify usability problems. If the system is either screen mock-ups or
paper prototypes then the method has to be adapted. A second person may record the
findings as the evaluator explores the system.

c. The debriefing session when the experts come together to discuss their findings [81].
There are problems with heuristic evaluation however, in that different evaluation approaches will find different
problems and sometimes evaluation will miss severe problems [83]. Bailey [84] shows that over a number of
studies 36% of identified problems were actually problems, 21% of problems were missed, and 43% of
identified problems were not problems at all.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 59 -

3.3.2.2 Cognitive walkthrough
In a cognitive walkthrough experts examine and discover usability problems of the system by ‘walking through’
the system and pretending they are the users, particularly novice users [81]. It involves the expert trying to create
a users mental model and simulating their problem solving process, and gauging whether the user goals and
memory processes in interaction with the system lead to the next step in the sequence [78].
Sharp, Rogers and Preece [81] describe the steps for completing a cognitive walkthrough as:

a. Before commencing the walkthrough, the experts will define the task to be done, the
context and their assumptions about the user [72]. A description or prototype of the system
is also produced, along with a clear sequence of actions needed for a use to complete a
task.

b. The designer and an expert evaluator do the analysis of the system together.
c. The evaluators proceed through the task sequences asking the following questions:

i. Will the correct action be sufficiently evident to the user?
ii. Will the user notice that the correct action is available?
iii. Will the user associate and interpret the response from the

action correctly?
d. A record is completed which details the problems found, the assumptions made and the

design changes required.
e. The design is revised.

It takes much longer to complete a cognitive walkthrough than a heuristic evaluation.[81]

3.3.2.3 Pluralistic walkthrough
A pluralistic walkthrough is a walkthrough the system that involves users, developers and usability experts
stepping through a scenario discussing usability issues that arise[78]. Bias [85] outlines the steps that need to be
completed as:

a. Scenarios are developed in the form of paper or screen prototypes.
b. The scenarios are presented to a panel of evaluators and the panellists are asked to write

down the sequence of action they would take to move from one screen to another. They do
this individually without conferring.

c. The panellists then discuss the actions they suggested. The users usually present first,
followed by the usability experts with developer comments last.

d. This process continues until all screens have been evaluated.
The benefits of this type of walkthrough are that they focus on the user tasks, and will provide quantitative data
that can be analysed. The limitations are that it can be difficult to get the range of evaluators together and the
work can be slow, as the panel have to proceed at the speed of the slowest member. The number of paths that can
be analysed are also limited [81].

3.3.2.4 Focus groups
Focus groups are a commonly used method of obtaining user reaction to samples, products and prototypes in
marketing. They have been found to be useful in such areas as requirements elicitation, where a focus group can
assist developers in ascertaining user requirements in Joint Application Development. They can be used in
interaction design by bringing together a group of six to nine users to discuss issues about features of a user
interface. [86] As an alternative to questionnaires they are very economical and will generally generate a wide
range of issues [87].
The benefits to the VIDE project particularly in the early stages of interface design are that the requirements are
also being identified, and any focus group will highlight concerns about early design decisions as well as helping
to refine requirements.

3.4 The Cognitive Dimensions Framework

3.4.1 Introduction
Green and Petre [88] believe that the evaluation of programming environments presents a number of challenges
and that many of the techniques such as those summarised in Table 20 concentrate on a low level of detail of the
interaction between the user and the device. These low level evaluations are not suitable for evaluating
programming environments and the accompanying notational design issues. Green [89] stresses the importance
of the relationship between notation and the support environment, and the Cognitive Dimensions Framework has
been formulated as a discussion tool and as such is more useful to users who are not Human Computer
Interaction (HCI) specialists [88]. It is a framework that allows developers to think about the nature of the

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 60 -

notational system, the way that people interact with them and a structure in which to understand the vocabulary
[90]. Blackwell describes a notational system as consisting of marks made on some medium and using the
example of a computer screen there may be multiple notations such as the main notation and the notation in
surrounding menu dialogues.

3.4.2 The Cognitive Dimensions
These are described in [88-91] and may be summarised as:

• Viscosity: resistance to change

A viscous system needs many user actions to accomplish one goal. How many user actions are
necessary to make one change?

• Visibility: ability to view components easily
Systems that have low visibility bury information in encapsulations. Is every part of the notation visible
or is it at least possible to juxtapose two parts?

• Premature commitment: constraints on the order of doing things
Does the user have to make decisions before having the information they need?

• Hidden dependencies: important links between entities are not visible
Is every dependency clearly indicated in both directions? Is the indication perceptual or symbolic?

• Role-expressiveness: the purpose of an entity is readily inferred
Can the user see how each of the components relates to the whole?

• Error proneness: the notation invites mistakes and the system gives little precaution

• Abstraction gradient: Types and availability of abstraction mechanisms

• Secondary notation: extra information in means other than formal syntax
Can users use layout, colour and other cues to convey extra meaning, beyond the semantics of the
notation or language?

• Closeness of mapping: closeness of representation to domain.

• Consistency: similar semantics are expressed in similar syntactic forms
When some of the notation or language has been learned, can the rest be inferred?

• Diffuseness: verbosity of language

How many symbols or graphic entities are required to express a meaning

• Hard mental operations: high demand on cognitive resources
Are there places where the user needs pencil and paper to track what is happening?

• Provisionality: degree of commitment to actions or marks

• Progressive evaluation: work to date can be checked at any time
Can a partially completed operation be executed to obtain feedback?

3.4.3 Cognitive dimensions trade-off
The purpose of the cognitive dimensions framework is to open discussion of the effects on cognition of different
design decisions, and as such these will always involve trade-offs and these can be illustrated in Figure 3.
Blackwell [91] gives the example of changing the structure of a notation to reduce viscosity is likely to affect
other dimensions such as introducing hidden dependencies or increasing the abstraction.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 61 -

Figure 3: Cognitive Dimensions trade-offs [92]

3.5 Summary
Neilsen comments in [78] that many developers find usability evaluation methods to be intimidating, too
difficult and time consuming to use therefore this work needs to define (a) method(s) that is both easy to learn
and use and that will give sound results in a short development time scale. Wixom believes that that the growing
body of research on evaluating usability methods is both unhelpful and irrelevant to the practitioner [93]. He
shows that most of the available literature available to date is based on three points. Firstly that one of the most
useful criteria for evaluating a method is the number of problems that can be detected using it. Secondly, that, a
method can be evaluated in isolation from the goals and the context of that method. Finally, that using some kind
of ‘quasi-scientific’ framework is the most effective way to resolve issues about selecting the best method [93].
In practice he believes that problem detection is a first step to improving the product, it is not sufficient on its’
own for product improvement or as a criteria for method evaluation. The isolation of the method from its context
means that important considerations such as development team adoption are lost. Finally, Wixom believes that a
scientific framework for evaluating methods is inconsistent with the pragmatic philosophy and the engineering
approach to product development.

To this end, this work has discussed a number of standards and approaches but will use Wixoms ideas for the
selection of a usability method. He believes that the maxim should be ‘how much can we improve the product in
the shortest time with the least effort?’ [93]. To this we would add ‘the quality of ’ to make the maxim ‘how
much can we improve the quality of the product in the shortest time with the least effort? Nielsen advises that a
single evaluation method in a project will not produce the best results, and that two different methods should be
considered. One to evaluate a first attempt, and using the results of this evaluation a second version can be
completed which is likely to be more usable [78].

The decision has therefore been made to use focus groups throughout the initial design stages, and the Cognitive
Dimensions Framework to facilitate discussion of the early prototype other useful user interfaces.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 62 -

4. Software Visualisation, Visual Programming and
Diagramming Research

4.1 Introduction
There has been no work on the pre-CIM environment and very little on the CIM environments in relation to
MDA in academic literature, therefore the work in this chapter draws heavily from a number of areas and applies
it to VIDE. There is a rich stream of research in the area of visual programming and diagramming and their
respective environments. We understand visual programming to mean the specification of a computer system
using graphics and program visualisation to mean the use of graphics to enhance the understanding of a
computer program [94]. In addition there is considerable work in software visualisation which Price defines as
‘the use of interactive compute graphics, typography, graphic design, animation, and cinematography to enhance
the interface between the software engineer or the computer science student and their programs’[94]. A
visualisation is a collection or configuration of representations (and other information) which together make a
higher level component [95].

Because data and text appear as visual images they allow the developer to make use of the brains’ ability to link
between ideas and pictorial representations [94]. A representation is a graphical (and other media) depiction of a
single component [95]. Typical tasks which are assisted by software visualisation include design and
development activities, debugging, testing, and maintenance [96].Work during early stages of development [97]
at the ‘pre-CIM’ level are particularly usefully served with software visualisation assisting in the capturing of
requirements and providing a useful discussion tool for developer collaboration at the user interface.
Requirements visualisation has been a research topic for a number of years particularly using scenarios, but it is
emerging as a growing area of interest and has resulted in a Requirements Visualisation Workshop series [98].
The VIDE project emphasises the visual aspects of development thus the use of research as the basis for deciding
features which can be incorporated into the requirements for the VIDE CIM level design.

This chapter explores the software visualisation, visual programming and natural programming research areas,
before finally looking at some of the tools that are currently available in the area.

4.2 Requirements from software visualisation research
Development tasks completed at different stages of the life cycle will require different sets of information to be
available [96, 97] and no single visualisation tool as yet has been able to address all software engineering tasks
simultaneously [96]. This is because there are two major levels that need to be addressed, the design and the
coding. The design requires a full understanding of the problem and the problem domain, including how the
developer interprets those problems and addresses them in the solution. It requires representations that are
conceptual. At the software level it is more about addressing how the code works, how components interact and
what services are available [97]. This means that Work Package 5 needs to take this into account as it is catering
for the pre-CIM and CIM level, through design to the PIM level which is ultimately the code level.

In the search for requirements a good starting point is the taxonomies and descriptions that are available in
software visualisation. Price [94] lists six areas that need to be considered when describing visualisations and
these include scope, content, form, method, interaction and effectiveness. Young and Munro [95] describe a
slightly different set of criteria with representation, abstraction, navigation, correlation, automation and
interaction. Maletic, Marcus and Collard produce a further task oriented view [96] with tasks (why is the
visualisation needed?), audience (who are the users?), target (what are the data sources?), representation (what
should it look like?) and medium (how should it look?). They believe that too much is made in the visualisation
field of tools that do not match requirements, and believe that more should be done to highlight the strengths of
tools instead of weaknesses.

Young and Munro [95] give a list of desirable properties for a software representation and a further list for a
software visualisation. It is an ambitious list which is not pragmatic [97] and although discussing three
dimensional software is certainly a starting point for VIDE requirements. The work of Young and Munro [95] is
therefore used heavily in the sections below:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 63 -

A number of the properties are mutually exclusive, and therefore a requirement for one attribute is likely to be at
the expense of another. A successful system will achieve a balance between the different attributes.

4.2.1.1 Individuality
Representations of different components should appear differently, and identical components displayed in the
same context should appear identical.

Level :All Users: All SHOULD

GUI REQ ID 16 Different components should appear differently

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

Level: All Users: SHOULD

GUI REQ ID 17 Identical components in the same context should appear identical

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

4.2.1.2 Distinctive appearance
Differing representations should appear as different as possible; they should be easily recognisable as being
either similar or different.

Level: All Users: All SHOULD

GUI REQ ID 18 Different components should be distinctive

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

4.2.1.3 High information content
Representations should provide as much information as possible about the component. This can be an issue
because increasing information content is likely to increase visual complexity.

Level: All Users: All SHOULD

GUI REQ ID 19 Visual representations should provide as much information as possible about

the component.

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

4.2.1.4 Low visual complexity
Representations should be visually simple. This will aid both the information system and the users understanding
of the information. There should be as little visual complexity as possible. The trade-off is likely to be between
whether the user is expected to distinguish between a large number of simple representations or a smaller
number of complex visualisations. Granularity, abstraction, information content and type of information should
vary to accommodate users’ interest [97].

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 64 -

Level: All Users: All SHOULD

GUI REQ ID 20 Visual representations should be as simple as possible

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

4.2.1.5 Scalability of information content and visual complexity
The amount of information that is visible, or its complexity, should depend upon the context in which it is used.
This will allow detailed displays of a small number of components giving maximum information as well as
overviews of large numbers of components displaying less information about the individual components.

Level: All Users: All SHOULD

GUI REQ ID 21 The amount of information that is visible, or its complexity, should depend

upon the context in which it is used.

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

4.2.1.6 Flexibility for integration into visualisations
Representations have both intrinsic and extrinsic dimensions which can be used for encoding information [99].
Extrinsic dimensions refer to the position or location of an object and intrinsic dimensions refer to the nature of
the object such as colour, size and shape. Whilst Young and Munro use this attribute in particular to discuss
problems in 3 dimensions, some parts are still valid in the VIDE project. They discuss the fact that any
representation that uses more intrinsic dimensions becomes less flexible for integration into a visualisation [95].
Any use of colour in differentiating between representations or groups or classes of components can cause
conflict because different components may use the same colour to represent different information. Size is also a
factor, in that irregular sized components will be more complex to place and view.

Level: All Users: All SHOULD

GUI REQ ID 22 Use colour sparingly and consider extrinsic and extrinsic dimensions

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

4.2.1.7 Suitability for automation
Any representation should have the ability to be automatically generated, possibly with some user intervention.
Irregular shapes and variable sizes can complicate the automation process.

Level: All Users: All SHOULD

GUI REQ ID 23 Use regular shapes and consider extrinsic and extrinsic dimensions in

addition to facilitating automation

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

4.2.1.8 Simple navigation with minimum distortion
Any visualisation should be clearly structured and have features that assist in the navigation through the system.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 65 -

Level: All Users: All SHOULD

GUI REQ ID 24 The components should be structured and have features to aid

navigation

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

4.2.1.9 Resilience to change
Small additions or changes to the information in response to changes in users’ interests should not result in major
changes to the visualisation.

Level: All Users: All SHOULD

GUI REQ ID 25 The system should allow minor additions or changes which will not

cause major changes to the overall system.

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

4.2.1.10 Good use of visual metaphor
Metaphors are useful in that they help the user understand a situation using familiar concepts.

Level: All Users: All SHOULD

GUI REQ ID 26 The system should use metaphor where possible

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

4.2.1.11 Approachable user interface
The user interface should encourage intuitive navigation and should not create unnecessary overhead.

Level: All Users: All SHOULD

GUI REQ ID 27 The system should be intuitive with regard to navigation and control.

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

4.2.1.12 Integration with other information sources
Because representations are usually an abstraction of the original information that they represent, it should be
possible for the user to return to the original information source and to link to other views on the same
information.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 66 -

Level: All Users: All SHOULD

GUI REQ ID 28 The user should be able to return to the original information that the

system is representing.

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

Level: All Users: All SHOULD

GUI REQ ID 29 The user should be able to link to other views of the same piece of

information.

Related requirement IDs: 12, 14, 26, 27, 28, 29, 32, 33, 58, 59, 62, 63, 66, 75, 76

4.2.1.13 Good use of interaction
Visualisations will be improved by allowing user input to gain more information and to retain their attention.

Level: All Users: All SHOULD

GUI REQ ID 30 The system should allow the user to record input and additional

information.

Related requirement IDs: 12, 21, 24, 25, 27, 28, 29, 30, 31, 35, 51, 58, 59, 60, 64, 65, 66

4.3 Requirements from visual programming research
There is considerable research into visual programming much of it discussing benefits or otherwise of following
a visual programming paradigm. However, there has been little empirical work that justifies the various design
decisions that are contained within either visual programming or visualisation systems [100]. Pane and Myers
[101] believe that many visual programming systems are designed with technical objectives and have very little
consideration of usability issues whilst Petre argues that there is an acceptance amongst authors that ‘graphics
are better simply because they are graphical’[102]. Petre focuses on a number of issues that need to be
considered in a graphical programming environment, but believes they generalise to other areas such as user
interfaces and environment [102]. The main point she raises is that good graphics rely on secondary notation,
and that the use of secondary notation is what makes a major difference between novices and experts. Secondary
notation means that graphical representations complement other notation. An example of this is layout cues in
programming code. The layout gives a graphical representation and represents information that may well be less
accessible than the original symbolic notation. Petre’s findings show that graphical features do not guarantee that
a representation will be clear. It is the use of the secondary notation which gives the clarity and poor use of
secondary notation is what distinguishes novices from experts [102].

The continued interest in graphical representation is due to the results of a survey reported in [102] when
programmers of all levels showed their preference for graphical representation because they are richer and
provide more information, provide an overview and making structure more visible, have a higher level of
abstraction, are more accessible, comprehensible, memorable and ‘fun’.

Level: All Users: All SHOULD

GUI REQ ID 31 Consider using secondary notation to improve comprehension

Related requirement IDs: 12, 21, 24, 25, 27, 28, 29, 30, 31, 35, 51, 58, 59, 60, 64, 65, 66

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 67 -

Work involving the design of a visual diagramming and programming environment will ask a number of
questions such as: who is it for? What are they doing [88]. This has already been addressed in Deliverable D1,
but the information is built upon here for in greater detail and for completeness it is also built upon to discuss the
way that expert and novice programmers visualise and conceptualise.

4.3.1 Analysis of user characteristics
Computer systems should be built to suit the needs of people; consequently it is important to discover what types
of people will be using the interface [103]. A broad characterisation of the general qualities of typical VIDE
stakeholders, working at the levels of CIM, PIM and PSM is presented in Table 21. They are described in terms
of the levels of system engagement specified by [104] (i.e. mandatory and discretionary types and direct;
indirect; remote; support contact) and technical expertise (novice; intermediate and expert).

 CIM PIM PSM
Engagement Discretionary indirect/remote Mandatory direct/indirect Mandatory direct
Examples Business end-users, business

consultants or business analysts,
System analysts/architects,
usability engineers, VIDE
Programmers

Software developer and
software engineers

Expertise Novice Novice/Intermediate Expert
Characteristics Low levels of experience with

computers; but high business
domain expertise that is only easily
expressed in terms of business goals
rather than system requirements.

Low to medium technical
experience but have expertise in
mapping business or user
requirements to high-level, system
oriented models.

High levels of technical
expertise but with typically
no direct experience of (or
access to) the problem
domain.

Table 21: VIDE stakeholder expertise from [105]

Novice system users require robust systems that clearly represent their work domain, using visual cues and help
to allow them to successfully perform their activities through interaction with the computer [104]. Indeed, VIDE
stakeholders contributing at the CIM level are unlikely to be able to express their needs in a technical sense and
may not even directly engage with the tool but instead enlist the help of a proxy (perhaps a PIM stakeholder).
Studies of novice performance show that their strategies are both ‘chaotic’ and ‘rigid’ [102]. They tend to lack
reading and search strategies of graphics and thus graphics can become more difficult to access because they are
unsure which are important or relevant. Novices tend to believe that if a graphical representation is present then
it must be relevant and will try to make sense of explicit connections, even if it is not relevant[102].

Level: All Users: Novices SHOULD

GUI REQ ID 32 Keep all graphical representations relevant.

Related requirement IDs: 12, 14, 26, 27, 28, 29, 32, 33, 58, 59, 62, 63, 66, 75, 76

Level: All Users: Novices SHOULD

GUI REQ ID 33 All explicit connections should be relevant

Related requirement IDs: 12, 14, 26, 27, 28, 29, 32, 33, 58, 59, 62, 63, 66, 75, 76

Those individuals who engage in PIM-level modelling activities are likely to be heterogeneous both in terms of
their engagement with the VIDE tool and also their technical expertise. As ‘bridge builders’ between the
disparate views of CIM and PSM, this group may contain stakeholders who are predisposed to either the CIM or
the PSM perspective but are capable of expressing these concepts to some degree at the PIM level. For this
reason, users at this level are likely to require support in their transformation activities, in particular direct access
to on-line help and a clear view of the broader aspects of the VIDE architecture.

Most studies of expert focus on the strategies they use to solve problems and how they represent their knowledge
and [106] provides a good summary. They describe experts as being able to

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 68 -

• Have efficient organisation of knowledge
• Use functional characteristics such as the nature of the underlying algorithm for organising that

knowledge
• Use both generalised and specialised problem solving strategies
• Use strategies such as a high level approach to program decomposition and understanding
• Be flexible in their approach to comprehension and demonstrating the ability to adapt and change

hypotheses.
• Recognise, use and adapt patterns
• Complete tasks with speed, accuracy and have a supply of examples, sources and strategies for dealing

with situations.
Whilst specific to expert programmers, a number of these attributes are common across experts in any field
[106].

It is anticipated that PSM contributors are likely to have high levels of technical expertise and harbour
expectations of the system that matches their own experience of system software construction. As a
consequence, these users will require visual representations of their modelling and development activities to
have significant parallels with contemporary notations, such as the UML.

If a programmer completes a set of tasks with a specific set of goals in mind then the success or otherwise of that
task depends on the use of representations that are graphical or textual and how useful the information that is
displayed, and how close it is to the users information requirements [102]. This is a transferable skill, and
essential not just to programmers, but anyone that is aiming to complete a task or solve a problem.

4.4 Requirements from the diagramming environment
The most commonly used PIM modelling notation is the UML class diagram. Given that VIDE aims to target a
range of users (e.g., experienced developers, and business people with less experience), it may become necessary
to consider some of the issues below when building the modelling component of VIDE. Most of the guidelines
focus on the layout of the class diagram, especially, where different tools are used by development teams who
share class models. We have not seen however, guidelines regarding how class layouts may be maintained when
the class model is derived from say, parts of a CIM model. In other words, some of the graph theory-based
algorithms proposed for managing “best-look” class designs do not focus on a typical MDA development
process where artefacts are often a result of transformations. This does not mean that of these guidelines are not
useful for VIDE. It may be that, some of the guidelines might be applied to CIM modelling and PIM modelling,
even to interaction modelling. For example, the concept of minimising the number of bends, or crossing of edges
might be considered relevant for business process models, use cases, and even sequence charts. We may need to
be able to consider how derived PIMs (e.g., from CIMs) may also be made to adhere to the same guidelines
applied to the source model, or vice versa.

4.4.1 UML class diagram layout
The UML is clear on the structure of the class diagram notation (class name, attributes, and operations). The
UML, however, does not prescribe how modellers should layout class diagrams in order to enhance readability
[107] [108]. It has been argued that the quality of a design can be linked to the readability of the class model
since an unreadable model may not convey much to other designers who may be part of the development team,
nor the potential users of the system.

Considerations have been made regarding aesthetic criteria for laying out class diagrams, especially, to ensure
when class models are shared among different tools, the class model retains the initial layout. For example, some
researchers (e.g., [109], [110]) have provided automatic layout mechanisms to be used to assure given aesthetic
criteria such as distance between inheriting and inherited classes are maintained. The traditional manual layout
of diagrams is not considered optimal since sharing of diagrams across tools often results in different layouts of
the same model. Automatic layout algorithms, though well thought out and sensible, may have their drawbacks.
Modellers will often lay diagrams in a manner that depicts their conceptualisation of the design they are
building. Automatic calculations that result in a different layout might mean that modellers may obtain a
different understanding of the model from the initial understanding. One expert may well draw another experts
diagram to make it more meaningful to them [102]. We are therefore of the view that, where automatic layout
mechanisms are deployed, there should be a choice for the modeller whether or not to adhere to automatic layout
functions.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 69 -

CIM | PIM | PSM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 34 It should be possible for users to arrange their models themselves.

Related requirement IDs: 12,19, 25, 27, 34, 47, 48, 58, 59, 60, 61, 63

CIM | PIM | PSM Users: End | Analyst | Designer | Arch | Programmer MUST

GUI REQ ID 34a The graphical layout of VIDE models must be stored persistently.

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

CIM | PIM | PSM Users: End | Analyst | Designer | Arch | Programmer MUST

GUI REQ ID 35 It must be possible to turn on or off any automatic layout functionality within VIDE.

Related requirement IDs: 12, 21, 24, 25, 27, 28, 29, 30, 31, 35, 51, 58, 59, 60, 64, 65, 66

4.4.2 An overview of UML class diagram layout guidelines
Various aesthetic guidelines have been proposed based on knowledge from graph theory ([111] [112]). For
example, it is considered good practice to ensure that links among classes (e.g., associations, inheritance,
containments) are such that arrows point to one general direction. To enhance visibility of model elements,
especially where structuring has been done using packages, spatial considerations should be made to ensure
clarity of relations among classes across the packages. Heavy inter-package relations mean tight coupling, hence
a bad design. For generalisation and containment associations, parents and containing models should be as near
as possible to the child or contained classes. There are various proposed algorithms (e.g., see [113], [111]) for
ensuring these distances are maintained across different tools. Where possible, it is suggested that the area
occupied by a class should be minimal and that association edges should not be allowed to overlap or cross.
Some guidelines appear purely subjective as there is no obvious way to judge the appropriate measure. For
example, it is suggested that association edges should not be too short nor too long [114]. Furthermore, where
comments are attached to classes or packages, the comment node should be as near as possible to the class or
package. Additional information such as association names, and multiplicity indicators, should be clearly
assigned to their model elements.

PIM | PSM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 36 The graphical space used to represent a class should be minimal.

Related requirement IDs: 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 61

CIM | PIM | PSM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 37 Where automatic layout is used, it should keep compositional elements close

together.

Related requirement IDs: 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 61

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 70 -

PIM | PSM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 38 Where automatic layout is used, it should keep aggregated elements near by.

Related requirement IDs: 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 61

PIM | PSM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 39 Where automatic layout is used, relational arcs should not cross.

Related requirement IDs: 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 61

PIM | PSM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 40 Where automatic layout is used, bends in arcs should be kept to a minimum.

Related requirement IDs: 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 61

The general thrust of the various considerations for class layout is not only based on readability, but also on
production of quality design. For example, it is considered a poor design where a class has a high number of
outgoing relations, meaning that the class depends on many other classes, hence, high coupling. Furthermore,
empty classes are to be discouraged because they add no value to the model.

CIM | PIM | PSM Users: End | Analyst | Designer | Arch | Programmer MUST | SHOULD | COULD | WONT

GUI REQ ID 41 Where it is possible to automatically detect, ‘design smells’ could be visually

highlighted within a model view.

Related requirement IDs: 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 61

Similar observations are made by [115] who argue that it is preferable to minimise crossing of association edges
in a class design. Other guidelines suggest that where labels exist, they should be horizontal, and inheritance
lines should clearly indicate the involved classes [116]. In addition, crossing minimization, bend minimization,
orthogonal layout, maintaining a uniform direction of associations (e.g. arcs of a class hierarchy pointing in a
consistent direction), and that there shouldn’t be any nesting of one class hierarchy within another. Further to
these guidelines, [116] adds that shared inheriting edges should be merged prior to reaching the super class.
Also, edges should be labelled appropriately, preferably on either end of the class association.

PIM | PSM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 42 Where automatic layout is used, labelled arcs should be kept horizontal.

Related requirement IDs: 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 61

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 71 -

PIM | PSM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 43 Where automatic layout is used, an inherited class path should be easy to follow.

Related requirement IDs: 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 61

PIM | PSM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 44 Separate class inheritance paths should not overlap.

Related requirement IDs: 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 61

PIM | PSM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 45 Inheritance arcs that share the same parent should merge before reaching the

parent class representation.

Related requirement IDs: 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 61

CIM | PIM | PSM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 46 Is should be possible to label entity relationships in both directions.

Related requirement IDs: 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 61

It is interesting that most work on the aesthetics of class diagram construction has produced similar guidelines.
For example, work by [109] also indicates the need to minimize crossings between edges, minimizing the
number of bends, minimizing overlaps between nodes (classes) and edges, maximizing number of orthogonal
edges, minimizing edge length, and minimizing area occupied by classes. It is also argued (e.g., see [115]) that
modellers should construct associations such as generalisations for a class in the same direction. Others have also
suggested that various class hierarchies, including generalisations should he highlighted using different colours.

4.4.3 A note on guideline support issues within MDA tools
A problem with most of these recommendations is that, it is not possible to see how they may be supported by all
tool vendors, given that some of the suggestions to implement a common algorithm might not be commercially
viable to some of the vendors. That is, it may not matter to some MDA tool providers whether or not these
guidelines are adhered to or not. The introduction of algorithms for class layout from Graph theory may also not
interest some tool vendors.

4.4.4 Requirements for class layout
The size of class models depends mainly on the size of the problem being modelled. Since class models are an
Object Oriented construct, one might want to deploy concepts such as inheritance hierarchies, composition or
aggregation to break down complex class models into more readable artefacts. Furthermore, others have argued
that association lines should not cross since “messy” association lines curtail the readability of the class diagram.
It is notable though that no CASE tool has yet implemented such a guideline, even at the level of notifying the

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 72 -

modeller where such associations are crossing. We argue that, the VIDE environment could provide a means for
instructing modellers to avoid such issues where they arise.

PIM | PSM Users: End | Analyst | Designer | Arch | Programmer COULD

GUI REQ ID 47 The VIDE environment could provide on-line guidance or interactive heuristics for

class layout.

Related requirement IDs: 12,19, 25, 27, 34, 47, 48, 58, 59, 60, 61, 63

PIM | PSM Users: End | Analyst | Designer | Arch | Programmer COULD

GUI REQ ID 48 The VIDE environment could visually highlight crossing relation arcs.

Related requirement IDs: 12,19, 25, 27, 34, 47, 48, 58, 59, 60, 61, 63

Software development (with visual models or traditional source code-based development) is an intellectual
activity that often takes an iterative process across many versions of the same product. An important aspect of a
modelling IDE would be the provision of a version management function in order for development participants
to track changes or the evolution of models. This is important because as new information regarding the problem
comes to light, models will need to be changed to reflect learned information. Class models might also be needed
purely for aesthetic reasons - to provide neater, more readable artefacts.

PIM Users: End | Analyst | Designer | Arch | Programmer COULD

GUI REQ ID 49 The VIDE environment could persistently store early versions of PIM models and

their layout.

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

PIM Users: End | Analyst | Designer | Arch | Programmer COULD

GUI REQ ID 50 It could be possible for PIM modellers to interactively navigate through PIM model

history.

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

Many MDA tools support both M2M and M2Text transformations. For VIDE, there seems to have emerged a
view that the main development process will comprise of PIM modelling, and the generation of counterpart
textual VIDE code from VIDE PIM models. This is a central development activity, and experienced developers
might want to effect changes to the textual code, which, in our view should be reflected in the visual code.

PIM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 51 Changes made to the textual model should automatically update the visual model,

and visa-versa.

