10 research outputs found

    Offline signature verification using classifier combination of HOG and LBP features

    Get PDF
    We present an offline signature verification system based on a signature’s local histogram features. The signature is divided into zones using both the Cartesian and polar coordinate systems and two different histogram features are calculated for each zone: histogram of oriented gradients (HOG) and histogram of local binary patterns (LBP). The classification is performed using Support Vector Machines (SVMs), where two different approaches for training are investigated, namely global and user-dependent SVMs. User-dependent SVMs, trained separately for each user, learn to differentiate a user’s signature from others, whereas a single global SVM trained with difference vectors of query and reference signatures’ features of all users, learns how to weight dissimilarities. The global SVM classifier is trained using genuine and forgery signatures of subjects that are excluded from the test set, while userdependent SVMs are separately trained for each subject using genuine and random forgeries. The fusion of all classifiers (global and user-dependent classifiers trained with each feature type), achieves a 15.41% equal error rate in skilled forgery test, in the GPDS-160 signature database without using any skilled forgeries in training

    The effective use of the DSmT for multi-class classification

    Get PDF
    International audienceThe extension of the Dezert-Smarandache theory (DSmT) for the multi-class framework has a feasible computational complexity for various applications when the number of classes is limited or reduced typically two classes. In contrast, when the number of classes is large, the DSmT generates a high computational complexity. This paper proposes to investigate the effective use of the DSmT for multi-class classification in conjunction with the Support Vector Machines using the One-Against-All (OAA) implementation, which allows offering two advantages: firstly, it allows modeling the partial ignorance by including the complementary classes in the set of focal elements during the combination process and, secondly, it allows reducing drastically the number of focal elements using a supervised model by introducing exclusive constraints when classes are naturally and mutually exclusive. To illustrate the effective use of the DSmT for multi-class classification, two SVM-OAA implementations are combined according three steps: transformation of the SVM classifier outputs into posterior probabilities using a sigmoid technique of Platt, estimation of masses directly through the proposed model and combination of masses through the Proportional Conflict Redistribution (PCR6). To prove the effective use of the proposed framework, a case study is conducted on the handwritten digit recognition. Experimental results show that it is possible to reduce efficiently both the number of focal elements and the classification error rate

    Biometric identity verification using on-line & off-line signature verification

    Get PDF
    Biometrics is the utilization of biological characteristics (face, iris, fingerprint) or behavioral traits (signature, voice) for identity verification of an individual. Biometric authentication is gaining popularity as a more trustable alternative to password-based security systems as it is relatively hard to be forgotten, stolen, or guessed. Signature is a behavioral biometric: it is not based on the physical properties, such as fingerprint or face, of the individual, but behavioral ones. As such, one's signature may change over time and it is not nearly as unique or difficult to forge as iris patterns or fingerprints, however signature's widespread acceptance by the public, make it more suitable for certain lower-security authentication needs. Signature verification is split into two according to the available data in the input. Off-line signature verification takes as input the image of a signature and is useful in automatic verification of signatures found on bank checks and documents. On-line signature verification uses signatures that are captured by pressure-sensitive tablets and could be used in real time applications like credit card transactions or resource accesses. In this work we present two complete systems for on-line and off-line signature verification. During registration to either of the systems the user has to submit a number of reference signatures which are cross aligned to extract statistics describing the variation in the user's signatures. Both systems have similar verification methodology and differ only in data acquisition and feature extraction modules. A test signature's authenticity is established by first aligning it with each reference signature of the claimed user, resulting in a number of dissimilarity scores: distances to nearest, farthest and template reference signatures. In previous systems, only one of these distances, typically the distance to the nearest reference signature or the distance to a template signature, was chosen, in an ad-hoc manner, to classify the signature as genuine or forgery. Here we propose a method to utilize all of these distances, treating them as features in a two-class classification problem, using standard pattern classification techniques. The distances are first normalized, resulting in a three dimensional space where genuine and forgery signature distributions are well separated. We experimented with the Bayes classifier, Support Vector Machines, and a linear classifier used in conjunction with Principal Component Analysis, to classify a given signature into one of the two classes (forgery or genuine). Test data sets of 620 on-line and 100 off-line signatures were constructed to evaluate performances of the two systems. Since it is very difficult to obtain real forgeries, we obtained skilled forgeries which are supplied by forgers who had access to signature data to practice before forging. The online system has a 1.4% error in rejecting forgeries, while rejecting only 1.3% of genuine signatures. As an offine signature is easier to forge, the offine system's performance is lower: a 25% error in rejecting forgery signatures and 20% error in rejecting genuine signatures. The results for the online system show significant improvement over the state-of-the-art results, and the results for the offline system are comparable with the performance of experienced human examiners

