147 research outputs found

    Symmetries of Automata

    Get PDF
    Content in the UH Research Archive is made available for personal research, educational, and non-commercial purposes only. Unless otherwise stated, all content is protected by copyright, and in the absence of an open license, permissions for further re-use should be sought from the publisher, the author, or other copyright holder.For a given reachable automaton A, we prove that the (state-)endomorphism monoid End(A) divides its characteristic monoid M(A). Hence so does its (state-)automorphism group Aut(A), and, for finite A, Aut(A) is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the presence of a (state-) automorphism group G of A, a finite automaton A (and its transformation monoid) always has a decomposition as a divisor of the wreath product of two transformation semigroups whose semigroups are divisors of M(A), namely the symmetry group G and the quotient of M(A) induced by the action of G. Moreover, this division is an embedding if M(A) is transitive on states of A. For more general automorphisms, which may be non-trivial on input letters, counterexamples show that they need not be induced by any corresponding characteristic monoid element.Peer reviewe

    Extensions of free groups: algebraic, geometric, and algorithmic aspects

    Get PDF
    In this work we use geometric techniques in order to study certain natural extensions of free groups, and solve several algorithmic problems on them. To this end, we consider the family of free-abelian times free groups (Zm x Fn) as a seed towards further generalization in two main directions: semidirect products, and partially commuative groups (PC-groups). The four principal projects of this thesis are the following: Direct products of free-abelian and free groups We begin by studying the structure of the groups Zm x Fn , with special emphasis on their lattice of subgroups, and their endomorphisms (for which an explicit description is given, and both injectivity and surjectiveness are characterized); to then solve on them algorithmic problems involving both subgroups (the membership problem, the finite index problem, and the subgroup and coset intersection problems), and endomorphisms (the fixed points poblem, the Whitehead problems, and the twisted-conjugacy problem). Algorithmic recognition of infinite-cyclic extensions In the first part, we prove the algorithmic undecidability of several properties (finite generability, finite presentability, abelianity, finiteness, independence, triviality) of the base group of finitely presented cyclic extensions. In particular, we see that it is not possible to decide algorithmically if a finitely presented Z-extension admits a finitely generated base group. This last result allows us to demonstrate the undecidability of the Bieri-Neumann-Strebel (BNS) invariant. In the second part, we prove the equivalence between the isomorphism problem within the subclass of unique Z-extensions, and the semi-conjugacy problem for certain type of outer automorphisms, which we characterize algorithmically. Stallings automata for free-abelian by free groups After recreating in a purely algorithmic language the classic theory of Stallings associating an automaton to each subgroup of the free group, we extend this theory to semi-direct products of the form Zm ¿ Fn. Specifically, we associate to each subgroup of Zm ¿ Fn , an automaton ("enriched" with vectors in Zm), and we see that in the finitely generated case this construction is algorithmic and allows to solve the membership problem within this family of groups. The geometric description obtained also shows (even in the case of direct products) not only that the intersection of finitely generated subgroups can be infinitely generated, but that even when it is finitely generated, the rank of the intersection can not be bound in terms of the ranks of the intersected subgroups. This fact is relevant because it denies any possible extension of the celebrated - and recently proven - Hanna-Neumann conjecture in this direction. Intersection problems for Droms groups After characterizing those partially commutative groups satisfying the Howson property, we combine the algorithmic version of the theorem of the subgroups of Kurosh given by S.V. Ivanov, with the ideas coming from our work on Zm x Fn, to prove the solvability of the subgroup and coset intersection problems within the subfamily of Droms groups (that is, those PC- groups whose subgroups are always again partially commutative).En aquest treball s'usen tècniques geomètriques per estudiar certes extensions naturals dels grups lliures, i atacar diversos problemes algorísmics sobre elles. A aquest efecte, es considera la família de grups lliure-abelians per lliure (Zm x Fn) com a punt de partida envers generalitzacions en dues direccions principals: productes semidirectes, i grups parcialment commutatius (PC-groups). Els quatre projectes principals d'aquesta tesi es descriuen a continuació. Productes directes de grups lliure-abelians per lliure. Comencem estudiant l'estructura dels grups Zm x Fn, amb especial èmfasi en el seu reticle de subgrups, i el seu monoide d'endomorfismes (per als que es dóna una descripció explícita, i es caracteritzen tant la injectivitat com l'exhaustivitat); per després resoldre sobre ells problemes algorísmics involucrant tant subgrups (el problema de la pertinença, el problema de l'índex finit, i els problemes de la intersecció de subgrups i classes laterals), com endomorfismes (el problema dels punts fixos, els problemes de Whitehead , i el problema de la "conjugació retorçada" o twisted-conjugacy problem). Reconeixement algorítmic d'extensions cícliques. A la primera part, es demostra la indecidibilitat algorísmica de diverses propietats (generabilitad finita, presentabilitad finita, abelianitat, finitud, llibertat, i trivialitat) del grup base de les extensions cícliques finitament presentades. En particular, veiem que no és possible decidir algorítmicament si una Z-extensió finitament presentada admet un grup base finitament generat. Aquest últim resultat ens permet demostrar també la indecidibilitat de l'invariant BNS (de Bieri-Neumann-Strebel). A la segona part, es demostra l'equivalència entre el problema de l'isomorfisme dins de la subclasse de Z-extensions úniques, i el problema de la semi-conjugació per a cert tipus d'automorfismes exteriors, que caracteritzem algorísmicament. Autòmats d'Stallings per a grups lliure-abelians by lliure. Després de recrear en un llenguatge purament algorísmic la teoria clàssica d'Stallings associant un autòmat a cada subgrup del grup lliure, estenem aquesta teoria a productes semidirectes de la forma Zm x Fn . Concretament associem un autòmat "enriquit" amb vectors de Zm a cada subgrup de Zm x Fn , i veiem que en el cas de subgrups finitament generats aquesta construcció és algorísmica i permet resoldre el problema de la pertinença dins d'aquesta família de grups. La descripció geomètrica obtinguda mostra a més (fins i tot en el cas de productes directes), no només que la intersecció de subgrups finitament generats pot ser infinitament generada, sinó que, fins i tot quan és finitament generada, no es pot afitar el rang de la intersecció en termes dels rangs dels subgrups intersecats. Aquest fet és rellevant perquè denega qualsevol possible extensió de la celebrada - i recentment provada - conjectura de Hanna Neumann en aquesta direcció. Problemes de la intersecció per a grups de Droms. Després de caracteritzar els grups parcialment commutatius que satisfan la propietat de Howson, combinem la versió algorísmica del teorema dels subgrups de Kurosh donada per S.V. Ivanov, amb les idees provinents del nostre treball sobre Zm x Fn, per demostrar la resolubilitat dels problemes de la intersecció de subgrups, de classes laterals (i afins) dins la subfamília de PC-grups de Droms (i.e., aquells PC-grups en que tots els subgrups son de nou parcialment commutatius)