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 73 -

The development of a PIM model will result in analysis steps that require validation with stakeholders. Such
validation often requires demonstration of some application logic either at the early stage of application
modelling (PIM model development), or based on generated application code. We argue that as part of the
validation process, VIDE might consider providing a means to provide visual simulation of implied behaviour,
either by use of throw-away prototypes or by providing early behavioural mock-ups of the application.

PIM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 52 It should be possible to interactively simulate PIM models.

Related requirement IDs: 7, 52, 53, 54, 55, 56

PIM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 53 It should be possible to interactively mark models that fail a validation step.

Related requirement IDs: 7, 52, 53, 54, 55, 56

PIM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 54 It should be possible to interactively mark models that pass a validation step.

Related requirement IDs: 7, 52, 53, 54, 55, 56

PIM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 55 It should be possible to label or graphically annotate a validation step.

Related requirement IDs: 7, 52, 53, 54, 55, 56

CIM | PIM | PSM Users: End | Analyst | Designer | Arch | Programmer SHOULD

GUI REQ ID 56 It should be possible to link a validation step with specific CIM, PIM or PSM

models.

Related requirement IDs: 7, 52, 53, 54, 55, 56

Whereas VIDE situates itself within a revolutionary spectrum of the current MDA support environments, VIDE
cannot afford to isolate its users from other well known support environments such as Eclipse, Rational Rose,
Objecteering, Together, etc. One way for VIDE to exploit modelling features available in these environments (or
for VIDE to be exploited by such environments) is for the VIDE IDE to provide interfaces for these other tools
to access VIDE modelling features. Another way, it could be possible for VIDE models to be persisted such that
they are accessible by such tools.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 74 -

CIM | PIM | PSM Users: End | Analyst | Designer | Arch | Programmer COULD

GUI REQ ID 57 It could be possible for VIDE GUI elements to be used in other development

environments.

Related requirement IDs: 11, 57, 68

4.4.5 General diagramming comments
Whilst much of the diagramming literature detailed in this work highlights the issues with layout a study by
Hahn and Kim [117] identifies a number of other factors which influence the use of diagrams in the design
environment. Firstly the way diagram allows decomposition into process components is important as is layout
organisation. Both factors reduce analysis and design errors.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 75 -

4.5 Natural and code-less programming environments

4.5.1 Introduction
The final strand of research examines natural and code-less programming environments and the associated work
to see what can be learnt from the work done in the area. Some of the applications such as HANDS [118] and
SCRATCH [119] are aimed at children and/or novice programmers, whilst other applications such as Limnor
[120] and MyDesk [121] are aimed to assist non-programmers to create running applications often in specialist
areas.

4.5.2 Examples

4.5.2.1 Human-centred Advances for the Novice Development of Software (HANDS)
The work in the HANDS project aimed to explore how users naturally program, use graphics and process data.
The result of the studies would guide the development of a new language and environment called HANDS [118].
The arguments for natural programming are strong given that the transformation from a real world operation
such as adding 3 numbers together in the example given in [118] use a single operator in a spreadsheet, but in C
code take three kinds of brackets and three kinds of assignment operators in five lines of code.

Figure 4: The HANDS programming environment [118]

The dog named Handy sits at a table and manipulates a set of cards. The cards store the data. The application
uses an event-based language .

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 76 -

4.5.2.2 Limnor
Limnor allows the developer to drag and drop components called performers into a project and then change their
properties as shown in Figure 5.Useful features are the provision of dropdown boxes which give the user choices
as to what components are available.

Figure 5. A Limnor PictureBox 'performer' showing properties [120]

The Limnor performers can then be assigned Actions and those actions can be assigned Events as shown in
Figure 6. These are in different screens and formats. The different screens are not anchored and can be placed to
suit the working style of the user.

Figure 6. Limnor Actions and Events [120]

Finally the Events can be connected to show program flow as shown in Figure 7

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 77 -

Figure 7. Limnor program control flow

The merits or otherwise of the Limnor visual programming language are not at issue here, but the environment
and the process can be examined to identify areas that are useful.

CIM Users SHOULD

REQ ID 58 The components and contents of any project should be easy to find and

identify

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

CIM Users SHOULD

REQ ID 59 There should be a standard ‘look and feel’ to the screens at the CIM level.

Related requirement IDs: 12, 21, 24, 25, 27, 28, 29, 30, 31, 35, 51, 58, 59, 60, 64, 65, 66

CIM LEVEL Users SHOULD

REQ ID 60 Providing drop down lists of component types and actions will give the user

choices about what is available.

Related requirement IDs: 12, 21, 24, 25, 27, 28, 29, 30, 31, 35, 51, 58, 59, 60, 64, 65, 66

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 78 -

4.5.2.3 My Desk 2.0
MyDesk 2.0 by Genusoft [122]is a visual development environment based on ActiveX controls that it can be
used in a number of different areas, such as network diagramming and forms layout (see Figure 8).

Figure 8: MyDesk forms layout [121]

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 79 -

4.5.2.4 Scratch
Scratch is described as a programming environment for young people and has been created using a building
block metaphor where users have to snap together graphical elements to create a script [123]. The graphical
elements can only be connected in a syntactically correct way [119].The layout of the screen shows that the
available components and services are on the left, with the current script in the centre and the graphical
representation of the script on the right.

Figure 9: Example Scratch user interface[119]

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 80 -

4.5.2.5 Denim
Based on research at Berkeley University by Newman and others [124], Denim is an interactive environment for
the design and visualisation of web sites using a pen and ink metaphor. It aims to capture the informal tasks that
a developer has when designing a web site. The screen layout shows the increasing detail highlighted using the
left hand ‘slider’. Options for the user tasks are given using a ‘pie-chart’ wheel with up to six services available.

Figure 10: Denim user interface [124]

4.6 Summary
This chapter showed that the research areas of Software Visualisation, Visual Programming, Diagramming and
code-less programming have all got features that are useful when creating a list of requirements for an MDA
environment. Software Visualisation has much to offer in the area of individual component design whilst the
areas of Visual programming and Diagramming have rich research agendas in the design and layout of visual
environments. This has enabled the VIDE consortium to use many proven features in the design of the VIDE
interface.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 81 -

5. Exploration of graphical user interfaces

5.1 Introduction
In this chapter, an exploration of graphical user interfaces is undertaken. We focus on some of the mainstream,
industrial-strength UML tools such as Objecteering [125], Together [126] and Eclipse [127]. The selection of the
tools studied is mainly based on their ubiquity in the modelling arena, and their apparent use in MDA
development. Our investigation is based on some of the cognitive dimensions discussed in [128]. In using these
assessment tools, we attempt to provide an overview of the extent to which the studied tools support software
development tasks within an MDA development process. For example, the cognitive dimension of viscosity (see
[128], pg. 12) helps to assess the extent to which models are resistant to change. On the other hand, the
dimension of visibility concerns itself with the ability of a modeller to view modelling components easily. The
reader is referred to [128, 129] for a full discussion of the cognitive dimensions framework.

For our assessment purposes, this chapter considers the first six cognitive dimensions. The reason for is that they
seemed most relevant for the type of activities pertinent to software modelling. Additionally, these dimensions
have been extensively discussed with institutive examples that lend themselves to the type of assessment we
deem sensible for MDA-based development in [91]. We briefly describe the dimensions used for assessing
modelling with the four tools below:

• Viscosity – we will assess the ease with which users can make changes to models within the studied
tools. To do this assessment, we will build sample models (e.g., behaviour models) in each of the tools,
and try to add or change the models within each of the modelling tool’s editors.

• Visibility – we assess whether the tools provide users with model editors where components are easily
viewed for use in model construction. This assessment will be based on how we view the layout of
modelling components being visible and accessible for each modelling task.

• Juxtaposition – we assess whether the tools provide modellers with a means to view models side by
side. This assessment will typically be based on whether tools allow users to view different models side
by side. This may be deemed necessary when a given modelling activity is informed by another, e.g.,
construction of a class model based on a use case model. An important side to this dimension for this
chapter is whether or not one can derive parts of a given model from another directly, including
traceability of information between models.

• Hidden dependencies – we assess whether there are any hidden dependencies between components.
• Premature commitment – we assess the extent to which the tools require premature commitment during

modelling on the part of the users.
• Secondary notation – we assess whether tools provide secondary notation to provide extra information

about models.

5.2 Modelling tools
The UML comprises notations for describing various aspects of a software system. For example, the use case
notation is primarily for expressing software requirements and specifications. Tool vendors have developed
support environments for this UML modelling. Some of the longstanding tools with thriving user bases, include
Borland’s Together [126], IBM’s Rational Rose [10], the Objecteering UML modeller [125], and Eclipse [127].

In this section, we provide an overview of the way in which these tools represent use case models. We review
the similarities and differences between use case models in these tools, and the extent to which we the tools
provide users with facilities to amend or add to use case models within each of the tools.

5.2.1 Use case models
Consider a hotel business where guests might make room reservations online, or may telephone the hotel to
make such a reservation. The proprietors of the hotel may use a credit card system to obtain payments from
guests during check-in to the rooms. Typically, prior to any of these activities, a guest want to determine whether
or not there is a room available in the first place.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 82 -

5.2.1.1 Use case model - Together
An example use case model to show some of these business functions is shown below. The model is built using
the Together UML tool:

Figure 11: Use case model in Together 2007

The Together CASE tool requires a user to be familiar with the notion of a project, and indeed, a model such as
the use case in Figure 11 does belong to a UML type of project. Other project types include a Java project, Plug-
in project, etc. Hence, the project to which the use case model above belongs may comprise of other models,
which are listed in a tree structure to the far left of the development pane. To the right of this, and to the left of
the model editor window is a toolbar with components (e.g., subject, actor, use case, association line) for use
case modelling. There does not appear to be any visibility issues with these components for the use case model.

A few issues regarding amending or adding to a Together use case model were encountered. For example, if a
user builds the use cases and associated actors, and then remembers to add a system boundary, it becomes
necessary to move the use cases inside the system, and align the actors accordingly. The associations also require
alignment. This is an illustration of knock-on viscosity of Together’s use case editor. The tool provides useful
drag and drop functions, but the links and linked elements have to be moved to appropriate positions
individually. There is no automatic relocation of links or use cases (or actors) when extra elements are added or
some removed, or moved.

Whereas the use case elements in the model are visible, the use elements in the palette are not quite visible to the
user. However, this has been addressed by the tool by providing different Layout mechanisms (e.g., List,
Columns, Details, etc). The Layout chosen in Figure is Columns as it seemed more visible.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 83 -

5.2.1.2 Use case model - Eclipse
Unlike in Together, use case modelling components in Eclipse are laid out at the top of the model editor space as
shown in Figure 12:

Figure 12: Use case model in Eclipse

An issue with building the use case model in Eclipse is that it is not possible for a user to lay out associations in
a style that the user wants. That is, moving an actor or a use case, or indeed adding an extra use case causes the
Eclipse modeller to move the other use cases. Whereas the automatic moving of model elements ensures space
for the newly added or moved use case, this may not be laid out the way a user would like. This makes
modification of models difficult as much time can be spent trying to place model elements in positions that make
the model more legible. It is important to allow such flexibility. Hence, a modeller experiences both knock-on
viscosity and repetition viscosity. Knock-on viscosity is experienced because additions to the model cause other
model elements to be moved without user intervention, and repetition viscosity is experienced because a user
who is not happy with the automatic layout of the model will have to try and alight model elements manually – a
tedious task.

A similarity between Together and Eclipse in use case modelling is their use of the notion of a project as a
container of the use case model. Additionally, both tools provide a means to show system scope.

5.2.1.3 Use case model – Rational Rose
In Rational Rose modelling, the concept of a system boundary for the use cases is not explicitly represented. The
use case modelling components are laid out in a toolbar to the left of the model editor window (see Figure 13)
much like in Together :

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 84 -

Figure 13: Use case model in Rational Rose

A tree structure of the various model objects is shown to the left of the toolbar. A modeller new to UML
modelling with Rational Rose can use the tool-tip facility to find out what each component is. Viscosity of use
case models can be felt when modifying a use case or actor that is on top or in the midst of several other use
cases or actors. Such an amendment does have the knock-on effect of needing to move other use cases/actors
below or in the neighbourhood. Rational Rose allows the modeller to write a specification for each use case
element. Since descriptions aren’t part of the standard notation, one can argue that Rational Rose allows
modellers the use of a secondary notation to provide more detail about the use case using unstructured text.

5.2.1.4 Use case model - Objecteering
Objecteering requires that a use case model cannot be a standalone model. That is, an Objecteering use case
model must belong to either a package or a class. Figure 14 shows an Objecteering use case model:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 85 -

Figure 14: Use case model in Objecteering

Objecteering (like Together and Rational Rose) allows modellers the flexibility of positioning use case elements
on their chosen screen areas. The tool places modelling objects in a vertical toolbar to the left of the model editor
window. Like the other tools seen so far, Objecteering models belong to a project that a user must create prior to
any model construction. There seems to be an implicit dependency between use case models and containing
elements (e.g., package or class). That is, since Objecteering requires a use case to belong to a package or class,
there seems to be an implied hidden dependency between such artefacts. It might be that the dependency is
simply to be able to group use cases within a package the same way one would group together class models in a
package. Where a use case is associated with a class, the dependency might be to imply the use cases being
realised by the class.

5.2.2 Class models
In this section we consider class models built using each of the tools. We try to find out whether or not a user is
able to directly use some elements from a use case model in constructing a class model.

5.2.2.1 Class model - Together
Since Together requires models to belong to a project, we initiated the class design editor within the same project
as the Together use case model seen in Figure 11. Again, this was done to determine whether a user would be
able to directly obtain elements of a use case model to build a class model. This was not possible, and the class
diagram below was built without such direct derivation:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 86 -

Figure 15: Class model in Together

Class modelling components in Together are laid in a vertical toolbar, just like use case modelling components
are in the same tool. The class modelling components have clear visibility in the Columns layout. In List layout,
however, (even in Details Layout), the visibility of the class components diminishes remarkably. Moving the
class elements in the editor is relatively easy, but reorganisation becomes difficult when the amended class is at
the top or middle of a hierarchy. That requires moving lower level classes and associations around to produce a
legible model. The class model in Figure 15 is based on the previous use case model (Figure 11).

It is likely that modellers might want to derive some classes from a use case model. However, there is no way for
a user to lay a use case model and a class model side by side for such cross-referencing. In other words, the
cognitive dimension of juxtaposition of models is not facilitated in Together. Again, there was no way to derive
the classes (or other class model elements) from the use case model. Additionally, there was no way to display
the use case model adjacent to the class editor for reference while building the class model.

5.2.2.2 Class model - Eclipse
Eclipse behaves quite differently from Together when building a class model. For example, immediately a
modeller makes an association between any two classes (e.g. Guest and Room), Eclipse assigns roles to both
ends of the associations, and also assigns cardinality of the roles.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 87 -

Figure 16: Class model in Eclipse

It was also noticed that Eclipse automatically provides the getter and setter methods based on the associations.
This is an interesting feature of Eclipse, and may be a useful feature when creating PIM (or PSM) classes for
(Java) code generation. Eclipse also lays out the classes in the model based on the class size and where on the
screen a class is positioned. For example, in Figure 16, moving the Room class will cause Eclipse to redraw the
association between Guest and CreditCardSystem differently. This is not intuitive since a modeller might wish to
place classes and association lines in screen areas where they feel most legible.

In Eclipse, drawing components for say, the class diagram or activity diagram, are laid out at the top of the
drawing palette. A tree structure is produced to the left of the model to show the existing models for the current
project. The classes were built from scratch as there was no facility to move any elements of a use case, or
activity diagram into the class model.

A modeller may edit the roles, cardinality or the methods to only depict a general class diagram as in Figure 17:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 88 -

Figure 17: Edited class model in Eclipse

Eclipse does not provide for juxtaposition of different models (e.g., use case and class models), nor is there a
way to obtain class elements directly from a use case model in Eclipse.

5.2.2.3 Class model – Rational Rose
In Rational Rose, building class models seems straightforward, but there is no facility to drag a use case element
and use it as a class or class property or method. However, if a modeller builds a class that is given the same
name as an existing actor, Rational Rose gives the class an icon that has the look of an actor, with a stereotype
indicating the class is from the use case view (see Figure 18).

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 89 -

Figure 18: Class model in Rational Rose

It is possible to amend the class to have the standard look of a UML class notation, but one cannot remove the
stereotype indicating the class is associated with an actor in the use case view (see Figure 19).

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 90 -

Figure 19: Amended class model in Rational Rose

Rational Rose does not allow the modeller to remove the stereotype implying that the class is associated to an
actor in a use case model. This forces some premature commitment to the modeller in deciding that such a
relationship between objects in the different models exist. Moreover, there seems to be hidden dependency
between the respective model elements, i.e. actor and class, but one is not sure which parts of the elements
matter in the dependency (e.g., is it just the name, or the whole object?). That is, there seems to be little value in
the forced stereotype since there is nothing more (e.g., methods or attributes) a modeller would get from the
actor in building the class.

5.2.2.4 Class model - Objecteering
In Objecteering, building a class is relatively easy, and Figure 20 shows how the tool generates roles and
multiplicities in the first instance:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 91 -

Figure 20: Class model in Objecteering

Class models in Objecteering belong to a project that must be created prior to progressing with model
construction. Class modelling components are laid out in a toolbar to the left of the model editor window. Figure
21 shows how the modeller has an option to edit the first model, to remove generated roles and multiplicities:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 92 -

Figure 21: Edited class model in Objecteering

Like the other tools Objecteering does not provide a means to use the elements of a use case model (e.g., actors)
to construct classes automatically.

5.2.3 Activity Models
This section considers activity models built in each of the tools. The section attempts to determine whether a
modeller is able to derive activities from a use case model. The reference use case is that already seen in 5.2.1.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 93 -

5.2.3.1 Activity model - Together
The activity diagram was produced to depict the activities for making a reservation for a hotel room:

Figure 22: Activity model in Together – components in list view

The set of components for drawing an activity model in Together occupies a bigger real estate than those for
drawing use cases. Hence, the layout for the components (at the left of model editor window) was changed from
columns to list, to allow for most of them to be shown. The columns layout of the components is shown in
Figure 23.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 94 -

Figure 23: Activity model in Together – components in column view

The icons occupy larger screen estate, but, the tool provides a means to scroll down should one need to. Another
issue with the activity model itself (rather than drawing components) is the viscosity of the model. That is, if a
modeller were to add a partition or lane, there is a knock-on to the existing model, and activities and control flow
get shifted such that the model loses clarity.

There is no facility within Together for directly exporting use case elements into an activity model. For example,
some use cases, such as check availability seemed to be sensible activities for the activity model, but Together
does not provided automated support for deriving such activities from the use case model.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 95 -

5.2.3.2 Activity model - Eclipse
Unlike Together, the drawing components for activities in Eclipse are spread at the top of the editor window.
The components have no textual description attached to them, but there is a tool-tip describing what each
component is.

Figure 24: Activity model in Eclipse

Eclipse does not provide any other layout for the drawing components. Also, Eclipse does not allow the use of
the vertical bar to merge activities.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 96 -

5.2.3.3 Activity model – Rational Rose
In Rational Rose, as with Eclipse and Together, it was possible to obtain activities from either use case or class
models. A Rational Rose activity chart is shown in Figure 25.

Figure 25: Activity model in Rational Rose

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 97 -

5.2.3.4 Activity model – Objecteering
Objecteering allows the use of a vertical bar for splitting and joining activities. In Figure 26 we show an activity
model built using Objecteering.

Figure 26: Activity model in Objecteering

Again, there are no means to directly obtain information from use cases or classes for building the activity
model. That is, one cannot use actors, use cases, classes or class methods/attributes directly in constructing the
activity model. Objecteering however offers a neat way of arranging models together in a tree structure so that a
modeller can flip between models for reference purposes.

5.3 Discussion of requirements
Our development of the initial prototype, and the investigation of various UML-based and MDA tools has
provided insight into desirable features for the VIDE IDE. The requirements for the VIDE GUI are outlined
below.

The VIDE GUI is to provide an editor for constructing business process models. The VIDE IDE will provide
RAD business process modelling elements, with a choice for users to deploy the VCLL component for BPMN-
based process modelling:

Level PIM Users: All MUST

GUI REQ ID 61 Support for business process modelling

Related requirement IDs: 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,

44, 45, 46, 61

Another important feature of the VIDE IDE is to provide a textual editor where users can write descriptions of
the domain. Such descriptions may also include pictures, or organisation diagrams:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 98 -

Level CIM Users: All MUST

GUI REQ ID 62 Support for construction of descriptions of the domain

Related requirement IDs: 12, 14, 26, 27, 28, 29, 32, 33, 58, 59, 62, 63, 66, 75, 76

The VIDE GUI should provide support for users to build analysis models depicting domain entities and their
associations. Such entities may be roles, activities, data items, or uncharacterised entities that may later be
decomposed or identified as concrete roles, activities, etc.

Level CIM Users: All SHOULD

GUI REQ ID 63 Provide a means for building an analysis model based on domain descriptions.

Related requirement IDs: 12, 14, 26, 27, 28, 29, 32, 33, 58, 59, 62, 63, 66, 75, 76

The VIDE IDE should provide support for further analysis of initially, less understood parts of the domain or
entities:

Level All Users: All SHOULD

GUI REQ ID 64 Provide support for decomposing associations among entities in an analysis
model.

Related requirement IDs: 12, 21, 24, 25, 27, 28, 29, 30, 31, 35, 51, 58, 59, 60, 64, 65, 66

There should be a means within the VIDE IDE for users to create links among elements of an analysis model:

Level All Users: All SHOULD

GUI REQ ID 65 Support for creating links/associations among entities, and to label them.

Related requirement IDs: 12, 21, 24, 25, 27, 28, 29, 30, 31, 35, 51, 58, 59, 60, 64, 65, 66

The VIDE IDE, like any other development environment, should provide the project construct for holding
together models of a given development task:

Level All Users: All SHOULD

GUI REQ ID 66 Support for creation of projects as container for VIDE models.

Related requirement IDs: 12, 21, 24, 25, 27, 28, 29, 30, 31, 35, 51, 58, 59, 60, 64, 65, 66

The VIDE environment is to provide functionality for model storage. This is essential for further development
and sharing of models for a given development project:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 99 -

Level All Users: All MUST

GUI REQ ID 67 A repository for VIDE models providing persistence of models

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

An interface is to be provided where users can launch the VCLL modeller within VIDE in order to develop
BMPN-based business process models:

Level CIM Users: All MUST

GUI REQ ID 68 Provide an interface to other components such as the VCLL component.

Related requirement IDs: 6, 68, 84

An important aspect of the VIDE IDE is the provision of support for direct of elements of an analysis model in
building a formal business process model:

Level PIM Users: All MUST

GUI REQ ID 69 Support for development of business process models from analysis models

Related requirement IDs: 1, 2, 3, 16, 17, 18, 19, 20, 21 ,22, 23, 24, 25, 26, 27, 28, 35, 60, 64, 69

One important aspect of development with the VIDE IDE is the need to be able to build (behaviour) activity
models that are derived from a CIM model:

Level PIM Users: All SHOULD

GUI REQ ID 70 Support for development of behaviour models from CIM models

Related requirement IDs: 63, 70, 71, 82

An additional feature of the VIDE IDE is to enable the use of elements of an activity model to build a class
design model:

Level PIM Users: All SHOULD

GUI REQ ID 71 Support for development of class design models from behaviour models.

Related requirement IDs: 63, 70, 71, 82

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 100 -

The VIDE IDE is to ensure that elements of a domain model that are derived from the domain description can be
traced back to the description:

Level PIM Users: All SHOULD

GUI REQ ID 72 Provide traceability between analysis models and domain descriptions

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

The VIDE IDE is to ensure that elements of a business process model that are derived from an analysis model
(or domain description) are traceable back to the originating word or element:

Level PIM Users: All SHOULD

GUI REQ ID 73 Provide traceability between business process models and analysis models

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

The VIDE IDE is to ensure that any elements of a class design that are derived from an activity model can be
traced back to the originating activity model elements:

Level PIM Users: All SHOULD

GUI REQ ID 74 Provide traceability between class design models and behaviour models

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

5.4 Summary
There seems to be some modelling concepts that cross-cut the tools assessed so far. For example, all the tools
tend to deploy the concept of a project as a container for software models. This is an important aspect of
modelling or software development in general as several models may often be built to depict different views of a
system. VIDE modelling will use the “Project” concept in the same way seen in these tools to be able to organise
analysis and design models during MDA development with VIDE.
Some tools (e.g., Together, Rational Rose and Objecteering) provide modelling components on a vertical toolbar
to the left of the model editing window, while other tools (e.g. Eclipse) lay out such components just above the
model editor window. VIDE will use a vertical toolbar to hold modelling components for the different modelling
views. Some tools (e.g., Eclipse) do not provide a flexibility in laying out models on the model editor. VIDE will
allow users to position model elements on the screen area as they wish. Table 22 provides an overview of the
way in which the tools have been evaluated in terms of the cognitive dimensions framework which has been
used to assess modelling activities.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 101 -

Tools/Dimension Together Eclipse Objecteering Rational Rose
Viscosity Knock on viscosity

experienced when
additions are made
to a model

Both knock on and
repletion viscosity
experienced when
additions are made
to a model

Knock-on viscosity
experienced when
additions are made
to a model

Knock-on viscosity
experienced when
additions are made
to a model

Juxtaposition
Does not facilitate
juxtaposition of
models. One has to
minimise one model
to view another.

Does not facilitate
juxtaposition of
models. One has to
minimise one model
to view another.

Does not facilitate
juxtaposition of
models. One has to
minimise one model
to view another.

Does not facilitate
juxtaposition of
models. One has to
minimise one model
to view another.

Visibility Modelling
components clearly
visible and different
layouts provided for
laying out
components on a
vertical toolbar.

Small icons used for
modelling
components; seems
reasonably visible
to a user

Quite reasonable
visibility of
components

Quite reasonable
visibility of
components

Hidden
dependencies

None of this
experienced in the
modelling tasks
performed

None of this
experienced in the
modelling tasks
performed

Experienced when
modelling use cases
– one has to build
use cases as part of
a class model or a
package

Experienced when
building a class
model – classes
named the same as
an existing actor
seem to be
stereotyped
accordingly.

Secondary
notation

None for the
modelling tasks
performed

None for the
modelling tasks
performed

None for the
modelling tasks
performed

Use of text to
provide descriptions
of model elements,
e.g., use case spec.

Premature
commitment

None experienced
so far

Seems to force
naming of roles and
specification of
multiplicity

Seems to force
association of a use
case to another
objects, e.g. class or
package

Seems to force
implication of a
class to be based on
an actor where a
similarly named
actor exists.

Table 22: Summary of tools assessment with cognitive dimensions

An important point to reiterate is that the mainstream tools assessed do not provide a means to carry forward
information from one model (e.g., use case) to another (e.g., class or activity model). VIDE will provide a means
for users to select elements of an analysis model (e.g., entities, roles, activities) for use in developing a design
model. Furthermore, VIDE will provide traceability between models to indicate where parts of a given model
have been derived from parts of another model (s).

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 102 -

6. Exploratory Prototype

6.1 Introduction
Prototyping is the most frequently used of the modern requirements elicitation methods. Prototypes can be
constructed to demonstrate either a portion of a system or the whole system in order to get feedback [130].
Prototyping is particularly useful in requirements gathering as the user interface can be replicated with the
appearance of the final system but with limited functionality [131]. It allows users and developers to gain
knowledge about the system and the way it will work. There are a number of different types of prototype which
Bray categorises in [131] as

• Definitive – forms part of the requirements specification or the definition of the required behaviour
• Structural – to check possible design solutions such as performance, but can be used to ascertain

feasibility in the earlier stages of the lifecycle.
• Evolutionary – means that development occurs by refining earlier prototype versions of the system.

Sommerville [132]outlines some of the problems with this approach when used for large systems such
as management, maintenance and contractual problems.

• Exploratory - that will aid in eliciting or refining requirements and are defined as ‘throwaway’ by [132]
For the purposes of WP5 two different prototypes will be used the exploratory prototype which will allow for the
creation of an initial user interface that will allow further definition of the requirements. From this approach, a
full collection will be made of all the requirements prior to the outline of a definitive prototype which will form
the requirements specification.

The VIDE GUI is aimed at providing an IDE that supports model driven development (MDD). The specification
and (partial) development of the exploratory prototype of the VIDE GUI was undertaken to elicit feedback
regarding desirable features of a MDD environment. Various meetings and presentations to the VIDE
consortium, provided feedback on several most important aspects of the GUI and needing further consideration.
This chapter outlines the requirements that the first prototype set out to address, and discusses the limitations of
the initial GUI specification and prototype.

6.2 Additional identified requirements
Additional requirements for the first prototype are outlined below. These were obtained during developer focus
group meetings and VIDE meetings throughout the project.

An important requirement is for the VIDE GUI to enable business users to write descriptions regarding the
activities they undertake, and their various responsibilities:

Level All Users: All MUST

GUI REQ ID 75 Support for construction of textual descriptions of the domain.

Related requirement IDs: 12, 14, 26, 27, 28, 29, 32, 33, 58, 59, 62, 63, 66, 75, 76

The VIDE GUI should provide an editor with a flexible notation where business users can construct domain
entities (e.g., roles, activities) and the associations among those entities without being constrained by rules of
any modelling notation:

Level All Users: All SHOULD

GUI REQ ID 76 Provide an accessible domain modelling editor.

Related requirement IDs: 12, 14, 26, 27, 28, 29, 32, 33, 58, 59, 62, 63, 66, 75, 76

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 103 -

A means to construct activity models as behaviour models of a system should be supported by the VIDE GUI.
These models will depict interactions among instances of the class design model.

Level PIM Users: All SHOULD

GUI REQ ID 77 Support for construction of activity models

Related requirement IDs: 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45, 46, 61, 77

The VIDE IDE is required to support the building of a domain model depicting relationships among entities
derived from the domain descriptions.

Level PIM Users: All SHOULD

GUI REQ ID 78 Support for construction of domain models based on the domain descriptions.

Related requirement IDs: 12,19, 25, 27, 34, 47, 48, 58, 59, 60, 61, 63, 75, 76, 78

The VIDE GUI is to enable traceability of domain entities to the parts of the description where the entities are
derived from:

Level PIM Users: All MUST

GUI REQ ID 79 Support for traceability of domain models back to domain descriptions.

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

The VIDE IDE is to provide a means to trace elements of a class model (e.g., attributes, methods, or even
classes) back to the domain model element associated with it.

Level PIM Users: All SHOULD

GUI REQ ID 80 Support for traceability of class models back to domain models.

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

Again, the VIDE IDE should provide a means to trace elements of a behaviour model back to the counterpart
structural model:

Level PIM Users: All SHOULD

GUI REQ ID 81 Support for traceability of activity models back to class models.

