8 research outputs found

    An assessment of tropical dryland forest ecosystem biomass and climate change impacts in the Kavango-Zambezi (KAZA) region of Southern Africa

    Get PDF
    The dryland forests of the Kavango-Zambezi (KAZA) region in Southern Africa are highly susceptible to disturbances from an increase in human population, wildlife pressures and the impacts of climate change. In this environment, reliable forest extent and structure estimates are difficult to obtain because of the size and remoteness of KAZA (519,912 km²). Whilst satellite remote sensing is generally well-suited to monitoring forest characteristics, there remain large uncertainties about its application for assessing changes at a regional scale to quantify forest structure and biomass in dry forest environments. This thesis presents research that combines Synthetic Aperture Radar, multispectral satellite imagery and climatological data with an inventory from a ground survey of woodland in Botswana and Namibia in 2019. The research utilised a multi-method approach including parametric and non-parametric algorithms and change detection models to address the following objectives: (1) To assess the feasibility of using openly accessible remote sensing data to estimate the dryland forest above ground biomass (2) to quantify the detail of vegetation dynamics using extensive archives of time series satellite data; (3) to investigate the relationship between fire, soil moisture, and drought on dryland vegetation as a means of characterising spatiotemporal changes in aridity. The results establish that a combination of radar and multispectral imagery produced the best fit to the ground observations for estimating forest above ground biomass. Modelling of the time-series shows that it is possible to identify abrupt changes, longer-term trends and seasonality in forest dynamics. The time series analysis of fire shows that about 75% of the study area burned at least once within the 17-year monitoring period, with the national parks more frequently affected than other protected areas. The results presented show a significant increase in dryness over the past 2 decades, with arid and semi-arid regions encroaching at the expense of dry sub-humid, particularly in the south of the region, notably between 2011-2019

    Collaborative multiple change detection methods for monitoring the spatio-temporal dynamics of mangroves in Beibu Gulf, China

    Get PDF
    Mangrove ecosystems are one of the most diverse and productive marine ecosystems around the world, although losses of global mangrove area have been occurring over the past decades. Therefore, tracking spatio-temporal changes and assessing the current state are essential for mangroves conservation. To solve the issues of inaccurate detection results of single algorithms and those limited to historical change detection, this study proposes the detect–monitor–predict (DMP) framework of mangroves for detecting time-series historical changes, monitoring abrupt near-real-time events, and predicting future trends in Beibu Gulf, China, through the synergetic use of multiple detection change algorithms. This study further developed a method for extracting mangroves using multi-source inter-annual time-series spectral indices images, and evaluated the performance of twenty-one spectral indices for capturing expansion events of mangroves. Finally, this study reveals the spatio-temporal dynamics of mangroves in Beibu Gulf from 1986 to 2021. In this study, we found that our method could extract mangrove growth regions from 1986 to 2021, and achieved 0.887 overall accuracy, which proved that this method is able to rapidly extract large-scale mangroves without field-based samples. We confirmed that the normalized difference vegetation index and tasseled cap angle outperform other spectral indexes in capturing mangrove expansion changes, while enhanced vegetation index and soil-adjusted vegetation index capture the change events with a time delay. This study revealed that mangrove changes displayed historical changes in the hierarchical gradient from land to sea with an average annual expansion of 239.822 ha in the Beibu Gulf during 1986–2021, detected slight improvements and deteriorations of some contemporary mangroves, and predicted 72.778% of mangroves with good growth conditions in the future

    Using Deep Learning with Satellite Imagery to Estimate Deforestation Rates

    Get PDF
    Previous studies have used Convolutional Neural Networks for regional detection of deforestation breaks. However, there is limited research into the capability of deep neural networks to identify sudden shifts in global forest cover from satellite imagery. Additionally, many deforestation detection models are trained on region specific data and need manual input thresholds. In this work, we develop a deep learning model to predict the percent of deforestation in a region between two points in time, trained on globally sourced data. Using the before and after satellite images of a deforestation event as inputs, we implemented a two input Convolutional Neural Network with ResNet transfer learning. The model yields a percent estimate of the deforestation that occurred within the region, achieving an error of 7.61%, using thousands of observations across a wide range of bio-climatic regions. These results illustrate the ability of a deep learning model to predict deforestation when it occurs, at a global scale. Our study, which uses random sampling from every continent, suggests the efficacy/possibility of moving from a limited and regional method to a global model

    Semi-Automatic Methodology for Fire Break Maintenance Operations Detection with Sentinel-2 Imagery and Artificial Neural Network

    Get PDF
    PTDC/CCI-COM/30344/2017 PCIF/SSI/0102/2017 UID/EEA/00066/2019 UIDB/00239/2020The difficult job of fighting fires and the nearly impossible task to stop a wildfire without great casualties requires an imperative implementation of proactive strategies. These strategies must decrease the number of fires, the burnt area and create better conditions for the firefighting. In this line of action, the Portuguese Institute of Nature and Forest Conservation defined a fire break network (FBN), which helps controlling wildfires. However, these fire breaks are efficient only if they are correctly maintained, which should be ensured by the local authorities and requires verification from the national authorities. This is a fastidious task since they have a large network of thousands of hectares to monitor over a full year. With the increasing quality and frequency of the Earth Observation Satellite imagery with Sentinel-2 and the definition of the FBN, a semi-automatic remote sensing methodology is proposed in this article for the detection of maintenance operations in a fire break. The proposed methodology is based on a time-series analysis, an object-based classification and a change detection process. The change detection is ensured by an artificial neural network, with reflectance bands and spectral indices as features. Additionally, an analysis of several bands and spectral indices is presented to show the behaviour of the data during a full year and in the presence of a maintenance operation. The proposed methodology achieved a relative error lower than 4% and a recall higher than 75% on the detection of maintenance operations.publishersversionpublishe

    Satellite and UAV Platforms, Remote Sensing for Geographic Information Systems

    Get PDF
    The present book contains ten articles illustrating the different possible uses of UAVs and satellite remotely sensed data integration in Geographical Information Systems to model and predict changes in both the natural and the human environment. It illustrates the powerful instruments given by modern geo-statistical methods, modeling, and visualization techniques. These methods are applied to Arctic, tropical and mid-latitude environments, agriculture, forest, wetlands, and aquatic environments, as well as further engineering-related problems. The present Special Issue gives a balanced view of the present state of the field of geoinformatics

    Forest Cover and Vegetation Degradation Detection in the Kavango Zambezi Transfrontier Conservation Area Using BFAST Monitor

    No full text
    Forest cover and vegetation degradation was monitored across the Kavango-Zambezi Transfrontier Conservation Area (KAZA) in southern Africa and the performance of three different methods in detecting degradation was assessed using reference data. Breaks for Additive Season and Trend (BFAST) Monitor was used to identify potential forest cover and vegetation degradation using Landsat Normalized Difference Moisture Index (NDMI) time series data. Parametric probability-based magnitude thresholds, non-parametric random forest in conjunction with Soil-Adjusted Vegetation Index (SAVI) time series, and the combination of both methods were evaluated for their suitability to detect degradation for six land cover classes ranging from closed canopy forest to open grassland. The performance of degradation detection was largely dependent on tree cover and vegetation density. Satisfactory accuracies were obtained for closed woodland (user’s accuracy 87%, producer’s accuracy 71%) and closed forest (user’s accuracy 92%, producer’s accuracy 90%), with lower accuracies for open canopies. The performance of the three methods was more similar for closed canopies and differed for land cover classes with open canopies. Highest user’s accuracy was achieved when methods were combined, and the best performance for producer’s accuracy was obtained when random forest was used
    corecore