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Preface

This is a dissertation about handwriting biometrics: automated attribution of hand-
writing to writers. This is done using writer-specific characteristics that are derived
computationally, without regarding the textual contents. To be clear, the dissertation
is not about computers reading handwriting. This is the domain of handwriting recogni-
tion, which is related but the goal is opposite: the objective is to transcribe the textual
contents of the handwriting to ‘typed’ text, disregarding individual handwriting charac-
teristics. The dissertation is not about graphology either: it does not attempt to derive
a writer’s personality based on the handwriting. Instead, it will be investigated to what
extent algorithms for handwriting biometrics are robust, and new techniques are intro-
duced to increase both robustness and applicability of such systems. Before moving to
the dissertation itself, I would like to spend a few words on how it was made.

The dissertation was written between 2005 and 2011. During 2005 – 2009, it was part
of a full-time job at the ALICE department of the University of Groningen. Originally,
the goal was to analyze contemporary (forensic) handwriting, but in the process the focus
broadened to include historical handwriting as well. An important factor in the writing
process was a sofa in our room: it facilitated a thinking position and it encouraged
discussions with colleagues. I was surrounded by great colleagues and the job allowed
me to visit Germany, France, Florida, and Brazil. But after the four-year contract
period, I got a commercial job and the dissertation had to be finished in the evening
hours. Writing pace decreased, although I learned that temporarily moving to new
environments (in my case, outdoor cafés) can boost the process. And now it is finally
done.

Many people have contributed to this thesis in a direct or indirect way, and I wish
to express my gratitude to them. Most notably, the dissertation could not exist without
prof. Lambert Schomaker, my promotor, supervisor, and guide in the world of science.
He shared his broad experience on handwriting analysis with me, he knew what ingredi-
ents were needed to lift papers to scientific standards, and he convinced me to continue
when it was needed.

Marius Bulacu set an example in techniques for handwriting biometrics, and he was
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also eager to share his knowledge and ideas with me. His crystal-clear standpoints were
always insightful as well as entertaining.

I have had a very nice cooperation with Jinna Smit, Mark Aussems and Judith No-
bels in experiments on historical handwriting. They have become advocates of using
biometrics with historical handwriting and their enthousiasm has been contagious. Es-
pecially Jinna had a big impact on the dissertation by opening the door to this new
research direction.

Elisa van den Heuvel, partner in the TriGraph research project, kindly introduced
me to the forensic way of handwriting analysis. We collaborated in an investigation on
slant together with enthousiastic student Roeland van Batenburg and Ralph Niels, who
was also a partner in the TriGraph research project. Ralph and I had good discussions
and made many plans, and I am lucky to be a colleague of him once again.

Anja Lobanova, Bea Valkenier, Dirkjan Krijnders, Marco Wiering, and Martijn Di-
jkstra helped me writing the thesis by providing helpful comments and stimulating to
continue. Tijn van der Zant pushed me to think ‘out of the box’ and convinced me to
buy the sofa.

The colleagues that were not mentioned above contributed in other ways, at least
everyone took part in creating a great athmosphere at the alice department: Arnold,
Bart, Bart, Ben, Ben, Chris, Edith, Elina, Elske, Esther, Fokie, Geertje, Gert (my frisbee
master), Hanneke, Hedde (my Go master), Hedderik, Ingrid, Jacolien, Jacomien, Jelmer,
Jennifer, Joep, Jolie, Karin, Leendert, Liesbeth, Margriet, Mariëtte, Maria, Nancy, Niels
(my boardgames master), Renante, Rineke, Ronald, Ronald, Roy, Rutger, Sietse, Sietse,
Sjoerd, Sonja, Sujata, Tjeerd, and Wouter.

I am also grateful to the members of the reading committee, for reading and accepting
the manuscript, and for their valuable feedback.

Finally, I want to thank my parents Albert and Myra for their unconditional support,
and Karin, love of my life, for her patience, moral support and understanding.

Apeldoorn, October 2011
Axel Brink



Chapter 1

Introduction

Handwriting can be the key to solve a crime. Handwritten texts such as stalking letters,
ransom notes, forged suicide notes and threat letters (Figure 1.1) contain individual
characteristics that may give the offender away. Today, finding a suspect still requires
secondary evidence. His or her handwriting is then studied by forensic document exam-
iners (fdes): based on a handwriting sample, the expert judges to what extent it is likely
that the suspect wrote the questioned document by determining correspondences and
differences of individual characteristics in the handwriting. This can make the difference
between acquittal and custody.

Handwriting also plays a key role in history research, since many historical sources are
handwritten. See the document in Figure 1.2 for an example. In some cases, documents
in a single collection could be attributed to more than one writer, or writings found at
different locations could be attributed to the same writer. For example, the authorship of
texts ascribed to famous authors such as Shakespeare or Christine de Pizan is disputed.
Furthermore, the identification of anonymous traveling scribes of historical institutions
can help to determine their organization and activities. Paleographers study historical
documents in an attempt to connect documents to writers and to situate the documents
in time and space.

Forensic and historical document examiners perform an important and valuable task,
but they are not flawless [36, 37, 56]. This is partly caused by a lack of objectivity [96] and
quantification [35]: document examiners compare handwriting based on personal skill
and experience, partly based on personal choices and estimations, and many experts do
not follow a standardized methodology [66]. Moreover, the experts may be prejudiced
by knowledge of context information. Furthermore, humans cannot always perform a
complete analysis if a large quantity of handwriting is involved.

To some extent, the limitations of human experts can be complemented by the power
of computers. Both the application areas of law enforcement and history research can be
advanced [41] by a system for handwriting biometrics: a system that attributes handwrit-
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2 Chapter 1. Introduction

Figure 1.1: Threat letter: one of the letters containing lethal anthrax spores, sent one week after

the September 11 attacks in 2001.

ing to a writer based on computationally derived individual characteristics. Handwriting
biometrics is a form of behavioral biometrics, which also includes biometrics for human
gait, voice, and key press timing. In handwriting biometrics, not the actual behavior
(the act of writing) is used as a source of individual characteristics, but its recorded
result: the handwriting.

Handwriting biometrics comprises two types: writer verification and writer iden-
tification. A system for writer verification performs a one-to-one comparison of two
documents and decides whether the documents have probably been written by the same
person. It could be used to strengthen or weaken the judgment of forensic document
examiners and paleographers. A system for writer identification, on the other hand, is a
one-to-many comparison: it identifies the writer of a single query document by searching
for similar handwriting in a dataset and yielding a hit list of closely matching documents.
In law enforcement, this could be used to find suspects without the need for secondary
evidence. The only requirement is a dataset of handwriting of known writers. In the
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Figure 1.2: Medieval handwriting in a charter, a legal administrative document (1310). The original
charter can be accessed via Nationaal Archief (National Archives of the Netherlands), Archief
van de graven van Holland, access number 3.01.01, item number 333. Photo: Jinna Smit.

case of historical handwriting, it could be used to group anonymous documents that
have likely been written by the same hand.

Today, biometric systems for handwriting biometrics are not widely applied yet. Sev-
eral systems for handwriting biometrics have emerged and some of them seem to be quite
accurate (see Table 1.2 on page 17), but these systems require that the handwritten ma-
terial is neatly and naturally written. In practice however, irregularities in handwriting
are common. Realistic input documents have challenging properties such as a scarcity of
text, deletions, disguised handwriting or irregular background. It is not known to what
extent current systems are robust for such difficulties and how these can be countered.
Another shortcoming of current systems is a lack of explainability: the results of the
systems are usually expressed in numbers that are incomprehensible to domain experts.

These issues affect systems for writer identification: the performance in real-world
conditions is unknown and may be improved. However, since these systems just present
suggestions, a limited number of errors is acceptable without impeding applicability.
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For systems for writer verification on the other hand, the real-world challenges have to
be solved to make such systems applicable. A verification system that is not robust
or explainable cannot be used as a second opinion. Handwriting biometrics has the
potential to help support or contradict expert opinions and to elicit a speed boost in the
work-flow of the two application areas of forensics and paleography, when it is robust
and applicable.

1.1 Objectives of this dissertation

Two objectives are central to this dissertation:

1. Analysis of robustness of handwriting biometrics: types of difficulties in realistic
input documents will be identified that can be admitted while maintaining high
performance.

2. Introduction of new methods to make handwriting biometrics more robust and
applicable: principles that aid obtaining high performance and explainability in
realistic conditions will be presented.

Furthermore, as a proof-of-concept, the feasibility of robust and applicable handwriting
biometrics will be demonstrated in the form of a graphical computer application for
writer identification.

This work is part of the nwo/token-funded research project TriGraph, which aims
at combining three types of handwriting analysis:

� Manual examination by forensic document examiners at the Dutch Forensic Insti-
tute (nfi);

� Semi-automatic methods focusing on character-wise comparison, which have been
developed at the Donders Institute for Brain, Cognition and Behaviour in Nijmegen
[70];

� Fully-automatic methods based on statistical pattern recognition, to be developed
at the Institute of Artificial Intelligence and Cognitive Engineering (ALICE) in
Groningen.
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This dissertation represents the third type of methods. Only methods that are based on
statistical pattern recognition will be considered, which are typically fast, accurate, and
require little human intervention. The methods are only tested on off-line handwriting:
scanned or photographed handwriting, which is the form in which forensic and historical
material exists.

1.2 Overview

The dissertation is split in two parts. Part I constitutes objective 1: analysis of robust-
ness of current methods when confronted with realistic input. Three common issues will
be investigated: text scarcity (Chapter 2), crossed-out words (Chapter 3), and disguised
handwriting (Chapter 4).

Part II constitutes objective 2: the introduction of methods to make handwriting bio-
metrics more robust and applicable. A robust system contains several powerful methods,
each suitable for a known range of conditions. In Chapter 5, a new feature for writer
identification will be introduced, to be used as one of the available methods in a robust
system for handwriting biometrics. The feature is powerful and explainable. It is in-
spired by modern paleography and exploits information in the combination of ink trace
angle and width. In Chapter 6 a method is introduced to make handwriting biomet-
rics more applicable by increasing explainability: instead of a list of abstract numbers,
handwriting is represented as a unique relative position with respect to the handwriting
of a small selection of writers, the vantage writers.

The last chapter, Chapter 7, concludes the dissertation. It summarizes the main
results and provides new research directions. It is followed by Appendix A, in which
giwis will be introduced, a graphical computer application for writer identification. It
serves as a proof-of-concept that demonstrates the feasibility of robust and applicable
handwriting biometrics.

As a preliminary to the two parts, the remainder of this section discusses fundamen-
tals of handwriting biometrics. It will introduce the theoretical basis and it will explain
how a straightforward approach based on statistical pattern recognition works.
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1.3 Individuality in handwriting

Individuality in handwriting is the result of two factors: the physical properties of the
body and the way it is controlled by the brain. The body can be seen as a heavy
contraption of bones, joints and energy-effective, dampening muscles. The physiological
properties of these components such as bone lengths, muscular strength and fatigability
are probably different for every individual [84]. The unique way of controlling the body
is stored in a unique motor program in the brain that controls the body during writing
[48, 84]. This program is formed by learning at school and further shaped by observation
of writings of other persons and personal preference. Together, these physiological and
mental constituents result in individual writing behavior.

This shows in several individual characteristics that can be categorized into eight
aspects of individuality letter form, curve style, slant, pressure, pen grip, proportions,
spacing, contents, and consistency. See Table 1.1 for examples of characteristics for
these aspects. Note that some of the characteristics are influenced by the individual pen
grip, which determines how human dynamics are translated to pen tip dynamics.

Writer-specific characteristics vary among different writers; this variability is called
between-writer variability. A complicating factor is that there is also within-writer vari-
ability: handwriting of any individual is never the same. Humans are subject to vari-
ability and cannot copy their own movements exactly, unlike a robot. This is caused by
several factors, such as:

� Neuro-biomechanical variability: the neuromotor system is a complex feedback
system that results in chaotic behavior;

� Mental state: mood, stress, sleepiness, alcohol level, etc.;

� Aging: over a period of years, a person’s physical properties and mental motor
program change;

� Injuries;

� External causes: temperature, properties of the writing instrument and support
(paper).

It is a challenge to identify features of handwriting that have high between-writer vari-
ability and low within-writer variability.
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Aspect of in-
dividuality

Characteristics in handwriting

Letter form Allograph usage (the type of copybook letters used) [53]; placement
of i-dots, t-crosses etc. [66]; “unusual” letter form (letters that have a
non-standard shape) [48]; cursiveness (as opposed to hand-printing)
[22, 48]; embellishments [53]; tick marks (short pointed marks) [66].

Curve style Construction [53]; stroke sequence order; domination of clockwise,
counterclockwise, or straight motions [53, 66]; curvature (changes of
direction); [19, 48, 66]; line quality (fluency, speed) [48, 53]; legibility
or writing quality [53]; stroke direction and length at beginning and
ending strokes [8, 53, 66, 87]; compression at line ends [53]; signs of
unusual pen grip [53].

Slant Dominant stroke angle [16, 22, 26, 48, 53, 63]; angle of the long strokes
of the letters h, k, p, etc.

Pressure Pressure variation [48, 53, 66, 89], degree of tapering at beginning
and ending strokes [8, 53, 66, 87]. (indirectly measurable)

Proportions Dimensions [53]; character proportions (height, width, and
width/height ratio of within-character parts); [22, 48]; word propor-
tions [53].

Spacing Connectedness [48] and position of connections [53]; line continuity
[53]; alignment with respect to the baseline [53]; spacing and shape
of margins [48, 53, 66]; spacing and shape of text lines [48, 53, 66];
spacing between words and parts of words [48, 53]; character, posi-
tion and frequency of interlineations [53]; depth of indentions [53];
paragraphing [53]; location of headings, signature, address, etc. [53].

Contents Spelling; use of diacritics and punctuation [53, 66]; use of numerals
and symbols in monetary amounts [53]; abbreviations [53]; vocabu-
lary.

Consistency Consistency of the characteristics mentioned above [48, 53].

Table 1.1: Aspects of individuality in handwriting and characteristics for each aspect as defined in

literature. Notice that some characteristics are not directly measurable, such as pressure and pen

grip.
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(a) Writer verification

(b) Writer identification

Figure 1.3: Components in straightforward systems for writer verification and identification. A

system for writer verification takes two documents and decides whether the documents have been

written by the same person with a yes/no result; a system for writer identification takes only one

document and returns the possible identity of the writer. These systems are largely identical: only

the classifier is different.

1.4 Handwriting biometrics

Straightforward systems for handwriting biometrics consist of several components [33,
81], or steps: digitization, preprocessing, segmentation, feature extraction and classifica-
tion. These steps are exactly the same for writer verification and identification, except
the classifiers are different. This is visualized in Figure 1.3. The order of these steps
may be altered to fit the chosen methods. In a robust system, the components may be
executed more than once, with different parameter values, as more knowledge is derived
in the process. The next sections explain a basic approach of each of these steps indi-
vidually, followed by common methods of performance evaluation. Later chapters build
upon this setup.
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1.5 Digitization

The first step of handwriting biometrics is digitization. Documents can be digitized
using a scanner, which ensures constant illumination, a flat and well-aligned original,
high resolution and it does not suffer from lens distortion. However, a scanner cannot be
used for delicate documents, such as old handwriting, as the scanner might damage the
document. In such cases, a photo camera setup can be used, consisting of a container for
the original, a high-quality digital photo camera, a stand to hold the camera, and one or
more light sources to ensure almost-constant illumination. The image resolution must be
high enough to capture writer-specific details, such as 300 dpi [44]. The resulting images
should be stored in a lossless file format such as .png to avoid image degradation.

1.6 Preprocessing

In the preprocessing step, the pixel intensities of the image are altered to suit feature
extraction and to make the distinction between handwriting text and background as
clear as possible. Ideally, the handwritten text turns dark while everything else turns
white. Feature extraction requires grayscale or black/white images; the rationale is that
text written in ink is usually darker than the background, irrespective of the hue. Thus,
color images must be converted to grayscale. The simplest method is by averaging the
R, G, and B values of each pixel.

Many feature extraction methods require a pure black-and-white image. This is done
by binarization of the image. A good and frequently used method is Otsu’s thresholding
method [75]; this method applies a global threshold based on a statistic of the histogram
of pixel intensities. This is effective on documents with uniform illumination and uniform
background intensity.

Real-world documents will require additional, more elaborate preprocessing steps
[39]. In chapter 5 we will show how extra steps were used to adapt to handwriting in
medieval documents: perspective correction, automatic scaling and high-pass filtering.
If such elaborate steps are used, care must be taken to keep the process explainable
for admission in a court of law. This can be facilitated by keeping track of all applied
preprocessing steps [100].
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1.7 Segmentation

In the segmentation step, the coordinates and boundaries are determined of the units of
interest in the image: single characters, words, text lines, or the complete block of text
(the region of interest, roi). For each unit of interest in one document, features will
be extracted and compared to similar units in the other document in later steps of the
system. The required type of segmentation depends on the desired type of comparison:
text-dependent or text-independent comparison [78].

Text-dependent comparison is a detailed one-to-one comparison of single words or
characters. For example, the word “the” in one document will be compared to the
same word in the other document. This type of comparison is similar to the human
approach and it facilitates high performance as it can draw on knowledge of what is being
compared. Text-independent comparison, on the other hand, comprises the comparison
of big regions of text as a unit, disregarding the textual contents. The unit can be an
individual text line or the entire block of text. The rationale of comparison on these levels
is that the unit is so big that it should contain a representative sample of characters,
providing a stable basis for statistical features. It requires text-line or text-block-level
segmentation.

The smaller the unit of interest, the more human intervention is required, since
segmentation cannot be fully automatized yet (except in special cases). Particularly
word-level and character-level segmentation are labor-intensive. This is a major disad-
vantage of text-dependent comparison. In addition, text-dependent comparison requires
that the textual content of each character or word is manually entered, and the tex-
tual contents of the compared documents must be equal or at least overlap significantly.
These disadvantages do not hold for text-independent comparison. Therefore we will
categorize it as “automatic”. Furthermore, it has been shown that text-independent
methods can reach high performance (see Table 1.2 on page 17). For these reasons, this
dissertation focuses on text-independent methods. In Chapter 2, the minimum required
amount of text for such methods will be determined.

1.8 Feature extraction

The heart of handwriting biometrics is feature extraction: measuring writer-specific char-
acteristics in each segmented unit. The measured values are reflected in a list of numbers,
the feature vector. Eventually, not the handwriting is compared, but the handwriting’s



1.8. Feature extraction 11

Figure 1.4: Code-book for the Fraglets feature. (Figure by Lambert Schomaker, reprinted with

permission.)

feature vectors. In the family of statistical features, the feature vector is computed by
performing a high number of measurements, accumulating the results in a histogram,
and normalizing it into a probability distribution.

Robust handwriting biometrics requires a diverse collection of powerful features,
yielding feature vectors for which the between-writer variability is high, while the within-
writer variability is low. Designing such feature extraction methods is a challenge. In the
following, a few examples of methods that have been developed before will be introduced,
categorized by the measured aspect of individuality. The best tested features are shown
with their performance figures in Table 1.2 on page 17. In Chapter 5, a new statistical
feature will be proposed.

1.8.1 Features encoding letter form

Statistical features encoding letter form are based on allograph usage frequencies. These
methods first segment the textual region into character-like ink blobs and then categorize
the blobs. The blobs are partial or complete characters. The rationale is that each writer
uses a distinct set of character categories. Examples are:

� Fraglets [86] (also named “fCO3”) is a probability distribution of usage of graphemes
(or fraglets, fragments of handwriting, consisting of complete and partial charac-
ters) from a code-book of character contours such as visualized in Figure 1.4.
Fraglets is used in this dissertation as a reference for performance evaluation. In
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Figure 1.5: Directions feature. (Figure by Marius Bulacu, reprinted with permission.)

this case it was trained with a pre-computed code-book based on modern hand-
writing: all pages of the first 100 subjects of the Firemaker dataset [88]. Fraglets
is one of the best features currently available. See Table 1.2.