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 104 -

A means for obtaining class design model elements from an activity model should be provided by the VIDE
IDE.

Level PIM Users: All SHOULD

GUI REQ ID 82 Support for direct derivation of class elements from activity model elements.

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

The VIDE GUI is to support direct construction of a class model based on information available in the domain
description. Such information could be directly used to build a class, or form part of a class by providing
attributes or methods:

Level PIM Users: All SHOULD

GUI REQ ID 83 Support for direct derivation of class design elements from domain
descriptions.

Related requirement IDs: 8, 9, 10, 15, 34a, 49, 50, 51, 58, 67, 72, 73, 74, 79, 80, 81, 83

There should be an interface to other components such as the VCLL component. This to ensure components
separately developed to automate CIM development using the VCLL language can be integrated with VIDE.

Level PIM Users: All SHOULD

GUI REQ ID 84 Provide interface with VCLL component.

Related requirement IDs: 6, 68, 84

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 105 -

6.3 VIDE GUI overview
The VIDE toolset is aimed at providing support for MDA development activities. For example, parts of the IDE
will support the construction of CIM models; while other aspects of the VIDE GUI will provide PIM
development support. Given that these MDA development activities may often involve elicitation and analysis of
domain information, the VIDE GUI also provides supports for the building of descriptions about the problem
domain, and the analysis of such information. Hence, a user may consider these various development activities
as different views for developing an MDA-type application using the VIDE GUI. Figure 27 shows these views
put together in a VIDE IDE:

PIM ViewsPIM Views

VIDE Project master navigationVIDE Project master navigation

WelcomeWelcome

CIM ViewsCIM Views

User Log-inUser Log-in

User registrationUser registration

CIM-PIM WizardsCIM-PIM Wizards

Problem domain viewProblem domain view

Business process viewBusiness process view

Structural viewsStructural views

Behavioural viewsBehavioural views

PIM classesPIM classes

PSM ViewsPSM ViewsProject selectorProject selector

Visual code editorVisual code editor

Textual code editorTextual code editor

Project libraryProject library Stakeholder teamsStakeholder teams

In
te
ra
c
tiv

e
 h
e
lp

In
te
ra
c
tiv

e
 h
e
lp

Project journalProject journal Collaboration visualiserCollaboration visualiser Project compilerProject compilerAspect visualizerAspect visualizer Quality VisualizerQuality Visualizer

Logical architectureLogical architecture

Business object viewBusiness object view

System agent viewSystem agent view

Business activity viewBusiness activity view

System pattern viewSystem pattern view

Figure 27: Overview of VIDE GUI

The components of the VIDE GUI are arranged in such as a way as to address a number of significant concerns
for a give development project:

• The involvement of non-technical stakeholder in some of the development process

• Elicitation of problem domain information and analysis of such information

• The use of analysis results to build a CIM model

• Development of PIM models from the CIM model

In the following sections, we outline some of the high-level processes that we expect VIDE stakeholders to go
through whilst using the VIDE IDE. These act as more detailed specifications of the relevant GUI components
presented in Figure 27.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 106 -

6.4 VIDE GUI Stakeholder interaction processes

6.4.1 Documenting and analysing the problem domain
Software development (whether by following MDA or the traditional) is an activity aimed at producing a
software system that addresses a specific issue within a given application domain. A means for eliciting and
recording informal facts about the problem domain, and the subsequent analysis of such facts is often an
important activity prior to any design. Within MDA, such activities constitute an important step of informing
development participants especially on the development of the CIM model. We capture early lifecycle activities
in the following RAD model:

Figure 28: Problem domain construction process

The diagram in Figure 28 indicates that during the elicitation of business related information, one may have a
document containing the elicited information. Several documents may be produced depending on the size of the
problem. Information from such documents is then synthesised to identify key information that may be relevant
the building of a business process model. Such an activity may highlight areas requiring further analysis.

6.4.2 Activities for building CIM models
One of the main MDA development activities is the construction of a formal model of the business process, the
CIM model. Some MDA researchers have recommended the use of automatic layout functions within MDA
tools to organise CIM model elements for users. We capture the activities for developing a CIM model with the
VIDE IDE in the RAD shown in Figure 29:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 107 -

VIDEUser
VIDE_Editor

DomainExpert

LayoutChecker

VIDEModelStore

Launch VIDE

editor

Display

modelling views

Select BPM view

Display BPM

elements

Build model

autoCheck noCheck

Apply

autolayout

Validate with

expert

Validate model

Store model

happynotHappy

Send to user

Revise and store

autolay

Figure 29: Business process construction process

In Figure 29 a user launches the VIDE editor, and selects the BPM view. This view will display the elements
(e.g., VCLL elements, or BPMN elements) for building a business process model. Upon building the model, a
user may optionally apply autolayout checking. It is also important models are validated with domain experts.

6.5 The VIDE GUI

6.5.1 Introduction
This section discusses the different views of the VIDE GUI. These views can be categorised into four strands. In
the first strand, the views pertaining to user registration, login, and the management of the artefacts of a
development project are shown in Section 6.5.2.

The final three strands make up the model refining process. The second strand comprises the various views that
show the development of business level models, their display, and how they relate and are described and
discussed in Section 6.5.3.The next section describes and discusses moving from a CIM model toward a class
design model by using intermediate models of the system behaviour and system services (see Section 6.5.4).
Finally the last views that detail the final move to a first cut class model are described and discussed in Section
6.5.5. The model process screens are shown in Figure 30.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 108 -

Figure 30: Exploratory prototype process

6.5.2 User login and artefact management

6.5.2.1 VIDE GUI design: Welcome

Figure 31: VIDE Welcome dialogue

Upon starting the VIDE environment, a welcome dialogue appears (see Figure 31) that displays appropriate IDE
version information and optionally, any news that might be available. The VIDE allows collaboration among
multiple development stakeholders. In this prototype specification the model for collaborating users is simple. If
more than one user wishes to work on a VIDE project we assume that either a) they have controlled access to the
VIDE project artefacts which are associated with their use or b) they are all working at a single development
machine and nominate a principal user to lead design or programming activities. In either respect it is important
for the purposes of traceability and maintenance to record contributions at any MDA level by users working on a
particular project.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 109 -

6.5.2.2 VIDE GUI design: User registration

Figure 32: VIDE User registration dialogue

At the start of a VIDE project, it is reasonable to expect that some stakeholders will not be known to the VIDE
IDE. It should therefore be possible to allow these individuals to register themselves with the system, and in
doing so, provide additional information that will more clearly specify their contributions (and specific VIDE
interaction needs) within a VIDE project. Some of the basic information gathered is depicted in Figure 32.

6.5.2.3 VIDE GUI design: User log-in

Figure 33: VIDE User Log-in dialogue

Given that all users that wish to participate in a VIDE session are registered, it should be possible to specify who
has logged in. In Figure 33, one or more users are given the option to log-in; if a single-user log-in was specified
at the welcome screen the collaborating users window should be minimised by default. Once all users have
successfully entered their VIDE passwords, clicking ‘Start VIDE’ starts the IDE proper.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 110 -

6.5.2.4 VIDE GUI design: Project selector

Figure 34: VIDE Project selector

We should expect that VIDE users are likely to work on a number of different projects, for this reason it should
be possible to browse through existing projects (possibly contained within an Eclipse workspace). In addition to
viewing projects by name, it may also be useful to be given some summary information such as the project
instantiation date; number of contributors and so on. For a rapid start, it may also be useful to either allow quick
access to the project last opened by the user (see Figure 34 for an example of this arrangement).

6.5.2.5 VIDEGUI design: Project journal

Figure 35: VIDE Project journal

The project journal component (see Figure 35) is an extension to the multi-user support offered in the VIDE
IDE. Specifically, the journal is used to represent MDA design and development phases within a project’s life

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 111 -

time. A principal component of the VIDE environment, the project journal allows users to create development
phases within the MDA framework and populate them with CIM, PIM or PSM documents. In addition to this,
the project journal should allow one or more users associated with a particular project to be selected and their
specific contributions highlighted (this could be further refined with CIM/PIM/PSM filters for each user).

6.5.2.6 VIDE GUI design: Collaboration visualizer

Figure 36: VIDE Collaboration visualizer

The collaboration visualizer (see Figure 36) provides an orthogonal view on VIDE stakeholders’ interactions
within a project. Here, particular collaborations are explicitly named and created (within each collaboration, at
least two users should be specified, although there could be any number). Shared work between collaborators is
represented along dotted arcs, over which documents (from any MDA level) are presented. Again, specialised
forms of collaboration can be specified by selecting one or more MDA levels for each user.

6.5.3 VIDE GUI views for business model development

This section discusses model development capabilities of the VIDE GUI. The section presents the process of
writing unstructured descriptions about the problem domain, and the construction of informal models to further
clarify problem domain concerns.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 112 -

6.5.3.1 VIDE GUI design: Scrapbook view
The scrapbook metaphor is used to depict the informal and unstructured nature of information at this stage of
development. Such information may be used to identify specific business related constructs such as activities,
roles, or data items.

Figure 37: VIDE GUI scrapbook view

In our assessment of many MDA-based software development tools, we found that many did not provide support
for the production of domain descriptions or the building of domain analysis models. The VIDE scrapbook view
(see Figure 37) provides some basic features for capturing, analysing and ‘marking up’ parts of an informal
problem domain description. Here, users are able to open domain descriptions (either as text, or possibly images)
and annotate parts of them for future reference. Each annotation should include a name and a type description
based on generic concepts derived from business activity or process models.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 113 -

6.5.3.2 GUI design: Business domain view

Figure 38: VIDE GUI Business domain view

A further step from the writing of domain descriptions is the identification of various constructs from such
descriptions in order to create an analysis model like the one shown in Figure 38. Such models will typically
show relationships among roles and associated activities, and any used or produced data items.

This view of business domain artefacts is primarily for managing entities, such that a high-level view of the
problem can be generated before a business process model that explicitly refers to these entities, is constructed.
Note that it may be possible for VIDE users to move from the scrapbook view to the business process model
without referring to this intermediate step.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 114 -

6.5.3.3 GUI design: Business process view
During business process modelling, a user might build the business process model using activities or roles
already identified during the analysis of the information available in the scrapbook. Figure 39 shows the
organisation of such information, and the use of formal concepts such as swim lanes (from business process
modelling) in constructing a CIM model.

Project title

Project summary information

Project journal

Business domain view

System behaviour view

B
u
s
in
e
s
s
 p
ro
c
e
s
s
 to
o
lb
a
r

Process model A-X-Y

 Process A

Process X

Process Y Process model A-B-C

 Process A

Process B

Process C

Domain entities

Roles

Role A

Role B

Role C

Activities

Activity A

Activity B

Activity C

Data objects

Object A

Object B

Object C

Business rules

Events

Processes

Process A

Process B

Process C

Process D

Process preview

Figure 39: VIDE GUI business process view

One aspect of CIM level support within the VIDE IDE will be the provision of a business process modelling
support. The business process view (see Figure 39) allows users to construct business process models within
which there may be many named processes – these are additionally accessible via a process list. It is expected
that business domain artefacts (such as data objects, activities and events) have been derived from the scrapbook
view and should be used as first class inputs for the business process modelling task; however these may be
independently generated without a direct reference to a business domain entity.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 115 -

6.5.4 GUI design: CIM-PIM early transformation views
The movement from CIM to PIM requires some kind of transformation between the CIM models to one or more
PIM models. There are recognised challenges of fully automated transformations owing to syntactic mappings
and semantic mappings between the views. This section proposes moving from a CIM model to a class design
model by using intermediate models of the system behaviour and system services.

6.5.4.1 VIDE GUI design: System behaviour view

Project title

Project summary information

Project journal

Business domain view

System agent view

Business process view

S
y
s
te
m
 b
e
h
a
v
io
u
r to

o
lb
a
r

System behaviours

 Behaviour name

Behaviour name

Behaviour summary

Business process models

Process model A

Model
preview

Go to process model

Process model C

Process model B

New system behaviour

Item

Behaviour name: Text

BPMN Preview

Roles Activities Events Data objects Business rules

Item

Item

Item

Item

Item

Item

Item

Figure 40: VIDE GUI System behaviour view

The first step toward the transformation between CIM and PIM level model is to identify entities from one or
more business process models that are likely to be performed by the target system. In other words, appropriate
stakeholders from the VIDE project team would be able to select entities such as roles, activities, events, data
objects and business rules that are likely to be associated with some functional aspect of the system. At this
stage, the user is invited to navigate through existing process models so that they are able to select elements that
can be associated with a new (or existing) system behaviour definition. This is achieved by first creating a new
system behaviour, and then dragging and dropping elements from the business process preview window into the
behavioural overview. Once finished, it should then be possible to assemble these behaviours into more abstract
collections of system functionality - system agents.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 116 -

6.5.4.2 GUI design: System agent view

Project title

Project summary information

Project journal

Business process view

System behaviour view

S
y
s
te
m
 a
g
e
n
t to

o
lb
a
r

System pattern builder

System behaviours

Roles

Activities

Activity A

Activity B

Activity C

System behaviour A

Data objects

Events

Business rules

System behaviour C

System behaviour B

New System Agent

Roles

Role A

Role B

Role C

Activities

Activity A

Activity B

Activity C

Data objects

Object A

Object B

Object C

Business rules

Events

System behaviour A

System behaviour A

System behaviour A

System behaviour A

System behaviour B

System behaviour B

System behaviour B

System behaviour C

System behaviour C

System agents

Agent B

Agent A

Agent summary

Figure 41: VIDE GUI System agent view

The system agent view, as shown in Figure 41, progresses the process of CIM to PIM transformation. A system
agent should be considered as a software-based entity that, given a specific context, knows about certain types of
information and can act in particular ways (this is expressed in terms of their composite system behaviours .To
do this, the user is expected to select aspects from system behaviour descriptions and drag them onto new
instances of system agents. Aspects of the system behaviour may include roles, activities, data objects, events
and business rules. It is therefore possible (although not necessarily desirable) to mix a variety of previously
defined system behaviours with one or more system agents. Agents are subsequently used in VIDE’s final
transformation stages in the CIM to PIM transformation process.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 117 -

6.5.5 GUI design: CIM-PIM final transformation views
In this section, we discuss the final steps leading to the production of a first-cut class model of the system.

6.5.5.1 GUI design: System pattern builder

Project title

Project summary information

Project journal

System behaviour view

System agent view

PIM Class Prototyper

System agents

Agent B

Agent A

Agent summary

System Agent A

Roles

Role A

Role B

Role C

Activities

Activity A

Activity B

Activity C

Data objects

Object A

Object B

Object C

Business rules

Events

Pattern Palette

Pattern groups

Structural

Behavioural

Creational

Builder

Abstract Factory

Pattern summary

Pattern name

Motivation

Applicability

Structure

Participants

System patterns

System pattern B

System pattern A

System pattern C

System pattern A

AbstractFactory

+CreateTypeA()

+CreateTypeB()

<<Abstract>>

ConcreteFactory

+CreateTypeA()

+CreateTypeB()

AbstractType

<<Abstract>>

AbstractTypeB

<<Abstract>>

AbstractTypeA

<<Abstract>>

ConcreteTypeA

ConcreteTypeB

S
y
s
te
m
 p
a
tte
rn
 b
u
ild
e
r to

o
lb
a
r

Figure 42: VIDE GUI System pattern builder

The system pattern builder represents a significant step for the transition between CIM level concepts and the
PIM level class model. A mapping between a high level specification of the target system’s agency, encapsulated
through system agent objects, is started by identifying an agent to be implemented by a software system. The
next step is to select from a collection of software patterns made available by the VIDE toolset (these may
include user-defined patterns). A standardised description of any pattern is made available to the user; once a
new pattern is selected for generation, a template PIM class equivalent is presented to the user. At this stage,
users should select aspects of one or more agents that are to be associated with elements of the software pattern
(here, these are primarily classes). As with system behaviour specifications, complex and multiple associations
may be allowed here. Further refinement of these associations should be made using the PIM class prototyper.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 118 -

6.5.5.2 GUI design: PIM class prototyper

Project title

Project summary information

Project journal

System agent view

System pattern builder

PIM code editors

P
IM
 C
la
s
s
 P
ro
to
ty
p
e
r to

o
lb
a
r

System patterns

System pattern A

Pattern
preview

Go to pattern builder

System pattern C

System pattern B

System pattern A

Agent components

Current pattern part: ConcreteFactory

Activities

Data Objects

Object A

Name Agent

Object B

System Agent A

System Agent A

Pattern preview

AbstractFactory

+CreateTypeA()

+CreateTypeB()

<<Abstract>>

ConcreteFactory

+CreateTypeA()

+CreateTypeB()

AbstractType

<<Abstract>>

AbstractTypeB

<<Abstract>>

AbstractTypeA

<<Abstract>>

ConcreteTypeA

ConcreteTypeB

ConcreteFactory

Methods

CreateTypeB

Activity: ActivityB

Parameter list

CreateTypeA

Activity: Unspecified

Parameter list

Return value

Name PIM Type

ObjectB Float

Attributes

ObjectA

Name

ObjectB

Integer

Float

PIM Type

Figure 43: VIDE GUI PIM class prototyper

The PIM class prototyper is the final stage of the CIM to PIM transition process. Here, software patterns
previously defined in the system pattern builder are further refined. Specifically, data objects carried over from
the CIM agent model (displayed in the ‘Agent components’ window) can be associated with PIM class attributes
(and their types); in a similar fashion, activities or events carried over from the CIM agent model can be
associated with pattern methods. It is unlikely that all CIM agent data objects, activities and events will easily
find a home in the prescribed parts of the chosen software pattern template. For this reason, it may be important
to provide some additional, basic prototyping capabilities for the PIM class templates that allow the user to add
additional attributes and methods of their own devising such that appropriate CIM parts can be mapped.

Having completed the PIM class templates, it should be possible for the VIDE user to navigate to the PIM code
editors. Here, the actual implementation of the methods specified in the PIM class pattern (based on their
associated activity and data object models) should be written in VIDE code.

6.6 Summary
This section outlined the final requirements that were used in addition to those collected earlier. It added that
Role Activity Diagrams of the process as we understood it of the end-user is using the VIDE environment to
complete a task. We then detailed the exploratory prototype in four separate sections. The log-in and artefact
management section were explored, and finally the three model building sections from scrapbook to class model
we described.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 119 -

7. Evaluation of exploratory prototype and requirements
summary

7.1 Evaluation
The exploratory prototype, as presented in Section 6.5, was also presented at a series of focus group meetings
and the feedback was collected. Feedback from presenting the system at two workshops to consortium members
was also collected. These issues are outlined below together with our developer evaluation using the Cognitive
Dimensions Framework. In addition, pertinent requirements obtained from the research carried out over the year
are discussed. The feedback, comments and research allowed some paper prototypes to be created. Paper
prototypes add value because they are ‘hands on’ and enable critical feedback [133]. From this collected
information the system will be re-modelled and a definitive prototype will be created synthesising the lessons
learned from these various forms of evaluation and .research.

7.2 Issues

7.2.1 High level summary
The exploratory prototype was very useful in identifying issues. It is possible for system designers to get too
close to the designed system and be unable to see such issues. The addition of feedback from the focus groups
and presentations allows the developer to take a step back and to view the system from others’ points of view.

Overall, the system was well received, but it became apparent, when issues were identified, that it did not appear
to be sufficiently accessible to business users and was generally inflexible in usage. By following the screens
through, it imposed a particular process which was a little quirky. There was no traceability, from domain
information to PIM model and many of the models suffered from fragmentation and loss of information. Finally
the system did not take into account behavioural and structural information.

7.2.2 Issues with the initial prototype
• The scrapbook idea was good, but it was too structured and did not allow sufficient free flow of ideas. It did

not make use of existing documents and appeared complicated.
• The domain models screen should aid analysis but it was not possible to create informal conceptual ideas

and there was no explicit relationship to the scrapbook (the previous development step). It forced the end
user/analyst to become too detailed too early in the process (for example by defining roles and objects) and
using terminology that could confuse business people and giving no support. It was also not possible to
define the links between different items and did not support a process of gradual refinement. Finally the
domain model does not scale well (to allow for decomposition).

• Construction of domain models from domain descriptions was inflexible since it only permitted
consideration of pairs of entities and produced or consumed data objects.

• A lack of consideration for persistence of models. Given that VIDE is an MDD environment that will
interface with other MDD-type tools, persistence issues are important.

• Traceability between domain models and respective descriptions was inadequate since the built entities (e.g.,
roles, activities) did not bear any correlation with selected (partial) description of the domain.

• The initial prototype had considered transition between process model and design model based on system
services and behaviours. Whereas this is a possible route to take, one might not want two modelling phases
to achieve what other MDD tools suggest in one step.

• The exploratory prototype based the construction of PIM models on suitably identified (or custom built)
patterns. MDD proposes derivation designs from business models without such patterns, hence this may
impede the uptake of VIDE.

• There was no clear distinction among elements of a domain model. That is, all elements (roles, activities,
and data objects) looked the same, and no stereotype was adopted to qualify distinct model entities. This can
be confusing for a large model or an unfamiliar domain.

• There was no way to group together multiple models pertaining to a given development task.
• The business process model and system behaviours screens should allow the creation, editing, import and

export of business models but the interfaces were not intuitive. No external interfaces were defined. It was
also apparent that there was a loss of information when defining system behaviours; the process allowed the

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 120 -

retention of some structural information and lost most behavioural information which contributed to the
fragmentation of models. In addition, as far as the specification was concerned, the system did not deal with
how scoping should be handled, nor support the requirements and specification documentation. Once again,
traceability of the models, back to the previous document’s screens and models, was absent.

• The concept of services and patterns was good, but information that was lost earlier in the process was never
replaced and, therefore, a single process model would result in fragments of a PIM model. It became very
difficult to define services. To be able to create patterns for the designs needed, extensive pattern knowledge
was required along with access to an extensive pattern library. It would also require specialist knowledge to
create class diagrams from patterns. There was once more, no traceability. Finally, there was no behavioural
model carried through the process.

7.2.3 Evaluation using Cognitive Dimensions

7.2.3.1 The Cognitive Dimensions used for the evaluation
As described in section 5.1 only six cognitive dimensions will be used for this evaluation. They are the most
relevant for the type of activities pertinent to software modelling. These six dimensions are used in a similar way
by Blackwell in [91]. We briefly repeat the description of the dimensions here for completeness:

• Viscosity –the ease with which users can make changes to models.

• Visibility – we assess whether the prototype provides users with editors where components are easily

viewed for use in model construction. This assessment will be based on how we view the layout of
modelling components being visible and accessible for each modelling task.

• Juxtaposition – we assess whether the tool provides modellers with a means to view models side by
side. This may be deemed necessary when a given modelling activity is informed by another, e.g.,
construction of a class model based on a Business Process model. An important side to this dimension
is whether or not one can derive parts of a given model from another directly, including traceability of
information between models.

• Hidden dependencies – we assess whether there are any hidden dependencies between components.
• Premature commitment – we assess the extent to which the prototype requires premature commitment

during modelling on the part of the users.
• Secondary notation – we assess whether the prototype provides secondary notation to provide extra

information about models.

7.2.3.2 The issues:
As indicated above, the interesting point of the scrapbook concept is to afford non-technical users flexibility and
accessibility for creating models based on their understanding of the problem domain. This flexibility was
curtailed in the first prototype because entities derived from the scrapbook could only be associated in three
ways. That is, one could only obtain and classify elements from the scrap book as roles, activities or data objects.
Furthermore, associations among these elements did not allow for roles to be associated with more than one
activity, or for activities or roles to be associated with more than one data object. This constraint is akin to the
cognitive dimension known as premature commitment, since a modeller is “forced” to prematurely decide on
any of the three elements to depict in a given model fragment. The exploratory prototype provided a means to
create and label associations among roles, activities and data objects, but deletion of a link, or an activity in order
to add a different activity or link caused the modeller to have to often rebuild the entire model, or significantly
move other model fragments that were within close real estate space of the one altered. This, again is akin to the
cognitive dimension of knock-on viscosity because amendments of given parts of a model “forced” significant
changes to associated models. An important aspect of the early stages of software development (e.g., domain
analysis, requirements determination) is the need to provide a means to describe a rich picture of the problem
being addressed. For example, associations between roles and activities in a domain model may subsume further
information about the problem. It may be that such associations need further description, or modelling with a
different notation to enrich the parent model. The exploratory prototype did not provide any secondary notation
for augmenting standard models of the prototype.

The design of the exploratory prototype had a key requirement of maintaining traceability among different
models. For example, where activities in a CIM model are derived from activities in the domain model, such
corresponding activities are to be highlighted in both models. However, to be able to move from a domain model
to a CIM model, one needs to display the domain model side by side with the CIM model, or its editor window.
This issue is akin to the cognitive dimension of juxtaposition, and the initial prototype could not juxtapose
different models.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 121 -

An issue with design models is the extent to which several intermediate models were involved in deriving a first
cut design model. For example, the concept of system behaviours, system services and design patterns meant that
appearance of various class design sections restricted the actual class model to a very small screen estate, hence
reducing the visibility of the design model. It was rather confusing as to whether the design model was
dependent mainly on the identification of a suitable design pattern, or the ability to define appropriate system
services and behaviours, yet again, faring inappropriately against the cognitive dimension of hidden
dependencies among models or model components.

7.3 Requirements summary
This section will draw together the major requirements from earlier work and the exploratory prototype that will
be carried forward. Some of the ideas were carried forward using paper prototyping which is useful for exploring
ideas informally.

7.3.1 The scrapbook
The exploratory prototype showed that there were a number of new requirements that the system needed to take
into account and these began with the scrapbook. It was felt that the idea of the Scrapbook was good, but the
execution of the concept needed some attention. It needed to be more flexible and to allow the free flow of ideas.
The screen looked complicated at the moment and should be simpler.

 Requirements from the description of work, carried forward in Section 1.2, highlighted the fact that the toolset
“should be used by IT specialists and individuals with little or no IT experience”. Further requirements from
Work Package 1 and outlined in Table 1 REQ- NonFunc1 discuss the requirement for accessibility at the CIM
level. Non-technical users working at the CIM level should be able to input, retrieve and understand their
business domain descriptions in a notation that is non-technical and accessible.

There are a number of requirements that are useful here from the software visualisation research, such as Section
4.2.1.8, that suggest that the components should be structured and have features to aid navigation and, in Section
4.2.1.11, that the system should be intuitive with regard to navigation and control. Perhaps the most important
requirement from this area for the scrapbook is that the user should be able to return to the original information
source and link to other views of the same information, as discussed in Section 4.2.1.12. Since users at this level
may well be novices, a requirement, from our Visual Programming research in Section 4.3.1, that is important
here is that all graphical representations should be relevant because novices will try to make sense of all explicit
connections even if they are not relevant. Finally the Natural and Codeless programming research highlight the
fact that components of a project should be easy to find and identify.

Additional flexibility can be gained by using a tree structure which facilitates the adding nesting and organising
of entries. Entries should allow cross referencing and notes for the user to annotate various entries. The system
should allow linking to both existing and external documents and provide a simpler and cleaner, less cluttered
interface. The paper prototype of our ideas in the area is shown in Figure 44

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 122 -

Figure 44: Paper prototype of the scrapbook

7.3.2 Analysis palette
Taking ideas forward from the feedback from the domain model screen of the exploratory prototype it became
apparent that there was nothing that would aid the user in handling vague (essentially informal) conceptual ideas
and was quite a complex and confusing screen. The Description of Work described in Section 1.2 states that all
stages of application development should be more accessible to non-IT professionals. This screen is likely to be
used by non-IT professionals, end users and business analysts and should thus answer the requirements in
Section 1.2.2 REQ – NonFunc1 the users should be able to understand their domain descriptions in a notation
that is non-technical and accessible. NonFunc3 states that the system should provide context sensitive help for
users working at the CIM level and this should be explained in non-technical terms. NonFunc4 requires that we
use clear and unambiguous notation. NonFunc 5 requires that model views should be user oriented – the scope
and content of views should be controllable by the user.

Our research from the area of Software Visualisation is particularly relevant here. Firstly, the domain user is
likely to have conceptual ideas that will need to be represented, and over time, these may be developed into some
entity that is understood. Different visual components should be distinctive (Section 4.2.1.2), present as much
information about the component (Section 4.2.1.3), and should be as simple as possible (Section 4.2.1.4).
Perhaps most importantly the user should be able to link to other views of the same piece of information, as
defined in Section 4.2.1.13. The user at the Analysis level is also likely to have low levels of IT experience and
will have similar requirements to the scrapbook user, in terms of ensuring that graphical representations and
explicit connections are relevant. The diagramming research (in Section 4.4.1.) highlights the requirement that
modellers should be able to arrange their model themselves and that models should be stored persistently.

Additional requirements from the exploratory prototype feedback suggest a need for provision to help users
define concepts, although context sensitive help is mentioned earlier, user concepts are much more specific. It
should be possible to define links between items and most importantly the traceability from the scrapbook items
and scraps should be maintained. The layout and screen components should support a process of gradual
refinement, and whilst the requirement is that users should be able to arrange their own models, the system
should allow them to decompose or create a hierarchy view of the model. Ideally the system should not impose a
process on the user, rather they should be able to enter or exit the system at any point. Finally, the system should
be semantically ‘loose’ to allow it to be used in a more flexible and business friendly way. A paper prototype of
the concepts that would respond to these requirements was developed as shown in Figure 45

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 123 -

Figure 45: Paper prototype of the analysis palette

7.3.3 CIM Palette
This area was defined in two screens in the exploratory prototype, the business process model and system
behaviours screens. This palette will have to be capable of dealing with the BPMN notation, the VIDE CIM level
Language (VCLL) and, perhaps, other notations such as Role Activity Diagrams. Requirements from the
Description of Work in Section 1.2.1 highlight the fact that VIDE should be an open and interoperable platform
and requirements from Work Package 1 in section 1.2.2 REQ - User1 also support this need. However the UML
standard should be used where possible as users are sensitive to standards. REQ –User2. To enable these
concepts a plug-in mechanism should be considered which is a requirement at REQ -Tool 12.

Feedback from the exploratory prototype has highlighted the requirement for a single view for both the process
and system model with an explicit definition of the boundary in a component that supports a process of gradual
refinement. It should detail two forms of model in the same tool the business process model and the system
process model. Wizards should support the process of requirements and specification integrated with the system
model and there should be full traceability where it is available. A component structure will allow for different
model types therefore interfaces should be defined for import and export.