    Symmetries of automata

    No full text
    For a given reachable automaton A, we prove that the (state-) endomorphism monoid End(A) divides its characteristic monoid M(A). Hence so does its (state-)automorphism group Aut(A), and, for finite A, Aut(A) is a homomorphic image of a subgroup of the characteristic monoid. It follows that in the presence of a (state-) automorphism group G of A, a finite automaton A (and its transformation monoid) always has a decomposition as a divisor of the wreath product of two transformation semigroups whose semigroups are divisors of M(A), namely the symmetry group G and the quotient of M(A) induced by the action of G. Moreover, this division is an embedding if M(A) is transitive on states of A. For more general automorphisms, which may be non-trivial on input letters, counterexamples show that they need not be induced by any corresponding characteristic monoid element

    Between primitive and 2-transitive : synchronization and its friends

    Get PDF
    The second author was supported by the Fundação para a Ciência e Tecnologia (Portuguese Foundation for Science and Technology) through the project CEMAT-CIÊNCIAS UID/Multi/ 04621/2013An automaton (consisting of a finite set of states with given transitions) is said to be synchronizing if there is a word in the transitions which sends all states of the automaton to a single state. Research on this topic has been driven by the Černý conjecture, one of the oldest and most famous problems in automata theory, according to which a synchronizing n-state automaton has a reset word of length at most (n − 1)2 . The transitions of an automaton generate a transformation monoid on the set of states, and so an automaton can be regarded as a transformation monoid with a prescribed set of generators. In this setting, an automaton is synchronizing if the transitions generate a constant map. A permutation group G on a set Ω is said to synchronize a map f if the monoid (G, f) generated by G and f is synchronizing in the above sense; we say G is synchronizing if it synchronizes every non-permutation. The classes of synchronizing groups and friends form an hierarchy of natural and elegant classes of groups lying strictly between the classes of primitive and 2-homogeneous groups. These classes have been floating around for some years and it is now time to provide a unified reference on them. The study of all these classes has been prompted by the Černý conjecture, but it is of independent interest since it involves a rich mix of group theory, combinatorics, graph endomorphisms, semigroup theory, finite geometry, and representation theory, and has interesting computational aspects as well. So as to make the paper self-contained, we have provided background material on these topics. Our purpose here is to present recent work on synchronizing groups and related topics. In addition to the results that show the connections between the various areas of mathematics mentioned above, we include a new result on the Černý conjecture (a strengthening of a theorem of Rystsov), some challenges to finite geometers (which classical polar spaces can be partitioned into ovoids?), some thoughts about infinite analogues, and a long list of open problems to stimulate further work.PostprintPeer reviewe

    A geometric approach to (semi)-groups defined by automata via dual transducers

    Full text link
    We give a geometric approach to groups defined by automata via the notion of enriched dual of an inverse transducer. Using this geometric correspondence we first provide some finiteness results, then we consider groups generated by the dual of Cayley type of machines. Lastly, we address the problem of the study of the action of these groups in the boundary. We show that examples of groups having essentially free actions without critical points lie in the class of groups defined by the transducers whose enriched dual generate a torsion-free semigroup. Finally, we provide necessary and sufficient conditions to have finite Schreier graphs on the boundary yielding to the decidability of the algorithmic problem of checking the existence of Schreier graphs on the boundary whose cardinalities are upper bounded by some fixed integer

    A Theory of Transformation Monoids: Combinatorics and Representation Theory

    Full text link
    The aim of this paper is to develop a theory of finite transformation monoids and in particular to study primitive transformation monoids. We introduce the notion of orbitals and orbital digraphs for transformation monoids and prove a monoid version of D. Higman's celebrated theorem characterizing primitivity in terms of connectedness of orbital digraphs. A thorough study of the module (or representation) associated to a transformation monoid is initiated. In particular, we compute the projective cover of the transformation module over a field of characteristic zero in the case of a transitive transformation or partial transformation monoid. Applications of probability theory and Markov chains to transformation monoids are also considered and an ergodic theorem is proved in this context. In particular, we obtain a generalization of a lemma of P. Neumann, from the theory of synchronizing groups, concerning the partition associated to a transformation of minimal rank
    corecore