� Grapheme occurrence [6] is similar to Fraglets: a dataset of handwritten text
is segmented and clustered into graphemes; a binary list indicates occurrence of
graphemes in the text and forms the feature vector. See Table 1.2.

� On-line allograph matching [73, 71] relies on an off-line to on-line conversion:
inferring the writing movement of each character. Based on matching of these
on-line characters, the frequency of each character is determined and weighted to
global frequencies.

1.8.2 Features encoding curve style

Curve style is determined by traversing the boundaries of the (supposed) characters
while accumulating directional statistics. Examples are:

� Chain code histogram encodes direction usage frequencies. Each contour in the
text is represented as a chain code: a sequence of numbers indicating the direction
between two consecutive contour pixels. In one approach, [94] the method counts
the number of “vertical, negative, positive, [and] horizontal” components. In a
more recent approach [90], a histogram of all seven chain code directions is used
as feature vector.

� Chain-code differentials [90] encode curve style. These features are histograms
of the first-order or second-order differential of the chain codes.
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tions at the ink boundary. (Figure by Marius Bulacu, reprinted with permission.)

� Edge-direction histogram (or “Directions”) [16] encodes direction usage fre-
quencies. It is a probability distribution of ink directions of longer oriented edge
fragments along the contours, quantized into a limited number of histogram bins.
See Figure 1.5.

� Hinge [19, 21] encodes slant and curve style. Curve style refers to frequency, direc-
tion and degree of bends in the ink trace. Intuitively, it expresses the appearance
of curves, corners, round parts, and straight parts. Hinge is a probability distri-
bution of angle combinations that are measured on the boundaries of the ink. It
is one of the best features available. Figure 1.6 shows a visualization.

� Micro-features [94] encode curve style and structure of each character. It is
computed by image gradients, gradient combinations and concavity computed in
a 4x4 grid per character.

� Curvature index histogram [90] encodes curvature.

1.8.3 Features encoding slant

� Angle frequencies [94]. The average writing slant is computed as a weighted
average angle of near-vertical contour fragments, where the vertical dimension
of the fragment determines the weight. Variations include computing an edge-
direction histogram and finding the maximum or mode in it [16] or the peak that
is closest to 90◦ [26]. Another variation computes the average angle in rectangular
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Figure 1.7: The Brush feature is a 2D probability distribution of ink intensities at stroke

endings.

sub-areas containing vertical structures [9].

� Repeated shearing [57, 103]. This method determines the slant angle based on
repeatedly shearing images of individual text lines, varying the shear angle, and
optimizing a criterion on the vertical projection histogram.

1.8.4 Features encoding pressure

� Gray-level threshold [94] encodes average pen pressure. This approach uses the
threshold value found using Otsu’s method [75] as a feature.

� Black pixel count [94] encodes average pen pressure, thickness of strokes, and
size of writing.

� Gray-level distribution [94]. This feature measures the variation of pen pres-
sure. It is computed by the entropy of the histogram of gray levels.

� Brush [87] encodes habitual pressure and stroke direction during pen landing and
lifting. It is a probability distribution of ink intensities at stroke endings. See
Figure 1.7.

1.8.5 Features encoding proportions

� Text line height [94] encodes the average height of the text lines. This can be
computed by considering the average distance between maxima and minima in the
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upper contour of the text lines.

� Paragraph aspect ratio and indentation [94]. This can be computed after
semi-automatic selection of the paragraph regions.

� Word proportions [94] encodes the upper zone ratio, lower zone ratio, and length
of words. These can be computed after semi-automatic selection of a specific word
in each input document.

1.8.6 Features encoding spacing

� Contour counts [94] are measures of the connectivity of handwriting. It is com-
puted by contour tracing followed by counting the number of inner and outer
contours. The ratio of these two numbers is different for isolated characters than
for connected characters.

� White runs [2, 87] (also named “HrunW”) encodes within- and between-letter
spacing. It is a probability distribution of white run-lengths. The best approach
counts the run-lengths horizontally, but a vertical approach can also be used, or a
combination of the two.

1.8.7 Features encoding contents

Analysis of textual contents to determine the author is the field of stylometry [97, 61]. It
is not used in conjunction with automatic handwriting comparison yet, since it requires
automatic recognition of the textual contents, which is not good enough for practical
application yet.

1.8.8 Features encoding texture

A new possibility of computer methods is to see the handwriting purely as a textured
pattern and derive features describing the appearance of the texture. This appearance is
determined by writer-specific traits. Although it can be argued that some of the features
mentioned above also treat handwriting as a texture, the following features are purely
textural:

� Autocorrelation [19] describes regularities in the horizontal direction, for exam-
ple regularly-spaced vertical strokes. It is computed by the correlation between the
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image pixels and a horizontally shifted version. It can be seen as Fourier analysis
along the pixel rows.

� Autoregression [44] (f16). The handwriting is treated as a purely textural pat-
tern; the coefficients of 2D autoregression are used as features.

� Gabor filtering [80] is based on visual processing in the human visual cortex.

1.8.9 Features encoding consistency

Elaborate approaches model the variability (or consistency) of the features using Gaus-
sian mixture models (gmms) [83] or other methods that require learning. In straightfor-
ward implementations, however, consistency is not determined; the measured features
are simply averaged.

1.9 Pairwise comparison

Comparison of feature vectors comprises a mapping from two input vectors to a sin-
gle value, signifying the degree of (dis)similarity. This can be done using trained and
untrained methods. Trained methods include Gaussian mixture models [83] and neural
networks. In this dissertation, untrained (dis)similarity measures have the focus because
they are simple yet powerful. Untrained methods include (dis)similarity measures such
as the following three (where x and y refer to the two compared feature vectors). For a
more elaborate overview, see [25].

� The Manhattan or City-block distance:

dM (x,y) =
|x|∑
i=1

|xi − yi| (1.1)

A simple distance measure. It is equal to the L1-norm of the difference of the
feature vectors: ||x− y||1.

� The Euclidean distance:

dE(x,y) =

√√√√ |x|∑
i=1

(xi − yi)2 (1.2)

This distance measure is frequently used. It is equal to the L2-norm of the differ-
ence of the feature vectors: ||x− y||2.
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PublicationFeatures Wri-
ters

Text-
indep.

Auto-
matic

Ident.
top1

Ident.
top10

Verif.

Schomaker
et al. [86]

Fraglets / fCO3 150 yes yes 97% 100%

Schlapbach
et al. [82]

HMM-based 100 yes no 97% 98% 98%

Bulacu [21] Fraglets + Hinge + White
runs

900 yes yes 87% 96% 97%

Siddiqi et
al. [90]

Chain code directions +
Chain-code-based curva-
ture + Curvature index

650 yes yes 86% 97% 97%

Srihari et
al. [94]

Micro-level character-based
features + Slant + Direc-
tion freq. + Gray-level
distr. + Gray-level thresh.
+ Black pixel count +
Text line height + Contour
counts

900 no no 88% 96%

Bensefia et
al. [6]

Grapheme-occurrence 150 yes yes 87% 99% 96%

Garain et
al. [44]

2D autoregression 422 yes yes 62% 96%

Table 1.2: Performance of leading systems for handwriting biometrics in related work, tested on

handwriting created in laboratory conditions. The performance figures cannot be compared because

the used datasets differ in size and type of handwritten material. Some systems require a high degree

of human interference, in the form of manual character selection or training optimization (marked

with “no” in column “Automatic”). In particular, systems based on a hidden Markov model (hmm)

require in-depth statistical modeling per writer. Other systems assume that the pages in the corpus

contain the same text (indicated with “no” in column “Text-indep.”).
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� The χ2 distance:

dχ2(x,y) =
|x|∑
i=1

(xi − yi)2

xi + yi
(1.3)

This distance measure emphasizes relative differences in small feature values. It
is frequently used in this dissertation because it has been shown to be effective on
probability distributions of writer-specific features [85], such as Hinge and Fraglets.

1.10 Classification for writer verification

Based on a feature extraction method and a distance measure, handwriting can be
classified with a classifier for writer verification or writer identification. A classifier for
writer verification performs a one-to-one comparison of two feature vectors and decides
whether the corresponding documents have probably been written by the same person.
See also Figure 1.3 on page 8. In the most basic form, a writer verification classifier has
to make the difficult decision whether two documents have been written by the same
person. Such a classifier is a dichotomizer, which yields true/false or yes/no, based on a
threshold θ:

h(x,y) =

{
true if d(x,y) < θ

false otherwise
(1.4)

The threshold represents a zone of tolerance on the feature distance domain for at-
tributing two documents to the same writer, which is needed because of within-writer
variability [81]. This implies that false matches and/or false rejections can occur. The
value for θ that minimizes such errors can be learned by training.

The best value for θ can be learned by modeling the feature distances between pairs
of documents in the two classes: the class of pairs of documents written by the same
writer, and the class of those written by different writers. An example of such models is
shown in Figure 1.8. To build the models, a dataset of reference handwriting is needed.
This dataset will be regarded as being representative for all future classifications. After
preprocessing and feature extraction, pairs of documents are drawn from the dataset in
all combinations. The distributions of feature distance in the two classes form the basis
for the models. The models can be made using any parametric or nonparametric density
estimation method; see [33] for an extensive overview. Approaches using parametric
methods often assume a Gaussian distribution, which is suitable for the different-writer
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Figure 1.8: Probability densities of distances between feature vectors for two classes: the same-writer

class (left curve) and different-writer class (right curve). In writer verification, a threshold on the

feature distance determines if two documents are attributed to the same writer (“accepted”). Since

the densities usually overlap, errors are expected: a false accept rate (FAR) and a false reject rate

(FRR).

distances but less accurate for the same-writer distances, because these are frequently
near-zero positive values.

Using these models, the threshold θ must be fixed such that optimal expected per-
formance is acquired. Given this threshold, two kinds of errors can occur: Type-I errors
and Type-II errors. A Type-I error refers to a false accept, in this case meaning the false
attribution of two documents to the same writer. Conversely, a Type-II error refers to
a false rejection: falsely attributing the documents to different writers. As in practice
the two bumps always overlap because handwriting biometrics is not perfect, errors will
occur. The expected rate of Type-I errors must be balanced with the rate of Type-II
errors according to the user’s preference. See Figure 1.8. A straightforward approach
is to set the threshold such that both error rates are expected to be equal; the equal-
error rate (eer). This can be done by integrating the probability density models into
cumulative density models and finding the crossing point. See Figure 1.9.

1.10.1 Remarks

The most important advantage of a classifier for writer verification is that it embodies
inherent objectivity because it is not influenced by prejudice, additional clues, or witness
testimonies. However, it is inappropriate to provide a yes/no classification, for several
reasons:
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� The classifier does not take context information into account.

� No systems exist yet that are robust for forgeries and disguise, which are common
in forensic cases.

� It is impossible to make a representative dataset for training and testing the clas-
sifier, because the prior probabilities are unknown and hard to obtain: it is not
known how frequently two presented documents are actually written by the same
writer. In particular, it is not known how frequently forgeries and disguised writ-
ings occur, and certain authorship information of forged documents is not available,
unless statistics of confessions are kept.

These issues transcend handwriting biometrics. Human document examiners face the
same problems. Moreover, the third issue is problematic for any biometric verification
with overlapping class distributions. Therefore, it seems appropriate for an applica-
ble system for writer verification to just provide the degree of similarity between the
compared documents, presented in an explainable way. This enables a final judgment
(by a judge) in which an estimate of the prior probability is taken into account and
other evidence such as dna, footprints, testimonies, etc., which could contradict the
judgment suggested by the handwriting alone. Nevertheless, in this dissertation (and in
most related work) a simple dichotomizer is still used because it enables straightforward
performance testing and comparison to other systems.
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1.11 Classification for writer identification

A classifier for writer identification takes a single feature vector of one document and
yields a list of closely matching feature vectors in the dataset. The most simple and
commonly used classifier for writer identification is a nearest-neighbor-classifier. In this
case, writer identification is done by repeated pairwise comparison: the feature vector of
the query document is compared to the feature vectors of all documents in the dataset.
The result is a hit list: a sorted list containing the s nearest neighbors of the questioned
document, plus the author identities. s usually has one of the values 1, 10, or 100.

Training a nearest-neighbor classifier for writer identification consists of simply stor-
ing the feature vectors of all dataset documents. No modeling is required. However,
training a complete system can include the optimization of the parameters of other
system components such as feature extraction.

Many other classification methods could be used instead, but there are a few reasons
for choosing nearest-neighbor classification: it is simple, effective and it does not require
training or human intervention. Whereas trained classifiers allow for generalization
of observations into a broad class, biometrics is concerned with the identification of
individual samples. Nearest-neighbor search fits that goal very well and does not require
evolved training. Furthermore, all common parametric classifiers require large amounts
of training examples, a requirement that cannot be easily fulfilled in practical settings.
Previously, several other popular classifiers such as MLPs and SVMs have been tried
on writer identification tasks in unpublished studies at alice, but the nearest-neighbor
classifier was never surpassed.

1.12 Performance evaluation

The standard approach to evaluate the power of a system for handwriting biometrics
is to use idealized datasets of handwriting in which the authorship of every page is
known and represented by a code or number. The handwritten text in these datasets
is produced in laboratory conditions, following a strict format to facilitate automatic
processing. It is common to instruct a group of subjects to copy a fixed text on provided
forms. The documents lack many aspects of variability found in the real world; the
resulting performance represents the best-case scenario.

An example of such a dataset is Firemaker [88]; see Figure 1.10(a). This dataset
contains 1004 pages of contemporary Dutch handwriting, written by 251 students. Each
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(a) Firemaker dataset (b) IAM dataset

Figure 1.10: Example of contemporary handwriting in laboratory datasets.

student wrote 4 pages. The pages were lined with a color that vanished during scanning.
For each subject, page 1 contains natural handwriting, which is a copy of a fixed text
consisting of 612 alphanumeric characters; page 2 contains text in capital letters, page 3
contains free forged handwriting and page 4 contains natural free text of 252 characters
on average. All pages were scanned at 300 dpi. This dataset is frequently used in this
dissertation and in other studies as well. In this dissertation, only page 1 and page 4 are
used, since these contain unconstrained connected cursive handwriting.

Another widely used laboratory dataset is the IAM dataset [65] (Figure 1.10(b)). It
contains contemporary English text written by 657 subjects; the number of pages per
subject varies. The pages were written in natural handwriting, using different writing
instruments, and scanned at 300 dpi. As a last well-known example, Srihari’s dataset
[94] contains 4500 full pages of English text written by 1500 subjects; each subject wrote
three pages with the same content. The subjects are a representative sample of the U.S.
population.
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inverted.

A writer verification classifier can be evaluated on such a separate laboratory dataset.
All pairs of documents are drawn from the dataset and the threshold θ is used to make a
decision, as described in Equation 1.4. The classification result is checked based on the
identity information in the dataset. The performance is expressed as the percentage of
errors or the percentage of correct classifications. Another way to assess the performance
is by using an error trade-off curve roc plot [34], which show the performance for any
threshold value. See Figure 1.11.

The performance of a writer identification classifier can be evaluated by treating
every dataset document once as a query document, and checking if another document
from the same writer appears in the resulting hit list. If this is the case, the classification
is called “correct”, disregarding other instances in the hit list that may be written by
someone else. The percentage of correct classifications can then be used as a performance
measure.

Performance figures are not a complete description of a system’s capabilities. In ad-
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dition, it matters how difficult the classification task was and how much user interaction
is required. Among other things, the difficulty of the classification task is influenced
by the size of the dataset, the number of writers, the handwriting style of the writers,
the textual content and the graphical quality of the input material. The amount of user
interaction is influenced by the level of segmentation, the amount of human-directed sys-
tem training, and the regularity of the handwriting. Therefore, the performance figures
in the overview of current systems in Table 1.2 (page 17) cannot be truly compared.

A robust and applicable system should perform well on a large corpus of realistic
handwriting, is text-independent and requires little user interaction. Such a system is
presented in Appendix A of this dissertation. Its most important component is the Quill
feature, which competes with leading existing methods. This feature will be introduced
in part II, followed by a method to make systems more explainable. Before this, aspects
of the robustness of current systems are discussed in part I.
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(a) Frequency of occurrence (f) of input

quality (q). A threshold on input quality

could be defined such that most realistic

documents are accepted.

(b) Performance (p) as a function of input quality (q). A

threshold on input quality could be defined such that only

a subset is accepted on which high performance can be

achieved.

Figure 1.12: Determining a zone of tolerance by setting a threshold on input quality.

Realistic input documents are often of suboptimal quality. Typical issues affecting
quality include factors of imaging quality (resolution, contrast, illumination, perspective,
lossy compression), material quality (age degradation, preprinted patterns or text, irreg-
ular ink absorption, holes, wrinkles, tears) and handwriting quality (sloppyness, visible
effects of abnormal writing conditions, disguise, forgery). More factors can be found in
[42]. Such quality factors affect performance: as quality decreases, system performance
decreases as well [5]. Naive systems will process any input material, irrespective of qual-
ity, and will produce erroneous results on artefacts (“garbage in, garbage out” [60]).
A system for handwriting biometrics must be resilient for such realistic performance
influencing factors: it has to be robust.

Robustness means that system performance degrades gradually as input quality de-
creases, instead of suddenly (brittleness [23]). In a strict definition, this should hold on
the entire theoretical range of input conditions, including conditions that are highly un-
likely. This type of robustness will be called intrinsic robustness. A system incorporating
intrinsic robustness would require training and testing on unrealistically difficult data,
resulting in low tested performance, thus the applicability of such a system is limited.

In a less strict definition, a sudden performance drop is allowed outside the realistic
range of input conditions. This requires the determination of a threshold on the input
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quality, bounding the zone of tolerance. Obviously, input quality is not a one-dimensional
quantity: each performance influencing factor is a dimension of input quality, and input
quality is a point in multi-dimensional space, thus the zone of tolerance is a multi-
dimensional box. For each dimension of input quality, the threshold could be established
using a quality frequency graph such as in Figure 1.12(a). However, such a graph is
difficult to obtain and it is not feasible to obtain good performance on the full range.

Therefore, in this dissertation the focus is on practical robustness: high system per-
formance within a broad zone of tolerance. For any document within this zone, system
performance will be high. Other documents have to be rejected, just like unclear fin-
gerprints cannot be admitted to forensic analysis. To determine the threshold for the
zone of tolerance, a graph is needed that describes the relation between input quality
and system performance such as in Figure 1.12(b).

In the three chapters in this part it is determined to what extent realistic documents
fall within the zone of tolerance; each chapter focuses on a single dimension of input
quality. Chapter 2 focuses on text scarcity; the relation between the amount of text and
system performance is investigated and the zone of tolerance is determined. In Chapter 3
it is determined whether document that contain a realistic fraction of crossed-out text fall
within the zone of tolerance. In Chapter 4, a simple method is used to counter disguise
by slant manipulation, effectively increasing the zone of tolerance for this dimension of
input quality.



Chapter 2

Robustness for text scarcity

A modified version of this chapter was previously published in Proc. of

the 19th International Conference on Pattern Recognition (ICPR). [11]

The reliability of writer verification and writer identification depends on the amount
of text in the handwritten documents: the more text is present, the more evidence is
available. This is relevant for the forensic application domain, where the amount of text
varies from snippets to complete letters. Statistical feature extraction methods, such as
Hinge and Fraglets, build a model of writer specific features that can only be accurate
when the number of measurements is large, thus they need a sufficient amount of text.
This has been shown in previous studies: In [55], a writer verification experiment yielded
a performance of 63% using a single line of text per page, while the performance on half
a page was 95%. In [20], a writer identification experiment yielded 53%, 83% and 88%
on a single line, half a page and a full page, respectively, using the best feature. It
showed a similar pattern for two other features. These scores are illustrated in Figure
2.1. In another study, on-line characters were used, and a minimum requirement of 160
characters was found [101].