A paper prototype of the requirements was developed and is shown in Figure 46

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 124 -

Figure 46: Paper prototype of the CIM palette

7.3.4 Design Palette
The Systems Services screen and the Pattern Editor screen, whilst interesting concepts, were flawed in a number
of areas. These were, specifically, the loss of information that was never replaced, and the fragmentation of the
process model. This screen needs to take input from the previous component and support the creation of ‘first
cut’ PIM models.

A number of Requirements from Work Package1 outlined in Section 1.2.2 are relevant here. REQ-NonFunc 4
states that the notation should have clear, comprehensible and unambiguous semantics and REQ-User 2 requires
the use of the UML standard and in addition REQ-Tool 14 requires VIDE to follow a strictly model driven
approach. Research in Software Visualisation highlights the requirements that the amount of information that is
visible will increase the complexity discussed in Section 4.2.1.5 and to allow minor changes which will not
cause major changes to the system as discussed in Section 4.2.1.9. These are particularly relevant here because
there is a considerable amount of information available that needs to be displayed or made available, and in
addition the changes that are made should not cause major changes to the environment. The Visual Programming
research prompted the requirement for the use of secondary notation where possible to improve comprehension
(see Section 4.3). Secondary notation is important when considering a large amount of information, the layout
and order of that information will assist in a major way in reducing the complexity. The diagramming research
has been carried out in Section 4.4 backs this up by highlighting a number of particularly relevant requirements.
From class diagram layout research it should be possible for the user to stipulate either automatic layout or to
arrange the models themselves, and with automatic layout compositional elements should be kept close together,
and an inherited classpath should be easy to follow. Other requirements relate to allowing modellers to
interactively navigate through the model history, and allowing the storage of different model versions. This will
increase the comprehension of the models and hence reduce complexity.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 125 -

7.4 Requirements summary
The requirements from D1 and all the additional requirements have been collected in a table which is shown at

Requirement Name Priority Cross Reference
REQ – NonFunc1 Accessibility at the CIM level - the VIDE

environment should provide non-technical,
business domain descriptions. Non-technical
users working at the CIM level should be able
to input, retrieve and understand their business
domain descriptions in a notation that is non-
technical and accessible.

SHOULD GUI REQ ID 12, 14, 26, 27,
28, 29, 32, 33, 58, 59, 62, 63,
66, 75, 76

REQ – NonFunc 2 CIM level collaboration - the VIDE
environment MAY offer collaboration
mechanisms. It may be possible for CIM or
PIM users to collaboratively work on a shared
CIM view through a communication
mechanism (such as shared notes or links to
shared views between stakeholders).

MAY GUI REQ ID 10,67

REQ – NonFunc 3 On-line support for CIM/PIM users - Users
working at the CIM/PIM level should have
immediate access to online/in-system, context
sensitive help that describes how
transformations between CIM, PIM and PSM
levels are specified and used in the modelling
activities supported by VIDE. Help should be
expressed in non-technical terms wherever
possible

SHOULD GUI REQ ID 12,19, 25, 27,
34, 47, 48, 58, 59, 60, 61, 63,
75, 76, 78

REQ – NonFunc 4 Clear and unambiguous notation - the VIDE
environment should use notation that has
clear, comprehensible and
unambiguous semantics suited for the user
working at the CIM, PIM or PSM level.

SHOULD GUI REQ ID 12, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 31,
34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 61, 77

REQ – NonFunc 5 Model view saliency - VIDE models views
must be user-oriented. Views on CIM, PIM
and PSM must be controllable depending on
specific user interactions with the VIDE
environment. It should be possible for users to
dynamically control the scope and technical
content of these views depending on their
specification/comprehension needs.

SHOULD GUI REQ ID 12, 21, 24, 25,
27, 28, 29, 30, 31, 35, 51, 58,
59, 60, 64, 65, 66

REQ – NonFunc 6 Appropriate textual/graphical fidelity - VIDE
must provide appropriate textual and graphical
modalities for its users. They should be able to
work with textual or graphical notations that
offer the most effective expressiveness for
CIM, PIM and PSM concerns.

SHOULD GUI REQ ID 1, 2, 3, 16, 17,
18, 19, 20, 21 ,22, 23, 24, 25,
26, 27, 28, 35, 60, 64, 69

REQ – NonFunc 7 Timely feedback and constraints - the VIDE
environment should provide feedback on user
actions at all modelling levels. Multiple users
working on the same VIDE project should
receive rapid feedback on their attempted
actions within the VIDE environment. Such
feedback should indicate their success or
failure to complete an action or task; its
impact on their local modelling level; its
potential impact on other modelling levels;
and any constraints that may impact on the
success of their intended action.

SHOULD GUI REQ ID 12, 12a, 25

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 126 -

REQ – NonFunc 8 Runnable and testable VIDE prototypes - the
VIDE environment should allow execution of
runnable models. VIDE users should be able
to validate at any time (where possible) the
models that can be automatically transformed
into an executable form.

SHOULD GUI REQ ID 7, 52, 53, 54, 55,
56

REQ – User 1 Flexibility and interoperability of VIDE
language and tools - the VIDE language and
tools should have flexibility and be
interoperable with existing tools

SHOULD

GUI REQ ID 11, 57, 68

REQ – User 2 Reuse of UML Standard - the VIDE tools for
certain user groups SHOULD be informed by
existing tools for the user groups. End users
are very sensitive to using standards.

SHOULD GUI REQ ID 4, 5, 11

REQ – Tool 7 Meta-modelling Framework - VIDE
SHOULD use GMF as it’s graphical
modelling framework

SHOULD GUI REQ ID 11

REQ – Tool 9 CIM modelling standards - VIDE may
support CIM level modelling with BPMN;
where there is inadequate or no support for
BMPN, VIDE may provide CIM modelling
capability with UML activity diagrams

MAY GUI REQ ID 61,68

REQ – Tool 12 VIDE extensibility - the VIDE tools should be
extensible via a plug-in mechanism.

SHOULD GUI REQ ID 6, 68, 84

REQ – Tool 14 Model driven approach - the VIDE tool must
strictly follow a model driven approach.

MUST GUI REQ ID 63, 70, 71, 82

REQ – TRAC1 VIDE must allow the traceability and
persistence of models

MUST GUI REC ID 8, 9, 10, 15, 34a,
49, 50, 51, 58, 67, 72, 73, 74,
79, 80, 81, 83

REQ – DOC1 VIDE should allow for document generation
at all levels

SHOULD GUI REC ID 14,28

Table 23: : Requirements from Work Package 1 cross referenced with WP5 low level requirements

7.5 Summary
This chapter has explained the feedback received from focus groups and the evaluation that was carried out on
the Exploratory prototype. This work highlighted several possible areas for improvement over the initial design
and has provided valuable lessons which have resulted in a much clearer set of requirements to be taken forward
into the design of the Definitive prototype. Some of the requirements have been highlighted by endeavouring to
draw together the work from Work package 1 and the high level requirements and how they and the research in
the areas of Software Visualisation, Visual programming and Diagramming have influenced the work that has
been done.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 127 -

8. Definitive Prototype

8.1 Introduction
Following the specification of the Exploratory prototype as outlined in Chapter 6 and discussion in Chapter 7
which described how the requirements have been drawn together, this Chapter gives the specification of the new
definitive prototype of the CIM level interface designs. It follows a top-down approach by commencing with
detailed screen designs at the pre-CIM level. The pre-CIM level has been identified as the area where the
scrapbook will sit. It is the area that is ‘upstream’ of the CIM giving business users an informal modelling tool
so that they are not constrained by their lack of knowledge of any formal modelling paradigm.

8.2 Overview
The architecture of the pre-CIM to PIM level is illustrated in Figure 47.

Figure 47: Architecture of the pre-CIM to PIM process for the Definitive prototype

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 128 -

8.2.1 Project Management
The screen below is a placeholder for the welcome screen of the VIDE IDE, it will be more colourful and
engaging when built and is shown in Figure 48 for completeness.

Figure 48: Creating a project using the VIDE IDE

The VIDE IDE provides a development environment where development artefacts (e.g., analysis models, design
models) are organised into projects. Figure 49 shows the project creation environment with options to build
various artefacts that may form a project.

Users can create multiple projects; each project can contain multiple scrapbooks, analyses, CIMs and PIMs
which can be organised as required. A user does not have to create each of these elements, for example they
may go straight to the CIM level model, bypassing the scrapbook and analysis.

All the models that are created or imported (users can also import existing models) will be stored in the model
repository, and multiple versions of models can also be created and stored. The use of the repository in the
definitive prototype allows for model persistence, which was lacking in the exploratory prototype.

The Scrapbook
The concept of the scrapbook has been retained from the exploratory prototype, however it has been restructured
and simplified to present a much less cluttered, more easily navigated model. The tree structure, with additional
links available, has been used for the scrapbook following the findings of the exploratory prototype evaluation
and the concepts and models have also been simplified to enable novice (non-technical) users to use the tool.

 A scrapbook can contain any documents the user sees as being useful for the project. These can be existing files
or specially created for the project. Once a project has been created, the user may follow the File menu to create
a New Scrapbook or to Open an existing scrapbook, etc: as shown in Figure 49.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 129 -

Figure 49: Scrapbook operations

Using the Opportunity Management scenario, an example of using the VIDE GUI to create a new scrapbook is
shown in Figure 50.

Scrapbook name

Figure 50: Opportunity scrapbook example

Once a scrapbook (e.g., the opportunity scrapbook) has been created, a user might want to add folders,
documents or scraps to the scrapbook. A drop-down list of menu choices is provided for such operations (see
Figure 51).

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 130 -

Scrapbook name

Figure 51: Operations for adding elements to a scrapbook

If there are existing folders containing information about products or contacts, that concern the business
opportunity, or specific documents that comprise information regarding existing orders or issues to be addressed,
these folders and documents can be browsed and items can be selected for inclusion into the scrapbook, using the
standard Windows dialog as shown in Figure 52.

Scrapbook name

Figure 52: Selecting documents or folders

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 131 -

The VIDE tool can import documents into the scrapbook which can then be used as the basis of further analysis.

A scrap is a fragment of information (either imported or created) that will be required for the modelling later.
Adding a scrap is crucial in capturing and recording information about the problem domain. For example, a scrap
about an opportunity might be as shown in Figure 53.

Oppor tunity

Figure 53: Creating a new scrap to add to the Scrapbook

A small, simple editor for the creation and modification of both documents and scraps will be included in the
tool.

Often, a scrap may be populated with content from an existing document. Figure 54 demonstrates support for
such functionality within the VIDE IDE.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 132 -

Oppor tunity

Figure 54: Selecting text from an existing document to populate a scrap

Thus the required text can be highlighted and a scrap can be created by selecting an option in the tool menu.
Multiple scraps can be created from one document and these scraps must be traceable back to the original
document. Traceability is an important addition to the definitive prototype as it allows the users to move
backwards and forwards through the information, one of the issue found in the evaluation of the exploratory
prototype. This concept is supported in all the models used in the VIDE IDE.

A user may want to open an existing scrap to review or modify its contents and this is shown in Figure 55.

Opportunity

Figure 55: Opening an existing scrap in the Scrapbook Editor

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 133 -

As the user adds documents and scraps a ‘Scrapbook Sketch’ is populated with these documents and scraps, so
an informal model or ‘sketch’ of the information is built up. This helps the user maintain a visual representation
of the information they are collating. There is also an overview of the sketch to help the user navigate what
could potentially become a very large model. The user can navigate around the potentially large model either by
using the overview window or by use of the scroll bars. The user can rearrange and move any items they wish
by dragging and dropping elements.

Opportunity

Sub
heading1

Sub
heading2

Doc1

Doc2

Scrap1

Scrap2

Doc3

Sub
heading3

Doc4 Doc5

Figure 56: A populated scrapbook and adding further links among scrapbook items

The tree structure will be reflected in the visual model; however it is also possible to create further relationships
or links between elements. Creating these links between documents, their source folders and associated scraps is
important in making sense of the information elicited from problem domain experts. These links are
demonstrated in Figure 57.

It is important to be able to annotate links to add further meaning about the associations between items. This
feature was developed after the evaluation of the exploratory prototype, which found that it did not provide any
secondary notation for augmenting models. Such annotations can be created as shown in Figure 57.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 134 -

Scrapbook name

Sub
heading1

Sub
heading2

Doc1

Doc2

Scrap1

Scrap2

Doc3
Sub

heading3

Doc4 Doc5

Figure 57: Creating a link and annotation between scrapbook elements

Suppose a user wants to indicate that an association between issues and possible opportunities exists, they may
add the link and an annotation. The example shown in Figure 57 demonstrates how the annotation is created.
Figure 58 shows the results of the addition.

Scrapbook name

Sub
heading1

Sub
heading2

Doc1

Doc2

Scrap1

Scrap2

Doc3
Sub

heading3

Doc4 Doc5

Note

Figure 58: Example of the link between items in the Scrapbook

Once the user has finished building the scrapbook, or is ready to move into the analysis phase, elements from the
scrapbook can be identified for taking into the Analysis Palette (AP). The elements required for the analysis
model can be obtained from the Scrapbook by dragging and dropping items into the analysis palette ‘shopping

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 135 -

cart’. The ‘shopping cart’ is a screen to the right of the Scrapbook Sketch, labelled Analysis Palette, which will
collect items that the user wishes to carry forward into the Analysis Palette. Alternatively, a user can double
click a scrapbook item, and it will be lodged in the Analysis Palette ‘shopping cart’ as shown in Figure 59. This
‘shopping cart’ containing the list of items has been added to over come the juxtaposition drawback in the
exploratory prototype, so now earlier model elements can be seen side by side with the next level of model. That
is the scrap book elements can be seen next to the analysis model and the analysis diagram elements can be seen
next to the CIM model.

Scrapbook name

Sub
heading1

Sub
heading2

Doc1

Doc2

Scrap1

Scrap2

Doc3
Sub

heading3

Doc4 Doc5

Note

Figure 59: Selecting elements for the analysis model

The Analysis Palette
The Analysis Palette has been added to provide informal modelling that a novice user can use to begin to model
the problem domain. This is in response to the evaluation of the exploratory prototype “Non-technical users
working at the CIM level should be able to input, retrieve and understand their business domain descriptions in a
notation that is non-technical and accessible”. Also resulting from the evaluation, navigation should be intuitive
so that users can to return to the original information source in the scrapbook and link to other views of the same
information.

In order to create an analysis model, the Analysis Palette (AP) provides the user with a set of constructs. The
bloop (cloud shape) is used to represent an item from the scrapbook that is not well understood. Bloops can be
later decomposed into roles, activities or data items. This much more informal model element has been added to
overcome the identified ‘premature commitment ‘constraint in the exploratory prototype. This allows the user to
develop a quick model and then use a process of gradual refinement, as identified in the exploratory prototype
evaluation, to decide what each bloop actual is, or even to leave the bloops definition until the CIM level.

The AP also provides the user with a rectangle shape which may be used to represent a role, activity or data. An
annotation with A at the top left corner of the rectangle would indicate an activity, whereas R would be used to
indicate a role, and D would be used to signify data. These annotations should aid the users in distinguishing
between the various elements, so attempting to solve one of the problems found in the exploratory prototype.

 An example AP model is shown in Figure 60:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 136 -

Name

Role

Name

Activity
Name

Data

Name

Composite

Name

Name

Name

Name

label

Name

Activity
Name

Data
Name

Composite

Name

Name

Name

Figure 60: Analysis model with bloops, activities, roles and data items

The user would need to build up this analysis model based on the elements bought forward from the scrapbook.
Traceability is supported by left and right arrows on each diagram element. A left pointing arrow would indicate
that the element links backwards into more information in the scrapbook. A right pointing arrow would indicate
linkages into a CIM model (the next model to be developed). An absence of an arrow means there is no
traceability in that direction.

The activity, role or data may also be composed of more elements, that is there levelling of the diagram. If an
element has been decomposed and further detail is available a small hierarchy icon appears in the top right of a
rectangle. Double clicking on this icon will show the lower level of detail, this is shown in Figure 63.

Users can add any diagram element they wish using the diagramming tools in the vertical tool bar to the left of
the screen.

In order to specify the type of a given analysis model element (e.g., whether an activity, role, etc), a user is
provided with a dialogue box from which appropriate types can be assigned to model elements. For example, to
assign the type Role to a Customer, the following dialog would be used:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 137 -

Name

Role

Name

Activity
Name

Data

Name

Composite

Name

Name

Name

Name

label

Name

Activity
Name

Data
Name

Composite

Name

Name

Name

Figure 61: Assigning types to Analysis Palette elements

Part of this dialogue of assigning types to elements will be a help sheet that will explain the terminology, thus
novice users can be guided through the process of refining a bloop into an activity, role or data.

If elements are added at this stage, there will be no traceability back to the scrapbook model even if something
does exist that the new element could be linked backwards to. So the VIDE IDE provides a means for users to
link specific elements back to a desired scrapbook element. For example, suppose that a modeller adds a Make
order activity into the analysis palette and wants to link it to the Order element back in the scrapbook the
following dialog could be used: See Figure 62

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 138 -

Name

Role

Name

Activity
Name

Data

Name

Composite

Name

Name

Name

Name

label

Name

Activity
Name

Data
Name

Composite

Name

Name

Name

Figure 62: Linking an AP element to a scrapbook element

An important aspect of the analysis models is to be able to expand a given element to view its sub-elements, or
to collapse sub-elements into their parent. An analysis model element that is expandable is signified by an
organisational chart icon to the top right corner of the element. In Figure 62, such an element is the Service
activity. We may suppose that the Service activity within the Opportunity management scenario comprises of
related activities such as Service request and Service confirmation. An expansion of the Service activity is shown
in Figure 63:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 139 -

Name

��

R

Name

��

D

Figure 63: Viewing more detail of a model element in the Analysis Palette

Once an analysis model has been created, and types assigned to various elements, a user may now start
considering the elements of the analysis model that they want to be carried forward for the building of a CIM
model. For example, a user may immediately identify roles such as Sales Manager and Customer (from the
analysis model), which would also feature within the CIM model as roles and thus be placed in the ‘shopping
cart’ to be carried forwards as shown in Figure 64.

Name

Role

Name

Activity
Name

Data

Name

Composite

Name

Name

Name

Name

label

Name

Activity
Name

Data
Name

Composite

Name

Name

Name

Figure 64: Identifying CIM elements from the analysis model

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 140 -

8.2.2 CIM Modelling
The CIM Palette shows the elements selected from the Analysis Palette and brought forward in the pane on the
left (keeping the consistent placing and functionality to match the relationship between the scrapbook and the
Analysis Palette).

The CIM uses the VCLL (VIDE CIM Language developed by IWi) language. A typical VCLL CIM model
comprises of activities, data, roles, and associations among the roles and respective activities, and produced or
used data. Hence, since an analysis model consists of elements (e.g., activities, roles, data, etc) that may be
mapped to those in the CIM model, it is expected that many CIM elements would be derived from the analysis
model and be thus automatically transformed. The CIM model below shows a list of activities obtained from the
analysis model and appearing in the CIM model:

Figure 65: CIM model with elements derived from analysis model

One of the crucial development activities following business process modelling is the production of a
specification for parts of the business model that may be developed into a software system. For example,
associations among roles and activities may require specification to describe the behaviour of a system that
would support performance of such activities. The VIDE IDE provides an editor for writing use case descriptions
as a specification of such parts of the system. Suppose a modeller would like to build a use case description
providing further detail about the Sales director’s activity of ‘Evaluate opportunity. The following dialog could
be used:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 141 -

Figure 66: Creating a specification

A complementary model to a VCLL CIM model is the Entity Relation (ER) model. Like a VCLL CIM model, an
ER model is built by obtaining many of the entities from the analysis model, and making associations among the
entities based on a user’s understanding of the problem domain (see Figure 67).

Figure 67: Partial ER model of opportunity management scenario

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 142 -

8.2.2.1 First-cut design model
Creating a first-cut class model would be a useful input into PIM level design. Given that the VCLL and ER
models both comprise of elements that may be used directly to build a class model, the VIDE IDE provides a
wizard whereby the modeller can select elements such as Roles from a VCLL model to form part of the class
model. The modeller can also select specific entities from the ER model which can be directly placed in the class
editor as classes.

Suppose a modeller intends to obtain some classes from the CIM model shown in Figure 68. Double-clicking a
given category of items (e.g., Roles) in the “To Class Modeller” window displays a dialog from which any of the
roles may be selected for automatic rendering as classes in the class editor window:

Figure 68: Class identification from roles

In Figure 68, a user double-clicks the Roles button, and a dialog with the list of available roles is provided. From
the list in Figure 68, only two roles have been selected for creating respective classes, namely, Sales director and
Customer. The selected candidate classes are in bold print.

In the class model editor, the list of roles from which a user made a selection is provided, with the already
chosen candidate classes indicated in bold. The other roles are listed in case a user wants to add them to the class
model as classes, or even as attributes. The class modeller allows additional classes to be added even where such
classes are not derived from any CIM element. A first cut class model with further classes (rather than just the
sales director and customer classes) is shown in Figure 69:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 143 -

Figure 69: First cut class model

One way to add attributes or methods to the classes is to use a wizard similar to the one used in class
identification. For example, activities in the CIM model may often be possible methods of some of the classes.
Hence, double-clicking the activities button will activate a wizard where a user is able to select candidate
methods. Since the VCLL model is such that activities have direct associations with Roles, selected activities for
use as methods are added to respective classes. For example, selecting the “evaluate opportunity” activity to use
as a method in the class model would place the corresponding method in the Sales director class. Methods or
attributes that have no correspondence to a CIM element can be added as desired using the pop-up dialog in
Figure 70.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 144 -

Figure 70: Adding new methods or attributes

An important part of elaborating a class/structural model is providing a behaviour model that depicts the flow of
system activities when the system executes. UML activity diagrams are commonly used for this purpose. For
example, an activity model may be created to show the flow of activities from opportunity identification to the
making of a quotation:

Figure 71: Behaviour model for opportunity management

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 145 -

In Figure 71, activities that are in bold appear so because they have been selected for creating the behaviour
model. One activity that is not considered as a possible system activity is the “identify opportunity” activity, and
this has been left out in the activity chart.

8.2.2.2 Validating models
Suppose that a user wants to check a model (e.g. class model) against a source (e.g., CIM) model from which
some elements might have been derived. Right-clicking on the editor area provides a pop-up menu from which a
user can select the model validation option as shown in Figure 72.

Figure 72: Model validation

In Figure 72, most of the classes are related to specific elements in the VCLL model, except one class, namely
Transaction which is not derived from an element of the CIM model. Such validation can be undertaken out for
either the activity chart, or the CIM model itself.

8.3 Summary
This chapter has outlined the specification and functionality of the definitive prototype based on our experiences
with the exploratory prototype and the subsequent feedback that we have received. The original Description of
Work did not allow for the building of any of this interface. However, it is expected that some of the core
functionality will be demonstrated as part of Deliverable 9.1.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 146 -

9. Visual Code Editor for State-Visualisation Syntax1
The state-visualisation variant is intended for software designers (as defined in D1.1). They use the VIDE editor
for modelling the first level of behaviour, but leave the details to be refined in later stages. Because of their
strong background in conceptual modelling and UML class diagrams, not only the graphical notation but also the
user interface they apply for creating their models is different from the VIDE programmers’ interface. That user
interface is oriented at state-of-the art modelling GUIs as present in state-of-the-art IDEs, in particular Eclipse.

9.1 Requirements

6.1.1 Relevant Requirements from D1.1
The requirements summarised in deliverable D1.1which are relevant for the design of the visual code editor are
as follows. We respectively indicate how they are reflected in design decisions.

• REQ – User 1 Flexibility and interoperability of VIDE language and tools (SHOULD). This
requirement is reflected by the fact that the editor will be able to interoperate with the development tool
Eclipse and its EMF, GMF, and GEF frameworks. It is smoothly integrated by referring to existing
plugins into Eclipse such as existing UML editors.

• REQ – User 2 Reuse of UML Standard (SHOULD). The editor not only re-uses the UML standard
by using notations known from UML instance diagrams but also integrates into existing UML tools.

• REQ – Lang 4 Compliance with Standards (SHOULD). The editor complies with the de facto
standards EMF and GMF.

• REQ – Tool 1 Usage of Industrially Adopted Tools (MUST). The editor the industrially adopted
meta-modelling standards EMF and GMF.

• REQ – Tool 2 Meta-modelling Framework (MUST).VIDE uses EMF as its modelling framework.
• REQ – Tool 7 Graphical modelling Framework (SHOULD) VIDE SHOULD use GMF as its

graphical modelling framework.
• REQ – Tool 8 Use of OCL (SHOULD). The VIDE editor uses OCL as expression language as

prescribed by the state-visualisation notation.
• REQ – Tool 11 Framework for CIM, PIM, PSM modelling (SHOULD). The editor uses EMF as its

framework for PIM modelling and adopts EMF as the meta-modelling framework.
• REQ – Tool 13 Integration and metadata interchange (SHOULD). VIDE provides model and meta-

data interchange capability by adopting the XMI standard coming for free from using the EMF and
GMF framework.

• REQ – Tool 14 Model driven approach (MUST). The VIDE tool strictly follows a model driven
approach as supported by employing EMF. Moreover VIDE itself is, by employing GMF, developed in
a model-driven way.

1 For the text in Sect. 8 (the description of the visual code editor for state-visualisation variant) the following copyright disclaimer holds:

Copyright 2007 SAP AG. All Rights Reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of SAP AG.
The information in this document is proprietary to SAP AG. No part of this document may be reproduced, copied, or transmitted in any form
or for any purpose without the express prior written permission of SAP AG.
This document is a preliminary version and not subject to your license agreement or any other agreement with SAP. This document contains
only intended strategies, developments, and functionalities of the SAP® product and is not intended to be binding upon SAP to any particular
course of business, product strategy, and/or development. Please note that this document is subject to change and may be changed by SAP at
any time without notice.
SAP assumes no responsibility for errors or omissions in this document.
SAP does not warrant the accuracy or completeness of the information, text, graphics, links, or other items contained within this material.
This document is provided without a warranty of any kind, either express or implied, including but not limited to the implied warranties of
merchantability, fitness for a particular purpose, or non-infringement.
SAP shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may
result from the use of these materials. This limitation shall not apply in cases of intent or gross negligence.
The statutory liability for personal injury and defective products is not affected. SAP has no control over the information that you may access
through the use of hot links contained in these materials and does not endorse your use of third-party Web pages nor provide any warranty
whatsoever relating to third-party Web pages.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 147 -

6.1.2 Refined User Adequateness Requirements
We infer in particular the following requirements for the state-visualisation editor targeted at software designers
(see Deliverable D2.1):

1. Close integration into existing (UML) modelling tools. For instance:
a. Sharing model elements across the boundary of different modelling types should be possible.
b. Dragging an action from an activity diagram editor into the VIDE editor and refinement there

should be possible.
2. Since VIDE models target also people who are more familiar with textual code, textual display and

modifications of the models should be allowed both in graphical mode and textual mode.
3. The guidelines of the chosen platform are respected in order to guarantee a uniform user experience[61].

State-of-the-art ways to interact with the editor like in existing modelling tools of the chosen platform
should be available in VIDE, as for instance:

a. Drag & drop from a palette;
b. Autocompletion and syntax highlighting when editing text for expressions;
c. Textual input instead of mouse gestures;
d. Drill-down, collapse/expand features (to cope with scalability issues of visual languages);
e. Property pane (for displaying and editing additional information for which there is no place in the

graphics);
f. Free positioning of model elements;
g. Standard Import/export mechanisms (e.g. to graphics format)

9.2 Eclipse Concepts for VIDE
In this section we describe the concepts of the target platform of VIDE, i.e. Eclipse together with the GEF/GMF
frameworks, as chosen during the work on WP1, w.r.t. graphical user interfaces. We focus on features relevant
for VIDE and describe where and in which way the VIDE editor for the state-visualisation syntax makes use of
these concepts.

9.2.1 GMF/GEF Editors
The Graphical Editing Framework (GEF) is a framework which allows for creating a rich graphical editor from
an existing application model within the Eclipse Modelling Framework EMF. Many common operations are
defined by GEF, which can be adapted for specific needs. The Graphical Modeling Framework (GMF) allows
developers to generate GEF compliant code from a declarative specification of the domain model, the graphical
model, and a mapping definition, and provides a runtime infrastructure.

9.2.1.1 EMF
EMF is the Eclipse Modelling Framework for the creation of tools based on structured models. It facilitates the
access to models in terms of an object tree, which can be modified by means of a Java API. For this purpose,
EMF generates a set of classes for the model, that is, the Java classes represent meta-model elements. XMI files
serve as input to EMF

9.2.1.2 Graphical Editing Framework (GEF)
Much functionality of graphical domain-specific editors remains the same across the domains, as for instance,
loading and storing of models. The Graphical Editing Framework (GEF) [134] is a framework which makes
creation of graphical editors significantly easier by taking over automatically generating the routine tasks. The
features of GEF are the graphical representation of arbitrary data models, support for tool palette for editing,
support for graphical zoom, printing, copy&paste etc. The architectural basis of GEF is the Model-View-
Controller pattern (MVC). Views are provided by figures. These use the graphics API Draw2D, an abstraction
layer on top of SWT, allowing for customized graphical components. According to the MVC pattern, a figure
playing the role of the View does not have knowledge about the model which it represents the data for. The
controller part is played by Edit Parts, coordinating the data flow between model and view. The model is
provided by the application. It is required that the application supports the observer pattern in order to notify the
controller about changes of the model, which is fulfilled when using EMF. For realising interactive diagram
editors there is currently no solution which integrates as good in Eclipse as GEF [135].

9.2.1.3 Graphical Modelling Framework (GMF)
Though the Graphical Editing Framework (GEF) eases the development of graphical editors significantly, the
Graphical Modelling Framework (GMF) goes a step further. It automatically generates graphical editors for

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

EMF meta models. The output of GMF serves as in
development of an editor is the creation of an
[137]:

• a model for the definition of the graphical elements (the GEF figures),
• a model for the definition of the palette (“tooling”), and
• a model for binding the grap

After having defined these models, the editor can be generated
points [138], the editor can be modified manually while being kept up
to the configuration models.

9.2.2 GMF/GEF Graphical User Interface Components
Plante [139] describes several entities which are available when using the GEF/GMF framework to create a
graphical editor. Since VIDE and in particular the editor for the state
framework, also the supported entities will be present in the editor. For the VIDE user this eases the use and
facilitates the transition from other modelling tools based on this framework to VIDE because of the well
user experience. In the sequel we follo
the VIDE state-visualisation editor.

