657 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Design and characterisation of monolithic CMOS detectors for high energy particle physics and SEU radiation tests for ATLAS Inner Tracker Upgrade readout chip

    Get PDF
    This thesis covers the characterisation results and the design of monolithic CMOS detectors designed in TowerJazz 180nm CMOS technology for High Energy Particle Physics applications. Three different detectors have been studied the MALTA, the Mini-MALTA and the MALTA2. The MALTA sensor showed some efficiency losses at the corners of the pixels after irradiation, which meant that it was not suitable for the radiation environments in which it was supposed to be installed. Therefore, the front-end electronics and the fabrication process were modified to overcome this issue. The Mini-MALTA prototype was designed including the above mentioned improvements, fabricated and fully characterised. Finally taking into account all the knowledge acquired during these years of developments another large scale sensor the MALTA2 has been produced which should be radiation tolerant and have very good time resolution. The description and studies of the different architectures used in this family of detectors are covered and a simulation to estimate the bandwidth capabilities have been reported. Furthermore, this work will present characterisation of single event effects in the ITkPixV1, the prototype version of the ATLAS Inner Tracker Upgrade chip for the High Luminosity LHC. Measurements were made in testbeam campaigns with high energy ions and protons to evaluate the level of single event effects in the chip

    Towards trustworthy computing on untrustworthy hardware

    Get PDF
    Historically, hardware was thought to be inherently secure and trusted due to its obscurity and the isolated nature of its design and manufacturing. In the last two decades, however, hardware trust and security have emerged as pressing issues. Modern day hardware is surrounded by threats manifested mainly in undesired modifications by untrusted parties in its supply chain, unauthorized and pirated selling, injected faults, and system and microarchitectural level attacks. These threats, if realized, are expected to push hardware to abnormal and unexpected behaviour causing real-life damage and significantly undermining our trust in the electronic and computing systems we use in our daily lives and in safety critical applications. A large number of detective and preventive countermeasures have been proposed in literature. It is a fact, however, that our knowledge of potential consequences to real-life threats to hardware trust is lacking given the limited number of real-life reports and the plethora of ways in which hardware trust could be undermined. With this in mind, run-time monitoring of hardware combined with active mitigation of attacks, referred to as trustworthy computing on untrustworthy hardware, is proposed as the last line of defence. This last line of defence allows us to face the issue of live hardware mistrust rather than turning a blind eye to it or being helpless once it occurs. This thesis proposes three different frameworks towards trustworthy computing on untrustworthy hardware. The presented frameworks are adaptable to different applications, independent of the design of the monitored elements, based on autonomous security elements, and are computationally lightweight. The first framework is concerned with explicit violations and breaches of trust at run-time, with an untrustworthy on-chip communication interconnect presented as a potential offender. The framework is based on the guiding principles of component guarding, data tagging, and event verification. The second framework targets hardware elements with inherently variable and unpredictable operational latency and proposes a machine-learning based characterization of these latencies to infer undesired latency extensions or denial of service attacks. The framework is implemented on a DDR3 DRAM after showing its vulnerability to obscured latency extension attacks. The third framework studies the possibility of the deployment of untrustworthy hardware elements in the analog front end, and the consequent integrity issues that might arise at the analog-digital boundary of system on chips. The framework uses machine learning methods and the unique temporal and arithmetic features of signals at this boundary to monitor their integrity and assess their trust level

    Undergraduate and Graduate Course Descriptions, 2023 Spring

    Get PDF
    Wright State University undergraduate and graduate course descriptions from Spring 2023

    Radiation Tolerant Electronics, Volume II

    Get PDF
    Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade.After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects

    2023-2024 Undergraduate Catalog

    Get PDF
    2023-2024 undergraduate catalog for Morehead State University

    General Course Catalog [2022/23 academic year]

    Get PDF
    General Course Catalog, 2022/23 academic yearhttps://repository.stcloudstate.edu/undergencat/1134/thumbnail.jp

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications

    A Comprehensive Survey on Non-Invasive Fault Injection Attacks

    Get PDF
    Non-invasive fault injection attacks have emerged as significant threats to a spectrum of microelectronic systems ranging from commodity devices to high-end customized processors. Unlike their invasive counterparts, these attacks are more affordable and can exploit system vulnerabilities without altering the hardware physically. Furthermore, certain non-invasive fault injection strategies allow for remote vulnerability exploitation without the requirement of physical proximity. However, existing studies lack extensive investigation into these attacks across diverse target platforms, threat models, emerging attack strategies, assessment frameworks, and mitigation approaches. In this paper, we provide a comprehensive overview of contemporary research on non-invasive fault injection attacks. Our objective is to consolidate and scrutinize the various techniques, methodologies, target systems susceptible to the attacks, and existing mitigation mechanisms advanced by the research community. Besides, we categorize attack strategies based on several aspects, present a detailed comparison among the categories, and highlight research challenges with future direction. By underlining and discussing the landscape of cutting-edge, non-invasive fault injection, we hope more researchers, designers, and security professionals examine the attacks further and take such threats into consideration while developing effective countermeasures

    Naval Postgraduate School Academic Catalog - February 2023

    Get PDF
    • …
    corecore