The objective of this study is twofold. The first objective is to gain insight in the
relation between text amount and the performance of current writer verification and
identification systems into more detail. This facilitates judging the reliability of the
outcome of automatic classification based on the amount of text. The second objective
is to derive a rule of thumb for the minimum amount of text that is required for reliable
classification using the best features. Such a minimum could be used as an acceptance
criterion in input images. It is also useful for the design of new datasets for automatic
writer verification and identification. Such a minimum cannot be firm, because perfor-
mance does not only depend on the amount of text but also on other factors such as
feature quality, text quality and database size.

29
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(b) Writer identification using three different

features: Hinge (black), Edge-directions (gray),

HrunW (white) [20].

Figure 2.1: Previous studies show that classification performance increases when the amount of text

increases.

2.1 Method

The relation between text amount and performance was examined by repeatedly con-
ducting writer verification and identification performance tests while gradually increasing
the amount of text on the pages. The amount of text on the pages was controlled by wip-
ing text from complete pages of existing datasets. It was also determined what happens
when one of the compared documents contains little text (a partially wiped page) while
the other contains a lot (a full page). The next subsections describe the preparation of
datasets and the text wiping methodology. The last subsection shows how these were
used in a series of performance experiments.

2.1.1 Datasets

Two handwriting datasets were used: Firemaker [88] and IAM [65], which are described
at page 21. Both datasets were split in two parts: part Q represents questioned doc-
uments and part S represents sample documents. This mimics the realistic forensic
scenario where the authorship of questioned documents is to be determined while a
database of documents of known authorship exists. Not all documents in the original
datasets were put in Q or S: pages with less that 200 characters were discarded and the
same happened to pages of writers that wrote only one page. Of the remaining pages,
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for every writer, the page containing the most text was added to S and the next page
was added to Q. Additional pages were discarded as well. For the Firemaker dataset,
the resulting sets Q and S both contained 192 scans (118 pages were discarded). For the
IAM dataset, Q and S both contained 298 scans (378 pages were discarded).

2.1.2 Text wiping

We present line wipen, a method to wipe handwritten text on a line-by-line basis until
an estimated n characters remain. It is natural to use a line-based approach because it
is straightforward and it keeps the appearance of the handwriting almost intact. The
general idea is to wipe some lines completely and one line partially. This approach
requires that the text lines can be separated well. This is not feasible in general free text
but it is relatively easy in the Firemaker and IAM dataset, because the text lines are
quite horizontal and the overlap between descenders and ascenders of consecutive lines
is minimal. The locations of the text lines can be found with projection histograms. For
the Firemaker and IAM datasets, this has already been done in [16] and [65] respectively.
From these publications, the coordinates of boxes around the text lines were re-used for
this experiment.

Based on these boxes and a desired number of characters n, the handwritten text
can be wiped. Ideally, after wiping, exactly n characters would remain. In practice,
this is not possible, because it is not yet possible to segment free text into characters
automatically. Instead, n is converted to a desired number of ink pixels: d = α · n. The
variable α denotes the average number of ink pixels per character on the page, which
can be computed by dividing the number of dark pixels in the image by the number of
characters in the transcription. As an example, Figure 2.2 illustrates the distribution of
α on the scans of the Firemaker dataset.

The next step is to remove full text lines by filling the bounding boxes with white
pixels. The lines are wiped in random order while maintaining a variable r, the number
of remaining ink pixels on the page. When wiping the next line would decrease r below d,
the line contains too much ink to be removed entirely. That line is wiped partly as follows.
First, the vertical projection histogram of the line is created and then smoothed using a
Gaussian window. The valley that is closest to the point where r = d is designated as the
cutting point. The right part of the line is wiped starting from this point. This approach
makes it likely that the cut is made between characters and not through characters, thus
lowering the risk of damaging the letter shapes. See Figure 2.3 for an example.
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Figure 2.2: Distribution of α (number of ink pixels per character) on 251 pages of the Firemaker

dataset: page 1 of every writer. The distribution illustrates that the writers deposited different

amounts of ink per character. A document’s α value is required for wiping the approximately correct

number of characters. Total number of characters in this experiment: 153k.

Figure 2.3: Text before (top) and after (bottom) line wipen=50 was applied. In this example,

actually 51 letters remained.
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2.1.3 Experiment

In the experiment, the text wiping methodology was used to create graphs that show the
relation between text amount and performance: while varying the number of characters
n, the performance of both writer verification and writer identification were computed.
This was done in two variants: in one variant, the documents in part Q and S of the
dataset were both wiped such that they contained the same number of characters n. In
the other variant, only the pages in Q were wiped, while the documents in S remained
intact. This distinction respects the difference in text amount between the compared
documents in forensic practice. Algorithm 1 outlines the experiment in pseudocode. The
algorithm was run on both the Firemaker and IAM dataset using four different features:
Hinge, Fraglets, Brush and HrunW (see Section 1.8).

Algorithm 1 Complete experiment for a dataset D and a feature extraction function f.
Compute performance of writer verification and identification, with equal and unequal
amounts of text. split dataset refers to 2.1.1; WV and WI indicate writer verifica-
tion/identification performance.
Q,S = split dataset(D)
for all n in [4, 9, 16, 25, ..., 196, 200] do
QW = line wipen(Q)
FQW = f(QW ) (compute features)
SW = line wipen(S) (for equal text amount*)
FSW = f(SW ) (compute features)
verif perf(n) = WV(FQW , FSW )
ident perf(n) = WI(FQW , FSW )

end for
* For unequal text amount: SW = S

2.2 Results

Figure 2.4 shows the results of the experiment. The eight graphs each represent a combi-
nation of a feature and a dataset. In each graph, the Top-1 and Top-10 performance and
the verification EER are shown; each in a variant of equal-text amount and unequal-text
amount. The graphs confirm that Hinge is a strong feature extraction method, closely
followed by Fraglets. They also clearly show that increasing the amount of text also
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increases writer verification and identification performance. From these graphs, a rule of
thumb for the minimum text amount was derived by visual inspection. Alternatively, the
threshold could be determined numerically, provided an exact definition of the threshold
is given. As a rule of thumb, the following minimum amounts of text can be considered:

Feature Min. text amount (chars)
Hinge 100
Fraglets 150
Brush 200
HrunW 200

These minima were drawn into the graphs as vertical lines. The graphs also consistently
show better performance for comparison of texts that have an unequal amount of text.
Thus, it is always better to increase the amount of text in the database documents, even
when the amount of text in the query documents remains the same.

2.3 Conclusion

As a rule of thumb, a document of 100 characters contains a good minimum text amount
for text-independent writer verification and identification when using a strong feature
such as Hinge. Any text above this minimum does not significantly increase performance
any further; the feature itself becomes the limiting factor. For features that are less
powerful, such as Brush, a reasonable minimum is 200 characters. These numbers are
not absolute because the performance also depends on other factors such as the size of the
database. In general, the more difficult the classification task, the more text is needed.
In any case, more text is always better, even when the amount of text is increased in
only one of the documents in pairwise comparisons. A follow-up to this study should
consider text-dependent methods, since those are more similar to the manual methods
used in forensic practice, where text samples can be very small.
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Figure 2.4: Relation between text amount (in characters; horizontal axis) and performance of writer

verification and identification. Thick lines indicate equal text amount; thin lines indicate unequal text

amounts (text is wiped in only one of the two pages in each comparison). The vertical lines indicate a

suitable minimum text amount. The Hinge feature requires only 100 characters for for near-optimal

performance; other features need more.





Chapter 3

Robustness for crossed-out words

A modified version of this chapter was previously published in Proceed-

ings of Document Recognition and Retrieval XV, IS&T/SPIE Interna-

tional Symposium on Electronic Imaging. [15]

Another challenge for handwriting biometrics is crossed-out text: without counter-
measures, such text will be processed like any other ink blob, which may give incorrect
results. This is problematic for automatic handwriting recognition [59] and it is often
assumed that crossed-out text also impedes computation of writer specific features of
the handwriting, because it is irregular [13]. It is conceivable that feature extraction
methods find many bogus features in the crossed-out text that may not be present in
another text of the same writer, decreasing the apparent similarity. Therefore, it seems
appropriate to attempt to remove crossed-out text prior to automatic writer verification
and identification.

Identifying crossed-out text has not attracted much attention yet. One approach
focused on separate characters and distinguished characters from noise including crossed-
out characters [3]. In a more recent approach, Markov Random Fields were used to
identify crossed-out words in very challenging documents [69]. A special property of
that particular method is that it seems robust against connections between crossed-out
words and normal words. The results look promising, but the performance has not been
quantified.

In this chapter a method for identifying crossed-out words in offline handwriting is
proposed. It works on the level of connected components and classifies them based on
two features of the skeleton: the branching feature and the size feature. The system
is trained and tested on a part of a real forensic dataset, called the NFI dataset. This
dataset was first introduced in [13]. It consists of 3500 handwritten samples taken from
suspects in criminal cases; these samples have previously been studied studied manually
by the NFI, the Dutch National Forensic Institute. Apart from the textual content, the

37



38 Chapter 3. Robustness for crossed-out words

handwriting is unconstrained and contains many crossed-out words. See Figure 3.1 for
an example. This dataset seems to be somewhat similar to the kind of data used in
[102], which consists of spontaneous handwriting. The pages were each cut in two parts,
as will be described later.

Training and testing was performed in three stages. In the first stage, the classifi-
cation performance was assessed on the level of connected components in the first 250
pages of the NFI dataset. In the second and third stage, this classification is applied
to assess the effect on writer verification and identification, respectively, on 2374 pages.
This is described in the next sections.

3.1 Recognizing crossed-out words

3.1.1 Preprocessing and segmentation

The first 250 pages of the NFI dataset were thresholded using Otsu’s thresholding method
[75]. From the result, the black connected components were extracted based on 8-
connectivity. Two kinds of components were discarded: very small components with a
width or height smaller than 7 pixels, and very big components with a width or height
bigger than half the page. The small components can be considered to be noise or dots;
the big components were caused by page border effects.

This resulted in a set of 86537 connected components. These were manually labeled
into three categories: “normal”, “crossed-out” and “other”. The category “other” con-
sisted of connected components that are noise or textual elements that could not be
clearly categorized into one of the other categories. For examples and the number of
components in each class, see Table 3.1. This categorization proved to be not straightfor-
ward during the manual labeling process, which indicates that the problem of detection
of crossed-out text may actually be ill-posed.

3.1.2 Branching feature

When handwritten words are crossed-out, one or more strokes are written over existing
strokes. The result can be seen as a high number of strokes with many crossings. The
branching feature takes the number of crossings into account, where each crossing is called
a branching point. To find the branching points of the connected components, they were
first thinned using a recent method [52]. In the resulting skeleton, the branching points
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Figure 3.1: Example documents in the NFI dataset, each one cut in two parts.
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Table 3.1: Classes of labeled connected components.

normal crossed-out other
train set 43745 403 202
test set 41640 221 326

examples

were identified as the black pixels that have more than two 8-connected black neighbors.
This usually results in more than one branching point per actual crossing, but this is
not important for the quality of the feature. The resulting number of branching points
was normalized by dividing by the width of the connected component.

3.1.3 Size feature

The second feature exploits the fact that crossed-out text is usually a big object, because
the crossing strokes add ink and usually connect individual letters or parts of a word. The
size of the object is measured by counting the number of pixels in the skeleton image.
Another approach would be to count the number of pixels in the original connected
component; our tests indicated that that does not make much of a difference.

3.1.4 Training

The resulting branching feature and size feature were both normalized by dividing the
values by the standard deviation within each page. This ensures that feature values
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Figure 3.2: Feature values of connected components labeled as normal text (’.’) and crossed-out

text (’+’) in page 1–125. Many pluses are inside the cloud of dots.

that are not common within a page can be identified as relevant extreme values. The
final result is a set of labeled two-dimensional data. This data was split in two parts: a
train set containing the connected components from page 1–125 and a test set involving
page 126–250. The feature values of the classes “normal” and “crossed-out” in the train
set are plotted in Figure 3.2. The feature values of the class “other” were not plotted,
since they are not relevant for determining a decision boundary between the features of
normal words and crossed-out words.

The figure shows that the classes “normal” and “crossed-out” mainly overlap, but
not totally. It also shows that there are many more instances in the “normal” class. The
classes can be separated up to a certain degree by a decision tree, which is a very simple
classifier. Several other classifiers have been tried as well, including k-nearest neighbor,
a linear support vector machine [54] and a neural network, but since their performance
was not better and a decision tree is simple, the latter was used.

The decision tree was implemented by setting thresholds on each of the two normal-
ized feature values: θs is the threshold on the size feature; θb is the threshold on the
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Figure 3.3: Multiple ROCs. Each ROC has a fixed θs; see legend. Along each curve, θb varies.

The curves do not reach the upper right corner because given the selections of θs, θb could not be

positioned such that all data points would fall within the decision boundaries.

branching feature. Values above both of the thresholds were seen as positive examples,
or crossed-out words. By positioning the thresholds, the ratio of true positives (TP)
and true negatives (TN) can be balanced. This can be done using ROC plots which are
created on the train set; see figure 3.3 and 3.4.

The optimal balance between TP and TN depends on the application, but at least
it is desired that most of the normal text is not seen as crossed-out and thus remains
intact. For illustrative purposes, it is now assumed that TN should be at least 99%.
In other words, the number of false positives (FP) should be less than 1%. Using plots
3.3(b) and 3.4, it can be derived that usable thresholds would be θs = 1; θb = 1.5.

3.1.5 Results

The thresholds θs = 1 and θb = 1.5 were applied to the test set, which was completely
fresh: it had not been used for training or testing before. The results are: TP =
47.5% and TN = 99.1%. That means that almost half of the crossed-out words can be
automatically removed while preserving 99% of the normal text. Figure 3.5 shows what
the result would be on the images from Figure 3.1. Figure 3.6 shows the results using
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Figure 3.4: Same zoomed figure as Figure 3.3(b), but now every ROC curve has a fixed θb (see

legend); along each ROC θs varies.

other thresholds. In these examples all of the crossed-out words have been successfully
removed. It is clear that some of the components of normal words are removed as well,
particularly bigger components, but most components of normal words remain.

To illustrate how the method scales to very big scratches, a small experiment was
also performed on semi-artificial data: the four pages of which the cut versions are shown
in Figure 3.1 have been overlaid with pages containing big scratches. For this test the
condition that the crossed-out components should not be bigger than half the page was
relaxed. Figure 3.7 shows what the result would be on such pages.

3.2 Application to writer verification

The proposed technique to automatically remove crossed-out words was applied in a
writer verification experiment to determine whether it affects performance. In this ex-
periment, the powerful Hinge [19] feature was used. This technique captures the orien-
tation and curvature of the ink trace, encoded in a 528-dimensional feature vector. As
a distance measure, the χ2 measure [85] was used.

The experiment was performed as follows. First, like in [13], all pages of the NFI
dataset were split in an upper part and a lower part. 1127 pages had to be discarded
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Figure 3.5: Images from Figure 3.1; thresholds θs = 1 and θb = 1.5 applied. All crossed-out

components have been removed at the expense of some normal text.
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Figure 3.6: Images from Figure 3.1; thresholds θs = 2.5 and θb = 2.5 applied. With less strict

thresholds, more of the normal text remains. Crossed-out text is also more likely to remain, but that

does not occur in this example.
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Figure 3.7: Result of removing big scratched-out elements. Column 1: original overlaid with

scratches, column 2: result with θs = 2.5, θb = 2.5, column 3: result with θs = 1.0, θb = 1.5.
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Table 3.2: Number of pages and writers in the dataset for verification and identification.

train set test set
original pages (writers) 250 3250
selected pages (writers) 181 (87) 2193 (988)
selected parts (writers) 362 (87) 4386 (988)

because curved or sloped baselines made a good cut impossible. After splitting, 4748 page
parts remained, written by 1074 persons. The page parts were converted to monochrome
using Otsu thresholding because this is required by the method to remove crossed-out
words. The page parts were divided into two sets: a train set and a test set. The train
set consisted of the parts of pages 1–250; the test set consisted of the parts from the
other 3250 pages. See Table 3.2 for details. To compute the baseline performance, a
verification threshold was learned from the training data by modeling the distances in
the “same writer” and “different writer” classes using Parzen windowing. The threshold
was selected such that the expected ratio of true positives (TP) was equal to the expected
ratio of true negatives (TN); the equal-error rate (EER). This threshold was applied to
the test set, yielding the experimental TP and TN.

To assess the effect of crossed-out text, the same steps were taken on the same page
parts after cleaning by the crossed-out text removal method. Several values of θs and θb
were tried while testing on the train set. The results are shown in Table 3.3. The table
shows that the values for θs and θb have no big implications on writer verification, but
the best result was used to determine the final values: θs = 2 and θb = 2.

3.2.1 Results

The values θs = 2 and θb = 2 were used to remove crossed-out text in the test set (4386
half pages) of the NFI dataset. Table 3.4 shows the result together with the baseline
performance. It is clear that automatically removing crossed-out text using the proposed
method has no substantial influence on writer verification performance.

3.3 Application to writer identification

The same kind of experiment was performed to determine the effect of automatically
removing crossed-out text on writer identification. Writer identification means returning
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Table 3.3: Writer verification results on 362 thresholded half pages extracted from the train set (the

first 250 pages) of the NFI dataset; 87 writers.

θs θb TP TN
1 1 78.1% 81.9%
1 1.5 79.3% 81.5%
1.5 1 78.7% 81.3%
1.5 1.5 79.7% 80.7%
1.5 2 80.4% 80.3%
2 1.5 80.3% 80.5%
2 2 79.0% 82.8%
2.5 2.5 79.8% 81.3%
3 3 80.5% 81.1%

Table 3.4: Verification results on 4386 thresholded half pages; 988 writers.

TP TN
Baseline 76.6% 84.0%
θs = 2, θb = 2 77.1% 83.6%

a hit list, a sorted list of documents of which the handwriting is similar to that of a
questioned document. In this experiment, similarity was again determined by the Hinge
feature and χ2-distance. The pages of the NFI dataset were split in parts, thresholded,
and divided into a train set and a test set as described in section 3.2. The baseline
performance was computed by treating every document in the test set as a questioned
document, then yielding the hit list and finally counting how often a matching document
appeared in the top-1, top-10 or top-100.

This was also done with pages of which crossed-out text was automatically removed
using several values of θs and θb in the train set. The performance using these thresholds
on the train set is shown in Table 3.5. Although the differences are again very small,
the best selection of thresholds could be identified: θs = 1.5 and θb = 2.

3.3.1 Results

The thresholds θs = 1.5 and θb = 2 were applied to remove crossed-out text in the test set.
On the resulting documents, writer identification was performed. The results are shown
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Table 3.5: Identification results on 362 thresholded half pages extracted from the first 250 pages of

NFI dataset; 87 writers.

θs θb Top-1 Top-10 Top-100
1 1 85.4% 95.6% 98.9%
1 1.5 87.9% 96.1% 99.2%
1.5 1 86.7% 95.0% 99.2%
1.5 1.5 87.3% 96.1% 99.2%
1.5 2 88.4% 95.0% 99.2%
2 1.5 87.0% 96.1% 99.2%
2 2 88.1% 95.6% 99.2%
2.5 2.5 88.1% 95.0% 98.9%
3 3 87.9% 95.0% 99.2%

Table 3.6: Identification results on 4386 thresholded half pages; 988 writers.

Top-1 Top-10 Top-100
Baseline 76.5% 88.1% 95.0%
θs = 1.5, θb = 2 75.5% 87.7% 94.8%

in Table 3.6, together with the baseline performance. The table shows that automatically
removing crossed-out text does not improve writer-identification performance.

3.4 Conclusion

In this chapter a simple method to identify and remove crossed-out text was presented.
It can remove 47% of crossed-out text while 99% of the normal text is preserved. There
is no important effect on writer verification or identification based on the Hinge feature
[19]. This is an indication that the effect of crossed-out text on writer verification and
identification may be overestimated. It has not yet been tested what fraction of the
text could be crossed-out without disturbing automatic verification or identification but
it is now clear that realistic documents containing crossed-out text can be admitted to
systems for handwriting biometrics based on the Hinge feature.