9.2.2.1 Eclipse Views and Perspectives
When working with Eclipse the user sees exactly one
displayed in a rectangular part of the screen when Eclipse. Typical views are a code editor, an explorer for the
project structure, a display for occurring errors, etc.
arbitrary views can be added while a perspective can be opened.

The VIDE editor consists of a VIDE perspective. The VIDE perspective contains at

• The graphical editor pane where VIDE models are displayed graphically in the state
syntax.

• A message view where error messages are displayed.
• A property view where information on model elements are displayed which

their graphical representation.

• A project explorer displaying the project and model structure as in the standard Eclipse perspective

Views can be placed arbitrarily on the screen. By default, the arrangement in

Ex-
plorer

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

he output of GMF serves as input for GEF [136].The first step in the GMF based
development of an editor is the creation of an EMF model. Then three further “configuration models” are needed

for the definition of the graphical elements (the GEF figures),
a model for the definition of the palette (“tooling”), and
a model for binding the graphical elements to elements of the meta model (“mapping”).

After having defined these models, the editor can be generated “by push-button”. By using special extension
, the editor can be modified manually while being kept up-to-date by subsequent modifying changes

GMF/GEF Graphical User Interface Components and VIDE specifics
describes several entities which are available when using the GEF/GMF framework to create a

graphical editor. Since VIDE and in particular the editor for the state-visualisation diagram follows this
ork, also the supported entities will be present in the editor. For the VIDE user this eases the use and

facilitates the transition from other modelling tools based on this framework to VIDE because of the well
In the sequel we follow the overview by Plante,[139] in order to reflect the standard elements of

visualisation editor.

Eclipse Views and Perspectives
When working with Eclipse the user sees exactly one perspective consisting of several views
displayed in a rectangular part of the screen when Eclipse. Typical views are a code editor, an explorer for the
project structure, a display for occurring errors, etc. Perspectives are containers for a set of views, though
arbitrary views can be added while a perspective can be opened.

The VIDE editor consists of a VIDE perspective. The VIDE perspective contains at least the following views:
The graphical editor pane where VIDE models are displayed graphically in the state

A message view where error messages are displayed.
A property view where information on model elements are displayed which would otherwise scatter
their graphical representation.

A project explorer displaying the project and model structure as in the standard Eclipse perspective

Views can be placed arbitrarily on the screen. By default, the arrangement in Figure 73 is proposed:

Figure 73 : Default views

Diagram Pane
with Palette

Properties

Messages

 Work Package 5

- 148 -

The first step in the GMF based
model. Then three further “configuration models” are needed

hical elements to elements of the meta model (“mapping”).

By using special extension
date by subsequent modifying changes

E specifics
describes several entities which are available when using the GEF/GMF framework to create a

visualisation diagram follows this
ork, also the supported entities will be present in the editor. For the VIDE user this eases the use and

facilitates the transition from other modelling tools based on this framework to VIDE because of the well-known
in order to reflect the standard elements of

views [140]. A view is
displayed in a rectangular part of the screen when Eclipse. Typical views are a code editor, an explorer for the

set of views, though

least the following views:
The graphical editor pane where VIDE models are displayed graphically in the state-visualisation

would otherwise scatter

A project explorer displaying the project and model structure as in the standard Eclipse perspective.

is proposed:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 149 -

9.2.2.2 Diagram Pane
The diagram pane is the central part of the editor where the model is assembled. The pane is arbitrarily large and
the user may scroll horizontally and vertically to find space to place model elements. Placing model elements is
done by “drag&dropping” model elements with the mouse, either those

• which are already placed on the diagram pane,
• which are to be created by dragging them from the palette (see below), or
• which exist but do not occur on this particular diagram by dragging them from the model tree.

Model elements are allowed to be freely resized by dragging the frame of a model element.
A grid can be displayed in the background of the pane in order to facilitate well-aligned manual layouts.
Optionally placing a model element on the pane triggers a process of aligning the model element to the grid
(“snap to grid feature”).All of this is enabled in the VIDE editor for the state-visualisation syntax.

In addition to the – quite standard – features from above, the GEF/GMF framework offers more advanced
features discussed below.

9.2.2.2.1 Context Sensitive Buttons

Context sensitive buttons (Diagram Assistants, [139] allow model editors to select only the relevant model
elements when moving the mouse over a model element. Like a tooltip a graphical menu is displayed after a
short delay. GMF offers two kinds of such buttons: Pop-up Bars and Connection Handles.

9.2.2.2.1.1 Pop-up Bars
Popup-Bars are buttons displayed in a bubble-like shape. GMF devotes these buttons to create sub-elements of
the diagram element which is selected by positioning the mouse pointer over it. For structured VIDE actions,
such as SequenceNodes, such a button offers the creation of some common standard actions such as
AddStructuralFeatureActions or OperationCallActions. Which actions are displayed at this point will be a matter
of more experimentation when a first prototype is available. It is definitely counterproductive if all possible
actions are offered since this would be too overwhelming for a user. In case that a more rarely used model
element should be added the user should use the palette (see below).At conditional nodes popup-bars allow the
user to insert additional clauses, since – by default – the palette entry introduces a fixed number of clauses.

9.2.2.2.1.2 Connection Handles
Connection Handles are buttons for adding incoming and outgoing connections to / from the selected object. The
handles are symbolised as floating arrow shape buttons. By double-clicking or dragging the mouse to the other
model element the creation of the connectors is initiated. If there are several alternative connection types a menu
is displayed. The user has, again by a menu, the possibility to trigger the creation of a new model element of a
certain type. In the state visualisation variant of VIDE there is only one connection type needed, depicting the
control flow from one action to the other. When a user thus selects, for instance, an outgoing connection handle,
he or she can either drag the connection end to an existing model element which can be a subsequent action
according to the VIDE language and drop it there, or drag the connection end and drop it on the diagram pane or
double click on the connection handle; in both of these cases a menu pops up, which asks for the model element
to be created and to be connected with the new model element. The following pictures illustrate this behaviour.

9.2.2.2.2 Direct Editing and Autocompletion

When referencing existing model elements and when this reference works by indicating its name by typing, the
direct editing and autocompletion features of Eclipse may be used [139].

When clicking on a label of some model element, the label text can be edited directly. In addition to that, a menu
is displayed which allows for the selection of existing model elements. After confirming the input an existing
model element fitting to the chosen text is put in place.

In the VIDE context we may illustrate this behaviour for an AddStructuralFeatureAction. When a user clicks on
the structural feature label of such an action it may directly edit the name of the structural feature the action
refers to. (see Figure 74).

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

Figure 74: AddStructuralFeatureAction

Moreover all structural features of the object indicated in the AddStructuralFeatureAction are displayed on
request.(see Figure 75):

Figure 75: AddStructuralFeatureAction showing object structural features

After confirming (by clicking on an other model element or by pressing the return button) the structural model is
looked up for a fitting model element. In case that such a model element is found
accordingly. If it could not be found an error message is displayed and the model is not changed.

The input of text according to the language defined for the state visualisation variant requires expressions
conforming to OCL syntax, and in general even
input follows the VIDE textual syntax, syntax highlighting is available and is desired to be displayed when
entering the VIDE statements or expressions. Furthermore strong typin
available while entering the text. It is available as described before by reusing functionality of the textual editor.

9.2.2.3 Palette and its Entries

A GEF/GMF based editor has a palette bar popping up when the user tou
pane as shown in Figure 76. Here the modeller can

• select a model element type; by subsequently clicking or marking an area on the diagram pane a new
model element of the selected type is creat
case of marking an area) in the specified size.

• choose common model-independent tools. By default there are
o The selection tool, which allows for selecting a model element or, by marking a whole

a number of model elements
o A note tool, which allows for creating a text box without formal modelling content and for

attaching informal notes to model elements

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

: AddStructuralFeatureAction showing name editor

Moreover all structural features of the object indicated in the AddStructuralFeatureAction are displayed on

dStructuralFeatureAction showing object structural features

After confirming (by clicking on an other model element or by pressing the return button) the structural model is
looked up for a fitting model element. In case that such a model element is found
accordingly. If it could not be found an error message is displayed and the model is not changed.

The input of text according to the language defined for the state visualisation variant requires expressions
d in general even any VIDE statement can be put into an action box.

input follows the VIDE textual syntax, syntax highlighting is available and is desired to be displayed when
entering the VIDE statements or expressions. Furthermore strong typing facilitates allow that autocompletion is
available while entering the text. It is available as described before by reusing functionality of the textual editor.

A GEF/GMF based editor has a palette bar popping up when the user touches the right border of the diagram
. Here the modeller can

select a model element type; by subsequently clicking or marking an area on the diagram pane a new
model element of the selected type is created and graphically displayed at the specified position and (in
case of marking an area) in the specified size.

independent tools. By default there are
The selection tool, which allows for selecting a model element or, by marking a whole
a number of model elements
A note tool, which allows for creating a text box without formal modelling content and for
attaching informal notes to model elements

 Work Package 5

- 150 -

Moreover all structural features of the object indicated in the AddStructuralFeatureAction are displayed on

dStructuralFeatureAction showing object structural features

After confirming (by clicking on an other model element or by pressing the return button) the structural model is
looked up for a fitting model element. In case that such a model element is found the model is changed
accordingly. If it could not be found an error message is displayed and the model is not changed.

The input of text according to the language defined for the state visualisation variant requires expressions
VIDE statement can be put into an action box. Since such

input follows the VIDE textual syntax, syntax highlighting is available and is desired to be displayed when
g facilitates allow that autocompletion is

available while entering the text. It is available as described before by reusing functionality of the textual editor.

ches the right border of the diagram

select a model element type; by subsequently clicking or marking an area on the diagram pane a new
ed and graphically displayed at the specified position and (in

The selection tool, which allows for selecting a model element or, by marking a whole region,

A note tool, which allows for creating a text box without formal modelling content and for

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

Figure 76

In the VIDE editor, the model elements which can be selected are patterns built around the basic UML actions.
The technical names are however hidden from the user in the following way:

• Structural Features
o AddStructuralFeatureValueAction
o ClearStructuralFeatureValueAction
o RemoveStructuralFeatureValueAction

• Control
o ConditionalNode + Clause(s)
o ExpansionRegion
o LoopNode � Loop
o CallOperationAction
o ReplyAction � Reply

• Exceptions
o ExceptionHandler
o RaiseExceptionAction

• Objects
o CreateObjectAction
o DestroyObjectAction

• Links
o CreateLinkAction
o DestroyLinkAction
o ClearAssociationAction

• Variables
o AddVariableValueAction
o ClearVariableValueAction
o RemoveVariableValueAction

• Groups
o SequenceNode �

• Connections
o ControlFlow � Fl

The model elements created when selecting the palette entries do not only comprise the model element listed
above for the respective entry, but also “surrounding” elements. For instance, when selecting
AddStructuralFeatureValueAction not only an instan

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

76: A GEF/GMF based editor showing palette

the VIDE editor, the model elements which can be selected are patterns built around the basic UML actions.
The technical names are however hidden from the user in the following way:

AddStructuralFeatureValueAction � Assign Feature
rStructuralFeatureValueAction � Remove All Feature Values

RemoveStructuralFeatureValueAction � Remove Feature Value

ConditionalNode + Clause(s) � If-then-else
ExpansionRegion � For Each Element

Loop
CallOperationAction � Call Operation

Reply

ExceptionHandler � Handle Exception
RaiseExceptionAction � Raise Exception

CreateObjectAction � Create Object
DestroyObjectAction � Destroy Object

CreateLinkAction � Create Link
DestroyLinkAction � Destroy Link
ClearAssociationAction � Destroy All Links

AddVariableValueAction � Assign Variable
ClearVariableValueAction � Remove All Variable Values
RemoveVariableValueAction � Remove Variable Value

 Block

Flow

The model elements created when selecting the palette entries do not only comprise the model element listed
above for the respective entry, but also “surrounding” elements. For instance, when selecting
AddStructuralFeatureValueAction not only an instance of that meta-class is created but also two input pins, one

 Work Package 5

- 151 -

the VIDE editor, the model elements which can be selected are patterns built around the basic UML actions.

The model elements created when selecting the palette entries do not only comprise the model element listed
above for the respective entry, but also “surrounding” elements. For instance, when selecting

class is created but also two input pins, one

Select Tool

Zoom Tool

List of model
element types

Assign
Delete
For akk
…

Note Tool

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

for the object and one for the value to be processed. As another example, for a conditional node, clauses are
created as well. By default 2 clauses are created, while further can be added using
(see above).Entries in the palette may be grouped. For VIDE, the groups as indicated in the list above are in
place.

9.2.2.4 Property View
GMF offers a default implementation for the editing of appearance related attributes applied to
using the Properties View as shown in

VIDE should also offer a custom property view for each model element, in which all attributes defined by the
underlying UML metaclass can be edited. This property view will certainly not be used by designers targeting at
a coarse model because it is quite technical, but may be filled in by implementers targeting at an executable
model without modifying the graphic
view as realised in Topcased.

Figure 78: Example of a Property view for a UML action (Screenshot taken from Topcased)

9.2.2.5 Problems View
GMF provides a default view for displaying errors or warnings of the models. VIDE will use this and advanced
ways to interact about problems with the user as described in Deliverable D4.2.

9.2.2.6 Other Concepts
Plante [139] lists standard concepts supported by each GMF based editor. The VIDE state
thus has a number of features which are available as toolbox entries, as menu entries, or context menu entries:

a) Means for adding graphical hints with vague semantics or
(a) Use of custom font by a font menu for every diagram element
(b) Custom fill colours and line colour for the selected diagram element's interior and lines

respectively
(c) Custom line style for modifying the routing style of the s

(e.g. rectilinear, oblique, tree style routing)
These are properties which can configured by the appearance related property view as described above.

2) Means for selecting and arranging diagram elements:
• Select: selects all diagram elements, all shapes, or all connectors.

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

for the object and one for the value to be processed. As another example, for a conditional node, clauses are
created as well. By default 2 clauses are created, while further can be added using context sensitive pop
(see above).Entries in the palette may be grouped. For VIDE, the groups as indicated in the list above are in

GMF offers a default implementation for the editing of appearance related attributes applied to
using the Properties View as shown in Figure 77.

Figure 77: Property View

VIDE should also offer a custom property view for each model element, in which all attributes defined by the
nderlying UML metaclass can be edited. This property view will certainly not be used by designers targeting at

a coarse model because it is quite technical, but may be filled in by implementers targeting at an executable
model without modifying the graphical elements. Figure 78 illustrates the appearance of such a custom property

: Example of a Property view for a UML action (Screenshot taken from Topcased)

GMF provides a default view for displaying errors or warnings of the models. VIDE will use this and advanced
ways to interact about problems with the user as described in Deliverable D4.2.

andard concepts supported by each GMF based editor. The VIDE state
thus has a number of features which are available as toolbox entries, as menu entries, or context menu entries:

Means for adding graphical hints with vague semantics or allow for manual beautifications:
Use of custom font by a font menu for every diagram element
Custom fill colours and line colour for the selected diagram element's interior and lines

Custom line style for modifying the routing style of the selected diagram connector elements
(e.g. rectilinear, oblique, tree style routing)

These are properties which can configured by the appearance related property view as described above.
Means for selecting and arranging diagram elements:

l diagram elements, all shapes, or all connectors.

 Work Package 5

- 152 -

for the object and one for the value to be processed. As another example, for a conditional node, clauses are
context sensitive pop-up bars

(see above).Entries in the palette may be grouped. For VIDE, the groups as indicated in the list above are in

GMF offers a default implementation for the editing of appearance related attributes applied to diagram elements

VIDE should also offer a custom property view for each model element, in which all attributes defined by the
nderlying UML metaclass can be edited. This property view will certainly not be used by designers targeting at

a coarse model because it is quite technical, but may be filled in by implementers targeting at an executable
illustrates the appearance of such a custom property

: Example of a Property view for a UML action (Screenshot taken from Topcased)

GMF provides a default view for displaying errors or warnings of the models. VIDE will use this and advanced

andard concepts supported by each GMF based editor. The VIDE state-visualisation editor
thus has a number of features which are available as toolbox entries, as menu entries, or context menu entries:

allow for manual beautifications:

Custom fill colours and line colour for the selected diagram element's interior and lines

elected diagram connector elements

These are properties which can configured by the appearance related property view as described above.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 153 -

• Align: aligns all selected diagram elements to: the left, the right, the top, the bottom, or the centre
of the selection.

• Auto Size: resets the size of the selected diagram elements to the default.
• Make Same Size: sets the size of the selected diagram elements to that of the last selected element.
• View: shows or hides various diagram features: ruler, grid, page breaks, and the snap to grid

behaviour.
• Zoom: changes the diagram zoom in, out, 100%, To Fit, To Width, To Height or To Selection.
• Print and Print Preview including Enhanced Print Dialog, Global or per Diagram Page Setup

Options, Page Breaks
• Graphics Export: Exports diagrams in common formats, e.g. SVG, GIF, BMP, and JPEG
• Undo/Redo: The last performed action can be made undone by a keystroke; after undoing a one

keystroke redo of the undone action.
• Clipboard: The system clipboard is supported for importing and exporting model elements by

copy/cut&paste.

All these features make up a modern graphical editor which modellers are accustomed to. Fortunately, due to the
selection of GMF as framework, these features all come for free, and thus do not cause implementation effort,
while satisfying modellers’ needs.

9.2.2.7 Deviations from Standard Eclipse GMF/GEF
The following features of a standard GMF/GEF editor are disabled or modified in VIDE:

• The Order command of GMF/GEF re-orders the selected diagram elements to the front, the back,
forward once, or backward once. Layering of model elements is fixed in the VIDE editor, thus this
feature is disabled.

• The standard Arrange button of GMF/GEF applies a simple layout algorithm to diagram elements.
We realise a much more advanced domain-specific autolayouting functionality, which is described
below.

9.3 Challenges and Approaches
In this section we list challenges of the VIDE approach with respect to the user interface and potential solutions
we have investigated.

9.3.1 Reduction of Graphical Complexity
Modelling graphically potentially may provide a better overview over a piece of the model because of a more
intuitive representation of control structures, such as conditionals or expansions. The advantages of graphical
modelling are however restricted for a number of reasons:

• Large models do not fit on one screen, thus the overview aimed at is lost.
• Complex graphical models, with lots of connections, rather confuse than help understanding.
• Many developers are used to textual (code like) representation of behaviour, rather than graphical.
• There is apparently no good way to depict queries and expressions graphically in general.

It is thus the more important to maintain the advantages of both ways for accessing models, i.e. textual and
graphical, while ruling out the disadvantages. We must aim at a suitable combination between both approaches.
Suitable instruments are discussed in the following sections:

• Collapsing graphical model elements and showing a textual representation instead.
• Hiding some model elements completely.
• Enhanced navigation capabilities.

9.3.1.1 Collapsing and Expanding Nodes
GMF provides the functionality to collapse or expand composite figures within the editor by clicking on an icon
[139].
This is illustrated at the example of the ExpansionRegion model element in Figure 79.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 154 -

Figure 79:Collapsing an Expansion Region

The mouse click triggers the disappearance of contents inside the figure or a compartment of the figure. By
default the figure is not (as stipulated in Figure 79) resized nor is the layout of surrounding figures modified. We
discuss this and other problems in Sect. 9.3.1.1.4. First we show how important collapsing and expanding is in
the context of the graphical VIDE editor.

9.3.1.1.1 Use Cases

There are a number of use cases where the collapsing and expanding functionality is crucial in the context of
VIDE:

1) A modeller is editing or reading a part of a behaviour description and is not interested in
behaviour happening before that part nor in that after that part. In that case only the construct
to be edited is expanded, all other parts are collapsed.

2) A modeller is interested in a coarse overview on the behaviour only. Details are irrelevant in
order to obtain the overview. Then all irrelevant parts can be hidden by collapsing the
containers. The collapsed view of the model element does not necessarily need to (formally)
reflect the whole semantics of the element. Instead of its contents just a comment in natural
language or even nothing except the name/type of the model element may be displayed.

3) VIDE relies on the capability to edit in textual and in graphical mode simultaneously. When
displaying the whole behaviour graphically, but only some parts textually, a hybrid view is
needed, where the textual part can be seen as an activity which is collapsed. Thus, a user might
add behaviour textually and then use the expand functionality to display and check the
graphical representation.

9.3.1.1.2 Collapsing Modes

From the use cases listed above we can infer 3 modes of a collapsed node:
1) Inside the collapsed node nothing is displayed; such behaviour would be useful in 1) and 2).
2) Inside the collapsed node the name (if applicable) or the type of the node is displayed; again such

behaviour would be needed in 1) and 2).

accountX.balance
>= transfer

accountX:

balance -= transfer

accountY:

balance += transfer

Account->select(number = x) as
accountX

Account-> select (number = y)
as accountY

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 155 -

3) A user provided textual comment (in natural language) is displayed inside the collapsed node; such
behaviour is applicable for 2).

Note that for 3), the collapsed node needs to display the textual VIDE statement.

Figure 80 shows the different options for collapsing nodes for the example of Figure 79.

Figure 80: Expanding at the example of Expansion region

The different styles of collapsing are offered to the user by providing different buttons for collapsing, these are
either offered as buttons or in the context menu displayed on mouse right-click.

9.3.1.1.3 Automation of Collapse/Expand

According to 1), a modeller might not be interested in behaviour displayed in a model element of the same
hierarchical level as the one edited which appears before or after that focussed element. The editor will
automatically collapse these surrounding model elements.
Such automatic features might be annoying, since in certain cases the appearance of surrounding elements might
– contradicting Use Case 1 – be desired. It is thus necessary that this feature is optional. Its usefulness can only
be judged after extensive user oriented evaluation.

9.3.1.1.4 Problems

There are a number of problems with collapse/expand functionality:
1) When the interior of a compound node is collapsed the size of the node must be minimised. Otherwise a

lot of distracting white space would be displayed, and this would destroy the effect that collapsing leads
to a better overall picture. Minimising the size however affects the objects located around the collapsed
node, they must be newly arranged.

2) When expanding a collapsed node the node must necessarily be enlarged. Objects in the neighbourhood
of the expanded node are potentially in the way und must be moved.

3) Orthogonal to these two items the coarse layout of all components should be kept unmodified when
collapsing or expanding, in order not to confuse the modeller who is performing the operations.

All these problems require use of autolayout, which is specific to the modelling language and incremental. This
issue is discussed in Sect. 9.3.4.

 +

For Each

Shift transfer
balance if
applicable

if (balance >= transfer) {
 balance -= transfer
 Account-> select (number = y) {
 with balance += transfer
 }
}

Account->select(number=x) as
accountX

Collapsed expansion

region

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 156 -

9.3.1.2 Hiding/Showing Nodes
We have already discussed that modellers might be interested only in the container node they are currently be
modifying or looking at. Instead of hiding the interior of the nodes which are not in focus, we may hide the
nodes completely. Note, that in this case, information to understand the entire model disappears completely; no
“substitute” representing the hidden elements textually is displayed. We thus offer modellers, the options “Hide
Actions After” and “Hide Actions Before”, on each model element. These hide elements which appear in the
control flow before (or after, respectively) the selected model element, unless they contain the selected model
element. Moreover we might allow for hiding nodes of a certain type or semantic annotation. For instance – in
order to get a better general picture on the interaction with the behaviour’s outside – we could allow users to hide
all nodes but operation calls.

9.3.1.3 Enhanced Navigation Capabilities
A graphical environment allows for easier navigation by “drilling-down” into a model element or navigating to
its definition. The context of the originating diagram is lost and thus the elements not focussed on do not
confuse. The graphical editor should support enhanced navigation capabilities as follows:

• By double-clicking a compound node, the same functionality as for “Hide Actions After” and “Hide
Actions Before” should be achieved. However, in addition, the surrounding box of the compound node
disappears.

• By double-clicking an action representing an operation call, the context is changed completely and the
diagram describing the behaviour of the clicked method call is displayed.

9.3.2 Simultaneous Textual and Graphical Editing
VIDE is supposed to enable simultaneous textual and graphical editing. Thus a user may read and edit the same
behaviour textually as well as graphically.From a user interface point of view, we provide a way to switch
between different editors. Performing this switch can be realised in several ways:

• Within an opened editor right-click the background and obtain a context menu where “Select in …
Editor” can be selected

• From the explorer tree right-click on the entry for the respective method and choose “Select in …
Editor”.

Here … can stand for “textual” or the name of one of the graphical editors (i.e. state-visualisation, linear”).
Moreover there is a hybrid way to editing VIDE behaviour textually within the graphical state-visualisation
editor as already mentioned above. For this, a generic action depicted as a rounded rectangle is provided which
contains the text.

9.3.2.1 Text Input Support
When editing text within the generic action, the same functionality should be available for the user as in textual
editors:

• Syntax highlighting
• Direct input

• Autocompletion

9.3.2.2 Need for Autolayout
When a user has edited behaviour textually and switches to the state-visualisation editor the layout of the edited
parts is not determined. Thus no coordinates for these parts are fixed. If the edited part is large it cannot be
expected from the user that he moves the model elements manually until an appropriate layout results. This holds
especially if the one who has edited textually and the one who displays have different roles, such as a modeller
(who creates the model) and a business expert (who reviews it).

9.3.3 Interconnection with other Editors
Modellers usually work with a set of tools, however often integrated in a common workbench, such as Eclipse.
For instance a modeller typically creates a structure diagram with tools like Rational Architect or Topcased and
then defines behaviour with VIDE. We assume it as to be typical that the iteration cycles between
creating/modifying structure and creating/modifying behaviour is rather small, i.e. modellers change structure
according to the experience they have made while modelling behaviour and vice versa.With this assumption in
background we infer that a tight tool integration between VIDE and the other tools in the workbench is needed.
This is manifested in the functionality that

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 157 -

• users may navigate between editors/viewers depicting a model element used in VIDE and the VIDE
editor, and

• we allow for dragging elements from the structure diagram of any EMF based editor and dropping it on
the diagram pane of the VIDE state-visualisation editor

This functionality is described in the remainder of this section.

9.3.3.1 Navigation
We allow for navigating from the VIDE state-visualisation editor to other EMF based editors and back.
We illustrate the behaviour at the case of operations and operation calls, since this is the most obvious one. There
may however also be other possibilities, such as attribute access in form of AddStructuralFeatureValueAction for
instance.

When being in a structure diagram editor, such as Topcased, it is desirable for a modeller to right click an
operation of a class and navigate from an entry therein into a VIDE model of its behaviour. If there is no
behaviour specified an empty VIDE model should be displayed. The modeller may then edit the model and jump
back to the structure diagram. If the tool, i.e. Topcased in our case, offers an appropriate Eclipse extension point,
it is sufficient to provide an entry in the context menu and an appropriate point of reference within the VIDE
editor plugin. For coupling the plugins loosely we should provide a separate little “VIDE for Topcased” plugin
depending on Topcased and VIDE.

The other way round, VIDE is supposed to provide at each operation call a context menu entry for jumping to
the “definition” of the referenced operation in the Topcased tool.

9.3.3.2 Drag&Drop from Other Editors
Similarly as navigation, we provide drag&drop functionality from other editors into VIDE. In order to model a
method call within the VIDE state-visualisation editor it is possible to drag a method call entry from the structure
diagram editor such as Topcased and drop it on the VIDE diagram pane. The VIDE shape for depicting operation
calls is inserted at the specified position. The modeller just needs to insert the arguments of the call manually.

9.3.4 Autolayout

9.3.4.1 The need for Autolayouting
We have already seen that autolayouting is a crucial part of an easy to use graphical model editor supporting for
textual and graphical input. The following features require autolayouting:

1. Expanding and collapsing
2. Hiding and Showing nodes
3. Simultaneous textual and graphical editing

We can conclude that without a powerful autolayouting component it is impossible to realise the VIDE code
editor.

9.3.4.2 Autolayouting Challenges
Autolayouting is a complex task since it

1. deals with many NP hard problems which often require heuristic non-optimal solutions
2. aims at a “beautiful” appearance; since beauty depends – in many cases – on the observer, it is

often impossible to define clear metrics
3. aims at a layout which is optimal for a certain domain or a certain user group; there is thus no

“general” solution to autolayout

9.3.4.2.1 Aesthetical Layout

As already mentioned, it is hard to define what is a „nice“ layout. There are several factors defined in literature
[141, 142] which we mention briefly:

• Minimised edge crossings [142] produce a clearer picture of dependencies;
• Minimised bendpoints of edges;
• Orthogonal edge routing, and even edge routing along a grid;
• Edges should not be routed over nodes;
• Equal distribution of nodes in diagram space;

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 158 -

• There should be enough space between nodes in order to separate them visually; no overlaps between
normal nodes are allowed; nodes must only overlap with group nodes they are contained in;

• Nodes connected by an edge should be as closely together as possible, in order to allow for proper edge
routing and in to symbolise that the nodes belong together;

• Usage of diagram space should be minimal in order to provide a comprehensive overview on the whole
model. This partially contradicts the other requirements, such as minimal edge crossings. By optimising
with both goals, complexity of algorithms increases.

9.3.4.2.2 Domain Specifics

Being specific to a domain is crucial to meaningful autolayout. Models should be layout differently depending
on the model type. For instance, VIDE models should likely be layout differently than pure activity diagrams.
Thus, it is important that layouts can be adapted to the user’s domain by configuring the layout appropriately.

9.3.4.2.3 Types of Layout Algorithms

There are a huge number of different layout algorithms available in literature, as well as being implemented in
graph libraries (see below), such as layouts for trees, circular layouts, organic layouts, orthogonal layouts, etc.
For VIDE we consider only hierarchical layouts and incremental approaches as relevant.

Hierarchical Layouts focus on highlighting the flow in directed graphs. They are well suited for modelling
processes, workflows, and can thus be used in VIDE to layout the flow in a VIDE state-visualisation diagram.
Nodes are placed in hierarchical layers, i.e. consecutive nodes are always placed one after the other in flow
direction unless the graph contains cycles. In that case the cycles are resolved as good as possible, leading to
backward arrows. By ordering nodes within each layer other optimisations such as minimising of edge crossings
is small.

Incremental Layouts. When developing models as in VIDE we often have to deal with extensions or small
changes which should be displayed again. This leads to a sequence of graphs of a model. By laying out each and
every model change from scratch it may be the case that a diagram is layout completely differently than before
the (even tiny) change. In order to keep the „mental map“ of a user (i.e. knowing where the nodes can be found),
successive layouts of the same model should be similar to each other. In particular nodes and edges should be
moved not too much and the general appearance of the graph should be kept as consistent as possible. This
decreases the modeller’s effort to understand the model after a change [143]. Layout algorithms that calculate
similar layouts are called incremental or interactive. Figure 81 shows an incremental layout process where red
nodes are newly added nodes.