    Offline signature verification with user-based and global classifiers of local features

    Get PDF
    Signature verification deals with the problem of identifying forged signatures of a user from his/her genuine signatures. The difficulty lies in identifying allowed variations in a user’s signatures, in the presence of high intra-class and low interclass variability (the forgeries may be more similar to a user’s genuine signature, compared to his/her other genuine signatures). The problem can be seen as a nonrigid object matching where classes are very similar. In the field of biometrics, signature is considered a behavioral biometric and the problem possesses further difficulties compared to other modalities (e.g. fingerprints) due to the added issue of skilled forgeries. A novel offline (image-based) signature verification system is proposed in this thesis. In order to capture the signature’s stable parts and alleviate the difficulty of global matching, local features (histogram of oriented gradients, local binary patterns) are used, based on gradient information and neighboring information inside local regions. Discriminative power of extracted features is analyzed using support vector machine (SVM) classifiers and their fusion gave better results compared to state-of-the-art. Scale invariant feature transform (SIFT) matching is also used as a complementary approach. Two different approaches for classifier training are investigated, namely global and user-dependent SVMs. User-dependent SVMs, trained separately for each user, learn to differentiate a user’s (genuine) reference signatures from other signatures. On the other hand, a single global SVM trained with difference vectors of query and reference signatures’ features of all users in the training set, learns how to weight the importance of different types of dissimilarities. The fusion of all classifiers achieves a 6.97% equal error rate in skilled forgery tests using the public GPDS-160 signature database. Former versions of the system have won several signature verification competitions such as first place in 4NSigComp2010 and 4NSigComp2012 (the task without disguised signatures); first place in 4NSigComp2011 for Chinese signatures category; first place in SigWiComp2013 for all categories. Obtained results are better than those reported in the literature. One of the major benefits of the proposed method is that user enrollment does not require skilled forgeries of the enrolling user, which is essential for real life applications

    Automatic Signature Verification: The State of the Art

    Full text link

    Robust and applicable handwriting biometrics

    Get PDF

    Advances and Applications of Dezert-Smarandache Theory (DSmT) for Information Fusion (Collected Works), Vol. 4

    Get PDF
    The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals. First Part of this book presents the theoretical advancement of DSmT, dealing with Belief functions, conditioning and deconditioning, Analytic Hierarchy Process, Decision Making, Multi-Criteria, evidence theory, combination rule, evidence distance, conflicting belief, sources of evidences with different importance and reliabilities, importance of sources, pignistic probability transformation, Qualitative reasoning under uncertainty, Imprecise belief structures, 2-Tuple linguistic label, Electre Tri Method, hierarchical proportional redistribution, basic belief assignment, subjective probability measure, Smarandache codification, neutrosophic logic, Evidence theory, outranking methods, Dempster-Shafer Theory, Bayes fusion rule, frequentist probability, mean square error, controlling factor, optimal assignment solution, data association, Transferable Belief Model, and others. More applications of DSmT have emerged in the past years since the apparition of the third book of DSmT 2009. Subsequently, the second part of this volume is about applications of DSmT in correlation with Electronic Support Measures, belief function, sensor networks, Ground Moving Target and Multiple target tracking, Vehicle-Born Improvised Explosive Device, Belief Interacting Multiple Model filter, seismic and acoustic sensor, Support Vector Machines, Alarm classification, ability of human visual system, Uncertainty Representation and Reasoning Evaluation Framework, Threat Assessment, Handwritten Signature Verification, Automatic Aircraft Recognition, Dynamic Data-Driven Application System, adjustment of secure communication trust analysis, and so on. Finally, the third part presents a List of References related with DSmT published or presented along the years since its inception in 2004, chronologically ordered

    Vulnerabilities and attack protection in security systems based on biometric recognition

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Escuela Politécnica Superior, noviembre de 200
    corecore