13,755 research outputs found

    The locust frontal ganglion: a central pattern generator network controlling foregut rhythmic motor patterns

    Get PDF
    The frontal ganglion (FG) is part of the insect stomatogastric nervous system and is found in most insect orders. Previous work has shown that in the desert locust, Schistocerca gregaria, the FG constitutes a major source of innervation to the foregut. In an in vitro preparation, isolated from all descending and sensory inputs, the FG spontaneously generated rhythmic multi-unit bursts of action potentials that could be recorded from all its efferent nerves. The consistent endogenous FG rhythmic pattern indicates the presence of a central pattern generator network. We found the appearance of in vitro rhythmic activity to be strongly correlated with the physiological state of the donor locust. A robust pattern emerged only after a period of saline superfusion, if the locust had a very full foregut and crop, or if the animal was close to ecdysis. Accordingly, haemolymph collected at these stages inhibited an ongoing rhythmic pattern when applied onto the ganglion. We present this novel central pattern generating system as a basis for future work on the neural network characterisation and its role in generating and controlling behaviour

    Green Fluorescent Protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae

    Get PDF
    The use of Green Fluorescent Protein (GFP) as a reporter for expression transgenes opens the way to several new experimental strategies for the study of gene regulation in sea urchin development. A GFP coding sequence was associated with three different previously studied cis-regulatory systems, viz those of the SM50 gene, expressed in skeletogenic mesenchyme, the CyIIa gene, expressed in archenteron, skeletogenic and secondary mesenchyme, and the Endo16 gene, expressed in vegetal plate, archenteron and midgut. We demonstrate that the sensitivity with which expression can be detected is equal to or greater than that of whole-mount in situ hybridization applied to detection of CAT mRNA synthesized under the control of the same cis-regulatory systems. However, in addition to the important feature that it can be visualized nondestructively in living embryos, GFP has other advantages. First, it freely diffuses even within fine cytoplasmic cables, and thus reveals connections between cells, which in sea urchin embryos is particularly useful for observations on regulatory systems that operate in the syncytial skeletogenic mesenchyme. Second, GFP expression can be dramatically visualized in postembryonic larval tissues. This brings postembryonic larval developmental processes for the first time within the easy range of gene transfer analyses. Third, GFP permits identification and segregation of embryos in which the clonal incorporation of injected DNA has occurred in any particular desired region of the embryo. Thus, we show explicitly that, as expected, GFP transgenes are incorporated in the same nuclei together with other transgenes with which they are co-injected

    Foregut microbiome in development of esophageal adenocarcinoma

    Get PDF
    Esophageal adenocarcinoma (EA), the type of cancer linked to heartburn due to gastroesophageal reflux diseases (GERD), has increased six fold in the past 30 years. This cannot currently be explained by the usual environmental or by host genetic factors. EA is the end result of a sequence of GERD-related diseases, preceded by reflux esophagitis (RE) and Barrett’s esophagus (BE). Preliminary studies by Pei and colleagues at NYU on elderly male veterans identified two types of microbiotas in the esophagus. Patients who carry the type II microbiota are >15 fold likely to have esophagitis and BE than those harboring the type I microbiota. In a small scale study, we also found that 3 of 3 cases of EA harbored the type II biota. The findings have opened a new approach to understanding the recent surge in the incidence of EA. 

Our long-term goal is to identify the cause of GERD sequence. The hypothesis to be tested is that changes in the foregut microbiome are associated with EA and its precursors, RE and BE in GERD sequence. We will conduct a case control study to demonstrate the microbiome disease association in every stage of GERD sequence, as well as analyze the trend in changes in the microbiome along disease progression toward EA, by two specific aims. Aim 1 is to conduct a comprehensive population survey of the foregut microbiome and demonstrate its association with GERD sequence. Furthermore, spatial relationship between the esophageal microbiota and upstream (mouth) and downstream (stomach) foregut microbiotas as well as temporal stability of the microbiome-disease association will also be examined. Aim 2 is to define the distal esophageal metagenome and demonstrate its association with GERD sequence. Detailed analyses will include pathway-disease and gene-disease associations. Archaea, fungi and viruses, if identified, also will be correlated with the diseases. A significant association between the foregut microbiome and GERD sequence, if demonstrated, will be the first step for eventually testing whether an abnormal microbiome is required for the development of the sequence of phenotypic changes toward EA. If EA and its precursors represent a microecological disease, treating the cause of GERD might become possible, for example, by normalizing the microbiota through use of antibiotics, probiotics, or prebiotics. Causative therapy of GERD could prevent its progression and reverse the current trend of increasing incidence of EA

    The food and feeding habit of Penaeus monodon Fabricius collected from Makato River, Aklan, Philippines

    Get PDF
    The food of Penaeus monodon collected from Makato R., from Sept 1977 to Jan 1978 is described with preliminary observations on its feeding habit and rate of foregut clearance. Feeding behaviour appears to be associated with the tidal phase. Foregut clearance rate is rapid, with 95% of food transported from the foregut 4 h after feeding. Frequency of occurrence and proportion of total food of various foregut contents are shown, as are dry weight, percentage mineral, organic and crude protein nitrogen from individual and pooled samples of gut contents, and foregut index in P. monodon collected during different phases of one tidal cycle