Figure 81: Example of incremental layout

For VIDE incremental layout is crucial: Assume we have created a VIDE model in the state-visualisation editor,
switch to the textual editor and add a view model elements there. Then we move back to the state-visualisation
editor, the new model elements should be layout incrementally, such that the modeller sees the old elements
located approximately at the same place.

9.3.4.2.4 Libraries

We have investigated several libraries supporting autolayout:
• prefuse [144] is an extensible Java framework for the development of applications which visualise

information in general. It offers a series of pre-defined layouting algorithms, among them circular
layouters, tree layouters, etc. It does not support group nodes,which are required by the VIDE editor.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 159 -

• SugiBib [145] is a graph visualisation framework developed at Universität Würzburg. The main
algorithm corresponds to the Sugiyama-Algorithm [146]. Again, no group nodes are supported.

• GraphViz [147, 148] is an Open Source software package for drawing graphs. The built-in graph
description language DOT only supports one hierarchical layout algorithm.

• Tom Sawyer [136] delivers components for analysing, layout and visualising of graph structures. The
autolayout component contains algorithms based on algorithmic, as well as on interactive/incremental
approaches.

• ILOG JViews [149] is a Java suite comprising a diagrammer tool for creating and modifying graphs.
Several layout algorithms are supported, among them a layouter for hierarchies and trees. Group nodes
and incremental approaches are supported for layouting.

• yFiles [150] is a Java library providing components and algorithms for analysing, visualising and laying
out graphs. It supports a huge number of different algorithms which can be parameterised in many
ways. It contains both incremental and hierarchical layout algorithms. Group nodes are supported.

Because of the unique amount of functionality we have chosen yFiles as the layouting functionality of choice to
be used in the VIDE state-visualisation editor.

9.3.4.3 Autolayouting for VIDE
The basic layout rules of VIDE are as follows:

• The main layout flow is from top to bottom.
• Nodes contained in a sequence node or in the top-level activity are put one below the other in the order

specified by the sequence or the control flow.
• Conditional nodes are layouted as follows:

o If there is one branch: The subsequent sequence node is put below the decision node. The
condition is put to the right of the decision node.

o If there are two or more branches: One branch is put below the decision node, the condition is
put to the right of the edge leading to the sequence node for the first branch; the other branches
are put on the right next to the first branch, their condition is on the right of the edge leading to
the sequence node of the branch.

o Branches are aligned on top. The nodes of parallel branches are horizontally aligned in layers.
• Operation calls to operations offered by Web services should be in a separate column on the right of the

main flow, in order to graphically distinguish these calls from normal ones. Edges to these model
elements should be routed orthogonally.

• Newly inserted nodes should be layouted incrementally (as described above).

Moreover it should be possible to configure the layouting procedure declaratively by user defined rules. This
would allow modellers to adapt the basic rules specially, such as to let clauses of a conditional flow from left to
right if the number of nodes contained in the sequence node is less than 2.

Especially for adaptations of VIDE to domain-specific languages such custom layout rules have a great potential
for many visualisation applications within SAP.

9.4 Conclusions
The state-visualisation editor adopts the user interface concepts developed for Eclipse [140] and GEF/GMF
[139]. Since it is designed for software designers (see D1.1) familiar with conceptual modelling and UML class
diagrams, this fosters their acceptance of the VIDE editor due to a similar way of interaction.
Challenges specific to VIDE that go beyond the standard concepts are

• reducing graphical complexity, which is addressed by collapsing and expanding, showing and hiding,
and navigation functionality

• textual and graphical editing in parallel, which is addressed by using advanced autolayout features
• interconnection with existing editors of the platform, where we rely on functionality of the Eclipse

platform and the common EMF core
• autolayout which is needed in several places.

We have stated requirements for the further development of the tool in WP9 and made investigations especially
concerning the autolayout functionality which is crucial for the success of the VIDE approach.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 160 -

10. Visual Expression Builder
Visual Expression Builder (VEB) is a visual mechanism offering users a way to specify their VIDE expressions
using graphical metaphors. VEB is implemented as a graphical editor plug-in for the Eclipse environment and is
used with the VIDE textual and graphical editors. User is able to specify VIDE expressions declaratively, in
UML instance diagram fashion inspired by the Query By Example approach, called here Object Query By
Example (OQBE).

10.1 Rationale
The VEB can be considered an addition to the core VIDE PIM language and editors foreseen during the early
stages of the project. The base assumption of the language design was assuring the compliance with a common
model repository and interchangeability of visual and textual syntaxes. The reasons of that approach can be
summarized as follows:

• Using a common, standard compliant model repository allows for model interchange, eases the
integration work of the toolset and possibility of supporting part of functionality by existing UML tools.
It also eases the application of existing technologies for model transformation assumed by MDA.

• Availability of textual syntax is essential as this constitutes the most widespread and proven approach
of specifying details of application behaviour.

• Development of visual syntax is important for achieving a better expressiveness of some constructs and
for making the language more familiar to the users knowing the visual modelling tools based on UML.

The above assumptions make it easier to maintain the integrity of the language design and to allow flexible
combinations of visual and textual representation of code – to suit the needs of various stakeholders dealing with
software development. However, the very nature of visual syntax raises the expectations of achieving a more
declarative and high level way of specifying the model.
Another observation was, in the VIDE PIM language, the OCL expressions constitute the most complex part,
and thus can be considered a primary subject for improving the expressiveness in the visual syntax.
A good illustration of work towards that direction is the concept of condensed representation of expression
described in Deliverable D2.1, section 5.3.3.5.6 “Condensed Representation by State Description Merging”.
Such condensed syntax provides a more conceptual and less redundant view of the expression, however, at the
same time, its mapping onto VIDE abstract syntax is not straightforward and can be completed in various ways.
Thus, as stated in D2.1, such representation could be made available only for read-only purpose.

10.2 Interaction with other tools of VIDE
VEB is integrated into a VIDE toolset through a PIM repository and through embedding its functionality into
textual and visual VIDE PIM editors. As stated above, the notions of OQBE used by VIDE require the
introduction of several metamodel constructs apart from UML/OCL metamodel that is the base of VIDE
language.
The constructs introduced for VEB allow to represent a structure similar to UML instance diagram, and include
the notions of Example (object example, link example), Condition, Sort criteria and Output. These constructs are
connected with UML metamodel (mainly, with the constructs of UML Structures unit), to identify data sources
(e.g. method parameters, attributes, variables) the expression will refer to, and their types.
The way the VEB functionality will be introduced into VIDE editors is described in the subsequent section in the
context of textual editor. However, the integration with visual editor can be performed in an analogous way. The
main ideas of such integration are summarized below:

• The option allowing specification of expression using VEB is available during the edition of a method
body.

• Selecting that option provides the VEB with the context of the expression, that is, with the information
on the attributes, operations and associations available from a current (self) object and the parameters
and local variables of a given method.

• After the work with VEB is completed, a respective location inside method’s body includes the VIDE
code (visual or textual) produced from VEB’s OQBE expression, as well as a link that makes it possible
to enter VEB and update the expression through it.

• Editing the produced expression outside VEB (that is, using directly the textual OCL or its VIDE visual
counterpart) is allowed, but invalidates the OQBE model elements of it, so that the VEB diagram is
removed then.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 161 -

Reading assistance:
- Every time number in the brackets is used (eg. (2)) it means reference to the diagram from section

(@)1.1

10.3 Requirements
10.3.1 Relevant requirements from D1.1
The following table lists only the requirements relevant for Visual Expression Builder module. Omitting a D1.1
requirement in this table means it was found not relevant for the VEB module scope.

Requirement
Number

Name Priority Comment

REQ –
NonFunc 4

Clear and unambiguous
notation – VIDE should
have clear,
comprehensible and
unambiguous semantic
description suited to the
users of the VIDE tools

Should VEB attempts to realize this requirement for PIM
level notation by providing a visual metaphor that is
fully consistent with widely known UML instance
diagram notation. This improves the clarity of the
constructs used to specify expression. A benefit to
this extent is especially big in case VEB is used
with textual VIDE editor.

REQ –
NonFunc 5

Model view saliency –
VIDE models views
must be user-oriented.

Should VEB provides an increased level of abstraction and
allows the specification of query expressions by the
users without the need of dealing with OCL.

REQ –
NonFunc 6

Appropriate
textual/graphical
fidelity – VIDE must
provide appropriate
textual and graphical
modalities for its users.

Should VEB broadens the selection of means for specifying
behaviour at PIM level. User working with textual
or visual VIDE editor can switch to VEB to
construct the expression in a way that is expected to
be more intuitive for users with UML modelling
background.

REQ –
NonFunc 8

Runnable and testable
VIDE prototypes

Should VEB generates a pure VIDE model, hence the
model execution features are available for VEB-
specified code.

REQ – User 1 Flexibility and
interoperability of
VIDE language and
tools - The VIDE
language and tools
SHOULD have
flexibility and be
interoperable with some
existing tools.

Should VEB abstract syntax provides several proprietary
elements, however, they are designed to integrate
with UML 2.1 standard metamodel and are
transformed to OCL 2.0 standard metamodel
instances.

REQ – User 2 Reuse of UML
Standard – end users
are very sensitive to
using standards. A key
aspect is that the VIDE
language reuses as
much as possible the
UML standard.

Should For VEB abstract syntax – see REQ – User 1. The
concrete syntax used by VEB closely follows the
syntax of UML instance diagrams.

REQ –
Semantics 1

Semantics of VIDE Inte
rnal Communication – a
precise description of
the semantics is needed
sufficient for internal
communication
purposes within

Should VEB constructs will be translated to the VIDE
code. Hence, this requirement generates a need for
precise definition of the transformation. This has
been already provided in this document, however
will require updates and refinement as the tool
features evolve in the course of the final prototype
development.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 162 -

implementation
stakeholders in the
development of the
VIDE tool.

REQ – Lang
1

Usage of UML2
Behaviour (“Action
Semantics”) – VIDE
should use the
behavioural model
elements of UML2
(earlier known as
“UML Action
Semantics”), unless
proven insufficient.

Should VEB transforms its constructs to VIDE, which (as
specified in D2.1) fulfils this requirement.

REQ – Lang
3

 User Language &
Concepts – the VIDE
language and VIDE
tools presented to a
certain user groups
SHOULD employ the
language that is
understood by the user
group.

Should VEB provides additional support for fulfilling this
requirements by providing an additional utility
which seems especially useful for users familiar
with UML but having not much experience with
OCL.

REQ – Lang
4

Compliance with
Standards – VIDE
should not compete
with existing adopted
modelling standards,
especially those
adopted by the OMG,
such as UML or
BPMN.

Should As stated above – the constructs used by VEB are
inspired by and integrated with UML 2.1.

REQ – Lang
6

Modularisation and
extensibility – it should
be possible to replace
parts of the language
with different artefacts
and add additional
language constructs for
special business
specific patterns. This
requires the language to
be structured in
modules.

Should The VEB is potentially capable of integrating with
any UML 2.1 compliant editor for the purpose of
building OCL expressions inside UML models.

REQ – Tool 1 Usage of industrially
adopted tools – VIDE
must use industrially
adopted meta-
modelling standards
where applicable.

Must As stated above, VEB maintains a compliance with
UML 2.1 metamodel.

REQ – Tool 2 Meta-modelling
Framework – VIDE
must use EMF as its
modelling framework.

Must VEB is based on the EMF model repository and
also uses related frameworks for the editor
implementation.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 163 -

REQ – Tool 3 Meta-modelling
Concepts – VIDE meta-
models should be
constructed to be
compatible with MOF
concepts.

Should Abstract syntax elements specific to VEB are
expressed in terms of those meta-modelling
concepts.

REQ – Tool 7 Meta-modelling
Framework – VIDE
SHOULD use GMF as
it’s graphical modelling
framework

Should VEB is being implemented using GMF.

REQ – Tool 8 Use of OCL – VIDE
should re-use existing
standards as UML
(REQ – User 1), and in
particular OC;. the goal
is to achieve a seamless
integration with the
concrete syntax of the
action language to be
developed.

Should VEB produces OCL code.

REQ – Tool 9 CIM modelling
standards.

May Outside D2.1 scope. To be addressed in D7.1.

REQ – Tool
10

PIM, PSM modelling
standards – VIDE
SHOULD provide
support for PIM
modelling with UML
and action semantics;
the meta-modelling
standard for VIDE
should be Ecore.
VIDE SHOULD
support well known
PSM modelling
standards (e.g. XMI for
model
and meta-model
interchange, JMI for
Java based PSM).

Should As explained above, this requirement is fulfilled by
the VEB itself and by the VIDE language that is
generated by VEB module.

REQ – Tool
11

Framework for CIM,
PIM, PSM modelling –
VIDE SHOULD adopt
the ATL framework as
its transformation
framework, and
should use XPAND for
model to text
transformations.
VIDE SHOULD adopt
EMF as its framework
for PIM modelling
VIDE SHOULD adopt
EMF as the meta-
modelling framework.

Should VEB fulfils relevant part of this requirements as it
is based on EMF.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 164 -

REQ – Tool
12

VIDE extensibility Should Outside D2.1 scope. To be addressed by D9.3.

REQ – Tool
13

 Integration and
metadata interchange –
VIDE should provide
model and meta-data
interchange capability
by adopting the XMI
standard.

Should The choices with respect to mapping VIDE onto
metamodel meet that requirement.

REQ – Tool
14

Model driven approach
The VIDE tool strictly
follows a model driven
approach as stipulated
in figure 9 page 120 of
the D.1.1 deliverable

Must VEB fulfils this requirement. The tool works inside
the PIM layer and produces the code that is
standard compliant.

Table 24: Requirements for Visual expression Builder

10.3.2 Refined requirements
The requirement refinement relevant for the VEB can be described in the form of a single requirement, already
outlined in the introduction of this chapter: “Providing Analysts/Designer with additional, intuitive means
supporting the construction of OCL queries”. That requirement can be detailed into following remarks:

• As concluded in the D2.1 requirement analysis, the users of profile Analyst/Designer are expected to
have a good knowledge of UML diagrams, but are not necessarily focused with programming
languages.

• Although OCL is an OMG standard and seems to be an optimum choice for a powerful
expression/query language for UML behaviour, the knowledge of this language is not very widespread.

• Moreover, the OCL expression are potentially the most complex part of VIDE language.
• Visualisation offers higher expressiveness compared to textual syntax. Particularly, common UML

diagrams could be adopted to represent expressions in a more intuitive and a bit more abstract way
compared to textual OCL code.

• Above considerations suggest the development of additional mean of specifying VIDE expressions that
is based on UML instance diagrams and extends in a uniform way the constructs already included in
VIDE visual notation.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

10.4 VEB environment overview

10.4.1 Palette
This box contains graphical elements representing OQBE building blo
dropped on (2) OQBE diagram area. Following elements are available in this stencil:

- Example symbol
- Link used to connect two examples
- Predicate
- Comparator
- OutputFlag marker
- SortedBy marker

Additionally user can switch to zooming tool or add a UML note using this toolbox.

Please refer to section (@)2 for complete description of the OQBE syntax.

10.4.2 OQBE diagram
Elements dragged from (1) Palette
on this area is stored and restored every time user opens saved VEB file. Behaviour of this editor area is similar
to UML editors found in mainstream modelling tools.

10.4.3 Output tab
This window is used to communicate all events and errors encountered during edit

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

VEB environment overview

Figure 82 Overview of VEB elements

This box contains graphical elements representing OQBE building blocks. Each element can be dragged and
area. Following elements are available in this stencil:

Link used to connect two examples

o zooming tool or add a UML note using this toolbox.

Please refer to section (@)2 for complete description of the OQBE syntax.

 can be freely repositioned on the screen area. Layout of all elements placed
this area is stored and restored every time user opens saved VEB file. Behaviour of this editor area is similar

to UML editors found in mainstream modelling tools.

This window is used to communicate all events and errors encountered during editing of a

 Work Package 5

- 165 -

cks. Each element can be dragged and

can be freely repositioned on the screen area. Layout of all elements placed
this area is stored and restored every time user opens saved VEB file. Behaviour of this editor area is similar

ing of an OQBE diagram.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 166 -

10.4.4 Properties tab
Using this tab, users can specify properties of elements that are selected on the diagram. After user’s selection of
any graphical element on the (2) OQBE diagram area, properties window shows available parameters of the
selected element and their actual data. By entering new values for these parameters, user can alter the shape of
resulting query.

10.4.5 Toolbar
Standard Eclipse toolbar extended with:

- Add new visual expression button

While editing expression in VEB there will be additional buttons available:
- Generate OCL expression
- Save diagram
- Delete this expression
- Unlink
- Delete example
- Delete comparator
- Mark as an output
- Sort by

10.4.6 VEB diagrams in current document
User can browse all diagrams that are currently defined for this document and open them by double clicking
VEB diagram’s name on the list.

10.4.7 VEB diagrams in current project
User can browse all diagrams that are currently defined for currently opened project and open them by double
clicking VEB diagram’s name on the list. This list is missing elements displayed in VEB diagrams in current
document view. Diagrams from current project can not be dropped directly on the current document. Instead,
they must be copied first to the current document.

10.5 Functional requirements
Use case name
and ID: 10.5.1 Adding new visual expression

Description: User can add new visual expression anywhere inside method’s implementation.

Precondition: None

Scenario: 1. User right-clicks code line in VIDE text editor and chooses “Insert new
visual expression” option or user selects “Insert new visual expression”
button from Eclipse’s toolbar (5).

2. Editor opens new VEB window and blank document is presented to the user.
Eclipse panels are updated to present stencils with OQBE elements and
properties window.

Extensions: None

Related GUI
elements:

Please see section (@)1.1 for GUI definition related to this use-case.

Use case name
and ID: 10.5.2 Saving VEB diagram

Description: User can save newly created file to store his/her work and give a meaningful name
for that visual expression

Precondition: None

Scenario: 1. User clicks “Save diagram” button placed on standard Eclipse toolbar

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

2. Editor displays automatically generated name and asks user if he/she wants
to give his/her own meaningful name for the diagram

3. User changes the name or selects auto
4. Editor saves diagram file and displays its name on the (6)

current document

Extensions: 4. Editor checks that name already exists or is missing
5. User is redirected to Step 3.

Related GUI
elements:

None

Use case name
and ID: 10.5.3

Description: User can generate
definition of examples’ attributes values and linking examples with each other.

Precondition: At least one example is added to the diagram and the diagram is saved. If not, user is
asked to do so and UC (@) 1.2.2 is triggered.

Scenario: 1. User clicks
toolbar

2. Editor generates textual
focus to the editor window with newly generated code, scrolling cursor to
the position where this code is placed. Generated code is read
editor disables any editing actions on the code.

Extensions: None

Related GUI
elements:

Please see section (@)1.1 for GUI definition related to this use

Use case name
and ID: 10.5.4

Description: User can edit any visual expression that is already defined anywhere insid
document.

Precondition: At least one VEB diagram must be attached to the document

Scenario: 1. User double
document
the diagram

2. Editor opens VEB editor window and restores all saved elements along with
their previous positioning

Extensions: None

Related GUI
elements:

Use case name
and ID:

Description: User can open in read
document from the current project.

Precondition: At least one diagram must be present in the (6)

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

Editor displays automatically generated name and asks user if he/she wants
to give his/her own meaningful name for the diagram

r changes the name or selects auto-generated one
Editor saves diagram file and displays its name on the (6) VEB diagrams in
current document window

Editor checks that name already exists or is missing
User is redirected to Step 3.

10.5.3 Generating code from visual expression

generate OCL representation of the VEB expression after completing
definition of examples’ attributes values and linking examples with each other.

At least one example is added to the diagram and the diagram is saved. If not, user is
asked to do so and UC (@) 1.2.2 is triggered.

User clicks “Generate OCL expression” button placed on standard Eclipse
toolbar
Editor generates textual representation of VEB expression and changes
focus to the editor window with newly generated code, scrolling cursor to
the position where this code is placed. Generated code is read
editor disables any editing actions on the code.

Please see section (@)1.1 for GUI definition related to this use-case.

10.5.4 Editing and viewing existing visual expression

User can edit any visual expression that is already defined anywhere insid

At least one VEB diagram must be attached to the document

User double-clicks diagram’s name on the (6) VEB diagrams in the current
document window or clicks a link placed inside textual code generated from

diagram
Editor opens VEB editor window and restores all saved elements along with
their previous positioning

10.5.5 Viewing external visual expression

User can open in read-only mode any visual expression that is defined in any
document from the current project.

At least one diagram must be present in the (6) VEB diagrams in the current

 Work Package 5

- 167 -

Editor displays automatically generated name and asks user if he/she wants

VEB diagrams in

Generating code from visual expression

representation of the VEB expression after completing
definition of examples’ attributes values and linking examples with each other.

At least one example is added to the diagram and the diagram is saved. If not, user is

button placed on standard Eclipse

representation of VEB expression and changes
focus to the editor window with newly generated code, scrolling cursor to
the position where this code is placed. Generated code is read-only and

Editing and viewing existing visual expression

User can edit any visual expression that is already defined anywhere inside current

VEB diagrams in the current
window or clicks a link placed inside textual code generated from

Editor opens VEB editor window and restores all saved elements along with

Viewing external visual expression

any visual expression that is defined in any

VEB diagrams in the current

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

document window.

Scenario: 1. User double
project

2. Editor opens VEB editor window and restores all saved elements along with
their previous positioning. All editing capabilities are disabled and diagram
is opened only for viewing.

Extensions: None

Related GUI
elements:

None

Use case name
and ID:

Description: User can delete any visual expression defined in the current document

Precondition: At least one VEB diagram must be attached to the document

Scenario: 1. User right clicks diagram’s name o
document
or clicks

2. Editor asks user if he/she wants to keep generated code attached to this
diagram i

3. User selects to delete diagram along with generated code
4. Editor deletes visual diagram and generated code

Extensions: 3. User selects to delete diagram but keep generated code
4. Editor deletes visual diagram leaving gener

hand typed code

Related GUI
elements:

None

Use case name
and ID: 10.5.7

Description: User can:
• use diagrams that are currently detached and not used in the document
• link already use

Precondition: At least one diagram must be present in the (6)
document window.

Scenario: 1. User drag and drops diagram name from (6)
document

2. Editor creates a link to this diagram and commented space for generated
code but it doesn’t generate any code at this moment (because VEB diagram
may be incomplete)

Extensions: None

Related GUI
elements:

After linking diagram t

Use case name
and ID: 10.5.8

Description: User can import a diagram that is already defined in the other file inside currently

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

window.

User double-clicks diagram’s name on the (7) VEB diagram
project window
Editor opens VEB editor window and restores all saved elements along with
their previous positioning. All editing capabilities are disabled and diagram
is opened only for viewing.

10.5.6 Deleting visual expression

User can delete any visual expression defined in the current document

At least one VEB diagram must be attached to the document

User right clicks diagram’s name on the (6) VEB diagrams in the current
document window and selects Delete this expression from the context menu
or clicks Delete this expression button from Eclipse’s toolbar
Editor asks user if he/she wants to keep generated code attached to this
diagram in the textual document or to remove it
User selects to delete diagram along with generated code
Editor deletes visual diagram and generated code

User selects to delete diagram but keep generated code
Editor deletes visual diagram leaving generated textual code as if it were
hand typed code

10.5.7 Inserting visual expression into textual code

use diagrams that are currently detached and not used in the document
link already used diagrams to many places in the same document

At least one diagram must be present in the (6) VEB diagrams in the current
window.

User drag and drops diagram name from (6) VEB diagrams in the current
document window to a new line in textual code
Editor creates a link to this diagram and commented space for generated
code but it doesn’t generate any code at this moment (because VEB diagram
may be incomplete)

After linking diagram the code should look like this:

 Importing visual expression defined in other file

User can import a diagram that is already defined in the other file inside currently

 Work Package 5

- 168 -

VEB diagrams in the current

Editor opens VEB editor window and restores all saved elements along with
their previous positioning. All editing capabilities are disabled and diagram

User can delete any visual expression defined in the current document

VEB diagrams in the current
from the context menu

button from Eclipse’s toolbar
Editor asks user if he/she wants to keep generated code attached to this

ated textual code as if it were

Inserting visual expression into textual code

use diagrams that are currently detached and not used in the document
d diagrams to many places in the same document

VEB diagrams in the current

VEB diagrams in the current

Editor creates a link to this diagram and commented space for generated
code but it doesn’t generate any code at this moment (because VEB diagram

Importing visual expression defined in other file

User can import a diagram that is already defined in the other file inside currently

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 169 -

opened project. Imported projects are copied and no back reference is maintained.

Precondition: At least one diagram must be present in the (7) VEB diagrams in the current project
window.

Scenario: 1. User drag and drops diagram from (7) VEB diagrams in the current project
window to (6) VEB diagrams in the current document window

2. Editor copies the diagram and asks user for a name for it
3. User enters the name
4. Editor saves diagram file and displays its name on the (6) VEB diagrams in

current document window

Extensions: 4. Editor checks that name already exists or is missing
5. User is redirected to Step 3.

Related GUI
elements:

None

Use case name
and ID: 10.5.9 Detaching generated code from its diagram

Description: User can decide to detach code generated by the VEB and edit it manually without
using the builder.

Precondition: At least one diagram must be linked with the textual document and there must be
textual code generated from this diagram.

Scenario: 1. User right clicks on the link inside the code and chooses Detach code from
its diagram option

2. Editor removes link from the textual code along with comments symbolising
range of generated code. Detached code can be edited and it is treated as any
textual code entered manually.

Extensions: None

Related GUI
elements:

None

Use case name
and ID: 10.5.10 Adding new example on a diagram

Description: User can add new example on a diagram to specify filtering conditions.

Precondition: New or existing visual diagram must be opened in editing mode. At least one UML
class diagram must be attached to the project.

Scenario: 1. User drag and drops new example icon on a diagram from (1) Palette
window

2. Editor draws empty example shape on a diagram area and asks user to
choose type of this example

3. User selects class name from the list. This list is populated from UML
diagrams attached to currently opened project

Extensions: None

Related GUI
elements:

None

Use case name
and ID: 10.5.11 Setting values of attributes of an example

Description: User is able to set values of any example already added to a diagram.

Precondition: At least one example is present on a diagram.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 170 -

Scenario: 1. User selects an example from a diagram.
2. Editor focuses on (4) Properties window tab and displays all primitive type

attributes defined in example’s class
3. User enters values for attributes he/she wants to specify and selects desired

operators.
4. Editor saves entered data and present it on the diagram in corresponding

section of example’s shape

Extensions: 3. Editor checks that data entered does not match type of an attribute.
4. User is redirected to Step 3

Related GUI
elements:

None

Use case name
and ID: 10.5.12 Deleting example

Description: User can remove any example already added to the diagram.

Precondition: At least one example must be added to the diagram.

Scenario: 1. User clicks on an example to select it and clicks Delete example button on
the (5) toolbar. Alternatively user can right-click example and select Delete
example option from the context menu.

2. Editor removes example from the diagram and from the model with all links
connected to it.

Extensions: Text here

Related GUI
elements:

Text here

Use case name
and ID: 10.5.13 Linking two examples

Description: User can associate two examples to notify that expression should look for instances
that are connected with each other

Precondition: At least two examples must be present on a diagram

Scenario: 1. User clicks on one example and drags from the new link shortcut icon to
another example

2. Editor draws a solid line with an arrow between these examples to symbolise
that they have been linked

Extensions: None

Related GUI
elements:

None

Use case name
and ID: 10.5.14 Unlinking two examples

Description: User can break association between already connected examples

Precondition: At least one link must be present on a diagram

Scenario: 1. User clicks on a solid line connecting two examples to select it and clicks
Unlink button on the (5) toolbar. Alternatively user can right-click a solid
line and select Unlink option from the context menu.

2. Editor removes solid line connecting two examples.

Extensions: None

Related GUI None

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 171 -

elements:

Use case name
and ID: 10.5.15 Setting query output

Description: User can set an example and/or attribute(s) to be an output of a query generated by
VEB

Precondition: At least one example must be present on a diagram

Scenario: 1. User selects example by clicking it on a diagram.
2. User clicks Mark as output button on the (5) toolbar. Alternatively user can

right-click an example and select Mark as output option from the context
menu.

3. Editor attaches <<output>> stereotype to the example.
4. User optionally gives a name to newly added output.
5. Editor saves added value.

Extensions: 1. User selects attribute by clicking it on a diagram.
2. Proceed with point 2.

Related GUI
elements:

None

Use case name
and ID: 10.5.16 Setting sort attribute and sort direction

Description: User can define what sorting attribute(s) should be used to generate proper order of a
result set.

Precondition: At least one attribute should be available on a diagram

Scenario: 1. User selects attribute on a diagram and clicks Sort by button on the (5)
toolbar.

2. Editor opens (4) properties window.
3. User specifies sorting direction [asc | desc] and sorting order (natural

number). Attributes with lower order value will be used as a primary sorting
condition.

Extensions: None

Related GUI
elements:

None

Use case name
and ID: 10.5.17 Adding comparator of attributes from different examples

Description: User can put constraints on attributes from different examples to specify their mutual
relationship that must be met.

Precondition: At least two attributes are defined in separate examples on a diagram.

Scenario: 1. User clicks attribute and drags dashed line to an attribute placed inside
another example.

2. Editor opens (4) properties window.
3. User specifies comparison operator. Operator is selected from a drop down

list populated with operators defined in OCL for attribute type.

Extensions: None

Related GUI
elements:

None

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 172 -

Use case name
and ID: 10.5.18 Deleting comparator of attributes from different examples

Description: User can remove comparator from a diagram.

Precondition: At least one comparator must be on a diagram.

Scenario: 1. User clicks dashed line symbolizing comparator and clicks Delete
comparator button on (5) toolbar.

2. Editor removes comparator from a diagram.

Extensions: None

Related GUI
elements:

None

10.6 OQBE syntax definition
OQBE’s syntax is defined using UML instance diagram as a foundation for its notation. Complete syntax of
OQBE is presented in following table.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 173 -

OQBE element Description and attributes

Figure 83 Unnamed example

Unnamed example is used to select all instances from data
store that are the same class type as the example. It can be
alternatively named as an extent using UML terms.

Figure 84 Named example

Named example is used to select all instances from the source
(defined by name parameter) that are the same class type as
the example.

Name can be matched to:

- local variable;
- method’s parameter;
- object’s attribute.

Figure 85 Filtering values

Filtering values can be applied both to named and unnamed
examples. They specify what conditions must be satisfied to
return certain instance as a result of a query. If there are more
than one filtering values specified, they will be treated as
separate filters connected with and operator.

Operators and types of filtering values are defined by OCL
type system. Only attributes present on corresponding UML
diagram can be used in the context of an example.