Although this result suggests that removing moderate crossed-out text may not be
worth the effort, there are options to make make this statement more firm. It is conceiv-
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able that the Hinge feature that was used for the writer verification and identification
experiment, is just quite robust for crossed-out text. Therefore, other features should be
tried for this too, for example the Fraglets feature (also called fCO3) [86]. It is also pos-
sible that the automatic method to remove crossed-out words does improve verification
or identification performance, but at the same time reduces performance because also
some good text is removed. Therefore the next step should be to improve the method
to detect crossed-out words.

One way to improve the method could be to use textural features such as Hinge
on the level of connected components. Alternate thinning methods could be tried for
the branching feature because artefacts in the skeleton have a big influence on the per-
formance. The method could also be adapted to work with grayscale images, which
would make the method more versatile. That would slightly improve writer verification
and identification performance, since the Hinge feature was designed for grayscale and
performs slightly worse on black and white images. The best values for θs and θb could
be determined in a more thorough way by using steepest descent or genetic algorithms.
Furthermore, other classifiers can be tried, and line segmentation should be applied to
disconnect connected components that are big because they consist of intersecting text
from multiple text lines.



Chapter 4

Robustness for disguise by slant manipulation

A modified version of this chapter was previously published in Pattern

Recognition Letters. [12]

A salient property of Western handwriting is slant: the dominant angle of near-
straight downstrokes with respect to the horizontal. Slant is caused by the choice of pen
grip and the relative contributions of wrist and finger movements. It has been modeled as
the effect of locally using a single actuator (muscle) in a two-dimensional neuromuscular
apparatus [31]. Slant seems to be a key feature for writer verification: it plays an
important role in biometric systems, as it is a major constituent of angular features
[16, 26, 63]. For example, the state-of-the-art Hinge feature [19] is based on angular
frequencies; it is influenced by both curvature and slant. Furthermore, forensic document
examiners and paleographers use slant as a discriminatory characteristic [22, 48]. These
facts suggest that slant is a key feature for writer verification. However, it is not known
to what extent slant contributes as an isolated factor to the performance of biometric
systems for handwriting and its value may be overestimated.

In particular, slant is not a valuable feature in (possibly) disguised handwriting. In
such a case, the handwriting was produced in a deliberately modified style, with the
intention to avoid recognition of the writer’s identity. Disguised handwriting is often
used in threatening or stalking letters. In some cases, the mutilation of shapes success-
fully disturbs handwriting examination by forensic experts [36]. Moreover, disguised
handwriting cannot be handled by state-of-the-art systems for handwriting biometrics:
computational features that are invariant to disguise do not exist. This is one of the
reasons why systems for handwriting biometrics are not fully suitable for application in
the forensic domain yet.

A strategy to handle disguise is by applying an image operation to undo the effect
of disguise, resulting in handwriting that is close to natural. This seems possible for the
most frequently used kind of handwriting disguise: a change of slant. It is not surprising

51
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that slant modification is the most frequently used kind of disguise [49, 58, 66, 68],
since humans can easily modify the slant during writing, and the effect on the visual
appearance is dramatic [58]. Therefore, an important step in making biometric systems
robust for disguise is by correcting the slant. An obvious approach is to perform the
correction by transforming the image with the shear operation, possibly resulting in the
writer’s natural handwriting.

The objective of this study is twofold. The first objective is to determine how much
information about the writer’s identity is contained in the slant characteristic of natural
handwriting. This will be tested in the first experiment by eliminating the slant in
natural handwriting (slant elimination) and measuring to what extent the performance
of automatic writer verification degrades. This experiment contributes to the theoretical
basis of computational writer features based on directionality, such as the Hinge feature
[19]. The result may direct the design of future features.

The second objective is to determine the effectiveness of the shear transform in
correcting handwriting disguised by slant change, when used as a preprocessing step
before applying feature extraction methods such as Hinge [19] and Fraglets [86].

At the same time, the underlying question will be answered: to what extent is a
change of slant during human production of handwriting functionally equivalent to a
shear transform? Slant change may result in more than just a shear effect, since it re-
quires a non-habitual movement of the finger-wrist system, which may affect curvature.
It has been suggested that there must also be an effect on writing speed, pressure, con-
necting strokes, style, construction, and size [66]. Furthermore, disguised handwriting
is less consistent [49, 58, 66]. In the second experiment, it will be quantitatively deter-
mined to what extent such other effects occur. This will be done by shearing slanted
text back to the supposed writer’s natural slant angle (slant correction), and determin-
ing the performance of writer verification using state-of-the-art features. This is a first
step in designing new biometric systems that are robust to disguise. To the best of our
knowledge, no similar experiment has been performed before.

The experiments will be performed on a newly created public dataset: the TriGraph
Slant Dataset, containing both natural and slanted handwriting of 47 subjects. It is
described into more detail in the next section. In sections 4.2–4.3, methods for slant
estimation and feature extraction are described; these are preliminaries for the experi-
ments. Experiment 1 will show that slant is not as informative as is usually assumed; it
is described in section 4.4. Experiment 2 will show that deliberate slant change is not
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equal to a simple shear transform; it is described in section 4.5. Section 4.6 summarizes
the conclusions.

4.1 TriGraph Slant Dataset

A new dataset was created, the TriGraph Slant Dataset: a unique collection of clean,
deliberately slanted handwriting in conjunction with each writer’s natural handwrit-
ing. It consists of 188 scanned images of handwritten pages, written by 47 untrained
Dutch subjects, aged 27 on average. This dataset is relatively small compared to other
datasets such as Firemaker [88] (251 writers), IAM [65] (657) and Srihari’s dataset [94]
(1500). However, the dataset proved to be large enough to analyze the effect of slant.
It can be obtained from http://www.unipen.org/trigraphslant.html. The dataset
can be used for both handwriting comparison experiments and handwriting recognition
experiments.

The dataset was assembled as follows. The subjects were provided two printed Dutch
texts, text A and text B. Both texts contained approximately 200 characters, including
all lowercase letters and many capitals; the distribution of the letters among the two
texts was similar. Each subject wrote four pages, such as the one shown in Fig. 4.1,
following these instructions:

1. [AN]Copy text A in your natural handwriting.

2. [BN]Copy text B in your natural handwriting.

3. [BL] Copy text B and slant your handwriting to the left as much as possible.

4. [BR]Copy text B and slant your handwriting to the right as much as possible.

See Fig. 4.2 for a close look at fragments of the four pages written by one writer.
The codes AN, BN, BL and BR refer to subsets into which the collected pages of the
writers were subdivided. AN represents a collection of authentic documents; BN , BL
and BR can be seen as collections of questioned documents. To avoid structural effects
of fatigue, the order of item 3 and 4 was randomized; half of the subjects wrote the BR
page before the BL page.

http://www.unipen.org/trigraphslant.html
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Figure 4.1: Example page from the TriGraph Slant Dataset: page 3 of writer D001. It contains text

B, slanted to the left (BL).
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(a) Text A, natural handwriting (AN)

(b) Text B, natural handwriting (BN)

(c) Text B, slanted to the left (BL)

(d) Text B, slanted to the right (BR)

Figure 4.2: Example of the four pages written by writer D001, the first subject in the dataset. For

each page only the first line is shown, manually cut out for the purpose of illustration.

4.2 Slant estimation

Since Experiment 1 and 2 both require a reliable technique to estimate slant, a limited
comparison of techniques is included here. A variety of slant estimation methods exists,
based on different definitions of ‘slant’. For example, it has been defined as the average
direction of near-straight or long downstrokes [64], or “the angle between the vertical
direction and the direction of the strokes that, in an ideal model of handwriting, are
supposed to be vertical” [103]. The methods can be roughly subdivided into two general
approaches which could be called the angle-frequency approach (AF) and the repeated-
shearing approach (RS). In AF, which is most popular [57], downstrokes are first located
based on a criterion such as a minimal vertical extent or velocity. Next, the angle of
the local ink direction is measured at those locations; the resulting angles are agglomer-
ated in a histogram. From this histogram, the slant angle is determined. This general
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algorithm is shown in Algorithm 2. Variations include computing an edge-direction his-
togram and finding the maximum or mode in it [16] or the peak that is closest to 90◦

[26]. Another variation computes the average angle in rectangular sub-areas containing
vertical structures [9].

Algorithm 2 AF: Compute the slant angle using the angle-frequency approach. INPUT:
image I. OUTPUT: slant angle a.
h← empty histogram()
for all pixel p in I do

if criterion(p) then
ap ← local angle(p)
h.add(ap)

end if
end for
return best freq(h) {maximum or mode}

RS is based on the assumption that the projection of dark pixels contains maximal
peaks when projected along an axis parallel to the slant angle. The basic principle is
to repeatedly shear images of individual text lines, varying the shear angle, and opti-
mizing a criterion on the vertical projection of dark pixels [57, 103]. Such a criterion
involves the maximization of peaks in the projection. The range of shear angles extends
to hypothetical extreme slant angles such as 30◦ · · · 150◦. This approach is shown in
Algorithm 3. It requires that the text has been split into individual text lines, which can
be done by using smoothed projection histograms if the text lines do not overlap much.
Obviously, RS is much slower than AF, but that is of no importance for this experiment.

To determine a usable technique for slant estimation, a limited comparison of im-
plementations of AF and RS was performed. AF was implemented by calculating the
angle at near-straight parts of the ink boundary and yielding the mode of the smoothed
histogram; RS was implemented with an algorithm that maximized the density of the 10
highest peaks in the vertical projection histogram of each text line. For testing purposes,
ground truth data for the first 24 pages of the dataset was generated by averaging 10
manually measured downstroke angles per page; these were compared to the angle esti-
mations of the automatic methods. Table 4.1 shows that the angles computed with RS
are closer to the ground truth, although this difference is not significant at the 5% confi-
dence level (t = −1.12; determined using the one-sample t test: t = x̄

s/
√
n

, where n = 24,
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Algorithm 3 RS: Compute the slant angle using the repeated-shearing approach. IN-
PUT: image I. OUTPUT: slant angle a.

a← empty list()
for all textline Li in I do
s∗ = 0
for all a in 30◦ · · · 150◦ do
p← ver project ink(shear(L, a))
s← score(p)
if s > s∗ then
s∗ ← s

ai ← a

end if
end for

end for
return median(a)

x̄ is the average of xi, which are the differences of squared errors, and s is the stan-
dard deviation of x.) Still, in the following experiments, RS was used to automatically
determine the slant angle.

4.3 Feature extraction and comparison

The effect of slant on features of handwriting was evaluated using three well-performing
automatic feature extraction methods: Directions [16], Fraglets [86] and Hinge [19]. See
Section 1.8 for a description of these methods.

The distance d(·, ·) between any two feature vectors was computed with the χ2 dis-
tance measure [25] (see Section 1.9). It was used for this experiment because it is specif-
ically effective on feature vectors that represent a probability distribution [85], such as
the three features described above. In the following, d(P,Q) will denote the distance
between the feature vectors of the images P and Q.
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Table 4.1: Slant angle in the first 24 pages determined using three methods: manual (Man), angle

frequencies (AF), and repeated shearing (RS). The manual measurements represent averages of at

least 10 measurements per page. RS yielded the lowest RMSE (root of the mean of squared errors)

with respect to the manually determined angle.

Page Man AF RS Page Man AF RS

D001-1-AN 99 96 97 D004-1-AN 95 95 96

D001-2-BN 103 101 100 D004-2-BN 95 94 95

D001-3-BL 122 122 121 D004-3-BR 76 74 76

D001-4-BR 68 68 68 D004-4-BL 112 112 111

D002-1-AN 75 76 77 D005-1-AN 72 75 72

D002-2-BN 67 72 70 D005-2-BN 73 73 73

D002-3-BL 97 97 97 D005-3-BR 64 35 56

D002-4-BR 54 44 50 D005-4-BL 107 102 104

D003-1-AN 79 78 79 D006-1-AN 82 80 78

D003-2-BN 71 76 78 D006-2-BN 76 76 78

D003-3-BR 59 59 58 D006-3-BR 54 50 53

D003-4-BL 97 99 100 D006-4-BL 98 99 98

RMSE 7 3

4.4 Experiment 1: information in slant

The first experiment focused on determining how informative the slant value in natural
handwriting is. This was determined by computing the performance of writer verification
on unmodified handwriting (denoted ’AN vs BN’), and comparing it to the performance
on handwriting of which the slant was eliminated (’AN vs BN, elim.’). This is explained
in the next subsections.

4.4.1 Unmodified handwriting

For the performance on unmodified handwriting, documents were drawn from the dataset
in pairs: one was drawn from the AN subset, the other from BN. After computing the
distance between their feature vectors using one of the feature extraction methods, two
cases were distinguished: the documents were written by the same person, or by different
persons. The same-writer distances formed a multiset of distances Ds and the different-
writer distances formed the multiset Dd. Thus, Ds and Dd are defined as follows:

Ds = {∀i :: d(ANi, BNi)} (4.1)

Dd = {∀i, j : i 6= j : d(ANi, BNj)} (4.2)
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(a) Natural handwriting vs. natural handwriting

(‘AN vs BN’)

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

(b) Natural handwriting vs. natural handwriting af-

ter slant elimination (‘AN vs BN, elim.’)

Figure 4.3: Densities of distances between documents with natural handwriting, based on the

Directions feature. The continuous curve represents Ds, distances between documents written by

the same writer; the dashed curve represents Dd, distances between documents by different writers.

The two classes can be separated quite easily, either without (a) or with (b) slant elimination. The

densities were rendered smooth using Parzen windowing.

Fig. 4.3 shows an example of Ds and Dd, visualized as densities.
Based on these multisets of distances, a writer verification classifier was implemented

by setting a threshold. The position of the threshold determines the trade-off between
Type-I error rate (false accept rate; falsely assigning two pages to the same writer) and
the Type-II error rate (false reject rate; falsely assigning two pages to different writers).
It was put on the position where the Type-I error rate was equal to the Type-II error
rate, or the equal-error rate (EER). The performance was estimated by 100%·(1−EER).

4.4.2 Slant-eliminated handwriting

To determine the contribution of slant to writer-specific features, the experiment was
repeated after applying slant elimination on all pages: shearing the text such that its
apparent slant becomes equal to 90◦. It is a standard step in handwriting recognition
systems, which use it to optimize recognition of the textual contents [7, 57]. It has
also been called “deslanting”, “slant removal”, and “slant correction”. In this way, the
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Table 4.2: Decrease of performance after slant elimination. Writer verification performance for three

different features as the percentage of correct classifications. The value of slant seems very limited:

only the Directions feature suffered somewhat, while the performances of the other features did not

decrease significantly.

Subsets Directions Fraglets Hinge
AN vs BN 97 100 99
AN vs BN, elim. 92 99 98

absolute slant information is lost. Slant elimination E(·) can be expressed as follows:

E(P ) = shear(P, 90◦ − a(P )) (4.3)

where shear(P, α) is the image processing operation that shears a page image P with α

degrees and a(P ) denotes the slant angle of the handwriting in P . a(P ) was estimated
by the RS algorithm described in section 4.2. Figure 4.4 shows partial examples of
slant-eliminated pages. Using slant elimination, the new definition of Ds and Dd is:

Ds = {∀i :: d(E(ANi), E(BNi))} (4.4)

Dd = {∀i, j : i 6= j : d(E(ANi), E(BNj))} (4.5)

The resulting performance 100% · (1− EER) will be denoted ‘AN vs BN, elim.’
Notice that the pages were sheared entirely. An alternative option is to shear text

lines or words individually, but this is less reliable and breaks ink traces at region bound-
aries. It is also possible to eliminate slant non-uniformly within each text line, but this
seems to add little or no improvement, despite the added complexity [7]. The page-level
approach is simple, fast and keeps the signal structurally intact.

4.4.3 Results

The results of Experiment 1 are shown in Table 4.2. The first row shows performances of
the three features on natural handwriting, ‘AN vs BN’. The performances of all features
are 97% or higher, which confirms the discriminative power of these features. These
performances have an optimistic bias since they were not obtained on a separate test
set, but the absolute performance is not relevant here. The second line of the table,
where slant elimination was applied, shows a slight decrease of performance: for the
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AN ′1

BN ′1

BL′1

BR′1
(a) Writer D001

AN ′2

BN ′2

BL′2

BR′2
(b) Writer D002

AN ′3

BN ′3

BL′3

BR′3
(c) Writer D003

Figure 4.4: Slant elimination in four pages by three writers; only the first text line of each page

is shown. For each writer, four example text lines are shown: AN ′
i , BN ′

i , BL′
i and BR′

i. These

are transformed images, obtained by executing slant elimination on the original pages. The originals

written by subject D001 are shown in Fig. 4.2.
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Table 4.3: Comparison of writer verification classifications using the Directions feature on natural

handwriting in two conditions: with and without slant elimination. This contingency table elaborates

on the found differences of performance shown in Table 4.2. The off-diagonal entries show the number

of unequal classifications in the two conditions. In this case, the difference of the classifications in

the two conditions is significant (p � 0.001, χ2 test of significance on this table); the Directions

feature significantly performs slightly worse after slant elimination. The other features do not show

a significant effect.

slant eliminated
(‘AN vs BN, elim.’)

correct wrong
original correct 2015 145

(‘AN vs BN’) wrong 6 43

Directions feature, it decreased with 5 percentage points. This is significant (p� 0.001,
determined using the χ2 test on the contingency table shown in Table 4.3) but small.
The performance of the other features decreased with only 1 percentage point, a non-
significant difference.

4.4.4 Discussion

Contrary to common assumptions, the results of Experiment 1 show that slant is not
an important aspect of writer-specific features. Slant elimination did not significantly
affect Fraglets and Hinge, while the performance of Directions decreased with only 5%.
The latter relies heavily on angular information; it is a distribution of angles in which
the position of the mode (peak) indicates the average slant angle. The small decrease
in its performance shows that the shape of the distribution is more important than its
position. This also indicates that the shear transform can be used to counter slant
changes in disguised handwriting. However, the next experiment shows that this is not
completely effective.

4.5 Experiment 2: is deliberate slant change an affine trans-

form?

The aim of the second experiment is to determine whether deliberate slant change is func-
tionally equivalent to a simple affine transform: shear. In this experiment, apart from
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natural handwriting (BN), the disguised handwriting (BL, BR) from the dataset was
included as well. Thus the experiment was performed three times, each time comparing
documents from AN with those from either BN, BL or BR. Furthermore, in an attempt
to restore the handwriting, slant correction was used instead of slant elimination. This
is explained into more detail in the next subsections.

4.5.1 Unmodified handwriting

The baseline performance for this experiment was computed similar to Experiment 1
(see 4.4.1). In this case, three baseline performances were computed: ‘AN vs BN’, ‘AN
vs BL’ and ‘AN vs BR’.

4.5.2 Slant-corrected handwriting

If deliberate slant change is functionally a shear transform, then the manipulated hand-
writing could be transformed back to natural handwriting by shearing it such that the
apparent slant becomes equal to the writer’s natural slant angle. We define slant cor-
rection C(·, ·) as follows:

C(P,Q) = shear(P, a(Q)− a(P )) (4.6)

It is similar to slant elimination, but this approach attempts to restore the original
handwriting. It can be used if the handwriting in Q is known to be genuine but P may
have been disguised by slant manipulation. This is illustrated in Figure 4.5, which shows
fragments of pages after slant correction.