    Through the dark continent: African trypanosome development in the tsetse fly

    Get PDF
    African trypanosomes are unicellular flagellated parasites causing trypanosomiases in Africa, a group of severe diseases also known as sleeping sickness in human and nagana in cattle. These parasites are almost exclusively transmitted by the bite of the tsetse fly. In this review, we describe and compare the three developmental programs of the main trypanosome species impacting human and animal health, with focus on the most recent observations. From here, some reflections are made on research issues concerning trypanosome developmental biology in the tsetse fly that are to be addressed in the future

    Venomous secretions from marine snails of the Terebridae family target acetylcholine receptors

    Get PDF
    Venoms from cone snails (Conidae) have been extensively studied during the last decades, but those from other members of the suborder Toxoglossa, such as of Terebridae and Turridae superfamilies attracted less interest so far. Here, we report the effects of venom and gland extracts from three species of the superfamily Terebridae. By 2-electrode voltage-clamp technique the gland extracts were tested on Xenopus oocytes expressing nicotinic acetylcholine receptors (nAChRs) of rat neuronal (α3β2, α3β4, α4β2, α4β4, α7) and muscle subtypes (α1β1γδ), and expressing potassium (Kv1.2 and Kv1.3) and sodium channels (Nav1.2, 1.3, 1.4, 1.6). The extracts were shown to exhibit remarkably high inhibitory activities on almost all nAChRs tested, in particular on the α7 subtype suggesting the presence of peptides of the A-superfamily from the venom of Conus species. In contrast, no effects on the potassium and sodium channels tested were observed. The venoms of terebrid snails may offer an additional source of novel biologically active peptides

    Phylogenetic analysis of microbial communities in different regions of the gastrointestinal tract in Panaque nigrolineatus, a wood-eating fish

    Get PDF
    The Neotropical detritivorous catfish Panaque nigrolineatus imbibes large quantities of wood as part of its diet. Due to the interest in cellulose, hemi-cellulose and lignin degradation pathways, this organism provides an interesting model system for the detection of novel microbial catabolism. In this study, we characterize the microbial community present in different regions of the alimentary tract of P. nigrolineatus fed a mixed diet of date palm and palm wood in laboratory aquaria. Analysis was performed on 16S rRNA gene clone libraries derived from anterior and posterior regions of the alimentary tract and the auxiliary lobe (AL), an uncharacterized organ that is vascularly attached to the midgut. Sequence analysis and phylogenetic reconstruction revealed distinct microbial communities in each tissue region. The foregut community shared many phylotypes in common with aquarium tank water and included Legionella and Hyphomicrobium spp. As the analysis moved further into the gastrointestinal tract, phylotypes with high levels of 16S rRNA sequence similarity to nitrogen-fixing Rhizobium and Agrobacterium spp. and Clostridium xylanovorans and Clostridium saccharolyticum, dominated midgut and AL communities. However, the hindgut was dominated almost exclusively by phylotypes with the highest 16S rRNA sequence similarity to the Cytophaga-Flavobacterium-Bacteroides phylum. Species richness was highest in the foregut (Chao(1) = 26.72), decreased distally through the midgut (Chao(1) = 25.38) and hindgut (Chao(1) = 20.60), with the lowest diversity detected in the AL (Chao(1) = 18.04), indicating the presence of a specialized microbial community. Using 16S rRNA gene phylogeny, we report that the P. nigrolineatus gastrointestinal tract possesses a microbial community closely related to microorganisms capable of cellulose degradation and nitrogen fixation. Further studies are underway to determine the role of this resident microbial community in Panaque nigrolineatus

    Modulation of foregut synaptic activity controls resorption of molting fluid during larval molts of the moth Manduca sexta

    Get PDF
    We examined the role of the foregut in the resorption of molting fluid (MF) from the exuvial space during the last larval-larval molt of the moth Manduca sexta. In intermolt larvae, the activity of the foregut is characterized by robust peristaltic contractions. With the onset of the molt, MF is secreted into the exuvial space where it digests and weakens the old cuticle. The appearance of MF in the exuvial space is accompanied by a dramatic reduction in the amplitude of the foregut contractions. Foregut peristalsis returned about halfway through the molt, followed shortly by the appearance of MF in the gut. These observations suggested that larvae use their foreguts to remove MF from the exuvial space. Animals whose foreguts were surgically inactivated did not resorb their MF and most failed to successfully shed their old cuticles. The reduction in foregut motility at the onset of the molt was correlated with a sharp decline in the amplitude of the excitatory junctional potentials. With the onset of the molt there was also a decline in the number of presynaptic terminals on the foregut that loaded with the activity-dependent dye FM1-43. In the second half of the molt, the appearance of MF in the foregut and the return of foregut motility was correlated with an increase in FM1-43 loading. These data reveal that during a larval-larval molt, vesicle release and/or recycling of the presynaptic endings on the foregut muscles is modulated to assure the proper timing of MF resorption
    corecore