Figure 86 Link

OQBE supports only directed links. Links has name
(corresponding to the name of association between Class1 and
Class2 on UML diagram) and are used to define filtering
conditions on mutually connected instances.

Instances that satisfy link condition will be selected as a result
of a query, i.e. there must by association between instances
that has the same name and direction.

Figure 87 Query output

Each query defined on VEB diagram will return at least one
result defined by <<output>> stereotype. This stereotype can
be attached to example as a whole or to its attribute. If it is
associated with an example, the result will be a collection of
example’s class instances. If it is associated with attribute, the
result will be a collection of attribute’s types.

There can be more than one output defined on a single OQBE
expression. In this case the result will be a Cartesian product
of all outputs.

:Clas s1

name :Class1

:Clas s1

att1 = <value>

:Clas s1

:Cla ss2

na me

:Clas s1

att1 - <<output>>

«output»
:Class1

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 174 -

Figure 88 Attribute comparator

Attribute comparator is used to compare values of two
attributes. Operators are defined by OCL type system. Only
instances satisfying comparator condition will be used to form
the query result.

Figure 89 Sorting

Query output can be sorted using multiple sorting criteria.
Each criteria is denoted by: attribute name, sorting direction
(asc, desc) and sorting priority.

10.7 OQBE mappings to OCL
OQBE can be mapped to a number of query/programming languages. In this project OCL is used and thus
OQBE will be mapped to ad executed as OCL. Each OQBE query can be mapped to OCL in more than one way.
Furthermore, not all OCL constructs can be mapped to OQBE, since it covers only a subset of OCL querying
capabilities. Therefore, the reverse mapping (from OCL to OQBE) cannot be defined.

The mapping is constructed in several steps.

1. A minimal set S of examples such that all examples are reachable from the examples of this set.
2. For each example E from the set S a query selecting database objects described by this example is

constructed. It has a form generator->select(condition), where the generator is either the extent of the class of
the example E (if E is not named) or the variable with the same name as the name of example E. The
condition is the filtering predicate for the example E.

3. A Tuple of the queries from the step 2 is constructed:

Tuple { E1 = generator1->select(condition1),
 …,
 En = generatorn->select(conditionn) }

4. Then this Tuple is enriched with fields corresponding to subsequent examples which can be reached from
currently available (already reached examples). Assume that querym the tuple constructed so far consisting of
m fields representing m examples. We are going to add the example Em+1 which is reachable from example Ei
by link name linkName. Let us denote by conditionm+1 the filtering condition for example Em+1. The query
constructed in this step is the following:

querym->collect(Tuple{E1=E1,…,Em=Em, Em+1=Ei.linkName->select(conditionm+1)})

5. Repeat the step 4 until all examples are traversed by the constructed query.

6. The sorting criteria are collected and added at the end of the query obtained after finishing the steps 4-5. The
criteria are added from left to right starting from the least significant criterion. The trail added to the query is
the following (the criterionk is most significant, while the criterion1 is least significant):

->sortedBy(criterion1)->…->sortedBy(criterionk)

:Clas s1

att1 . .

:Cla ss2

att5 . .

:Clas s1

constraints
{sort = att1, asc, 1}

=

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

7. Finally the collect operator is added to limit the output only to these items which are marked as query
outputs. The result will be a tuple if the number of outputs is greater t
outputk specify the outputs of the constructed query; each of them is either an example of one of its
attributes). The trail added in this step is one of the two:

->collect(output1)

if the number of outputs = 1

->collect(Tuple { name1=output1,…, namek=outputk })

if the number of outputs > 1
either the name given the <<output>> stereotype or the name of the
example), if the <<output>>

The mapping procedure is quite complex which shows in steps from 3 to 5 because OCL lacks a join operator
which has to be simulated somehow.

10.8 Example
Following example presents how user will interact with VEB editor
example is referring to the Opportunity case used as a leading sample scenario in the VIDE project.

Goal: Select all UUIDs priority opportunities having the same product in its items.

OCL Code:
Opportunity->collect(o | o.items
 ->select(i2 | i1 <> i2 and i1.product = i2.product)
 ->collect(o.UUID)))

Sequence of actions with intermediary views of OQBE diagram:

1. User chooses line in textual code and right clicks it and selects
2. Empty OQBE diagram is opened
3. User drags and drops Example icon from (1) Palette

Figure 90: User drags and drops Example icon from (1) Palette

4. User clicks newly added element and then specify its properties in (4) Properties window tab see
91.

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

Finally the collect operator is added to limit the output only to these items which are marked as query
outputs. The result will be a tuple if the number of outputs is greater than 1. Let us assume that output

specify the outputs of the constructed query; each of them is either an example of one of its
attributes). The trail added in this step is one of the two:

if the number of outputs = 1

t(Tuple { name1=output1,…, namek=outputk })

if the number of outputs > 1 where name1,..,namek are the names of items of output tuple. name_i is
either the name given the <<output>> stereotype or the name of the output element (a

<<output>> stereotype is not named.

The mapping procedure is quite complex which shows in steps from 3 to 5 because OCL lacks a join operator
which has to be simulated somehow.

Following example presents how user will interact with VEB editor in order to specify sample query. This
example is referring to the Opportunity case used as a leading sample scenario in the VIDE project.

Select all UUIDs priority opportunities having the same product in its items.

(o | o.items->collect(i1 | o.items
>select(i2 | i1 <> i2 and i1.product = i2.product)

>collect(o.UUID)))

Sequence of actions with intermediary views of OQBE diagram:
User chooses line in textual code and right clicks it and selects “Insert new visual
Empty OQBE diagram is opened
User drags and drops Example icon from (1) Palette. See Figure 90.

: User drags and drops Example icon from (1) Palette

ks newly added element and then specify its properties in (4) Properties window tab see

 Work Package 5

- 175 -

Finally the collect operator is added to limit the output only to these items which are marked as query
han 1. Let us assume that output1,…,

specify the outputs of the constructed query; each of them is either an example of one of its

where name1,..,namek are the names of items of output tuple. name_i is
output element (attribute or

The mapping procedure is quite complex which shows in steps from 3 to 5 because OCL lacks a join operator

in order to specify sample query. This
example is referring to the Opportunity case used as a leading sample scenario in the VIDE project.

“Insert new visual expression” option

: User drags and drops Example icon from (1) Palette

ks newly added element and then specify its properties in (4) Properties window tab see Figure

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

o Opportunity class is selected as the example’s type
o source of the example is set to
o priority attribute is added from the list of Opportunity class attributes and its value is compared

using equality operator to

5. User drags and drops two Example icons from (1) Palette see

Figure 92: User drags and drops two example icons from (1) Palette

6. User sequentially clicks newly added elements and then specify their properties in (4) Properties
window tab see Figure 93

o Item class is selected as the example’s type
o source of the example is set to

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

class is selected as the example’s type
source of the example is set to extent – no name is entered

attribute is added from the list of Opportunity class attributes and its value is compared
operator to “high”

Figure 91: User specifies properties

User drags and drops two Example icons from (1) Palette see Figure 92

: User drags and drops two example icons from (1) Palette

User sequentially clicks newly added elements and then specify their properties in (4) Properties

class is selected as the example’s type
source of the example is set to extent – no name is entered

 Work Package 5

- 176 -

attribute is added from the list of Opportunity class attributes and its value is compared

: User drags and drops two example icons from (1) Palette

User sequentially clicks newly added elements and then specify their properties in (4) Properties

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

o quantity attribute is added from the list of Item class attributes and its value is compared usi
grater than operator to

Figure

7. User links Opportunity example with Item examples by dragging line from Opportunity to Item see
Figure 94.

Figure

8. User drags and drops Example icon from (1) Palette see

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

attribute is added from the list of Item class attributes and its value is compared usi
operator to 0

Figure 93: User specifies further properties

User links Opportunity example with Item examples by dragging line from Opportunity to Item see

re 94: User links Item and Opportunity icons

User drags and drops Example icon from (1) Palette see Figure 95

 Work Package 5

- 177 -

attribute is added from the list of Item class attributes and its value is compared using

User links Opportunity example with Item examples by dragging line from Opportunity to Item see

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

Figure

9. User clicks newly added element and then specify its properties in (4) Properties window tab see
96.

o Product class is selected as the example’s type
o source of the example is set to

Figu

10. User links both Items with Product example by dragging line from Items to Product see

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

Figure 95: User drag and drops further icon

cks newly added element and then specify its properties in (4) Properties window tab see

class is selected as the example’s type
source of the example is set to extent – no name is entered

Figure 96: User specifies properties of new icon

User links both Items with Product example by dragging line from Items to Product see

 Work Package 5

- 178 -

cks newly added element and then specify its properties in (4) Properties window tab see Figure

User links both Items with Product example by dragging line from Items to Product see Figure 97.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

11. User clicks “ Generate textual expression”
and textual representation is opened.

10.9 Future development
Current version of VEB editor could be extended by:

• direct drag and drop support

10.10 Glossary

Example – symbol representing filtering condition used for browsing data store for objects that have the same
attribute values as the example instance

VEB – Visual Expression Builder

OQBE – Object Query By Example

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

Figure 97: User links Product icon

Generate textual expression” button placed on standard Eclipse toolbar. Diagram is saved
and textual representation is opened.

Future development
Current version of VEB editor could be extended by:

direct drag and drop support for UML diagrams created in external tools;

symbol representing filtering condition used for browsing data store for objects that have the same
attribute values as the example instance

uery By Example

 Work Package 5

- 179 -

button placed on standard Eclipse toolbar. Diagram is saved

symbol representing filtering condition used for browsing data store for objects that have the same

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 180 -

11. Interface to legacy applications

11.1 Introduction
One of the important issues of modelling is taking the value from existing applications. The VIDE toolkit should
also be able to document existing applications and possibly, in the context of model execution, merge the
existing functionality and data in such a way, that it become a part of the new executable application.
The issue of modelling existing application and integrating them as a part of new one is as complex that can be a
subject of large separate project. Thus in this document we take a limited approach narrowing the problem to the
aspects that were found directly needed in the course of the development of other work packages.
Moreover, it is necessary to note that the MDA approach with executable modelling as followed by VIDE,
establishes certain assumptions on the software development originated with a model. From this particular point
of view it seem justified to broaden the definition of legacy software to all the existing application for which the
VIDE model does not exists and which therefore require a kind of reverse engineering in order to make them
available for integration with VIDE-developed software.

11.1.1 Taking the value from existing applications
The value of existing applications can be perceived from the following point of views:

1. The functionality of an application that can be reused in new application through some interface.
2. The application data model and data stored in it that can be plugged and reused in new solution.

The first case, connected with reusing the existing functionality, requires the mechanism of common API to that
functionality, enabling the VIDE to document and use it. Because the number of various programming languages
and APIs that the existing solutions use can be very large, the VIDE project has to assume some common,
generic interface that can wrap the legacy code and make it available to the VIDE model. A rather
straightforward choice for these interfaces is resorting to Web Service technology.
The second case concerning documenting existing data stored in legacy applications is also a challenging
problem. The data can be stored in different database management system with different data models and APIs.
Although the most popular way of storing persistent data in today’s application are relational database systems,
that have a common model and query language, the difference between individual database management systems
can be significant. The diversity can be manifested in extensions to or departures from standard SQL syntax or
the availability and way of access to data catalogue storing the meta data. Another problem that needs to be
handled is connected with a so-called “impedance mismatch” between relational and object-oriented data
models. The model presented by a VIDE is based on the UML object model that is different from the relational
one.

11.1.2 Interaction with other tools of VIDE
From the VIDE perspective there is a need to:

1. Document the legacy applications. The existing solution should be documented in VIDE using a UML
model.

2. Executing the functionality of existing solutions as a part of the new VIDE executable model (to be able
to check the interaction with existing software at the level of an executable model).

This aim is addressed through the respective refinement and extension of VIDE PIM language elements
(necessary to uniformly represent the existing software elements in the model, but also to handle the additional
model information specific to them) and through designing appropriate development environment functionality
to support actual importing of those model elements.

11.2 Requirements
11.2.1 Relevant requirements from D1.1
The following table lists only the requirements relevant for the legacy integration functionality described in this
chapter. Omitting a D1.1 requirement in this table means it was found not relevant for this part of VIDE tooling.

Requirement
Number

Name Priority Comment

REQ –
NonFunc 4

Clear and unambiguous
notation – VIDE should
have clear,
comprehensible and

Should The legacy documenting functionality uses
stereotypes over the UML constructs, and the actual
behaviour of application elements described this
way matches the semantics of those base constructs.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 181 -

unambiguous semantic
description suited to the
users of the VIDE tools

REQ –
NonFunc 8

Runnable and testable
VIDE prototypes

Should The functionality will be implemented as a part of
VIDE model execution engine. Thus, the issue of
interacting with existing software will be testable
based on this functionality.

REQ – User 2 Reuse of UML
Standard – end users
are very sensitive to
using standards. A key
aspect is that the VIDE
language reuses as
much as possible the
UML standard.

Should All the concepts representing existing applications
are expressed in UML.

REQ –
Semantics 1

Semantics of VIDE Inte
rnal Communication – a
precise description of
the semantics is needed
sufficient for internal
communication
purposes within
implementation
stakeholders in the
development of the
VIDE tool.

Should The legacy documenting functionality uses
stereotypes over the UML constructs, and the actual
behaviour of application elements described this
way matches the semantics of those base constructs.

REQ – Tool
14

Model driven approach
The VIDE tool strictly
follows a model driven
approach as stipulated
in figure 9 page 120 of
the D.1.1 deliverable

Must The legacy documenting functionality depends on
the OMG four level meta-modelling architecture
and pays special attention do the separation of
platform-independent and platform-specific details
into respective model layers.

Table 25: Requirements for legacy applications

11.2.2 Refined requirements
As stated in the introduction, the selection of scope for the functionality described in this chapter directly results
from the requirements analysis performed in the course of project – especially in the area of tasks 8.1-8.5 of
Workpackage 8, where the VIDE architecture and respective needs for particular partners’ tools integration and
use are analysed. Those requirements can be summarised in the following list:

• Applications developed using VIDE should be able to communicate with other existing software using
the Web Service technology. This involves publishing selected functionality of VIDE-developed
application in the form of Web Service operations, as well as consuming such operations provided by
other software.

• The functionality being consumed and published this way should be represented in VIDE models in a
way uniform with remaining, locally available behaviour.

• Web Service communication (particularly, publishing services) should be supported by VIDE model
execution engine, in order to perform the following tasks at the stage of executable platform-
independent model:

o prototyping graphical user interface (e.g. with the TNM:WebFace tool) and running it, so it
can communicate with VIDE-specified application logic through Web services,

o running the business processes and application logic implemented with VIDE to test their
behaviour – this requires providing VIDE application functionality to a workflow engine (e.g.
Rodan OOWF) in the form of Web Service interfaces.

• VIDE should make it possible to import the metadata of existing relational databases and make them
available in the form of UML classes and attributes for querying and processing them with VIDE

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 182 -

language. This way VIDE can be used to define data integration logic in a platform independent way
which is the aim of the ONAR tool integration with VIDE tooling.

11.3 Retrieving and documenting schemas of existing data sources

11.3.1 The proposed solution for documenting and interacting with legacy data sources
The documenting logical structure of legacy data in VIDE will be narrowed to relational model. To perform the
retrieval of relational database schema into our model, we adopt the functionality of relational schema importer,
which is a generic tool being developed as a part of ODRA toolset. It allows us to perform a kind of reverse
engineering by representing the imported schema in terms of UML model. The way the schema import is
implemented is not relevant for the final user, however, the platform specific details being set here for the sake
of this reverse engineering can be also directly useful for interacting with the relational data source from the
executable model. The latter step is currently realized by ODRA2RDBMS model execution runtime; however it
may potentially be realized also other way, if supported by respective model compiler. For this reason and to
allow a uniform conceptual modelling, the mechanism is not opaque. Hence, in the further part of the document,
we describe the way RDBMS schema elements are represented in VIDE. Figure 98 depicts the overall
architecture of the mentioned ODRA tools.

RDBMS

ODRA

ODRA2RDBMS

model execution

runtime

ODRA2RDBMS

reverse engineering

Figure 98: The overall architecture of the ODRA wrapper

To sum up, the purpose of the ODRA tools for relational database access in the VIDE project is:

1. to enable the description of existing relational data sources in the VIDE model. This can be achieved
with use of the abovementioned reverse engineering tool. This way relational schemata can be
introduced into the VIDE model.

2. to enable transparent querying and updating of the legacy relational data with VIDE language
statements. This can be achieved with use of ODRA generic model execution engine.

The sequence of activities needed to import the schema and connection details for existing data sources into the
VIDE model is described in the following subsections.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 183 -

11.3.2 Step 1: Connection configuration
The relational schema of logical data will be read from individual RDBMS thus the basic connection information
has to be provided. ODRA reverse engineering tool is based on the JDBC connection that requires the following
information.

1. (JDBC) adapter type – the name denotes the target RDBMS (e.g. postgres).
2. (JDBC) connection driver – the name of the JDBC connection driver (e.g. org.postgresql.Driver)
3. connection URL – the URL of the database resource (e.g. jdbc:postgresql://127.0.0.1:5432/sample)
4. username – the name of the database user
5. password

The process of reading the legacy schema concerns the PIM model but the configuration details that needs to be
provided are connected with PSM level. It is caused by the process itself.

Figure 99: Connection configuration details

11.3.2.1 The details of reading the legacy model
After the user defines the properties for connecting to the legacy database the importer uses the functionality of
ODRA2RDBMS reverse engineering tool to create a target system independent description of the data. The input
for the ODRA2RDMBS are the connection information, the output is an XML file with a relational schema
description. The overall generation process of the schema description is depicted in Figure 100.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 184 -

Figure 100: Generation of legacy data model description

According to the connection details, the reverse engineering module connects to a target database and reads the
schema2. The description of the schema is saved in the form of XML file named: vide_importer-
schema.generated.xml. The file is used by the importer in the process of creating VIDE legacy model.
Additionally, the XML description together with the connection details are then retained for the purpose of the
further use by the ODRA2RDBMS model execution engine in for actual accessing the data source.

11.3.3 Step 2: Generation of the legacy model in VIDE
This step supplements the previous one with the name for the module that is to be created.

Step 2 – Creating the modelStep 2 – Creating the model

Create

Module name

< Back

Figure 101: Setting the module name

2 The method is thus dependent on the availability of the schema exposed by the RDBMS.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 185 -

Finally, the importer creates the VIDE model representing the legacy relational data. The model details are
described in the following section.

11.3.4 Presentation and use of the legacy schema in VIDE model
In VIDE model the legacy relational schema introduced as described above will be represented with use of the
UML package. The name of the package is the name of the module given in the step 2 of the importing process.
Figure 102 shows sample package storing generated model named “legacy_data”.

Figure 102 Package with «generated» stereotype

Inside a package the relational model is expressed with use of the following assumptions:

1. Definition of the schema:
a. Each relational table/view in the source legacy model is represented with use of the UML

class. The name of the class is the name of the source table/view with suffix ‘Def’.
Additionally, the class is given the stereotype «view»3.

b. Each table/view attribute is represented as the attribute of a corresponding class.
c. The class attribute that corresponds to a primary key attribute is additionally marked with

«primarykey» stereotype.
d. The nullability of an attribute is represented by the [0..1] cardinality of the corresponding class

attribute.
e. Further integrity constrains (e.g. type of the primary key, foreign keys, etc.) are currently not

represented, however creating OCL constraints to describe them in VIDE model is considered.
f. : The type mapping are presented in the

SQL VIDE
varchar
varchar2
char
text
memo
Clob

String

integer
int
int2
int4
int8

Integer

3 We do not make any distinction between tables and views in the legacy relational model. Moreover we prefer
to use the view concept that is consistent with the ANSI/SPARC database layer architecture that assumes the
external level build up from the (possibly updatable) views.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 186 -

serial
smallint
bigint
byte
Serial
number
float
real
numeric
Decimal

Real

bool
boolean
Bit

Boolean

date
timestamp

Date

Table 26 Type mapping between SQL and UML in VIDE

2. Declaration of instances collections:

a. The package contains a class, named same as the package, with a stereotype «module». Each
table is represented by an attribute of this class with cardinality [0..*].

Figure 103 shows interior of a sample packages with generated model based on sample relational data.

VIDE legacy modelVIDE legacy model

<<package>>

<<generated>> legacy_data

«primarykey» id : Integer

name : String

salary : Integer

«view»

EmployeeDef

«primarykey» id : Integer

name : String

location : String

«view»

DepartmentDef

employee[0..*] : EmployeeDef

department[0..*] : DepartmentDef

«module»

legacy_data

Figure 103: Sample legacy model elements

After importing such a data source, it can be transparently used by in other parts of the VIDE model code. In
particular we assume that other parts of the VIDE model can, as a part of its behaviour, execute the generated
model parts representing legacy data (effectively performing reads and updates of actual data in those data
sources).

11.4 Documenting interacting with existing software available through
Web Services
Nowadays, Web Services are important part of computer systems. They make communication across their
boundaries easier. The purpose of including Web Services support in VIDE is to allow its users to take
advantage of service oriented architectures and to reuse existing services inside Line-of-Business applications.
Another reason worth mentioning is TNM:WebFace prototype, being used for GUI prototyping in VIDE, which
implements communication with VIDE via Web Services.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 187 -

11.4.1 Functional aspect
Web Service implements directed communication between client and server. Hence, we distinguish two
functional aspects of their usage. Web Services can be consumed in order to include a remotely accessible
functionalities into VIDE systems (i.e. currency exchange). Certain model elements can be published as Web
Service to allow external connectivity with them. In that case (remote) clients can trigger execution of VIDE
code from the outside.

11.4.2 Concepts mapping
In this section we describe how WSDL and VIDE models are mapped to each other. Both for Web Services
consuming and publishing scenarios we provide detailed information regarding extended constructs introduced
to VIDE to handle Web Service integration properly.

The de-facto standard for Web Services description is WSDL 1.1 (http://www.w3.org/TR/wsdl). WSDL
contracts consist of two parts: abstract and concrete. The first one contains interface and types involved in
communication details. The second part describes implementation details such as supported messaging and
transport protocols.

Figure 104 WSDL 1.1 contract diagram

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 188 -

We base VIDE Web Services integration on same (as in WSDL) separation between abstract and concrete part.
Mapping between WSDL abstract part and VIDE model is described in the next section.

11.4.2.1 WSDL definition to VIDE mapping
Publishing and consuming Web Services can be considered as symmetrical tasks. In mapping from WSDL to
VIDE model and from VIDE to WSDL we try to follow that symmetry. On PIM level only abstract WSDL part
is taken into account. This includes types and (specified) portType section. Types are described as XML
Schema and are imported to the system to provide strongly typed access to a Web Service. Interface on the other
hand is imported as specialized class to allow transparent remote methods invocations.
Since one WSDL contract maps to many VIDE entities we need to use container for them. For that purpose
standard UML package is used. Container content is auto-generated and hence should not be edited by a user.
Because it is impossible to forbid editing in a generic way on model level it is only an advice for VIDE users.
They should not tweak such imported services manually in any way (but the restriction is not forced).
PortType is imported into the container package as a class marked with «ConsumedService» stereotype.
Only one such element is allowed to be included in the package. The Web Service proxy class has no attributes
but it contains an operation for each Web method from target Web Service. Operation parameters are based on
input/output web method messages and raisedExceptions association is based on WSDL web method faults.
Types described in WSDL are imported as well. The mapping is handled by dedicated component. The types
import produces UML types with optional stereotypes assigned to reflect their exact XML Schema meaning. We
are not describing details of XSD types import because external tool - XmlModeling hyperModel 3.0
(http://www.xmlmodeling.com/) - will be used for that purpose. The tool bases on complete implementation of
UML profile for XML Schema. It is used to annotate UML models with specific preferences for schema
customization (reasonable defaults are assumed for un-annotated elements).

Stereotype «ConsumedService»

Designates that class will be a proxy to remote Web Service conforming to certain WSDL
contract. Its operations are associated to remote Web method calls of given Web Service. Exact
shape of this stereotype will be specified based on the design decisions in model compilers
development in VIDE.
Generalizations
Class

During types and portType import to model, the following naming conventions are used:

WSDL VIDE

(encoded) target namespace containing package names
Port type (proxy) class name
operations names operations names

Table 27 Naming conventions used in WSDL to VIDE mapping

11.4.2.2 VIDE to WSDL definition mapping
The second scenario of the Web Services integration in VIDE applies to exposing model elements as Web
Services. Any class without attributes declared can be published. Exposing is achieved by adding
«PublishedService» and «PublishedOperation» stereotypes respectively to a class and its operations.

«PublishedService»
Tells system that class should be exposed as Web Service endpoint.
Generalizations
Class

«PublishedOperation»
Marks those operations, which should be available as Web methods of that endpoint.
Generalizations
Operation

Exact shape of these stereotypes will be specified based on the design decisions in model compilers development
in VIDE.
Same as in the consuming case name relevance between VIDE and WSDL models is maintained. It is
summarized in Table 28:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 189 -

VIDE WSDL
Name of class being exposed portType name
operations names operations names

Table 28 Naming conventions used in VIDE to WSDL mapping

11.4.2.3 Limitations

WSDL 1.1 supports attaching multiple interfaces (portType) realizations (port) to one endpoint (service).
Such approach introduces interoperability issues and is inconsistent with the next WSDL version design. In order
to deal with this problem for Web Service consumption, we require user to specify the interface to be used. For
publishing we take minimalistic approach to allow compilers create the most interoperable descriptions as
possible.

11.4.3 Visual support for handling services
Since visual programming is central concept in VIDE, we dedicate the last section of this document to discuss
how Web Services facilities can be embedded inside Visual VIDE Editor. Since Web Services integration in
VIDE is separated between abstract and concrete part we decided to implement consumption and publishing
processes using wizards. They ease definition process by automatically applying necessary modifications to
VIDE model and generation of concrete Web Services options files.
In our opinion the best way to explain visual support is to describe the process with full usage scenarios
accompanied with (prototype) diagrams.

11.4.3.1 Scenario 1: Importing remote service into the model
The task is to import Web Service definition into model in order to be able to use it to invoke remote methods
transparently from VIDE code.

Step 1: User chooses Import Web Service option from main VIDE menu. Wizard appears. On its
first screen user provides information about contract of Web Service to be consumed seeFigure 105.

Figure 105: Import Web Service Option

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 190 -

Step 2: User clicks Download button. After WSDL contract is downloaded successfully - interface
drop down list gets enabled. It is populated with all available port types from the Web Service contract.
User chooses the interface, which he wants to be imported to the model see Figure 106.

Figure 106: Import web Service Option showing port types

Step 3: User provides platform specific information about Web Service being imported. This include
service and port to use (only those are listed, which contain previously chosen interface
implementation) see Figure 107

Figure 107: User provides platform specific information

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

Step 4: User may choose
package element from VIDE model was active
proxy inside chosen (active) package. On the other hand clicking Continue button allows to specify
target container see Figure

Figure

Step 5: All requested options are required. Additionally they may be pre populated with some defaults.
For example Model may be filled in if on wizard start active file in IDE explorer pane was VIDE
model file. Similarly for package it will be filled in if it was an active model element in the moment of
wizard execution. In order to enter or modify model and package fields user can use associated
Browse button.

Figure

Container is always prefilled with (filtered) consumed Web Service namespace but can be changed by
a user see Figure 109.

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

User may choose Create or Continue option. The first one is active if and only if active
package element from VIDE model was active on wizard start. Choosing it will create Web Service
proxy inside chosen (active) package. On the other hand clicking Continue button allows to specify

Figure 108

Figure 108: Specifying target container

All requested options are required. Additionally they may be pre populated with some defaults.
For example Model may be filled in if on wizard start active file in IDE explorer pane was VIDE

milarly for package it will be filled in if it was an active model element in the moment of
wizard execution. In order to enter or modify model and package fields user can use associated

Figure 109: Pre-populated fill for required options

Container is always prefilled with (filtered) consumed Web Service namespace but can be changed by

 Work Package 5

- 191 -

option. The first one is active if and only if active
on wizard start. Choosing it will create Web Service

proxy inside chosen (active) package. On the other hand clicking Continue button allows to specify

All requested options are required. Additionally they may be pre populated with some defaults.
For example Model may be filled in if on wizard start active file in IDE explorer pane was VIDE

milarly for package it will be filled in if it was an active model element in the moment of
wizard execution. In order to enter or modify model and package fields user can use associated

Container is always prefilled with (filtered) consumed Web Service namespace but can be changed by

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

Step 6: After clicking Create

110) by importing Web Service proxy stub into it.

All added model elements ar
«ConsumedService» stereotype named after port type and types definitions its methods operate on.
From now on we will refer to the whole component as (imported) Web Service proxy.

Additionally to the model modification wizard creates (or extends if it already exis
Web Services options file (
regarding the file format will be included in related WP6 document.

Step 7: Users add recently imported Web Service into diagram from Outline pane

Figure

Diagram after addition of org.example.shop

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

Create button wizard modifies model (consuming-example.uml
) by importing Web Service proxy stub into it.

Figure 110: Wizard modifies model

All added model elements are contained in the package. It includes (exactly one) class marked with
ervice» stereotype named after port type and types definitions its methods operate on.

will refer to the whole component as (imported) Web Service proxy.

Additionally to the model modification wizard creates (or extends if it already exis
Web Services options file (consuming-example.umlws on the above picture).

format will be included in related WP6 document.

recently imported Web Service into diagram from Outline pane

Figure 111: User adds recently imported web service

org.example.shop package is depicted in Figure 112

 Work Package 5

- 192 -

example.uml file Figure

includes (exactly one) class marked with
ervice» stereotype named after port type and types definitions its methods operate on.

will refer to the whole component as (imported) Web Service proxy.

Additionally to the model modification wizard creates (or extends if it already exists) platform specific
picture). Further information

recently imported Web Service into diagram from Outline pane seeFigure 111.

112:

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

Figure 112: Diagram after addition of org.example.shop package

Step 8: User adds packages and contained classes (see
SalePortTypeProxy:

Figure

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

Diagram after addition of org.example.shop package

User adds packages and contained classes (see Figure 113), which will use consumed

Figure 113: User adds package and contained classes

 Work Package 5

- 193 -

Diagram after addition of org.example.shop package

), which will use consumed

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 194 -

11.4.3.2 Scenario 2: Publishing class as a Web Service
The task is to expose class from the model as a Web Service, which then can be called from the outside of VIDE
system.

Step 1: User creates class to be exposed see Figure 114. Naming of model elements, which will be
exposed (class and containing package) should follow naming conventions described in the previous
section.