In this condition, the distances were computed as follows:

Ds = {∀i :: d(ANi, C(Bi, ANi))} (4.7)

Dd = {∀i, j : i 6= j : d(ANi, C(Bj , ANi))} (4.8)

where B is either BN, BL or BR. Examples of the distributions of Ds and Dd are
visualized in Fig. 4.6. The resulting performances are denoted ‘AN vs BN, corr.’, ‘AN
vs BL, corr.’ and ‘AN vs BR, corr.’ If the hypothesis is true, then these performances
should be equal to the performance on natural handwriting (’AN vs BN’).
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AN4

BN ′′4

BL′′4

BR′′4
(a) Writer D004

AN5

BN ′′5

BL′′5

BR′′5
(b) Writer D005

AN6

BN ′′6

BL′′6

BR′′6
(c) Writer D006

Figure 4.5: Slant correction. For each of three writers, four example text lines are shown: ANi,

BN ′′
i , BL′′

i and BR′′
i . The latter three are transformed images, obtained by slant-correcting BN, BL

and BR, respectively, with their slant matching that of the first line (AN).
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(a) Natural handwriting vs. natural handwriting

(‘AN vs BN’)

 0.2  0.4  0.6  0.8  1  1.2  1.4

(b) Natural handwriting vs. natural handwriting

after correction (‘AN vs BN, corr.’)

 0.2  0.4  0.6  0.8  1  1.2  1.4

(c) Natural handwriting vs. left-slanted hand-

writing (‘AN vs BL’)
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(d) Natural handwriting vs. left-slanted hand-

writing after correction (‘AN vs BL, corr.’)

Figure 4.6: Distribution of distances between documents with natural and slanted handwriting, based

on the Fraglets feature. The continuous curve represents Ds, distances between documents written by

the same writer; the dashed curve represents Dd, distances between documents by different writers.

In the case of unmodified natural handwriting (a), the two classes can be separated easily. This

changes when the writers disguise their handwriting by a slant change to the left (c). This is partly

solved by slant correction (d), which does little harm to natural handwriting (b). For visualization

purposes, the distributions were rendered smooth using Parzen windowing.
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Table 4.4: Quantitative effect of slant manipulation on three writer-specific features. Writer verifi-

cation performance on original images (first three lines) and slant-corrected images (last three lines).

Percentages of correct classifications.

Subsets Directions Fraglets Hinge
AN vs BN 97 100 99
AN vs BL 57 68 62
AN vs BR 53 66 57
AN vs BN, corr. 92 99 99
AN vs BL, corr. 64 86 75
AN vs BR, corr. 66 90 72

4.5.3 Results

The results of Experiment 2 are shown in Table 4.4. The first row is a copy of the
first row in Table 4.2. The best writer verification is obtained on natural handwriting
(‘AN vs BN’): for the tested features, performances are in the range 97%–100%. The
performances on natural vs. slanted handwriting (‘AN vs BL’ and ‘AN vs BR’) are
obviously lower: a drop to 53%–68%. These figures are all significantly differing from the
corresponding performances on natural handwriting (χ2 test, p� 0.001). “Correcting”
the slant in natural text, which should not need correction (‘AN vs BN, corr’), had
only little negative influence on writer verification: Hinge and Fraglets remained stable,
but the performance of the Directions feature dropped from 97% to 92% because it
relies more on absolute slant information. But the most important result is that the
performance on slant-corrected, originally slanted handwriting (‘AN vs BL, corr’ and
‘AN vs BR, corr’) is significantly lower than the performance on natural handwriting
(p� 0.001); the figures are only in the range 64%–90%.

The reported performances focus on the equal-error rate (EER), where the Type-I
and Type-II error rates are equal. To explore the trade-off between the Type-I and
Type-II error into more detail, Figure 4.7 shows the errors as a result of varying the
classification threshold. In the graphs, the EER values can be found at the intersection
of any curve with the diagonal (shown as a dashed gray line).
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Natural (AN) vs. natural (BN), corrected

Norm
al: natural (AN) vs. natural (BN)

Natural (AN) vs. slanted (BL), corrected

Natural (AN) vs. slanted (BR), corrected

Natural (AN) vs. slanted (BL)

Natural (AN) vs. slanted (BR)

(d) Key for Figure (a) – (c)

Figure 4.7: Effectiveness of correcting deliberate slant change in handwriting; the key is in Figure

4.7(d). Verification error plots for three features. The curves show the trade-off of the Type-I error

rate on the horizontal axis and Type-II error on the vertical axis. The performances reported in

Table 4.4 appear as the intersections of the curves with the diagonals. The more a curve approaches

the lower left corner, the better the performance. Since Fraglets and Hinge perform 99%–100% on

natural handwriting (‘AN vs BN’) and on natural handwriting after correction (‘AN vs BN, corr’), the

corresponding curves are in the lower-left corner of the figure and cannot be discerned. The graphs

show a consistent increase of performance after correcting slant, but it does not get as good as on

natural handwriting.
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4.5.4 Discussion

The results of experiment 2 show that handwriting disguise by changing slant lowers
writer verification performance, if no correction is applied. This is obvious, but the
effect is not the same on all tested features: the Fraglets feature seems to be most
resilient against disguise by slant manipulation. After automatically correcting the slant
with a shear operator, the performance improved for all tested features, which means
that the distortion caused by slant change can be partly undone by slant correction.
This result suggests to apply slant correction always before handwriting comparison
takes place as a preprocessing step. The best performing feature after slant correction
was Fraglets. But in spite of the improved performance, correcting the slant in slanted
handwriting did not restore writer verification performance fully for any feature. This
means that using the shear transform is not a complete solution against the problem
of slant manipulation in disguised handwriting. In other words, slant correction did
not result in the original handwriting, and deliberate slant change is not functionally
equivalent to the affine transform which is the shear operation.

This raises the question what else changes in the handwriting during slant change. We
know that disguise is usually inconsistent [49, 58, 66], thus a greater variation of slant is
expected. This is confirmed by the observation that Hinge and particularly Directions,
which heavily rely on slant information, suffered most from the slant manipulation.
Furthermore, it can be expected that the non-habitual movement of the finger-wrist
motor system introduces artifacts. The dataset is not extensive enough for a conclusive
analysis, therefore, we suggest a follow-up study with more data, in which the corrected
handwriting is thoroughly analyzed by forensic experts.

A further improvement would be to automatically detect disguise and decide if slant
correction should be applied. Forensic experts try to detect disguise based on experience,
but to the best of our knowledge, automatic methods to detect disguise do not exist yet.
In one study, a method has been devised to approach the related problem of forgery
detection [24]. It exploits the fact that forged handwriting is often less fluently written;
this principle may be applicable to disguise detection as well. In addition, we suggest to
exploit the aspect of inconsistency, as it is known to be an important indicator.

Another challenge for the future is to develop features that are invariant to dis-
guise. A new direction might be to make features that determine the way the letters are
constructed, mimicking an approach used by forensic document examiners.
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4.6 Conclusion

Slant is a salient feature of handwriting and it is an important factor of several statistical
features, but as an isolated factor, it is not essential for good writer verification perfor-
mance. It is not as informative for handwriting comparison as is usually assumed. This
was found in a series of writer verification experiments using three state-of-the-art sta-
tistical features: Directions, Fraglets, and Hinge. Removing the absolute slant lowered
writer verification performance by only 1–5 percentage points.

In disguised handwriting, slant is not valuable, but possibly deceptive because it is
subject to deliberate modification. When a non-habitual slant angle is applied during
writing, performance of the features obviously decreases. However, correcting the hand-
writing by shearing it to obtain a natural slant value did not restore performance fully.
Thus, disguise by slant change has more effect on the handwriting than just a shear ef-
fect, and the shear transform is not a complete solution against it. However, it is useful
as a partial solution: slant correction did improve performance on disguised handwriting.
Since slant is not an important aspect of handwriting, all possibly disguised handwriting
can and should be sheared to match the specimen handwriting. This may be an essential
step in biometric systems and in manual comparisons as well.
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Knowing the boundaries of acceptable input is a first step toward robust and ap-
plicable systems. In the part I, the robustness of methods based on statistical pattern
recognition was analyzed with respect to three performance influencing factors: text
scarcity, crossed-out text and disguise were considered. It was shown that robust clas-
sification is possible if at least 100 handwritten characters are present in the input
documents. Furthermore, a realistic fraction of crossed-out text can be admitted. How-
ever, classification of (possibly) disguised handwriting cannot be called robust yet, even
if the disguise only constitutes a change of slant. In addition, chapters 3 and 4 also
introduced methods to counter crossed-out text and disguise. It was shown that a ro-
bust system for handwriting biometrics should include a method for slant correction if
disguised handwriting is expected as input.

In part II, a step further will be taken: the introduction of new methods to make
handwriting biometrics more robust and applicable. This is the second objective of this
dissertation. A robust system does not just rely on a single classification method, but
contains several methods that are selected when needed [42, 43, 79]. In Chapter 5, a
new and powerful feature for writer identification will be introduced. This adds another
powerful method to the set of methods any robust system can select. The feature is
inspired by modern paleography and exploits information in the angle and width of ink
traces.

Apart from robustness, another factor contributes to applicability of handwriting
biometrics: explainability. Current systems focus on achieving high performance, but
the inner workings are not often easy to explain to field experts. In Chapter 6 a method is
introduced that regains explainability by representing handwriting as a relative position
with respect to typical handwritings, the handwritings of vantage writers.





Chapter 5

Using ink width and directionality as a feature

A modified version of this chapter was previously published in Pattern

Recognition. [14]

Historical handwriting written with a quill has a salient calligraphic appearance.
The variability of the trace width, as illustrated in Figure 5.1, is caused by physical
properties of the writing instrument and the individual writing style of the writer. In
quantitative paleography [29], a recent methodology in the manual study of such historical
documents, writing hands are discerned based on measurable characteristics. Two of the
characteristics form the motivation for this paper: contrast, which is the difference of
width between the thinnest and thickest traces, and the angle of writing, which describes
the habitual orientation of the pen tip, determined by the angle between the thinnest ink
traces and the base line. These characteristics suggest that trace width is an important
feature for writer identification and that it is relevant to relate trace width to the trace
direction. Trace width and direction can both be determined automatically using simple
contour-based image processing operations, and in this paper we will show that the
combination of the two yields a powerful feature for automatic writer identification. It
is not limited to historical handwriting since modern handwriting contains trace subtle
width variations as well.

The value of directionality measurements for writer identification is known [16, 26,
90, 94], but the added value of width measurements is new. Only one remotely re-
lated feature for writer identification has been evaluated that is based on run lengths
of black pixels [2, 87]. Apart from this approach, to the best of our knowledge, ink
trace-width measurements have not been used for writer identification. However, such
measurements have been evaluated for a few other applications. One study used width
measurements for stroke detection and structural analysis [30]. A second experiment
included a distribution of coarse trace-width measurements in a signature verification
experiment [62]. In another study on signature verification, the trace width was used to

75
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Figure 5.1: The word ‘hollanden’ in Dutch medieval handwriting. The width of the ink traces

varies: vertical, southeast and northwest-bound strokes are thick, while southwest and northeast-

bound strokes are thin.

express the mismatch between two signatures at corresponding locations [47].
Our approach is different in that width measurements are combined with direction

measurements, and used for writer identification. The resulting statistic will be used
as a text-independent writer identification feature, called Quill. It consists of a combi-
nation of simple methods, including trace-width computation using a method based on
Bresenham’s well-known line-drawing algorithm [50]. Quill depends on pen properties
and individual movement style. In this paper, the power of such computational mea-
surements of ink trace widths relative to the writing direction as a feature for writer
identification is explored on various handwriting datasets. We will show that its power
to discern writers is comparable to that of Hinge [19] and Fraglets [86], which are among
the world’s best features.

5.1 Datasets

The Quill feature will be evaluated on two datasets of medieval handwriting, the Dutch
charter dataset and the English diverse dataset. It will also be evaluated on the contem-
porary datasets Firemaker (page 1 and 4 of each writer) and IAM, which are described
in Section 1.12 on page 21. The medieval datasets are described in the next subsections.
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Figure 5.2: Document in the Dutch charter dataset: medieval handwriting in a charter, a legal

administrative document (1309). Other charters written by the same writing hand can be found

using writer identification. The original charter can be accessed via Zeeuws Archief, Onze Lieve
Vrouwe abdij te Middelburg, access number 27, item number 80, regest number 119. Photo: Jinna
Smit.
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5.1.1 Dutch charter dataset

The Dutch charter dataset is a new dataset of 118 early 14th-century Dutch charters
(1299-1328): administrative documents which served as evidence, written with quill
(goose feather) on parchment. See Figure 5.2 for a sample photo. The charters are
part of a collection that is studied at the University of Amsterdam in a research project
called “Charters and Chancery of the Counts of Holland/Hainault, (1280)1299-1345”.
The project is funded by NWO (the Netherlands Organization for Scientific Research)
and part of the VNC (the Flemish-Dutch Committee for Dutch Language and Culture)
program. As studies of medieval administrations rely heavily on writer identification,
the different writing hands in this dataset were distinguished and code-named by the
paleographers Jinna Smit and Jan Burgers. This was done independently and consis-
tently, with the use of Burgers’s method [22], combining elements out of traditional and
quantitative paleography.

The material in this dataset is graphically challenging in two ways. First, the originals
contain difficulties such as pictorial letters, wrinkles, wax seals, and irregularly shaped
parchment. Sometimes, parts of the ink are so faint that they are hard to distinguish.
Many charters are in bad shape due to aging, tears or even fire damage. Second, the
photos were taken using a 6 megapixel digital camera from different freehand positions
and in different illumination conditions. Because of the free camera position, the im-
ages suffer from perspective distortions, non-uniform scaling, non-uniform illumination
and occasionally blur. The photos also show document border shadows and sometimes
document placement holders.

Most charters have been photographed several times; the dataset contains 248 pho-
tos in total. From this dataset, a variant was created, the Dutch* charters dataset,
which does not include the “duplicate” photos. The duplicate photos of each original
were removed by randomly selecting one photo to keep and removing the others. This
procedure was repeated 25 times, averaging the results.

5.1.2 English diverse dataset

The English diverse dataset [27, 18] is a collection of 70 grayscale images of various late
medieval texts (1375–1525), written by 10 scribes. The dataset was collected from library
and archival resources by Professor Linne Mooney, expert codicologist-paleographer at
University of York, UK. She also ascertained the authorship of each manuscript. This
dataset was kindly provided by Dr John Daugman, University of Cambridge, UK.
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Figure 5.3: Example documents from the English diverse dataset: the left image shows part of a

manuscript produced by the Trinity Anthologies Scribe, Cambridge - Trinity College R.3.21, folio 249

Middle English verse and prose.

The documents are graphically complex: most of them contain decorative frames,
other decorations or pictural letters. The layout also varies significantly. Frequently, the
background is not uniform across the whole manuscript due to aging, stains and noise.
They have been photographed from above, but probably from a variable distance thus
the resolution of the digitization is not known and may not be constant. See Figure 5.3
for sample photos.

On each of the four datasets described above, the Quill feature will show to be effec-
tive for writer identification. The next section will discuss the theoretical background of
this new feature.

5.2 Analysis of trace-width production

Since the Quill feature was inspired by paleographic methodology, it is instructive to
understand how trace-width variations were produced in historical handwriting. Trace
width is influenced by at least three factors: the writing instrument, the habitual tip
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angle and individual movement style. These factors are described in the next subsections.
Following, the basic principle of production of historical handwriting is modeled, and
support for trace-width variation in modern handwriting is presented.

5.2.1 Writing instrument

Quills are capillary-action writing instruments that were used until the 19th century
[51]. A quill was made from the feather of a bird, usually a goose’s, by hardening it [93,
p. 163] and cutting a nib (writing end). The feather’s pen was first cut twice to create a
sharp point and then topped, creating an oblong tip (contact surface). Finally, the nib
was incised from this tip, splitting it in two flexible parts, the tines [67, p. 5–7]. Figure
5.4 shows such a quill nib. A few properties of this nib influence the trace width in a
document [106, p. 72]:

� Length of the tip. This length depends on the radius of the pen and the position
of the truncation on the nib. Scribes used to re-truncate the tip every so often
during the process of writing, influencing the maxima in the ink trace width.

� Flexibility of the tines. The more flexible the tines are, the wider the ink traces
could become. The flexibility is influenced by the length of the slit (incision) and
degree of hardening. The flexibility also depends on properties of the used feather
itself, as feathers vary naturally in pen stiffness, thickness and radius.

� Angle of truncation. The truncation was usually not exactly orthogonal, which
had implications on the preferred pen grip.

5.2.2 Habitual tip angle

Scribes kept the orientation of the quill tip almost constant [45]. Since the tip of a quill
is oblong, the effect on the produced ink trace is that it is thin where the tip was moved
sideways and thick where it was dragged perpendicularly. Thus width variations were
produced just by varying the writing direction. This principle is illustrated in Figure
5.5. The tip angle can be measured in the handwriting: it is generally parallel to the
thinnest traces and perpendicular to the widest. This tip orientation is an individual
influence on the handwriting [45].



5.2. Analysis of trace-width production 81

Figure 5.4: A quill nib. The slit (incision) partly

splits the nib into two tines; this enables width

variation by changing pressure.

Figure 5.5: A near-fixed quill tip angle α caused

by a near-fixed pen orientation determines the

pattern of width variation.

5.2.3 Individual movement style

Individual movement style emerges partly deliberate and partly unconsciously. The
following individual methods to influence the trace width are known [32, p. 81–84]:

� Force variation. The incision in the quill tip allowed the scribe to vary the trace
width by varying force on the pen. An example of unconscious force variation is the
individual way of creating tapered trace endings. This is visible in Figure 5.6 where
the ‘z’, ‘e’ and ‘d’ have tapered trace endings, created by gradually decreasing the
force on the nib. The force was also manipulated deliberately, for example when
writing north or west-bound, which requires a “pushing” pen movement. In this
case, to avoid damaging the parchment, only a very light force could be applied.
The effect is possibly visible in Figure 5.6: in this example, the loops of the ‘l’ and
‘d’ are thinner than expected; these could have been drawn northwest-bound. It is
also an established fact that force variation is very writer-specific in contemporary
handwriting [89].

� Elevation (or pitch) variation. A lower pen elevation lowers the force needed to
bend the nib’s tines and create a wider trace.

� Pen orientation (azimuth) variation. Even scribes with a very regular handwriting
varied the orientation of the pen 2–3° in different documents [45]; it is conceivable
that they also subconsciously varied the orientation within a document.
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Figure 5.6: Width variation in the medieval Dutch word ‘zeland’. The superimposed contour

(dashed) indicates the trace width to be expected when using a rigid oval pen tip. It illustrates

individual influence on the trace width.

� Rotation (or roll). The quill could be rotated around its axis such that only one
side of its surface touches the writing support; this enables creating curved thin
lines. A slight pen rotation can be another explanation for the thin loops of the ‘l’
and ‘d’ in Figure 5.6. In some cases scribes reversed the pen (a rotation of 180°)
to create thin traces.

The first three subsections of this section motivates that many pen-specific and in-
dividual behavioral properties have effects on the width of the ink traces. In the next
subsection, these influences will be temporarily abandoned to study the basic principle
of width production.

5.2.4 Trace-width production models

To aid the interpretation of the upcoming measurements, it is instructive to disregard
individual movement style for the moment and make a model for the basic calligraphic
effect: ink traces are thin where the tip is moved sideways and wide where it is dragged
perpendicularly, as illustrated in Figure 5.5. This calligraphic effect is caused by the
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Figure 5.7: trace-width production in simplified conditions: the local ink trace width w depends on

the tip shape and the relative orientation ψ = φ− α, where the tip is a rigid box or oval. Horizontal

axis: ψ (radians); vertical axis: w (mm). w was plotted according equations (5.1) (left) and (5.2)
(right). Tip dimensions (l1, l2) = (4mm, 1mm) are assumed.

oblong tip shape of historical pens. The exact effective shape of the contact surface
during writing is not known, therefore the effect of two basic oblong shapes will be
modeled here: a box and an oval. Both shapes will be modeled to be rigid and fixed at a
rotation angle α, similar to usage of a brush in a graphics program. The oval shape may
be more accurate than the box shape since cohesion and adhesion effects must make
the ink at the quill tip round. The top row of Figure 5.7 shows these shapes plus the
parameters that will be used for the models.