Figure 114: User creates class to be exposed

In contrast to the consuming - in this scenario the container package may include multiple classes exposed
(as Web Services). User is not restricted in any way here except that it is not possible to expose
«ConsumedService» or already exposed one. It is required by compilation schema which will be
described in WP6 part of Web Services in VIDE documentation.

Step 2: User chooses Publish as Web Service option from main VIDE menu see Figure 115.

Wizard appears. On its first screen user provides information about class to be exposed. Similarly as
for consuming fields from this step may be pre filled if appropriate element was active on wizard start.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

This wizard will help you with publishing certain model objects as remote web services

Please provide the following information

Publish web servicePublish web service

Class to expose

Model

Figure

Step 3: User fills in Model
associated browse button. Selection window for model shows all files with
workspace:

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

This wizard will help you with publishing certain model objects as remote web services

Please provide the following information:

Publish web servicePublish web service

Class to expose Browse

Continue

Browse

Figure 115: Publish as Web Service option

Model and Class to expose parameters using selection windows triggered by
associated browse button. Selection window for model shows all files with uml

 Figure 116: VIDE model selection screen

 Work Package 5

- 195 -

This wizard will help you with publishing certain model objects as remote web services

Cancel

arameters using selection windows triggered by
 extension from current

FP6-IST-2005-033606, VIsualize all moDel drivEn programming
Version 3

Class Selection window filters only

Step 4: On the next step namespace textbox value is pre
package’s (filtered) global
be exposed see Figure 118
Create and Continue buttons are disabled.

This wizard will help you with publishing certain model objects as remote web services

Please provide the following information about WS being published

Publish web servicePublish web service

Namespace

checkIfAvailable
buy
getItems

Public object methods

Figure

Step 5: User may choose Create or Continue option see
Web Service with set of default (con
review and change them.

Platform specific options include communication protocols, port and service names. Default options are
SOAP 1.1 as messaging protocol (document wrapped/literal style)

VIsualize all moDel drivEn programming

© Copyright by VIDE Consortium

tion window filters only classes from previously chosen model:

 Figure 117: VIDE Class Selection screen

On the next step namespace textbox value is pre-populated with exposed class container
package’s (filtered) global name. User tweaks it to meet his/hers needs and then specifies operations to

118. Unless at least one method is moved to Operations to expose

buttons are disabled.

This wizard will help you with publishing certain model objects as remote web services

Please provide the following information about WS being published:

Publish web servicePublish web service

CContinue

checkIfAvailable buy
getItems

>

<

>>

<<

Public object methods: Operations to expose

http://localhost:8080/Shop

Create

Figure 118: User specifies operations to be exposed

User may choose Create or Continue option see Figure 119. The first one allows to expose
Web Service with set of default (concrete / platform specific) options. The second one allow user to

Platform specific options include communication protocols, port and service names. Default options are
SOAP 1.1 as messaging protocol (document wrapped/literal style) and HTTP 1.0

 Work Package 5

- 196 -

populated with exposed class container
name. User tweaks it to meet his/hers needs and then specifies operations to

Operations to expose panel

This wizard will help you with publishing certain model objects as remote web services

Cancel

. The first one allows to expose
crete / platform specific) options. The second one allow user to

Platform specific options include communication protocols, port and service names. Default options are
and HTTP 1.0 (with published class

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 197 -

name suffixed with “Endpoint” as URL address) for transport layer. Port defaults to published class
name with protocol name appended. Service defaults to class name with “Service” suffix appended.

User specifies port and service names. Then he/she chooses to specify custom communication
protocols for transport and messaging layers. It is done by checking appropriate checkbox. In case of
HTTP a URL is provided then.

Figure 119: Specifying protocols

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 198 -

Figure 120: URL address

Step 6: After clicking Create button wizard modifies model (publishing-example.uml file

below) by annotating chosen class with set of defined stereotypes. They are automatically viewable in
designer (after diagram refresh) as sown in Figure 121:

Figure 121: Adding defined stereotypes

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 199 -

Step 7: After user completes the above step – Web Service exposing process is complete and model is
ready to be executed. Description of execution and consuming using external clients is outside of the
scope of this document.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 200 -

12. Conclusions
In this deliverable we have outlined the work that has been completed as part of Work Package 5. This involved
the in depth study of 46 MDA tools. The list of tools was taken from the OMG list of MDA compliant tools
available from their web site. A list of comparison features was constructed from the literature and the tools were
reviewed. The results are shown in Chapter 2 along with some requirements for the VIDE interface that had not
been specifically outlined in Deliverable D1.

The following two chapters reported the result of research into the literature. Chapter 3 discussed methods of
evaluation that would allow the Consortium to investigate the exploratory prototype. A number of methods were
reviewed and both Focus Groups and the Cognitive Dimensions Framework were selected for the evaluation.
Chapter 4 reviewed the literature in Software Visualisation and made a number of recommendations for
requirements with respect to component design in particular. The Visual Programming and Diagramming
research had some useful recommendations from the area of class diagram layout and the use of secondary
notation.

Chapter 5 discussed the work that was completed investigating the graphical user interfaces of four established
modeling environments. Various UML models were created in each of the tools and the process investigated to
highlight any shortcomings. This was discussed in the work using the Cognitive Dimensions Framework and
allowed a number of requirements to be added. The following chapter, Chapter 6, outlined the specification of
the Exploratory prototype that was developed using the initial requirements.

Chapter 7 drew together the feedback and evaluation of the exploratory prototype and the requirements that were
obtained in the preceding work. These requirements were collated and cross referenced with the requirements
from D1 to give a complete list. This was used to create the definitive prototype specified in Chapter 8.

Chapter 9 provided the specification of the Visual Code Editor for State Visualisation Syntax. The work outlined
some of the research in the area which informed the design. A number of screen shots are detailed. This is
followed by Chapter 10 which described the Visual Expression Builder. This is a graphical editor which allows a
user to specify expressions using the Object Constraint Language. Finally Chapter 11 explored the VIDE
approach to dealing with legacy applications which involve the use of Web Services.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 201 -

13. References
1. VIDE, Standards, Technological and Research-Base for the VIDE Project, Project Evaluation Criteria

and User Requirements Definition, in Deliverable 1.1 of the VIDE Project. 2007, Framework 6 EU
Commission.

2. Softeam. Objecteering. 2007 [Last Accessed 20 December 2007]; Available from:
http://www.objecteering.com/.

3. PathFinderSolutions. PathMate MDA 2007 [Last Accessed 19 December 2007]; Available from:
http://www.pathfindermda.com/products/index.php.

4. NeosightTechnologies. BoldExpress Studio. 2007 [Last Accessed 19 December 2007]; Available
from: http://www.neosight.com.

5. SoftMetaWare. Generative Model Transformer Project. 2007 [Last Accessed 20 December 2007];
Available from: http://www.softmetaware.com.

6. IBM. Rational Software Architect. 2007 [Last Accessed 20 December 2007]; Available from:
http://www-306.ibm.com/siftware/awdtools/architect/swarchitect.

7. SelectBusinessSolutions. Select Component Factory or Select Solution for MDA. 2007 [Last Accessed
20 December 2007]; Available from: http://www.selectbs.com.

8. InteractiveObjects. ArcStyler MDA tool (http://www.arcstyler.com/). 2006 [Last Accessed 08/2006
2006]; Available from: http://www.arcstyler.com/.

9. Mia-Software. Model-In-Action. 2007 [Last Accessed 19 December 2007 2007]; Available from:
http://www.mia-software.com.

10. IBM. Rational XDE Developer (http://www-
306.ibm.com/software/uk/rational/awdtools/swdeveloper.html). 2006 [Last Accessed 08/2006 2006];
Available from: http://www-306.ibm.com/software/uk/rational/awdtools/swdeveloper.html.

11. Compuware. OptimalJ MDA tool 2007 [Last Accessed 20 December 2007]; Available from:
http://www.compuware.com/products/optimalj/.

12. KnowGravity. CASSANDRA/xUML. 2007 [Last Accessed 19 December 2007]; Available from:
http://www.knowgravity.com/eng/index.htm.

13. CodagenTechnologies. Codagen Architect for MDA. 2007 [Last Accessed 20 December 2007];
Available from: http://www.manyeta.com.

14. Telelogic. TAU Generation2. 2007 [Last Accessed 20 December 2007]; Available from:
http://www.telelogic.com/.

15. Borland. Together Architect 2007 [Last Accessed 20 December 2007]; Available from:
http://www.borland.com/us/products/together/index.html.

16. Metamaxim. modelscope. 2007 [Last Accessed 20 December 2007]; Available from:
http://www.metamaxim.com.

17. CodelessTechnology. Codeless. 2007 [Last Accessed 20 December 2007]; Available from:
http://www.codeless.com.

18. Object Management Group. Request for Information: MDA Tool Capabilities. 2006 [Last Accessed 26
July 2007]; Available from: http://www.omg.org/docs/mda-user/06-08-01.pdf.

19. Object Management Group. Request for Proposal: MDA Tool Component. 2006 [Last Accessed 26
July 2007]; Available from: http://www.omg.org/docs/ad/06-06-09.pdf.

20. OMG. OMG MDA Vendor Driectory (http://mda-directory.omg.org/). 2006 [Last Accessed 7/2006
2006]; Available from: http://mda-directory.omg.org/.

21. ArchitectureBoardORMSC. MDA Guide Version 1.0.1. 2003 [Last Accessed 19 September 2007].
22. Lyngset, T.E. and T. Vasset, MDA (Model Driven Architecture), in Department of Computer and

Information Science. 2003, Norwegian University of Science and Technology (NTNU): Trondheim.
23. Soley, R. and OMG Staff Strategy Group. Model Driven Architecture. 2000 [Last Accessed 24

September 2007]; Available from: ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf.
24. Architecture Board ORMSC. Model Driven Architecture (MDA). 2001 [Last Accessed 19 September

2007].
25. Poole, J.D. Model-Driven Architecture: Vision, Standards and Emerging Technologies. in European

Conference on Object Oriented Programming (ECOOP). 2001. Budapest, Hungary.
26. MODATEL Consortium. Assessment of the Model Driven Technologies - Foundations and Key

Technologies. 2002 [Last Accessed 20 October 2007]; Available from: http://www.modatel.org.
27. Architecture Board MDA Drafting Team. Model Driven Architecture: A Technical Perspective. 2001

[Last Accessed 28 August 2007]; Available from: http://www.omg.org/docs/ormsc/01-07-01.pdf.
28. Kleppe, A., J. Warmer, and W. Bast, MDA Explained: The Model Driven Architecture--Practice and

Promise 2003, Boston: Addison-Wesley Professional.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 202 -

29. Berrisford, G. Why IT Veterans are sceptical about MDA. in Second European Workshop on Model
Driven Architecture (MDA). 2004. Canterbury, UK.

30. Bezivin, J. and S. Gerard. A Preliminary Identification of MDA Components. 2002 [Last Accessed 22
November 2007]; Available from: http://www.softmetaware.com/oopsla2002/bezivinj.pdf.

31. Tratt, L., Model transformations and tool integration. Software Systems Modelling, 2005. 4(2).
32. Blanc, X., S. Bouzitouna, and M.-P. Gervais. A Critical Analysis of MDA Standards through an

Implementation: the ModFact Tool. in Proc. of the First European Workshop on Model Driven
Architecture with Emphasis on Industrial Applications (EWMDA-IA'04). 2004. Enschede, the
Netherlands.

33. Desfray, P. MDA – When a major software industry trend meets our toolset, implemented since 1994.
2001 [Last Accessed 10 December 2007]; Available from: http://www.omg.org/mda/mda_files/MDA-
Softeam-WhitePaper.pdf.

34. Flater, D. Impact of Model-Driven Standards. in 35th International Conference on System Sciences.
2002. Hawaii

35. Ambrosio, J. (2003) Tools for the Code Generation. Application Development Trends Volume,
36. Seidewitz, E. A real-world example of MDA without automation. 2004 [Last Accessed 28 September

2007]; Available from: http://www.omg.org/docs/mda-user/04-08-02.pdf.
37. Mellor, S.J., et al., MDA Distilled: Principles of Model-Driven Architecture. 2004: Addison-Wesley.
38. OMG. MDA Committed Products. 2007 [Last Accessed 1 December 2007]; Available from:

http://www.omg.org/mda/committed-products.htm.
39. Adaptive. Adaptive Software (http://www.adaptive.com/homelinks/modelmgt.html). 2006 09/2006 [Last

Accessed.
40. Aonix. Ameos toolset for MDA (http://www.aonix.com/ameos.html). 2006 [Last Accessed 08/2006

2006]; Available from: http://www.aonix.com/ameos.html.
41. Artisan. Real Time Studio. 2007 [Last Accessed 20 December 2007]; Available from:

http://www.artisansw.com.
42. BITPlan. smartGenerator. 2007 [Last Accessed 20 December 2007]; Available from:

http://bitplan.com.
43. CalkeyTechnologies. Caboom. 2007 [Last Accessed 20 December 2007]; Available from:

http://wwwcalkey.com/caboom.htm.
44. Calytrix. SIMplicity. 2007 [Last Accessed 20 December 2007]; Available from:

http://www.calytrix.com.
45. Consyst. REP++ Studio. 2007 [Last Accessed 20 December 2007]; Available from: http://consyst-

sql.com/a/WWW/Accueil/Accueil.html.
46. DataAccessTechnologies. Component -X. 2007 [Last Accessed 20 December 2007]; Available from:

http://www.enterprise-component.com.
47. DomainSolutions. CodeGenie. 2007 [Last Accessed 20 December 2007]; Available from:

http://www.ooagenerator.com/codegenie.htm or http://www.domsols.com.
48. DotNetBuilders. Constructor toolset for MDRAD. 2006 [Last Accessed 20 December 2007]; Available

from: http://www.dotnetbuilders.com/constructor.aspx.
49. E2E. Bridge. 2007 [Last Accessed 20 December 2007 2007]; Available from:

http://www.e2ebridge.com.
50. Gentastic. e-GEN. 2007 [Last Accessed 20 December 2007 2007]; Available from:

http://www.gentastic.com/e_GEN/e_GenApproach.html.
51. IKV++. Medini Product Family (was m2C). 2007 [Last Accessed 20 December 2007 2007]; Available

from: http://www.ikv.de.
52. Telelogic. Rhapsody. 2007 [Last Accessed 20 December 2007]; Available from:

http://modeling.telelogic.com.
53. innoQ. iQgen. 2007 [Last Accessed 19 December 2007]; Available from: http://www.inoq.com/iqgen.
54. KabiraTechnologiesInc. Kabira Transaction Platform and Kabira Accelerator. 2007 [Last Accessed

19 December 2007]; Available from: http://www.kabira.com.
55. KennedyCarter. iUML. 2007 [Last Accessed 20 December 2007]; Available from: http://kc.com.
56. KennedyCarter. iCCG. 2007 [Last Accessed 20 December 2007]; Available from: http://www.kc.com.
57. Liantis. Xcoder. 2007 [Last Accessed 20 December 2007]; Available from: http://www.liantis.com.
58. MentorGraphics. BridgePoint/xtUML or EDGE UML Suite. 2007 [Last Accessed 19 December 2007];

Available from: http://wwww.mentor.com.
59. JBoss. MetaMatrix Data Services Platform. 2007 [Last Accessed 19 December 2007]; Available from:

http://ww.redhat.com/metamatrix/.
60. MID. Innovator. 2007 [Last Accessed 20 December 2007]; Available from: http://www.mid.de.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 203 -

61. Netfective. Blu Age. 2007 [Last Accessed 20 December 2007]; Available from:
http://www.bluage.com.

62. ObjectFrontier. FrontierSuite. 2007 [Last Accessed 19 December 2007]; Available from:
http://www.objectfrontier.com.

63. OutlineSystemsInc. PowerRAD. 2007 [Last Accessed 20 December 2007]; Available from:
http://www.outlinesys.com.

64. PlasticSoftware. agora Plastic 2005. 2007 [Last Accessed 20 December 2007]; Available from:
http://www.plasticsoftware.com/.

65. realMethods. Framework. 2007 [Last Accessed 20 December 2007]; Available from:
http://www.realmethods.com/index.html.

66. SoftarisPtyLtd. MetaBoss. 2007 [Last Accessed 20 December 2007 2007]; Available from:
http://www.metaboss.com.

67. CARETechnologiesSA/SOSYInc. OlivaNova Model Execution System. 2007 [Last Accessed 20
December 2007]; Available from: http://www.sosyin.com.

68. SparxSystems. Enterprise Architect 2007 [Last Accessed 20 December 2007]; Available from:
http://www.sparxsystems.com.

69. TataConsultancyServices. MasterCraft. 2007 [Last Accessed 20 December 2007]; Available from:
http://www.tatamastercraft.com/index.htm / http://www.tata.com/index.htm.

70. TechOne. ACE. 2007 [Last Accessed 20 December 2007]; Available from: http://www.techone.com.
71. Gediga, G., K.-C. Hamborg, and I. Duntsch, Evaluation of Software Systems, in Encyclopedia of

Computer Science and Technology, A. Kent and J.G. Williams, Editors. 2001, CRC.
72. Te'eni, D., J. Carey, and P. Zhang, Human Computer Interaction: Developing Effective Organizational

Information Systems. 2007, Hoboken, New Jersey, US: John Wiley and Sons Inc.
73. De Souza, F. and N. Bevan. The Use of Guidelines in Menu Interface Design: Evaluation of a draft

standard. in IFIP INTERACT 90: Human Computer Interaction. 1990.
74. Bevan, N. International standards for HCI and usability. 2006 [Last Accessed 25/03/2007 2007];

Available from: http://www.usabilitynet.org/home.htm.
75. Bevan, N., Quality in Use: Meeting User Needs for Quality. Journal of Systems and Software. 1999.

49(1): p. 89-96.
76. Nielsen, J., Usability Engineering. 1993, New York: AP Professional.
77. Ivory, M.Y. and M.A. Hearst, The State of the Art in Automating Usability Evaluation of User

Interfaces. ACM Computing Surveys, 2001. 33(4): p. 470-516.
78. Nielsen, J. and R.L. Mack, eds. Usability Inspection Methods. 1994, John Wiley and Sons Inc.
79. Vredenburg, K., et al. A Survey of User-Centered Design Practice. in Conference on Human Factors in

Computing Systems 2002. Minneapolis, Minnesota.
80. Schneiderman, B., Designing the user interface. 3rd ed. 1998: Addison-Wesley.
81. Sharp, H., Y. Rogers, and J. Preece, Interaction Design:Beyond Human Computer Interaction. 2nd ed.

2007, Chichester: John Wiley and Sons.
82. UPA. Principles for Usable Design. Usability Body of Knowledge 2005 [Last Accessed 28 November

2007]; Available from: http://www.usabilitybok.org/design/p287.
83. Karat, C.-M., A Comparison of User Interface Evauluation Methods, in Usability Inspection Methods,

J. Nielsen and R.L. Mack, Editors. 1994, John Wiley and Sons: USA.
84. Bailey, B., The effectiveness of heuristic evaluations vs usability testing, in HFI User Interface Design

Newsletter. 2001.
85. Bias, R.G., The Pluralistic Usability Walkthrough:Coordinated Empathies, in Usability Inspection

Methods, J. Nielsen and R.L. Mack, Editors. 1994, John Wiley and Sons. p. 63-76.
86. Nielsen, J. The Use and Misuse of Focus Groups. 1997 [Last Accessed 30 October 2007]; Available

from: http://www.useit.com/papers/focusgroups.html.
87. Beynon, D., P. Turner, and S. Turner, Designing Interactive Systems:

People,Activities,Contexts,Technologies. 2005, Harlow, England: Addison-Wesley.
88. Green, T.R.G. and M. Petre, Usability Analysis of Visual Programming Environments: A 'Cognitive

Dimensions' Framework. Journal of Visual Languages and Computing, 1996. 7: p. 131-174.
89. Green, T.R.G., Cognitive dimensions of notations, in People and Computers V, A. Sutcliffe and L.

Macaulay, Editors. 1989, Cambridge University Press: Cambridge, UK. p. 443-460.
90. Blackwell, A.F., et al. Cognitive Dimensions of Notations:Design Tools for Cognitive Technology. in

Cognitve Technology 2001. 2001: Springer-Verlag.
91. Blackwell, A.F., et al., Cognitive Factors in Programming with Diagrams. Artificial Intelligence

Review, 2001. 15(1/2): p. 95-114.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 204 -

92. Blackwell, A.F. and T.R.G. Green, Notational Systems - The Cognitive Dimensions Framework, in HCI
Models, Theories and Frameworks: Toward a multidisciplinary science, J. Carroll, Editor. 2003,
Morgan Kaufmann: San Fransisco, USA.

93. Wixom, D., Evaluating Usability Methods. interactions, 2003. July/August: p. 29-34.
94. Price, B.A., I.S. Small, and R.M. Baecker. A Taxonomy of Software Visualisation. in 25th Hawaiian

International Conference of System Sciences. 1992. Kauai,HI.
95. Young, P. and M. Munro. Visualising Software in Virtual Reality. in International Workshop on

Program Comprehension (IWPC'98). 1998. Ischia, Italy.
96. Maletic, J.I., A. Marcus, and M.L. Collard. A Task Oriented View of Software Visualisation. in IEEE

First International Workshop on Visualizing Software for Understanding and Analysis. 2002: IEEE
Computer Society Press.

97. Petre, M. and E. de Quincey, A gentle overview of software visualisation, in Psychology of
Programming Interest Group (PPIG) Newsletter. 2006.

98. Berenbach, B. and O. Gotel. International Workshop on Requirements Engineering Visualization (REV
'07). 2007 [Last Accessed 2 January 2008]; Available from:
http://csis.pace.edu/~ogotel/professional/REV07.html.

99. Benedikt, M., Cyberspace: Some proposals, in Cyberspace: First Steps. 1991, MIT Press. p. 119-124.
100. Whitley, K.N., Visual Programming Languages and the Empirical Evidence For and Against. Journal

of Visual Languages and Computing, 1997. 8: p. 109-142.
101. Pane, J.F. and B.A. Myers, Usability Issues in the Design of Novice Programming Systems. 1996,

School of Computer Science, Carnegie Mellon University: Pittsburgh, Pennsylvania, USA.
102. Petre, M., Why Looking Isn't Always Seeing: Readership Skills and Graphical Programming.

Communications of the ACM, 1996. 38(6): p. 33-44.
103. Sutcliffe, A.G., Human - Computer Interface Design. 2nd ed. 1995, Basingstoke: Macmillan Press.
104. Faulkner, X., Usability Engineering. Grassroots. 2000, London: Macmillan Press Ltd. 244.
105. Crowle, S., et al., Users, in Deliverable 1.1 of the VIDE Project. 2007, Framework 6 EU Commission.
106. Robins, A., J. Rountree, and N. Rountree, Learning and Teaching Programming: A Review and

Discussion. Computer Science Education, 2003. 13(2): p. 137-172.
107. Eichelberger, H. Nice Class Diagrams Admit Good Design? . in ACM Symposium on Software

Visualisation. 2003. San Diego, California, USA: ACM Press.
108. Diskin, Z. Visualization vs. specification in diagrammatic notations: A case study with the UML. in

Diagrammatic Representation and Inference. 2nd Int. Conf. on the Theory and Applications of
Diagrams. 2002: Springer.

109. Eiglsperger, M., M. Kaufmann, and M. Siebenhaller. A Topology-Shape-Metrics Approach for the
Automatic Layout of UML Class Diagrams. in ACM Symposium on Software Visualization. 2003. San
Diego, California, USA: ACM Press.

110. Seemann, J. Extending the Sugiyama Algorithm for Drawing UML Class Diagrams:Towards Automatic
Layout of Object-Oriented Software Diagrams. in 5th International Symposium of Graph Drawing.
1997. Rome, Italy: Springer-Verlag.

111. Lee, Y.Y., C. Lin, and H. Yen. Mental Map Preserving Graph Drawing Using Simulated Annealing. in
Asia Pacific Symposium on Information Visualization. 2006. Tokyo, Japan.

112. Wood, D., Minimising the Number of Bends and Volume in 3-Dimensional Orthogonal Graph
Drawings with a Diagonal Vertex Layout. Algorithmica, 2004. 39: p. 235-253.

113. Mehra, A., J. Grundy, and J. Hosking. A Generic Approach to Supporting Diagram Differencing and
Merging for Collaborative Design. in 20th International Conference on Automated Software
Engineering. 2005. Long Beach, CA, USA: ACM.

114. Chidamber, S.R. and C.F. Kemerer, A Metrics Suite for Object Oriented Design. IEEE Transactions on
Software Engineering, 1994. 20(6): p. 476-493.

115. Purchase, H.C., et al. Graph drawing aesthetics and the comprehension of UML class diagrams: an
empirical study. in Australian Symposium on Information Visualisation. 2001. Sydney, Australia.

116. Gutwenger, C., et al. A new approach for visualizing UML class diagrams. in ACM Symposium on
Software Visualization 2003. San Diego, CA, USA: ACM.

117. Hahn, J. and K. J., Why Are Some Diagrams Easier to Work With? Effects of Diasgrammatic
Representation on the Cognitive Integration Process of Systems Analysis and Design. ACM
Transactions on Computer-Human Interaction, 1999. 6(3): p. 181-213.

118. Myers, B.A., J.F. Pane, and A. Ko, Natural Programming Languages and Environments.
Communications of the ACM, 2004. 47(9): p. 47-52.

119. Maloney, J., et al. Scratch: A Sneak Preview. in Second International Conference on Creating,
Connecting and Collaborating through Computing. 2004. Kyoto, Japan.

FP6-IST-2005-033606, VIsualize all moDel drivEn programming Work Package 5
Version 3

© Copyright by VIDE Consortium

- 205 -

120. Anon. Imagine creating software without a single line of code. 2007 [Last Accessed 12 December
2007; Presentation]. Available from: http://www.limnor.com.

121. Anon. MyDesk 2.0 2007 [Last Accessed 12 December 2007; Available from:
http://www.genusoft.net/english/productshow.asp?articleid=139.

122. MyDesk. MyDesk 2.0 2007 [Last Accessed 12 December 2007; Available from:
http://www.genusoft.net/english/productshow.asp?articleid=139.

123. Scratch. Scatch - imagine, program, share. 2007 [Last Accessed 20 July 2007]; Available from:
http://scratch.mit.edu/.

124. Newman, M.W., et al., DENIM: An Informal Web Site design Tool Inspired by Observations of
Practice. Human Computer Interaction, 2003. 18: p. 259-324.

125. Objecteering. Objecteering/UML (http://www.objecteering.com/). 2007 [Last Accessed 08/2007
2006]; Available from: http://www.objecteering.com/.

126. Borland. Together Architect (http://www.borland.com/us/products/together/index.html). 2006 [Last
Accessed 07/2006 2006]; Available from: http://www.borland.com/us/products/together/index.html.

127. Eclipse.Org. Eclipse project (http://www.eclipse.org/). 2006 [Last Accessed 08/2006 2006].
128. Green, T. and A. Blackwell, Cognitive Dimensions of Information Artefacts:a tutorial. 1998,

Cambridge University & Leeds University.
129. Blackwell, A. and T. Green, A Cognitive Dimensions Questionnaire. 2007, Cambridge University &

Leeds University.
130. Maciaszek, L.A., Requirements Analysis and System design. 3rd ed. 2007, Harlow, England: Addison-

Wesley.
131. Bray, I., An Introduction to Requirements Engineering. 2002, Harlow, UK: Pearson Education Limited.
132. Sommerville, I., Software Engineering. 6th ed. 2001, Harlow, England: Pearson.
133. Boling, E. and T. Frick, Holistic rapid prototyping for Web Design: Early Usability Testing is

Essential, in Web-Based Instruction, B. Khan, Editor. 1997, Educational Technology Publications:
Englewood Cliffs, NJ. p. 319-328.

134. Gruhn, V., D. Pieper, and C. Rottgers, MDA. 2006: Springer.
135. Daum, B., Rich-Client-Entiwcklung mit Eclipse 3.2. 2007: dpunkt-Verlag.
136. TomSawyerSoftware. Graph Analysis, Layout and Visualisation. 2007 [Last Accessed 30 October

2007]; Available from: http://www.tomsawyer.com.
137. Stahl, T. and M. Volter, Model driven software development. 2006: Wiley.
138. Stahl, T., Modellgetriebene Softwareentwicklung. 2007: Dpunkt-verlag.
139. Plante, F. Introducing the GMF Runtime. 2006 [Last Accessed 23 October 2007]; Available from:

http://www.eclipse.org/articles/Article-Introducing-GMF/article.html.
140. Edgar, N., et al. Eclipse User Interface Guidelines Version 2.1. 2004 [Last Accessed 23 October

2007]; Available from: http://www.eclipse.org/articles/Article-UI-Guidelines/contents.html.
141. Purchase, H.C., J. Allder, and D. Carrington. User Preference of Graph Layout Aesthetics: A UML

Study. in Graph Drawing. 2001: Colonial Williamsburg.
142. Purchase, H.C., R.F. Cohen, and M. James. Validating Graph Drawing Aesthetics. in Graph Drawing

Symposium. 1995: Springer- Verlag.
143. Purchase, H.C., E. Hoggan, and C. Gorg. How Important is the "Mental Map" - an Empirical

Investigation of a Dynamic Graph Layout Algorithm. in Graph Drawing. 2007. Karlsruhe, Germany.
144. Heer, J. prefuse - Information Visualisation Toolkit. 2007 [Last Accessed 26 November 2007];

Available from: http://prefuse.org.
145. Gudenberg, J.W. and H. Eichelberger. Sugi-Bib - Automatisches Layout in UML und CASE. 2007

[Last Accessed 23 October 2007]; Available from: https://wwwi2.informatik.uni-
wuerzburg.de/SugiBiB/.

146. Sugiyama, K., S. Tagawa, and M. Toda, Methods for Visual Understanding of Hierarchical Systems
IEEE Transactions on Systems Man and Cybernetics, 1981. SMC-11(2): p. 109-125.

147. GraphVis. Graph Visualization Software. 2007 [Last Accessed 23 October 2007]; Available from:
http://www.graphviz.org/.

148. Ellson, J., et al. Graphiz-OpenSource Graph Drawing Tools. in Graph Drawing. 2002. Vienna, Austria:
Springer.

149. ILOG. ILOG JViews8 - Visualisation Components. 2007 [Last Accessed 30 October 2007]; Available
from: http://www.ilog.de/products/jviews.

150. Weise, R., M. Eiglsperger, and M. Kaufmann. yFiles: Visualisation and Automatic Layout of Graphs. in
Graph Drawing. 2002. Vienna, Austria: Springer.

:)