In these simplified conditions, the trace width w only depends on the relative ori-
entation ψ = φ − α, where φ denotes the local trace direction and α denotes the tip
orientation. In the bottom row of Figure 5.7, this relation is visualized in a graph for
the two simple pen tip shapes, for any relative orientation. The graph for the box model
was computed using Equation (5.1), which computes the predicted trace width w for
any relative orientation ψ, assuming a box shape of dimensions (l1, l2). The formula is
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easily derived from Figure 5.7(a). The graph for the oval model was computed using
Equation (5.2), which determines the height of a parametrized oval after rotation, where
t∗ = arctan l2 cosψ

l1 sinψ represents the parameter value at the top. Although the formulas
for computing the graphs are not used for the Quill feature, these are mentioned for
completeness and future reference.

w(ψ, l1, l2) = |l1 sinψ|+ |l2 cosψ| (5.1)

w(ψ, l1, l2) = |l1 cos t∗ sinψ + l2 sin t∗ cosψ| (5.2)

The graphs demonstrate what the result of the Quill feature should look like if a
rigid oblong tip shape can be assumed. Any deviation from these graphs will show the
presence of individual influence on the trace width. Figure 5.6 shows a piece of real data
and illustrates that the oval model does not explain all width variation: the ink does
not follow the expected contour exactly, proving the existence of influence on the trace
width by the personal writing habits of the scribes. This individual influence makes the
trace width a valuable source of writer-specific features.

5.2.5 Trace-width production in modern handwriting

Modern handwriting contains trace-width variations as well, although not as pronounced
as in historical handwriting. At least two types of individual writing style play a role.
First, the trace width is directly influenced by the force applied to the pen tip [30, 47, 38],
and different writers apply this force differently [89]. In particular, downstrokes are
usually wider than upstrokes [30, 47]. Second, the width is altered by local retracings
[30].

5.3 Quill feature

The Quill feature p(φ,w) captures the relation between local width w and direction φ of
ink traces in a probability distribution. It expresses properties of the used pen and the
writer’s unique way of producing variations in the width of the ink trace. The feature
consists of a few simple parts that together form a powerful method for writer identi-
fication: contour tracing, angle measurements, width measurements, and calculation of
a probability distribution. These parts are further explained in the next paragraphs.
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Figure 5.8: Contour tracing by following crack-edge contours, shown as arrows. Foreground pixels

are shown as blocks; the pixels in the resulting trajectory are shaded dark.

Figure 5.9 illustrates the angle and width measurements, which form the heart of the
Quill feature. The algorithm is summarized in pseudocode in Algorithm 4.

5.3.1 Contour tracing

After thresholding, the measurements are performed while traversing contours. An alter-
native approach would be to traverse the center line of the ink, but traversing contours
is simpler and more robust [30]. Contours are here considered to be 8-connected circular
trajectories of black pixels that are adjacent to white pixels. A fast method was designed
that constructs these by following the crack-edge contours: contours consisting of the
imaginary edges between foreground (black) and background (white) pixels. See Figure
5.8. The crack-edge contours are followed counterclockwise, keeping the ink on the left-
hand side, yielding an 8-connected pixel trajectory consisting of the foreground pixels
that touch the crack edges. This method is fast and robust. It also ensures consistent
measurements on both sides of a stroke, even on strokes that are only one pixel wide.

5.3.2 Angle measurements

Given the ink contours, φ is computed at all pixels on those contours. φ denotes the
local ink direction, measured in a systematical way. Due to ambiguity in off-line hand-
writing, the actual writing direction can be in two opposite directions. It is possible
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to reconstruct the actual direction [30], although not reliably. Instead, φ is defined to
be the angle of a local tangent line with respect to the horizontal, where the ink is to
the left-hand side (in image space) of the tangent line. This is illustrated in Figure 5.9.
This systematic approach ensures robust measurements, rendering the actual writing
direction unimportant: since the contours are circular, every measurement will gener-
ally be accompanied by an opposite measurement on the other side of the trace; both
measurements counterbalance each other.

At contour pixel Ci, the ith pixel of contour C, φ can be estimated using two nearby
contour pixels Ci−r and Ci+r which are the endpoints of imaginary ‘legs’ originating
from Ci at a distance of r contour pixels. A straightforward approach to estimate the
local orientation φ would be to simply calculate the angle between Ci−r and Ci+r. This
approach has the disadvantage that it is not accurate at positions of greatly varying
curvature, such as stroke endings. Therefore, a slightly more elaborate method was
used.

The leg from Ci−r to Ci defines an inbound angle φ1; the leg from Ci to Ci+r defines
an outbound angle φ2. Since the pixel Ci is in the middle of these legs, φ can be
estimated as the angle between φ1 and φ2. Because of the periodicity of angles, special
care has to be taken to ensure that the resulting direction keeps the ink on the left side
(in image space). When the difference between φ1 and φ2 is smaller than π radians,
by definition the ink must must be in the region between these angles. But when this
difference exceeds π, by definition the ink must be on the other side, thus the resulting
angle flips. Summarizing, φ is computed as follows:

φ =

{
(φ1 + φ2)/2 if |φ1 − φ2| < π

(φ1 + φ2)/2 + π otherwise
(5.3)

5.3.3 Width measurements

After computing the local angle φ at contour pixel Ci, the local width of the ink trace
w is computed. Any robust method could be used as part of the Quill feature. A few
methods to compute trace width have been proposed before, designed for application on
signatures [30, 47]. These methods are based on traversing a line from Ci through the
ink, perpendicular to φ, until the background is hit.

In this study, a variant of this principle was used because of its simplicity: a method
based on Bresenham’s algorithm [50], which constructs an approximated (quantized)
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Figure 5.9: φ and w are determined at each contour pixel (x, y). φ (trace direction) is measured by

averaging the angles with two neighboring contour pixels at distance r. w (trace width) is computed

using the so-called Bresenham width: the distance to the first background pixel that is hit when

following a Bresenham path, perpendicular to φ, towards (xe, ye).

linear path of pixels between two given pixel positions in an image. In this case, the
starting pixel of this path is Ci = (x, y). The end pixel (xe, ye) is a pixel that is on the
line perpendicular to φ. This is illustrated in Figure 5.9. The precise position of (xe, ye)
is determined by a parameter, m, which signifies the maximum measurable width, as
shown in Equations (5.4) and (5.5):

xe = x+m ∗ cos(φ+ 11
2π) (5.4)

ye = y +m ∗ sin(φ+ 11
2π) (5.5)

The pixels on the Bresenham path are traversed from Ci to (xe, ye) and checked for
color: the algorithm stops if a background (white) pixel is hit. The trace width w is
then computed as the distance from Ci to this background pixel (xb, yb) using a simple
Euclidean measure:

w =
√

(x− xb)2 + (y − yb)2 (5.6)

In the following, this method to compute the trace width will be called Bresenham width.
In the next section, this method will be used together with angle measurements to form
the Quill feature.
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5.3.4 Probability distribution

The locally measured direction φ and width w are agglomerated in a probability distri-
bution p(φ,w). It will be referred to as the Quill probability distribution (QPD). It is
created as follows. Every measurement (φ,w) is agglomerated in an interpolated p × q
histogram, where p is the number of bins into which the measured width is quantized;
q is the number of angle bins. In the following, p is equal to m (maximum width) for
simplicity, so each width bin corresponds to one pixel of width in the ink. The histogram
was built using bilinear interpolation, updating four bins at once for every measurement,
to avoid distortions caused by measurements close to bin boundaries. This is relevant
because φ is discrete and because of delicate rounding errors due to angle periodicity.
The resulting histogram was converted into a probability distribution by normalization,
which makes it independent of the amount of text and usable as a writer-specific feature
vector.

Algorithm 4 Quill feature. INPUT: binary image I, leg length r, number of width bins
p, number of angle bins q. OUTPUT: 2D probability distribution P .
H ← empty histogram(q, p)
Cs← contourtrace(I) {Cs is a list of contours}
for all C in Cs do
n← len(C) {n is the current contour’s length}
for i in [0 to n− 1] do
φ1 ← angle(C[(i− r) mod n], C[i])
φ2 ← angle(C[i], C[(i+ r) mod n])

φ←

{
(φ1 + φ2)/2 if |φ1 − φ2| < π

(φ1 + φ2)/2 + π otherwise
(x, y)← C[i] {(x, y) is the current contour pixel}
xe ← x+ p ∗ cos(φ+ 1.5π)
ye ← y + p ∗ sin(φ+ 1.5π)
w ← bresenham width(x, y, xe, ye) {Compute width}
H.update(φ,w) {Update histogram, interpolated}

end for
end for
P ← normalize(H) {Make probability distribution}
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(a) Artificial lines. The upper dark spots correspond to the vertical stroke; the lower

spots correspond to the diagonal line.

Ink angle bin (range corresponds to 0..2π)

In
k 

w
id

th
 b

in
 (

1 
pi

xe
l p

er
 b

in
)

10 20 30 40

5

10

15

20

25

30

(b) Artificial circle. It has a constant trace width in all directions; it could have been

produced using a stylus with a round tip and homogeneous ink deposition, possibly a

fineliner.

Figure 5.10: Artificial binary images (left) and their Quill probability distribution (QPD, right): a

distribution of (φ,w) combinations. Dark regions indicate frequent combinations. The horizontal axis

represents the trace direction φ (0..2π radians), quantized in q = 40 bins; the vertical axis represents

the trace width w (1..20 pixels) in p = 20 bins. Used parameters: q = 40, p = 20, r = 10.
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(a) Contemporary handwriting in the Firemaker dataset. Text produced with a ball-

point; width variation is limited.

(b) Medieval Dutch text (1322) in the Dutch dataset. The QPD shows a wave shape,

as predicted by the models in Figure 5.7, thus this is quite regular medieval writing.

(c) Medieval Dutch text (1300) in the Dutch dataset. The writer produced near-

horizontal and near-vertical traces in a variety of widths, which show as vertical bands

in the QPD.

Figure 5.11: Binarized handwritten documents (left) and their Quill probability distribution (QPD,

right).
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5.3.5 Interpretation

By visually inspecting the QPD a variety of properties of the handwriting can be de-
rived. See Figures 5.10 and 5.11 for binarized example images and their QPD. Modern
handwriting written with a ballpoint pen results in a near-horizontal structure, as the
trace width is nearly the same for all ink directions. Dark (high-frequency) regions in-
dicate frequently used angles, which are closely related to the handwriting’s slant. For
historical handwriting, the QPD reveals other properties of the handwriting as well:

� The most salient property of a QPD of historical handwriting is that it shows a
wave shape, as predicted by the models in section 5.2.4. The shape repeats itself
after a period of π radians (180°) because generally every measurement on one
side of a trace has a counterpart on the other side, in the opposite direction. The
presence of peaks and valleys indicates that a writing instrument with an oblong tip
was used, held at a near-fixed orientation: the ink width depends on the direction.

� The valleys correspond to the thinnest traces. The w value of the valleys corre-
sponds to the width of the thinnest strokes; the φ value of the valleys reveals the
near-fixed pen-tip angle: α ≈ φ ± π. By fitting a model described in 5.2.4 to the
raw measurements, α could be estimated automatically.

� Similarly, the peaks correspond to the widest traces. The w value of the peaks
corresponds to the width of the thickest strokes and the φ value of the peaks
reveals the near-fixed pen-tip angle: α ≈ φ+ π

2 ± π.

� The deviation from the models in section 5.2.4 indicates the influence of physical
pen properties and individual movement style, as described in section 5.2.

� The φ value of the cell with the highest intensity (dark region in the figure) reveals
the dominant stroke direction, which is closely related to the dominant slant angle.
The corresponding w value reveals the dominant stroke width.

5.3.6 Variant: Quill-Hinge feature

Inspired by the success of the Hinge feature a modification of the Quill feature was
developed: the Quill-Hinge feature p(φ1, φ2, w). It records w in conjunction with φ1 and
φ2 instead of φ, making the feature three-dimensional.
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5.4 Performance experiment

The performance of the Quill feature was tested in a writer identification experiment on
the four datasets that were introduced in section 5.1. Its performance was also compared
with the performance of other features. This section discusses the experiment.

5.4.1 Preprocessing

The images in the datasets of modern handwriting were preprocessed using text region
cropping based on known fixed coordinates followed by Otsu thresholding. The described
medieval documents are graphically more challenging and required additional steps:

� Manual text region selection: A region of interest (roi) was manually selected
in a graphical interface (giwis) by placing a four-sided polygon, which enables
the careful selection of a text area that is rectangular in reality but subjected
to perspective transformation. This was essential for the Dutch charter dataset,
where the camera position was free.

� Perspective correction: The perspective distortion in the Dutch and Dutch* charter
datasets was corrected by a reverse perspective projection. The parameters were
derived from the positions of the four vertices of the roi. The result was a rectan-
gular image containing a version of the roi, stretched using bilinear interpolation.

� Automatic scaling: The scale was estimated from the height of the text lines in the
images, assuming that the true height of the text lines is equal in all documents.
The text line height was determined by measuring the median width of the peaks
in the smoothed horizontal projection profile of dark pixels. The images were then
scaled to match a standard text line height of 50 pixels.

� High-pass filtering: Gradual intensity variations were canceled by applying a high-
pass filter, after grayscale conversion. This was implemented by a straightforward
approach: blurring the image and subtracting that from the original image.

� Otsu thresholding: The last preprocessing step was to binarize the image using Otsu
thresholding [75], which is widely recognized as a good general-purpose binarization
method.
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5.4.2 Writer identification experiment

The preprocessed datasets were used to test the power of the feature in a writer iden-
tification experiment. Writer identification is the recognition of the writer of a query
document by yielding a hit list: a list of database documents that are similar to the query
document in feature space. Typical hit list sizes are 1 or 10, therefore the feature’s per-
formance will be expressed as its top-1 and top-10 writer-identification performance,
which means that a hit list will be counted as correct if at least one document of the
query writer appears in it. Top-1 performance is also called nearest-neighbor accuracy.

In this experiment, any classifier could be used, but nearest-neighbor (instance-based)
classification is used for reasons mentioned in Section 1.11. The top-x performance
is simply computed by treating each dataset document as a query, sorting the other
documents by similarity, and counting how often another document from the same writer
appears among the x most similar documents. Similarity is based on two documents’
feature vectors and a distance measure. The distance measure to determine the similarity
of two documents’ corresponding feature values was the χ2 distance [25] (described in
Section 1.9), because it has been shown to be effective on feature vectors of Hinge and
Fraglets [85].

The following features were evaluated: Directions, Brush, White runs, Hinge, and
Fraglets; these are described in Section 1.8. The code-book for Fraglets was pre-computed
using modern handwriting: all four pages of the first 100 subjects of the Firemaker
dataset. In addition, the new Ink width feature was evaluated: Ink width (p(w)) is a
probability distribution (p.d.) of trace-width occurrence. It is a modified version of
the Quill feature, where the number of angle bins is set to one (q = 1). The effect is
that this feature only measures the distribution of ink widths, without regarding the
corresponding direction. This feature was included to roughly evaluate the importance
of the ink width in the Quill feature. Furthermore, four combinations of features were
also tried: Hinge & Fraglets, Quill & Hinge, Quill & Fraglets, Quill-Hinge & Fraglets.
These combinations were made by simply averaging the distance values.

For the Dutch* charter dataset the experiment was repeated 25 times; in each ex-
periment one photo of each original was selected randomly. The results were averaged
over the 25 runs.
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Figure 5.12: Sensitivity of Quill’s top-1 performance for the parameters q (number of angle bins)

and p (number of width bins) in the Dutch* charter dataset for r = 20. The graph shows that the

choice of the parameters is almost arbitrary, as long as q > 30, p > 30.

5.4.3 Training

Instance-based classification does not require any training other than storing feature
values, but the Quill feature contains three parameters (p, q and r) that need to be
optimized. This was done using simple methods as will be described below. It will also
be shown that the feature is not very sensitive to the actual parameter settings.

Optimizing the parameter values for p, q and r was done by evaluating 896 parameter
combinations from a regularly spaced three-dimensional lattice on the Dutch* charter
dataset using a 4x4-core PC with 128 GB of memory. It was not the maximum per-
formance score in this evaluation that determined the final choice of the parameters.
Instead, good parameter values were determined by visual inspection of the data plot-
ted in figures such as Figures 5.12 and 5.13. This procedure minimizes the effect of
overtraining that may exist since no separate training set was used.

Figures 5.12 and 5.13 show the sensitivity of Quill for its parameters. The three-
dimensional evaluation cannot be fully visualized, therefore two ‘slices’ of the results
are shown. Figure 5.12 shows how the performance relates to p and q, given a fixed
r = 20. It shows that the performance is insensitive to the values of p and q, as long
as they are at least about 30. Increasing the values much further does not increase the
performance, but has a negative effect on memory usage and speed. The values p = 40
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Figure 5.13: Sensitivity of Quill’s top-1 and top-10 performance for the parameter r (leg length) on

the Dutch* charter dataset; q = 40, p = 40. The graph shows that the influence of this parameter

is marginal, as long as the value is between about 10 and 100.

and q = 40 were chosen as safe values. The effect of the parameter r (leg length) on the
performance is shown in Figure 5.13. It shows that this performance is hardly affected by
this parameter, as long as the value is between about 10 and 100. This is the same order
of magnitude of the corpus height of the text (50 pixels). r = 20 was chosen because
higher values are less suitable for small characters and less intuitive. Summarizing, the
found parameters are p = 40, q = 40 and r = 20.

5.5 Results

Table 5.1 shows the results of all performance experiments. Top-1 performances of the
well-known Directions feature are in the range 48–74%. The Ink width feature, on the
other hand, performs 22–73%. It coarsely describes the informational value of ink trace
width: it is low in Firemaker, where ballpoints were used, intermediary on the medieval
datasets and high in IAM, where different types of pens were used. The contribution of
ink width in the Firemaker dataset seems small, but the Ink width feature does not take
structural dependency on the trace direction into account while Quill does.

Ink width awareness partly explains Quill’s performance on the datasets, most no-
tably IAM, in which different types of pens were used. The Quill feature performs much
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Table 5.1: Writer-identification performance of several features (top, middle) and feature combi-

nations (bottom) on datasets of medieval and contemporary handwriting. The numbers represent

recognition percentages.

Medieval handwriting Contemporary handwriting
Dutch* Dutch English Firemaker IAM

18 writers 18 writers 10 writers 251 writers 657 writers
118 images 248 images 70 images 502 images 1539 images

25Ö112 queries 245 queries 70 queries 502 queries 1183 queries
Top1 Top10 Top1 Top10 Top1 Top10 Top1 Top10 Top1 Top10

Directions 57 86 69 93 56 93 48 79 74 90
Ink width 47 79 66 89 40 87 22 52 73 88
Quill 75 90 92 98 63 96 71 89 95 97

Quill-Hinge 75 89 92 98 70 96 86 97 97 98

Comparison features

Brush 38 79 53 85 40 86 37 77 78 89
White runs 43 86 67 94 37 83 22 57 43 76
Hinge 71 92 86 97 76 93 83 92 94 96
Fraglets 73 94 92 98 89 100 72 90 97 98

Combinations

Hinge & Fra-
glets

75 93 94 98 90 99 76 93 97 98

Quill & Hinge 73 91 93 98 74 96 83 95 96 97
Quill & Fra-
glets

77 94 94 98 86 99 78 95 97 98

Quill-Hinge &
Fraglets

77 94 94 98 86 99 81 96 97 98
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better than Directions or Ink width alone: top-1 performances are in the range 63–95%.
This proves that the combination of directionality measurements with trace-width mea-
surements is fruitful. It also supports the foundation of characteristics in quantitative
paleography that are based on trace angle and width. The value of trace directions for
writer identification was known, but the added value of width measurements for writer
identification is new.

Even when compared to the other features, Quill proves to perform very well: it am-
ply outperforms Brush and White runs, and on average, it performs as well as Fraglets
and Hinge, which are among the world’s best features. The modified version of the fea-
ture, Quill-Hinge, seems to perform even better than Quill. Slightly better performances
are achieved by combining features. Top-1 performances of Quill & Fraglets and Quill-
Hinge & Fraglets are in the range 77–97%. The results were obtained by averaging the
distance scores for both features in the combination. Table 5.2 puts the performance of
Quill-Hinge in the context of leading results obtained by others. Only results on modern
handwriting are shown since little similar work has been done on historical handwriting.

Note that the reported performances may be several percentage points off (except
in the column ‘Dutch*’) due to the relatively low number of queries and the influence
of randomness. For example, the 95% confidence interval for a recognition score of 92
with 245 queries (Quill in column Dutch) is the range 88–96 (based on the Binomial
distribution).

Still, these performance figures suggest that Quill and Quill-Hinge can be used in
a production environment. Researchers in application fields are currently evaluating
the features [4, 74, 92] in our giwis software program, a user-friendly graphical user
interface. A recognition score of 100% is not necessary: based on a top-10 hit list, the
domain specialist can make the final decision. However, some improvements are still
possible, as we will describe in the following.

5.6 Future work

A simple optimization approach is to try other distance measures. An excellent overview
of available distance measures for probability distributions exists [25] which can serve
as a starting point. However, the currently used χ2 distance measure has proved to be
effective in previous experiments [85].

The method of combining features could be improved as well. Simply averaging could
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Publication writers top1 top10

Bensefia et al. [6] 150 87% 99%

Bulacu [21] 900 87% 96%

Garain et al. [44] 422 62% 96%

Schlapbach et al. [82] 100 97% 98%

Schomaker et al. [86] 150 97% 100%

Siddiqi et al. [90] 650 86% 97%

Srihari et al. [94] 900 88%

Quill-Hinge 251 86% 97%

Quill-Hinge 657 97% 98%

Table 5.2: Performance of Quill-Hinge on modern handwriting compared to leading results obtained

by others. Note that the numbers cannot be well compared because of differences in dataset material,

required level of human interference, and number of writers.

be replaced by feature weighting, however little gain is expected since it is known that
Fraglets and Hinge are best weighted by plain averaging [19]. This was confirmed by a
small pilot experiment with Quill and Fraglets. The features could also be combined in
different ways, for example, using Borda ranking.

Preprocessing could be improved. Although the preprocessing used in the perfor-
mance experiment generally works quite well, it breaks the thinnest faint ink traces.
The result is that measurements on those traces are underrepresented in the QPD, re-
sulting in suboptimal performance. Preserving this weak signal is still a hard image
processing challenge.

Quill and Quill-Hinge are pen-dependent features. This can be advantageous but it
may not be so if a significant number of writers each use multiple pens. To partly cancel
the pen dependence as described in 5.2.1, one of the models presented in 5.2.4 could be
fitted to the measurement data, followed by a rescaling of the data based on the width
range. This could also compensate for scaling differences due to varying camera distance
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or resolution; these are now dealt with in an explicit preprocessing step. However, this
model fitting is not trivial since the data contains structural noise.

For performance analysis, better medieval datasets could be collected or constructed.
The results on the used datasets are not fully reliable since some writer labels may be
wrong: the labels were manually determined based on skill and experience, not facts.
Furthermore, the currently used datasets are relatively small. Larger datasets with
known writer labels will make the results more reliable.

The presented methods can be used for other applications as well, including pen
and script type estimation, by analyzing the QPD, and estimation of the modal pen-tip
orientation α by fitting the models from 5.2.4 to the measurement data.

5.7 Conclusion

As suggested by modern paleographic methodology, the width of the ink trace is a pow-
erful source of information for writer identification, particularly in combination with
the trace direction. This is not only true for off-line writer identification on historical
handwriting, which shows salient width differences because of usage of quill pens, but for
modern handwriting as well. This was found in a series of writer identification experi-
ments using a newly introduced feature: Quill. It is a 2D joint probability distribution of
ink trace width and direction. The feature consists of simple, fast and accurate methods
based on pixel contours. The feature was tested on two datasets of modern handwriting
and two datasets of medieval handwriting: writer identification scores (nearest-neighbor
classification accuracy) scores are in the range 63–95%. This is much higher than the
individual performances of features based on either the ink width or direction. It even
approaches the performances of Hinge (71–94%) and Fraglets (72–97%), which are among
the world’s best features. A slightly more complex version of the feature involving curve
measurements, Quill-Hinge, seems to perform even better. The performance of Quill
and Quill-Hinge strengthens the foundation of related measurements in quantitative pa-
leography. The features can be used as general-purpose writer identification features.
Slightly higher performance can be achieved by combining the features with other fea-
tures (77-97% with Fraglets). In giwis, a user-friendly user interface, the features are
already helping historians fruitfully.





Chapter 6

Increasing explainability using vantage writers

A modified version of this chapter was previously published in ICDAR.

[13]

Despite the fact that several systems for handwriting biometrics have been imple-
mented and impressive performances have been reported [78], still no system exists that
convinces forensic experts. One of the reasons is that the output of such systems is often
hard to interpret. Experts consider them as black boxes of which the inner workings are
unclear. These systems usually yield numbers without an intuitive explanation. That
issue is addressed in this chapter.

An adaptation to automatic off-line writer verification and identification is proposed,
which allows to generate reports that are comprehensible. The principle is that a per-
son’s handwriting can be seen as a relative position with respect to handwritings of
typical writers, the vantage writers. The degrees of dissimilarity between a document
and each of the vantage writer’s handwritings form a small list of numbers, called a
vantage profile. This profile is used to discriminate writers. The vantage profile is com-
prehensible, because it represents a relative position with respect to documents that can
be shown to the user.

A vantage profile based on vantage writers is an implementation of a dissimilarity
representation, as introduced in [76]. In that publication, classes are discriminated by a
Bayes classifier that assumes normal distributions of the dissimilarity values. We used a
different approach for the classification, because there are very few samples per writer.
A similar approach is described in [104], where hieroglyphic images are retrieved using
vantage objects. In [105], on-line characters are hierarchically clustered, where each
cluster is represented by a prototypical input sample, and each writer is assigned a style
vector that indicates the usage of each of the prototypical characters. In [107], characters
from several copybooks were clustered in order to determine the nationality of writers
based on their character usage. In [72], writing styles are expressed as usage of inferred
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copybooks.
To test how the vantage profile approach performs, both writer verification and iden-

tification experiments were performed based on vantage profiles. Two datasets were used
separately; one of them is a collection of confidential forensic data. In the next section,
the method and experiments are described in detail. In section 6.2, the verification
and identification performance of the vantage writer method are presented. Finally, in
section 6.3, the results are discussed and future work is suggested.

6.1 Method

For each image dataset, basic features of the images were extracted first, resulting in
two feature datasets. These were each split into a train set and a test set. The train set
was used to select the vantage writers. It was also used to determine the classification
threshold for verification. The test set was used to assess the performance independently.
A more detailed description follows in the next subsections.

6.1.1 Dataset preparation

Two datasets were used separately to provide the input patterns for the experiments:
Firemaker [88] (see page 21) and NFI. The NFI dataset is a heterogeneous set of hand-
written pages that have been collected by the NFI, the Dutch National Forensic Institute.
It was used for the experiments in Chapter 3 as well. The collection consists of 3501
scanned forms with handwritten material, on demand written by 1311 suspects in crim-
inal cases. Most of the suspects wrote two pages, but there are many exceptions. Most
of them wrote a dictated standard text; the first part in connected cursive, the second
part in capitals. In many cases the transition from cursive to capitals occurs within a
page. The handwriting in this dataset gives an impression of great sloppiness. This
is due to the facts that the forms were not lineated, the subjects have a lower level of
education and some of the subjects may have not been cooperative. Also, many pages
contain erasures or visible perforator holes. Altogether, one could conclude that this is
a “dirty” dataset. For examples, see Figure 6.1.

For performance evaluation, the Firemaker dataset could be used as-is, but the NFI
data required some preprocessing. First, border effects like visible pieces of form fields
and the paper edge were removed by cutting along straight horizontal and vertical lines.
The positions of the cutting lines were determined heuristically using a smoothed pro-
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Figure 6.1: Example documents in the NFI dataset, each one cut in two parts.

jection histogram. The same kind of histogram was used to split the page into an upper
and a lower part, to increase the probability that every writer has at least two pieces
of similar text in the database; the parts were treated as separate documents. This
method is relatively simple, and visual inspection proved that it works reasonably well.
However, as much as 1127 pages had to be rejected because the text baseline was too
curved or sloped, making a horizontal cut between two text lines in the middle of the
text impossible. Still, after splitting, 4748 page parts remained, written by 1074 persons.
The fact that the pages were cut in two parts that are treated as separate documents
will introduce an optimistic bias in the verification and identification results. On the
other hand, the NFI data has not been collected with automatic processing in mind, and
is contaminated in many ways, which has a negative effect on the performance figures.
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6.1.2 Basic feature extraction

Creating a vantage profile for an image requires that a basic feature vector has already
been computed. This can be done using any statistical feature extraction method. In
this experiment, feature vectors were computed for all input documents using a method
that has proved to be very effective: the Hinge feature [19] (see page 13).

6.1.3 Selecting vantage writers

Vantage profiles represent writer information as relative position with respect to the
handwriting style of typical writers, the vantage writers. To create these profiles, the set
of vantage writers must be defined first. This can be done in various ways. For example,
they could be manually selected to represent styles from different countries, sexes or
ages. In our implementation, the vantage writers were represented by a sample of input
documents in the training part of the dataset, the vantage-writer sample. This was done
by random sampling a fixed number of times, and picking the best choice afterward.
The number of random samples was set to 50 for the Firemaker dataset, and 25 for
the NFI dataset, for reasons of computing time. For every sample, the performance was
computed by creating vantage profiles and performing writer verification or identification
on the train set as described in the next subsections. The sample yielding the highest
performance on the train set was assigned to be the final set of vantage writers. Vantage
writers were determined for verification and identification separately.

6.1.4 Creating vantage profiles

The vantage profile v of a document is acquired by computing the distance between its
basic feature vector x and the basic feature vectors yj of the sample documents of each
of the vantage writers j. The distance can be computed using various measures, such as
Euclidean, Hamming, χ2, Bhattacharyya, etc. Since a hinge feature vector is essentially
a probability distribution and the χ2 measure has proved to be effective for this kind of
feature vectors [85], this measure was used.

The distances together form a vector of distances v, which we call a vantage profile.
This can be written as:

v = (d(x,y1), ..., d(x,yn))

where d is a dissimilarity measure, yj are the feature vectors of the vantage writers and
n is the number of vantage writers. It is treated as a new, indirect, feature vector that



6.2. Results 105

is used to discriminate writers. As such, the computation of vantage profiles can be seen
as a form of dimensionality reduction. See Figure 6.2 for an example.

6.1.5 Writer verification

A threshold for verification was learned from the documents in the train set that were
not used in a vantage sample. This was done by modeling the distances between van-
tage profiles within the “same-writer” and “different-writer” classes. These distances
were found by comparing the vantage profiles of each pair of documents and computing
the Euclidean distance between them. From the distances in both classes, smoothed-
probability densities were created using Parzen windowing with a Gaussian kernel. See
Figure 6.3 for an example. Based on these probability densities, the threshold was posi-
tioned for the highest expected performance in terms of the true positive (TP) and true
negative (TN) percentages (in other words, the lowest false negative and false positive
percentages). The expected TP and TN could be balanced according to the desire of
the end user, but as there was no such information available yet, the threshold was se-
lected such that TP = TN: the equal-error rate (EER). The EER was also used as the
performance measure for vantage writer selection.

6.1.6 Writer identification

In this experiment, each document in the train set was once treated as a questioned doc-
ument. Its hit list was constructed, containing the s nearest neighbors of the questioned
document based on the vantage profiles, with s = 1, 10, 100. During the selection of
vantage writers, the writer-identification performance was simply assessed as the top-1
performance (s = 1).

6.2 Results

To test the performance of the vantage writer method, several runs of K-fold cross vali-
dation were carried out, varying the number of selected vantage writers: n = 2, 4, 5, 50.
In each run, the cross validation iterated four times (k = 4), where in every iteration 25%
of the data was available for training and 75% for testing. The data was split such that
all pages of each writer were always in the same part. Testing was done for verification
and identification separately.
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vantage 1 vantage 2 vantage 3 vantage 4 vantage 5

doc 1

0.153 0.157 0.321 0.104 0.339

doc 2

0.286 0.062 0.591 0.187 0.608

doc 3

0.294 0.123 0.799 0.373 0.579

... ... ... ... ... ...

Figure 6.2: Example vantage profiles based on five vantage writers in the Firemaker dataset.
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Figure 6.3: Model of hinge-5-vantage profile distances in Firemaker dataset, smoothed using Parzen

windowing with a Gaussian kernel.

For writer verification, the train part of the dataset was used to select vantage writers,
compute vantage profiles and determine a verification threshold as described in 6.1.3
– 6.1.5. Then, the found vantage writers and threshold were used to perform writer
verification in the same way, but on the test set. The TP and TN were recorded. The
results for the Firemaker and NFI dataset are shown in Table 6.1. For comparison, the
table also includes a line with the performance of the bare Hinge feature vector, without
the indirection induced by vantage writers. The tables show that the performance using
vantage profiles is similar to the performance using the Hinge feature directly, and that
the number of vantage writers does not have much influence. The ratio between TP and
TN shifts slightly as the number of vantage writers increases; this is probably an effect
of the Parzen smoothing. The effect of smoothing can still be optimized by changing its
parameters.

Similarly, for writer identification, the train part of the dataset was used to select
vantage writers and compute vantage profiles as described in 6.1.3, 6.1.4 and 6.1.6. Then,
the found vantage writers were used to perform writer identification in the same way on
the test set. Top-1, top-10 and top-100 performance were recorded. The results for the
Firemaker and NFI dataset are shown in Table 6.2 and 6.3 respectively. For comparison,
the table also includes a line with the performance of the bare Hinge feature vector,
without the indirection induced by vantage writers. It is clear that the vantage writer
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Firemaker NFI
TP TN TP TN

hinge 96.1% 83.5% 79.0% 73.9%
hinge-2-vantage profile 91.4% 85.9% 74.5% 75.8%
hinge-4-vantage profile 92.0% 89.7% 75.1% 77.8%
hinge-5-vantage profile 90.8% 90.5% 75.1% 77.8%
hinge-50-vantage profile 88.7% 91.3% 75.0% 77.6%

Table 6.1: Average verification results for the Firemaker dataset (378 pages, 189 writers) and NFI

dataset (3561 pages, 805 writers).

Top-1 Top-10 Top-100
hinge 67.3% 89.0% 98.3%
hinge-2-vantage profile 12.4% 48.9% 94.8%
hinge-4-vantage profile 30.6% 72.3% 96.2%
hinge-5-vantage profile 36.5% 75.3% 97.3%
hinge-50-vantage profile 41.0% 76.8% 96.5%

Table 6.2: Average identification results for the Firemaker dataset (378 pages, 189 writers).

method does not work as well for identification as it does for verification.

6.3 Conclusion

In this paper a method was proposed that is a step toward explainable automatic writer
verification and identification. This transforms the “black box” that automatic systems
usually are into a more transparent one, since basic components can be shown to the
user: a vantage profile and pieces of text written by the vantage writers on which the
vantage profile is based. The output is currently a same writer / different writer verdict
(for verification) or a hit list (for identification), accompanied by vantage profiles. These
show the degree of dissimilarity to the handwriting of each of the vantage writers. The
system could be made even more transparent when the dissimilarities are replaced by
probabilities. This could be done when the measurements are repeated in multiple pieces
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Top-1 Top-10 Top-100
Hinge 53.5% 77.1% 92.2%
Hinge-2-vantage profile 2.8% 17.4% 61.2%
Hinge-4-vantage profile 14.1% 42.8% 80.6%
Hinge-5-vantage profile 18.2% 48.2% 82.6%
Hinge-50-vantage profile 28.3% 58.5% 85.6%

Table 6.3: Average identification results for the NFI dataset (3561 pages, 805 writers).

of text from the same writer. This is left as future work.
The results show that the method works very well for writer verification, even with

as few as two vantage writers, yielding only a small performance drop relative to the
original input Hinge feature vector, while representing writers in only two dimensions.
This is an enormous dimensionality reduction, which by itself can be a reason to use
this method. The performance results for identification are less encouraging, but our
approach may still be useful because of its explainable basis. In any case, there is room
for improvements. Better preprocessing should enable the use more of the authentic
forensic NFI samples. Furthermore, the vantage profile might be constructed based on
other basic features; the vantage writers may be selected more thoroughly using more
extensive stochastic sampling and other distance measures may be evaluated. The set of
vantage writers could also be manually selected by experts, representing specific groups
of writers distinguished by criteria like sex, handedness, age, nationality and script
type. We have already tried unsupervised clustering using a Kohonen self-organizing
map (SOM), but that did not result in better performance than using stochastically
sampled optimal vantage writers. Additionally, its clustering-based vantage centroids
did not contribute to the explainability of results as was evident from discussions with
a forensic expert. Applicability may further improve by transforming current writer
vantage-distances to reliable probability estimates. Concluding, while there is still room
for improvement, the proposed method introduces a feature transformation for increased
explainability that could be part of a system for robust and applicable handwriting
biometrics.





Chapter 7

Conclusions

Two objectives were central to this dissertation:

1. Analysis of robustness of handwriting biometrics;

2. Introduction of methods to make handwriting biometrics more robust and appli-
cable.

In the next two sections the main findings regarding these objectives will be summarized,
followed by propositions for future work.

7.1 Robustness analysis

In part I, the robustness of well-performing methods for realistic input was tested. Three
specific types of difficult input were distinguished, each in one chapter. Chapter 2 dis-
cussed the robustness for text scarcity. It was shown that robust classification is pos-
sible if at least 100 handwritten characters are present in the input documents. This
was tested by gradually increasing the amount of handwritten text on the pages while
monitoring the change of performance in writer verification and identification. Increas-
ing the amount consistently increased performance, even when the amount of text was
increased in only one of the two documents in the pairwise comparisons. The best tested
feature (Hinge) performed near-optimal when the text contained 100 characters. Below
this amount, the performance dropped. For features that are less powerful, a reasonable
minimum is 200 characters.

In Chapter 3 it was shown that a realistic fraction of crossed-out text can be ad-
mitted for robust handwriting biometrics. A simple method to automatically identify
and remove crossed-out text was applied, which was able to remove 47% of crossed-out
text while preserving 99% of the normal text. After removal, writer verification and
identification performance based on the Hinge feature remained nearly equal.
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Chapter 4 discussed robustness for a frequent method of handwriting disguise: a
change of slant. It was shown that handwriting biometrics is not fully robust for this
kind of disguise, despite the facts that the slant angle is not an essential writer-specific
feature and that slant change seems to be simple to correct. Change of slant has effect on
other aspects of the handwriting, making it less identifiable than natural handwriting.
This was found in a series of writer verification experiments using four statistical features.

7.2 New methods for robust and applicable handwriting

biometrics

Part II constitutes objective 2: the introduction of methods to make handwriting bio-
metrics robust and applicable. In chapter 5 two new, powerful features for writer iden-
tification were introduced, which are inspired by modern paleography: the Quill and
QuillHinge features. These features measure variations in the width of the ink trace in
relation to the trace direction. The features were tested on four datasets, including a
challenging collection of 118 medieval writings, allegedly written by 18 scribes, captured
on freehand photos. The methods perform very well, even on that challenging material:
75% top-1 writer-identification performance. On datasets of contemporary handwriting,
top-1 accuracy for QuillHinge was 86–97%. This implies that the width of the ink trace
contains discriminative information. The new feature extraction methods can be used
as part of the collection of methods in a robust system for handwriting biometrics.

In Chapter 6 a method was introduced to make handwriting biometrics more explain-
able, which is particularly necessary for writer verification. The principle is that every
handwriting can be expressed as a relative position with respect to a limited number
of prototypical handwritings. This makes it possible to visualize and explain the found
differences between the writings.

As a proof-of-concept, the feasibility of applicable handwriting biometrics is demon-
strated in the form of a graphical computer application for robust and applicable writer
identification: giwis. The program requires little user intervention because of the use
of methods based on statistical pattern recognition and effective preprocessing steps. It
contains the powerful Quill and QuillHinge features which were described in Chapter
5. It can be used by the police to quickly find suspects, and by historians to group
documents likely written by the same writer. It is described in Appendix A.

Handwriting biometrics, in the form of writer identification, is now applicable for
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historians and the police. In addition, a few steps were taken to make writer verification
applicable too, for application in the forensic domain. Still, many directions for further
improvements remain.

7.3 Future work

Robustness and applicability can be increased further in many ways. An obvious ap-
proach is to further increase recognition performance by continuing to invent good fea-
tures, but current features such as Hinge, Fraglets, Quill and QuillHinge are already
good and reaching 100% might be impossible. Therefore, we suggest to focus on other
aspects.

First of all, it must become a standard to use realistic datasets for testing systems.
Currently, laboratory datasets are the standard. These are useful to test the theoretical
power of computational features in isolation, but not for testing complete systems, since
such datasets lack the variability found in the real world. In the case of modern hand-
writing, datasets for testing must contain real-world forensic material, not only writing
samples collected from suspects, but also heterogeneous real questioned documents. This
should include a variety of materials, written using a variety of pens, and including dis-
guised handwriting. A similar argument holds for testing on historical handwriting. In
this dissertation a somewhat heterogeneous dataset was used, but the authorship of each
document was not known for sure. We suggest to collect more heterogeneous datasets
that include certain authorship labels. Testing on such datasets would give a better im-
pression of real-world performance. It is a challenge to acquire such data in conjunction
with reliable authorship information.

One of the problems that such real-world data imposes is foreground-background
segmentation: it is common that not only the handwritten text is dark, but other objects
as well, such as lineation, preprinted text or pictures, stains, and wrinkles. These must
be removed automatically or at least semi-automatically to make automatic methods
usable. Robustness for input quality has a limit, but this is acceptable if a clear threshold
on input quality is known, and the zone of tolerance is large. Ideally, the system should
automatically reject input that does not meet the quality criterion.

An issue that was not covered in this dissertation is within-writer variability model-
ing. We think it should be incorporated in a robust system for handwriting biometrics.
Experts of handwriting use it implicitly, and others have implemented automatic ap-
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proaches such as Gaussian mixture models (GMM) [83], hidden Markov models (HMM)
[82], or simply by using weighted euclidean distance measures (WED). The difficulty
with variability modeling is that it requires more training data: multiple input samples
per known writer are needed to estimate the variability. Alternatively, it is possible to
obtain multiple samples from a single document by splitting the document in smaller
regions such as text lines, which can only work on neatly written text. A related issue
is multi-stability: many people can stably write in more than one way. An obvious ex-
ample is a distinction between cursive and capital letters, but other variations are also
common. Simply averaging the features of all kinds of handwriting of each subject might
result in false feature centroids.

The most problematic form of within-writer variation is disguise. A person can
change his or her handwriting in an attempt to avoid identification, which is probably
common in forensic cases. Computed features are not robust for this. The features may
have some discriminating power in such cases, but thorough testing on disguised hand-
writing is needed before automatic writer verification can be trusted. In this dissertation
we have investigated the frequent form of disguise by slant manipulation, but the effects
of all other forms of disguise remain unknown. This also applies to an alternative method
to change one’s writing style: forgery, simulating someone else’s handwriting. Recently
a writer verification system was developed that showed an impressively low equal-error
rate (EER) of only 4% when it was tested on a mix of genuine and forged handwriting
[82].

The ultimate challenge for the distant future is the incorporation of handwriting
recognition: automatic transcription of the textual contents. When this field has ma-
tured, a new window of opportunities can be opened. Most importantly, it would allow
for word- and character-wise comparison. This is a specific and detailed analysis, which
promises even higher performance. Handwriting recognition can also be used to auto-
mate preprocessing and ROI segmentation, by optimizing the parameters for readability
of the processed image. A possible angle is to use Hidden Markov models (HMM) [82],
which naturally combine writer identification with handwriting recognition. However,
HMMs require that the text lines are well-separable and cannot cope with unconstrained
handwriting.

For the near future, a different approach to support forensic document examiners is
already possible: an application that presents a virtual Oslo lineup. Given a questioned
document, the system should confront the fde with a lineup of a limited number (for
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example, 9) documents containing similar handwriting (“distractors”) plus the document
written by the suspect. The task for the fde is then to decide if the handwriting in
one of the ten documents is remarkably similar to that in the questioned document.
An open question is for how long handwriting will be used in the future, as digital
communication is becoming more important. In any case, handwriting biometrics on
contemporary handwriting is useful today and it is useful with historical handwriting as
long as such handwriting is studied.





Appendix A

GIWIS: a robust and applicable writer
identification tool

As a proof-of-concept of the feasibility of robust and applicable handwriting biomet-
rics, a graphical computer program for writer identification has been developed: giwis

(Groningen Intelligent Writer Identification System). It is a user-friendly tool for writer
identification, intended to be used by non-technical handwriting researchers, including
police members and historical researchers. The application enables these professionals
to search for documents in a database based on handwriting similarity, possibly saving
a considerable amount of time.

A few related graphical programs have been introduced before:

� cedar-fox: a Windows program for handwriting recognition, writer verifica-
tion and writer identification. It is intended for forensic experts. Developed by
cedar/CedarTech, USA. [95]

� fish (Forensic Identification System of Handwriting): a VMS/VWS/X11 program
intended for forensic experts. Developed by BKA, Germany. [77, 88];

� grawis (Groningen automatic writer identification system): a web-based writer
identification demo based on precomputed results. Developed at alice in Gronin-
gen, the Netherlands. [17]

� Hand Analyser: a prototype system designed to aid in the identification of hand-
writing, particularly medieval. Developed at the University of Cambridge, UK.
[98, 99]

� script: a Windows program intended for non-expert users. Developed by NIFO/-
TNO, the Netherlands. [28, 88];
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� spi (System for Paleographic Inspections): this system performs writer identifica-
tion based on individual characters. The characters have to be segmented semi-
automatically; the user has to point and click on them. A newer version (jspi) is
currently being developed. Developed in Italy. [1]

� Ulysse: A French windows application for word spotting in ancient documents.
Developed in France. [46]

� wanda: a framework for forensic handwriting examination and writer identifica-
tion. It consists of a plug-in architecture with separate components for clients with
a graphical user interface and servers for data processing. It can perform writer
identification based on manual and automatic feature measurements [40].

In most of these programs, performing a search query is a laborious process. The pro-
grams require the user to answer many questions about the handwriting or to do the
measurements manually using the mouse. giwis is unique in the sense that it is robust
and applicable, as will be shown in the next sections.

A.1 Design principles

Giwis was designed to be robust by combining different powerful techniques:

� Preprocessing consists of multiple steps, each compensating for a specific difficulty
in the input material.

� Multiple powerful feature extraction methods are available. These features can
be selected and combined to achieve a combination that works best, avoiding an
overly strong dependence on a single information source.

� The well-performing feature extraction method Quill-Hinge is included, which is
based on a sound principle and is not sensitive to parameter settings.

� The feature extraction methods are text-independent, which ensures that input
documents with any textual content can be admitted.

In addition, Giwis was designed to be applicable by minimizing required user inter-
action and by visualizing the inner workings:



A.2. Functionality 119

� The feature extraction methods are based on statistical pattern recognition, there-
fore these do not require any user interaction.

� Preprocessing is almost fully automated. The only human input is needed for roi

selection: selecting the text region by dragging four corner marks, which is simple
and takes little time. There is no need for manual image editing in an external
image manipulation program, as image processing techniques are available in the
tool itself. These techniques are applied automatically, thus the user is not required
to tamper with image details, but the process can be controlled manually if desired.

� The inner workings of the system are explained: real-time visualizations of the
result of preprocessing and feature extraction are available. (Visualization using
vantage writers is not supported yet.)

The functionality of giwis is described in the next section.

A.2 Functionality

The graphical interface of giwis consists of a top part and a bottom part; see Figure A.1.
In the top part, the currently selected image is shown together with three properties:
the object name or code, an image identifier (to distinguish between different images of
the same object) and the writer name or code, if known. The menu bar enables loading
and saving datasets and acquiring images by taking photos or scanning.

The bottom part consists of a series of tabs, which represent several steps of writer
identification and other functionality. Clicking a tab results in the appearance of a
dedicated sheet of controls and information; some of these are shown in Figure A.1. The
next subsections each describe one of these tabs.

A.2.1 Tab 1: Dataset

On the Dataset tab (not shown), the list of available images in the loaded dataset is
shown. The list shows meta-information of each image, such as the writer name/code,
if these have been entered beforehand. Also, the user can make selections to include or
exclude categories of images based on meta-information. After selecting an image from
the dataset, it will shown in the top panel. The image can be panned by dragging using
the mouse, and zoomed by using the mouse wheel. A four-sided polygon with corner
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(a) Preprocessing (b) Feature selection

(c) Search (d) Visual comparison

Figure A.1: Screenshots of GIWIS



A.2. Functionality 121

markers is shown on top of the image, which represents the region of interest. Only this
region will be regarded in the processing. The user can modify the region by dragging
corner markers with the mouse.

A.2.2 Tab 2: Preprocessing

The Prepro tab, shown in Figure A.1(a), displays the result of image preprocessing.
Preprocessing comprises the following steps:

� Perspective correction: A check box is provided to indicate that the picture was
taken at an angle instead of straight from above. If it is switched on, the perspective
distortion is corrected by a reverse perspective projection. The parameters are
derived from the positions of the four vertices of the roi. The result is a rectangular
image containing a version of the roi, stretched using bilinear interpolation.

� Automatic scaling: This is necessary for images with varying camera distance. The
image scale is estimated from the height of the text lines in the images, assuming
that the true height of the text lines is equal in all documents. The text line
height is determined by measuring the median width of the peaks in the smoothed
horizontal projection profile of dark pixels. The image is then scaled to match a
standard text line height of 50 pixels.

� High-pass filtering: Gradual intensity variations are canceled by applying a high-
pass filter, after grayscale conversion. This is implemented by blurring the image
and subtracting that from the original image.

� Otsu thresholding: The last preprocessing step is to binarize the image using Otsu
thresholding [75].

If the result looks bad, the user can decide to exclude the image from the database by
changing the quality setting to Reject, on the panel on left.

A.2.3 Tab 3: Feature selection

The next tab, Features, shows a list of available feature extraction methods on the
left side. See Figure A.1(b). The following features are available: Random (a feature
vector consisting of random numbers irrespective of the image), Runlength [2], Brush
[87], Fraglets [86], Hinge [21, 19], Hinge2 [21, 19] (another implementation of the Hinge
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feature with a custom parameter value for the length of the hinge ‘legs’), Directions [16],
Inkwidth, Quill, and QuillHinge (the latter three are introduced in chapter 5).

By default, one of the features is selected. The user can change the default selection
by checking one or more boxes. If more than one box is selected, the combination of
features is weighted by averaging distance values. After clicking the name of a feature,
a visualization of the feature values shows on the right side.

A.2.4 Tab 4: Search

The Search tab provides one button: ‘Search’. See Figure A.1(c). After clicking this
button, writer identification is performed with the image shown at the top as the query
document. It is compared to all images in the dataset by means of comparing feature
vectors. If these feature vectors have not been computed before, they are computed on
the fly, after preprocessing. Thus, this step only takes significant time the first time.
After this process, the top-10 hit list is shown as a list of snippets. If the button is
clicked without any prior roi adjustments or feature selection, default settings will be
used.

A.2.5 Tab 5: Visual comparison

The snippets in the hit list can be closely compared to the original image by clicking
on one of them. This will highlight the Compare tab, and show the selected snippet
on the bottom in full size; see Figure A.1(d). An alternative way to get a comparison
image in this tab, is by selecting one in the Dataset tab and hitting the ‘Compare’
button. The panel on the left side also shows probability distributions and a writer
match probability estimation based on these distributions. This match probability must
be interpreted with care, as the probability distributions are by default only based on
the current dataset and smoothed using parameters that may not be optimal.

A.2.6 Tab 6: Performance results

The Performance test tab includes a button to test the writer identification performance
of the selected features on the current dataset. The results are shown in the white panel
on the right side.



A.3. Architecture 123

A.2.7 Tab 7: Clustering

The last tab, Cluster, provides the possibility to cluster the images in the dataset into
groups using k-means clustering.

A.3 Architecture

The program consists of two parts: a user interface and a model. The user interface was
written in Python using wxWidgets. The model performs the actual work. It is mainly
written in Python, but performance-critical parts were written in C++. The model can
be used in conjunction with the graphical user interface or it can be controlled without
user interaction by a separate Python script.

The input image files are found in a specified directory; each image is accompanied
by an xml file in another directory. The xml files contain metadata, including the writer
label, a list of required preprocessing steps, and computed feature values, if known, and
this information is updated whenever new information is available. The most common
task of the model is to compute feature values given the name of a feature and its
parameters. If the feature values for this request are not available in the xml file, the
image is preprocessed according to the steps mentioned in the xml file, and the feature
values are extracted and added to the xml file. The changes are only saved when the
user chooses ’Save’.

A.4 Discussion

giwis is robust and applicable in real-life conditions. This has shown in results of several
research projects:

� History research on 14th-century Dutch documents [91, 92];

� History research on 15th-century French documents [4];

� History research on 16th-century German documents [10];

� Language history research on 17th-century and 18th-century Dutch documents
[74];
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In the latter two cases, giwis was controlled by a script. The program was also demon-
strated in several convincing demonstrations for real-time writer identification with a
digital camera, despite the conditions of bad illumination and low image quality. With
giwis, a tool for handwriting biometrics has become available that is robust and appli-
cable.
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Samenvatting (summary in Dutch)

Handschrift bevat kenmerken die kunnen verraden wie de schrijver is. Dat komt van
pas wanneer de politie wil achterhalen wie de schrijver is van bijvoorbeeld een hand-
geschreven dreigbrief of een mogelijk valse zelfmoordbrief. Het is ook nuttig voor ge-
schiedenisonderzoek, want veel historische bronnen zijn handgeschreven en soms is het
mogelijk om iets te leren over onze geschiedenis door te achterhalen welke documenten
door dezelfde persoon geschreven moeten zijn.

Het vergelijken van handschrift gebeurt traditioneel nog met de hand, door experts,
op basis van hun kennis en ervaring. Hoewel zij doorgaans zeer kundig zijn zitten
hier wel twee nadelen aan: deze aanpak is niet objectief en het is tijdrovend werk.
Deze tekortkomingen kunnen goed worden gecompenseerd door de computer, want die
heeft tegengestelde kwaliteiten: algoritmes kunnen onbevooroordeeld en razendsnel een
enorme hoeveelheid metingen verrichten. Het ligt dus voor de hand om de traditionele
handschriftvergelijking te verrijken met een slim stuk gereedschap in de vorm van een
computerprogramma dat handschrift kan vergelijken en daar uitspraken over kan doen.

Zulke programmatuur noemen we systemen voor handschriftbiometrie. Er zijn twee
typen: schrijververificatie en schrijveridentificatie. Een systeem voor schrijververificatie
bepaalt of twee documenten van dezelfde hand zijn; dit kan worden gebruikt om de uit-
spraak van handschriftdeskundigen te onderbouwen of juist te ontkrachten. Een systeem
voor schrijveridentificatie zoekt op basis van één document in een bestaande collectie do-
cumenten naar documenten met vergelijkbaar handschrift en levert daarbij de identiteit
van de schrijvers daarvan. Dit kan worden gebruikt door de politie om mogelijke da-
ders te vinden, of door historici om documenten te groeperen die mogelijk van dezelfde
hand zijn. In hoofdstuk 1 wordt de basis van zulke systemen voor handschriftbiometrie
toegelicht.

Bestaande systemen presteren prima op handschrift dat is geschreven in laboratori-
umcondities, maar er is weinig bekend over de prestaties in realistische omstandigheden.
In praktijk kan handschrift moeilijkheden bevatten zoals een tekort aan tekst, doorge-
streepte woorden en verdraaid handschrift. Mede hierdoor kan schrijververificatie nog
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niet zomaar worden toegepast. Bovendien is de werking van huidige systemen voor
mensen in de toepassingsgebieden moeilijk te bevatten. Die moeilijkheden zijn minder
problematisch bij schrijveridentificatie, maar ze zorgen wel voor suboptimale prestaties.
In dit proefschrift zijn een aantal stappen gezet om handschriftbiometrie meer robuust
en toepasbaar te maken, zoals we hieronder zullen samenvatten.

In deel I, dat bestaat uit hoofdstuk 2–4, onderzochten we de robustheid van goed
presterende methoden, gebaseerd op statistische patroonherkenning, voor een drietal
problemen uit de praktijk: een tekort aan tekst, doorgestreepte woorden en handschrift-
verdraaiing. In hoofdstuk 2 werd onderzocht hoeveel tekst minimaal nodig is voor be-
trouwbare resultaten; dit is ongeveer 100 tekens. In hoofdstuk 3 toonden we aan dat
handschriftbiometrie nauwelijks lijdt onder de aanwezigheid van doorgestreepte woorden.
Tot op zekere hoogte zijn die automatisch te verwijderen, maar ook zonder verwijdering
kunnen de documenten worden toegelaten. De lastigste kwestie in dit deel van het proef-
schrift gaat over verdraaid handschrift. Dit probleem is nog grotendeels onopgelost. In
hoofdstuk 4 belichten we een belangrijke verschijningsvorm hiervan: verdraaiing door
het veranderen van de hellingshoek. We toonden aan dat de hellingshoek op zich weinig
informatief is en dat een veranderde hellingshoek makkelijk te corrigeren is, maar het
gecorrigeerde handschrift bleek toch minder herkenbaar dan natuurlijk geschreven tekst.
Daaruit blijkt dat een verandering van de helling ook invloed heeft op andere aspecten
van het handschrift. Wat betreft handschriftverdraaiing kunnen we handschriftbiometrie
dus nog niet robuust noemen.

In deel II, dat bestaat uit hoofdstuk 5–6, worden methoden voorgesteld om hand-
schriftbiometrie meer robuust en toepasbaar te maken. In hoofdstuk 5 worden twee
krachtige technieken gëıntroduceerd waarmee schrijverspecifieke kenmerken uit het hand-
schrift kunnen worden geëxtraheerd: Quill en QuillHinge. Deze technieken zijn gëınspi-
reerd door arbeidsintensieve handmatige methoden in de moderne paleografie, namelijk
metingen van de breedte en richting van het inktspoor. De gemeten waarden worden
onder andere bëınvloed door veranderingen in pendruk en door de manier waarop de
pen bij het schrijven is vastgehouden. De prestaties van deze nieuwe technieken op zo-
wel modern als historisch handschrift zijn zeer goed, waarmee wordt aangetoond dat de
combinatie van deze twee kenmerken zeer informatief is. Bovendien is handschriftbiome-
trie hiermee verrijkt met twee krachtige en bruikbare technieken. Vervolgens wordt in
hoofdstuk 6 een mogelijke oplossing aangedragen om handschriftbiometrie begrijpelijker
te maken, door elk handschrift uit te drukken als een relatieve positie ten opzichte van
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een aantal typische handschriften. Dit maakt het makkelijker om de gevonden verschillen
tussen handschriften te visualiseren en uit te leggen.

Tenslotte werd in appendix A een volledig functionele applicatie voorgesteld als een
demonstratie van robuuste en toepasbare handschriftbiometrie: giwis. Het program-
ma vereist slechts weinig gebruikerinteractie en bevat de krachtige technieken Quill en
QuillHinge. Het kan worden gebruikt door de politie om snel verdachten te vinden, en
door historici om documenten te groeperen die mogelijk van dezelfde hand zijn.
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